Algebraic Number Theory (88-798)
 5779 Semester A
 Question Sheet 5

(1) Let K be a field complete with respect to an Archimedean valuation $|\cdot|$. The aim of this exercise is to prove Ostrowski's theorem that there exists either an isomorphism $\sigma: K \rightarrow \mathbb{R}$ or an isomorphism $\sigma: K \rightarrow \mathbb{C}$ such that there exists $s \in(0,1]$ such that for all $a \in K$ we have $|a|=|\sigma(a)|_{\infty}$. Here $|\cdot|_{\infty}$ is the usual valuation on \mathbb{R} or \mathbb{C}.
(a) Prove that char $K=0$ and hence that \mathbb{Q} embeds in K.
(b) Replacing the valuation by an equivalent one if necessary, show that \mathbb{R} embeds in K and that $|\cdot|_{\mid \mathbb{R}}=|\cdot|_{\infty}$.
(c) Let $a \in K$ be arbitrary and consider the function $f_{a}: \mathbb{C} \rightarrow \mathbb{R}$ given by $f(z)=$ $\left|a^{2}-(z+\bar{z}) a+z \bar{z}\right|$. Show that $m=\min \left\{f_{a}(z): z \in \mathbb{C}\right\}$ exists and that to obtain Ostrowski's theorem it is enough to prove that $m=0$.
(d) Prove that there exists $z_{0} \in S=\left\{z \in \mathbb{C}: f_{a}(z)=m\right\}$ such that $\left|z_{0}\right|_{\infty}$ is maximal.
(e) Assume by way of contradiction that $m>0$ and let $0<\varepsilon<m$. Let $z_{1} \in \mathbb{C}$ be a root of the polynomial $g(x)=x^{2}-\left(z_{0}+\overline{z_{0}}\right) x+z_{0} \overline{z_{0}}+\varepsilon$. Prove that $f_{a}\left(z_{1}\right)>m$.
(f) For any $n \in \mathbb{N}$ consider the polynomial $G_{n}(x)=(g(x)-\varepsilon)^{n}+(-1)^{n+1} \varepsilon^{n}$. Show that $G_{n}\left(z_{1}\right)=0$ and that $\left|G_{n}(a)\right|^{2} \geq f_{a}\left(z_{1}\right) m^{2 n-1}$.
(g) Show that $\left|G_{n}(a)\right| \leq m^{n}+\varepsilon^{n}$. Conclude that $f_{a}\left(z_{1}\right) \leq m$. Now finish the proof.
(2) Show that K is dense in the completion \hat{K} (with its metric topology) and that \hat{K} is indeed complete, i.e. for every Cauchy sequence $\left(a_{n}\right)$ of elements of \hat{K} there exists $\ell \in \hat{K}$ which is the limit of the sequence in the usual sense: for every $\varepsilon>0$ there exists N such that $\left|a_{n}-\ell\right|<\varepsilon$ for all $n>N$.
(3) Let p be a prime number and let \mathbb{Z}_{p}^{\prime} be the ring of formal series $\sum_{n=0}^{\infty} a_{n} p^{n}$, where $a_{n} \in$ $\{0,1, \ldots, p-1\}$. Given $\sum_{n=0}^{\infty} a_{n} p^{n} \in \mathbb{Z}_{p}^{\prime}$, prove that the sequence $b_{k}=a_{0}+a_{1} p+\cdots+a_{k} p^{k}$ is a Cauchy sequence of rational numbers with respect to the valuation $|\cdot|_{p}$. Hence the equivalence class of $\left\{b_{k}\right\}$ is an element of \mathbb{Q}_{p}. Prove that it actually lies in \mathbb{Z}_{p} and that this construction gives an isomorphism of rings $\mathbb{Z}_{p}^{\prime} \simeq \mathbb{Z}_{p}$.
(4) Let K be a field, complete with respect to the non-Archimedean valuation $|\cdot|$. Let L / K be an algebraic extension. We proved in class that $|\cdot|$ extends uniquely to a valuation of L. Prove that L is complete with respect to this valuation if and only if $[L: K]<\infty$.
(5) Let K be a number field, let p be a prime number, and suppose that $p \mathcal{O}_{K}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}$. Let $\mathcal{O}_{P_{i}}$ be the valuation ring of $K_{P_{i}}$, the completion of K with respect to the P_{i}-adic valuation. Let \mathfrak{m}_{i} be the maximal ideal of $\mathcal{O}_{P_{i}}$. Show that $p \mathcal{O}_{P_{i}}=\mathfrak{m}_{i}^{e_{i}}$.
(6) Let p be an odd prime and let $u \in \mathbb{Z}_{p}^{*}$ be an element that is not the square of any element of \mathbb{Z}_{p}. Fix an algebraic closure of \mathbb{Q}_{p}, and let K / \mathbb{Q}_{p} be a quadratic extension contained in this algebraic closure. Show that K is equal to one of $\mathbb{Q}_{p}(\sqrt{u}), \mathbb{Q}_{p}(\sqrt{p})$, or $\mathbb{Q}_{p}(\sqrt{u p})$.

Note: This is another example of the behavior of \mathbb{Q}_{p} being very different from that of \mathbb{Q}. Recall that the fields $\mathbb{Q}(\sqrt{d})$ are all non-isomorphic for distinct square-free integers d, so \mathbb{Q} has infinitely many non-isomorphic quadratic extensions.
(7) Let p be an odd prime. For every $\lambda \in \mathbb{F}_{p}$, let $[\lambda] \in \mathbb{Z}_{p}$ be the $(p-1)$-th root of unity whose image in \mathbb{F}_{p} is λ. Recall that we proved in class that $[\lambda]$ exists and is unique.
(a) Recall the isomorphism, from an earlier exercise, between \mathbb{Z}_{p} and the ring of formal power series $\sum a_{n} p^{n}$. Which power series corresponds to $[\lambda]$?
(b) Prove that $\left[\lambda_{0}\right]+p\left[\lambda_{1}\right]+1 \equiv\left[\lambda_{0}+1\right]+p\left[\lambda_{1}+\frac{\lambda_{0}^{p}+1-\left(\lambda_{0}+1\right)^{p}}{p}\right] \bmod p^{2}$, for all $\lambda_{0}, \lambda_{1} \in \mathbb{F}_{p}$.
(8) If K is a valued field, let k_{K} be the residue field $\mathcal{O} / \mathfrak{m}$, where \mathcal{O} is the valuation ring of K and \mathfrak{m} is its maximal ideal. In particular, $k_{\mathbb{Q}_{p}}=\mathbb{F}_{p}$. A finite extension F / \mathbb{Q}_{p} is called unramified if $\left[k_{F}: \mathbb{F}_{p}\right]=\left[F: \mathbb{Q}_{p}\right]$. Prove that any unramified extension F / \mathbb{Q}_{p} of degree n is isomorphic to $\mathbb{Q}_{p}(\zeta)$, where ζ is a primitive $\left(p^{n}-1\right)$-th root of unity.
(9) Prove the following statement, which is called Krasner's Lemma and turns out to be very useful. Let K be a non-Archimedean Henselian valued field, and let \bar{K} be an algebraic closure. Let $\alpha=\alpha_{1} \in \bar{K}$ be separable over K, and let $\alpha_{1}, \ldots, \alpha_{r}$ be all its conjugates over K. Suppose that $\beta \in \bar{K}$ satisfies $|\alpha-\beta|<\left|\alpha-\alpha_{i}\right|$ for all $2 \leq i \leq r$. Then $K(\alpha) \subseteq K(\beta)$.

Hint: Suppose the claim is false. Show that there exists an embedding $\sigma: K(\alpha, \beta) \rightarrow \bar{K}$ that fixes β but not α.
(10) Let p be a prime number, and let ζ_{p} be a primitive p-th root of unity. Show that $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ contains a primitive $(p-1)$-st root of $-p$.
(11) Let $n>2$. Prove that the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ contains at least one quadratic subfield, i.e. that there exists a field $K \subset \mathbb{Q}\left(\zeta_{n}\right)$ such that $[K: \mathbb{Q}]=2$.
(12) Let G be a finite abelian group. Show that there exists a Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \simeq G$.
(13) The last question is a whirlwind introduction to Witt vectors. It may be useful to consult the seventh question on this question sheet for inspiration.
(a) Let p be a fixed prime and let $X_{0}, X_{1}, X_{2}, \ldots$ be variables. For every $n \geq 0$, set $W_{n}=$ $X_{0}^{p^{n}}+p X_{1}^{p^{n-1}}+\cdots+p^{n} X_{n}$. Show that there exist polynomials $S_{0}, S_{1}, \ldots, P_{0}, P_{1}, \ldots \in$ $\mathbb{Z}\left[X_{0}, X_{1}, \ldots, Y_{0}, Y_{1}, \ldots\right]$ such that

$$
\begin{aligned}
& W_{n}\left(S_{0}, S_{1}, S_{2}, \ldots\right)=W_{n}\left(X_{0}, X_{1}, \ldots\right)+W_{n}\left(Y_{0}, Y_{1}, \ldots\right) \\
& W_{n}\left(P_{0}, P_{1}, P_{2}, \ldots\right)=W_{n}\left(X_{0}, X_{1}, \ldots\right) \cdot W_{n}\left(Y_{0}, Y_{1}, \ldots\right) .
\end{aligned}
$$

(b) Let A be any commutative ring. Let $W(A)$ be the set $A^{\mathbb{N}}=\left\{a=\left(a_{0}, a_{1}, a_{2}, \ldots\right) \mid a_{i} \in\right.$ $A\}$ with the operations

$$
\begin{aligned}
a+b & =\left(S_{0}(a, b), S_{1}(a, b), \ldots\right) \\
a b & =\left(P_{0}(a, b), P_{1}(a, b), \ldots\right) .
\end{aligned}
$$

Prove that this is a commutative ring. It is called the ring of Witt vectors of A.
(c) Assume that the commutative ring A is p-torsion, so that $p \alpha=0$ for every $\alpha \in A$. For every $a=\left(a_{0}, a_{1}, \ldots\right) \in W(A)$ consider

$$
a^{(n)}=W_{n}(a)=a_{0}^{p^{n}}+p a_{1}^{p^{n-1}}+\cdots+p^{n} a_{n} .
$$

Consider also the maps $V, F: W(A) \rightarrow W(A)$ given by

$$
\begin{aligned}
V(a) & =\left(0, a_{0}, a_{1}, \ldots\right) \\
F(a) & =\left(a_{0}^{p}, a_{1}^{p}, \ldots\right)
\end{aligned}
$$

These maps are called the transfer map (transfer is Verschiebung in German, hence the standard notation V) and the Frobenius map, respectively. Prove the following identities:

$$
\begin{aligned}
(V(a))^{(n)} & =p a^{(n-1)} \\
a^{(n)} & =(F(a))^{(n)}+p^{n} a_{n}
\end{aligned}
$$

(d) Restricting even further, let k be a field of characteristic p. Then V is an endomorphism of the underlying abelian group of $W(k)$, whereas F is a ring endomorphism. Moreover, $F(V(a))=V(F(a))=p a$ for any $a \in W(k)$.
(e) Let k be a perfect field of characteristic p; recall this means that the map $x \mapsto x^{p}$ is an automorphism. Then $W(k)$ is a complete discrete valuation ring with residue field k.
(f) Finally, show that $W\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z}_{p}$.

