Commutative Algebra 88-813

5769 Semester A
Question Sheet 2, due 14/12/2008
Please feel free to e-mail me at mschein@math.biu.ac.il with any questions of translation or otherwise.
(1) Let F be a field and let R be an affine F-algebra. Prove that if M is a simple R-module (מודול פשוט), then M has finite rank over F.

If you also assume that F is algebraically closed, then what can you say about the rank of M over F ?
(2) Let F be a field. The polynomial F-algebra $F\left[X_{1}, X_{2}\right]$ is clearly affine. But prove that the subalgebra generated by $1, X_{1} X_{2}, X_{1} X_{2}^{2}, X_{1} X_{2}^{3}, \ldots$ is not affine. Hence a subalgebra of an affine algebra is not necessarily affine.
(3) Prove that any affine F-algebra has countable dimension as an F-vector space.
(4) Let I be an ideal of a commutative ring R. Prove that the following conditions are equivalent:
(a) I is a prime ideal (for any elements $x, y \in R$, we have $x y \in I$ if and only if $x \in I$ or $y \in I)$.
(b) The quotient ring R / I is an integral domain.
(c) If J_{1}, J_{2} are ideals of R with $J_{1} J_{2} \subseteq I$, then $J_{1} \subseteq I$ or $J_{2} \subseteq I$.
(d) If $J_{1}, J_{2}, \ldots, J_{n}$ are ideal of R such that $J_{1} J_{2} \cdots J_{n} \subseteq I$, then $J_{i} \subseteq I$ for some $1 \leq i \leq n$.
(e) The complement $R \backslash I$ is a multiplicative submonoid (תת-מונויד כפלי) of R.
(5) Suppose that B and B^{\prime} are transcendence bases (בסיסי נעלות) of R. Prove that they have the same cardinality. (We did this in class for B and B^{\prime} finite).

Hint: Each element of B is algebraically dependent on a finite number of elements of B^{\prime}, and the union of these finite subsets is all of B^{\prime}.
(6) Prove the Noether Normalization Theorem in general. (In class we assumed that the field F was infinite).

Hint: To do this, recall that $R=F\left[a_{1}, \ldots, a_{n}\right]$ and let f be the polynomial that appeared in our proof in class, and write

$$
f=\sum \gamma_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} .
$$

Now let u_{j} be the highest degree of X_{j} that appears in any monomial of f, and define $u=1+\max \left\{u_{1}, \ldots, u_{n}\right\}$. Now set

$$
\hat{f}=f\left(X_{1}+X_{n}^{u^{n-1}}, X_{2}+\underset{1}{X_{n}^{u^{n-2}}}, \ldots, X_{n-1}+X_{n}^{u}, X_{n}\right)
$$

and define $c_{i}=a_{i}-a_{n}^{u^{n-1}}$ for $1 \leq i \leq n-1$. Then $\hat{f}\left(c_{1}, \ldots, c_{n-1}, a_{n}\right)=0$. Set $R^{\prime}=$ $F\left[c_{1}, \ldots, c_{n-1}\right]$ and define $h \in R^{\prime}\left[X_{n}\right]$ by $h\left(X_{n}\right)=\hat{f}\left(c_{1}, \ldots, c_{n-1}, X_{n}\right)$. Now show that h has an invertible leading coefficient.
(7) Show that the ring $R=\mathbb{Z}[\sqrt{-1}]$ is integral (שלם) over \mathbb{Z}, and that it has two different maximal ideals lying over $5 \mathbb{Z}$. In general, prove that for any odd prime $p \in \mathbb{Z}$, there are two different prime ideals lying over $p \mathbb{Z}$ if p can be written in the form $p=m^{2}+n^{2}$ for $m, n \in Z$ and one prime ideal lying over $p \mathbb{Z}$ otherwise. (In fact, $p=m^{2}+n^{2}$ if and only if $p \equiv 1 \bmod 4)$.
(8) Find the Krull dimension of $R=F\left[X_{1}, X_{2}, X_{3}, X_{4}\right] /\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}, X_{2}^{3}+X_{3}^{3}+X_{4}^{3}\right)$.

Hint: First show that R is an integral domain, then apply our main theorem.

