Algebraic Number Theory (88-798)
 5779 Semester A
 Question Sheet 3

(1) Prove that the rings of integers of the fields $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3})$, and $\mathbb{Q}(\sqrt{-7})$ are all principal ideal domains.
(2) Find the class number of the field $\mathbb{Q}(\sqrt{6})$.
(3) Prove that if $K=\mathbb{Q}(\sqrt{-5})$, then $h_{K}=2$.
(4) Prove that there are no integers x, y such that $x^{2}+5=y^{3}$.

Hint: Suppose that such $x, y \in \mathbb{Z}$ do exist. Prove that they must be relatively prime, that x is even, and that y is odd. Consider the ideals $I, J \subset \mathbb{Z}[\sqrt{-5}]$ given by $I=(x+\sqrt{-5})$ and $J=(x-\sqrt{-5})$. Note that $I J=(y)^{3}$. Prove that I and J must be relatively prime. It follows that $I=\left(I^{\prime}\right)^{3}$ for some ideal $I^{\prime} \subset \mathcal{O}_{K}$. Now use the result of the previous exercise.
(5) Let p be a prime number such that $p \equiv 2 \bmod 3$, and let $K=\mathbb{Q}(\sqrt{-p})$. Suppose that $p>3^{m}$. Prove that $h_{K}>m$.

Hint: Let $\mathfrak{p} \subset \mathcal{O}_{K}$ be a prime ideal dividing $3 \mathcal{O}_{K}$. Consider its class in Cl_{K}.
(6) Let $K=\mathbb{Q}(\sqrt{65})$. The purpose of this and the three following exercises is to determine the class number h_{K}, illustrating a technique that can be used quite generally. Define the set

$$
S=\left\{x \in \mathcal{O}_{K}: N_{K / \mathbb{Q}}(x)= \pm 2\right\} .
$$

Find a unit $u \in \mathcal{O}_{K}^{*}$ that is not a root of unity and show that multiplication by u and u^{-1} preserves S.
(7) Let $\sigma_{1}, \sigma_{2}: K \hookrightarrow \mathbb{R}$ be the two embeddings of K into \mathbb{R}, and consider the map

$$
\begin{aligned}
& \lambda: \mathcal{O}_{K} \backslash\{0\} \rightarrow \mathbb{R} \times \mathbb{R} \\
& x \mapsto \\
&\left(\log \left|\sigma_{1}(x)\right|, \log \left|\sigma_{2}(x)\right|\right) .
\end{aligned}
$$

Consider the action of u and u^{-1} on S by multiplication and find a number $c>0$ such that if $S \neq \varnothing$, then there exists $x \in S$ such that

$$
\lambda(x) \in\left\{\left(z_{1}, z_{2}\right) \in \mathbb{R} \times \mathbb{R}:\left|z_{1}\right|<c,\left|z_{2}\right|<c\right\} .
$$

(8) Find an integer N such that if $x=a+b \sqrt{65} \in S$ is the element found in the previous exercise, then $|a|<N$ and $|b|<N$.

Since $x \in \mathcal{O}_{K}$ and therefore $a, b \in \frac{1}{2} \mathbb{Z}$, there are only finitely many elements $x=a+$ $b \sqrt{65} \in \mathcal{O}_{K}$ satisfying the condition that $|a|,|b|<N$. Write a simple computer program to check that none of these elements have norm ± 2. Conclude that $S=\varnothing$.
(9) Use the fact that $S=\varnothing$ to prove that $h_{K}=2$.

Hint: It may be helpful to prove that $3 \mathcal{O}_{K}$ is prime and that $2 \mathcal{O}_{K}$ decomposes into a product of two distinct prime ideals.

