Commutative Algebra 88-813

5769 Semester A
Question Sheet 1, due 23/11/2008
Please feel free to e-mail me at mschein@math.biu.ac.il with any questions of translation or otherwise.
(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram of R-modules:

Suppose that the two rows are exact and that f_{1}, f_{2}, f_{4}, and f_{5} are isomorphisms. Then f_{3} is also an isomorphism.
(2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.
(3) Recall that $l(M)$ is the composition length of a module M. If $M=M_{1} \oplus M_{2}$, prove that $l(M)=l\left(M_{1}\right)+l\left(M_{2}\right)$.
(4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose that there is a surjective map $\varphi: M \rightarrow R^{(n)}$. Prove that $m \geq n$.
(5) Let R be a commutative ring. An element $s \in R$ is called regular if $s r \neq 0$ for all $0 \neq r \in R$. Let M be an R-module, and define $\operatorname{tor}(M)=\{m \in M: s m=0$ for some regular $s \in R\}$. Prove the following:
(a) $\operatorname{tor}(M)$ is a submodule of M, and $\operatorname{tor}(R)=0$.
(b) $\operatorname{tor}\left(M_{1} \oplus M_{2}\right) \simeq \operatorname{tor}\left(M_{1}\right) \oplus \operatorname{tor}\left(M_{2}\right)$.
(c) If $A=M / \operatorname{tor}(M)$ is a free R-module, then $M \simeq A \oplus \operatorname{tor}(M)$.
(6) Let R be a commutative ring and $r, s \in R$. Prove that a homomorphism $R / R r \rightarrow R / R s$ exists if and only if $R r \subseteq R s$. In particular, $R / R r \simeq R / R s$ if and only if $R r=R s$.
(7) Let N_{1}, N_{2}, and K be submodules of M such that $N_{1} \supset N_{2}$ and $K \cap N_{1}=0$. Then $\left(K+N_{1}\right) /\left(K+N_{2}\right) \simeq N_{1} / N_{2}$.
(8) Complete this alternative proof of the Schreier-Jordan-Hölder Theorem. Suppose that M has a composition series $M=M_{0} \supset M_{1} \supset \cdots \supset M_{t}=0$, denoted \mathcal{C}. Let $M=N_{0} \supset$ $N_{1} \cdots \supset N_{k} \supset 0$ be an arbitrary chain of submodules, denoted \mathcal{D}. We wish to prove that \mathcal{D} can be refined (אפשר לעדן) to a composition series equivalent to \mathcal{C}.

Consider the quotient module $\bar{M}=M / M_{t-1}$. For a submodule $N \subset M$, we write \bar{N} for its image in \bar{M}. Prove that $\bar{M}=\overline{M_{0}} \supset \overline{M_{1}} \supset \cdots \supset \overline{M_{t-1}}=0$ is a composition series for
\bar{M}. Show that $\overline{N_{i}}=\left(N_{i}+M_{t-1}\right) / M_{t-1}$. Consider the chain $\bar{M}=\overline{N_{0}} \supseteq \overline{N_{1}} \supseteq \cdots \supseteq \overline{N_{k}}$, which we call $\overline{\mathcal{D}}$.

Let j be the largest integer such that $N_{j} \supseteq M_{t-1}$. Show that the desired claim is obvious if $j \geq k$. So assume $j<k$. For all $i>j$, prove that $N_{i} / N_{i+1} \simeq\left(N_{i}+M_{t-1}\right) /\left(N_{i+1}+M_{t-1}\right) \simeq$ $\overline{N_{i}} / \overline{N_{i+1}}$. Deduce that, for $i>j, \overline{N_{i}} \supset \overline{N_{i+1}}$ is a strict inclusion.

Use induction on t, applied to \bar{M}, to show that $k-1 \leq l(\overline{\mathcal{D}}) \leq t-1$, and deduce that \mathcal{D} can be refined to a composition series equivalent to \mathcal{C}.

To show that all composition series for M are equivalent, suppose that \mathcal{D} was a composition series. Now show that $k=t$ and deduce that $\overline{N_{j}}=\overline{N_{j+1}}$, so that $N_{j}=N_{j+1}+M_{t-1}$. Use induction to show that $N_{j} / N_{j+1} \simeq M_{t-1}$ and complete the proof.

