
Commutative Algebra 88-813
5770 Semester A
Question Sheet 1

1. Modules

(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram
of R-modules:

A1
g1 - A2

g2 - A3
g3 - A4

g4 - A5

B1

f1

?

h1

- B2

f2

?

h2

- B3

f3

?

h3

- B4

f4

?

h4

- B5.

f5

?

Suppose that the two rows are exact and that f1, f2, f4, and f5 are isomorphisms. Then
f3 is also an isomorphism.

(2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.
(3) Recall that l(M) is the length of a module M . If M = M1 ⊕ M2, prove that l(M) =

l(M1) + l(M2).
(4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose

that there is a surjective map φ : M → R(n). Prove that m ≥ n.
(5) Let K be a finite extension of Q and let OK be its ring of integers. Prove that an OK-module

M has a composition series if and only if M is finite.
(6) Classify the finitely generated modules over the ring Z[X]/(X2).
(7) Let R be a commutative ring. An element s ∈ R is called regular if sr ̸= 0 for all 0 ̸= r ∈ R.

Let M be an R-module, and define tor(M) = {m ∈ M : sm = 0 for some regular s ∈ R}.
Prove the following:
(a) tor(M) is a submodule of M , and tor(R) = 0.
(b) tor(M1 ⊕ M2) ≃ tor(M1) ⊕ tor(M2).
(c) If A = M/tor(M) is a free R-module, then M ≃ A ⊕ tor(M).

(8) Let R be a commutative ring and r, s ∈ R. Prove that a ring homomorphism R/Rr → R/Rs

exists if and only if Rr ⊆ Rs. In particular, R/Rr ≃ R/Rs if and only if Rr = Rs.
(9) Let N1, N2, and K be submodules of M such that N1 ⊃ N2 and K ∩ N1 = 0. Then

(K + N1)/(K + N2) ≃ N1/N2.
(10) Let Tn(F ) be the ring of all upper triangular n × n matrices with entries in a field F .

Consider Fn as a Tn(F )-module in the obvious way. Find a composition series.
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2. Noetherian and Artinian rings and modules

(1) Consider the Z-module Q/Z. Is it Noetherian? Is it Artinian?
(2) Let R be a commutative Artinian ring. Recall that R has finitely many maximal ideals

P1, . . . , Pr. Let J(R) be the Jacobson radical of R. Prove that J(R) = P1P2 · · ·Pr.
(3) Let R be a Noetherian ring, and let φ : R → R be a ring homomorphism. Prove that if φ

is surjective, then it is injective.
(4) Let R be a Noetherian ring and I an ideal. Show that the Rees ring R̃ = R +

∑
i≥1 Iixi ⊂

R[x] is Noetherian. Hint: R̃ = R[a1x, . . . , amx], where ai are generators of I.
(5) Show that Nakayama’s lemma is false for non-finitely generated modules. Here is one

counter-example:
(a) Consider the ring S =

{
p
q ∈ Q : q is odd

}
. (In a few weeks we will study such rings

and see that this is the localization of Z at the prime ideal 2Z). Take the S-module
M = Q. Show that it is not finitely generated.

(b) Show that the Jacobson radical of S is the ideal J(S) = 2S.
(c) Show that J(S)M = M .

(6) Let R be a commutative ring and I ⊂ J(R) an ideal. Let M be a finitely generated
R-module and N ⊂ M a submodule. Prove that if M = IM + N , then N = M .

3. Affine algebras

(1) Let F be a field and let R be an affine F -algebra. Prove that if M is a simple R-module
then M has finite rank over F .

If you also assume that F is algebraically closed, then what can you say about the rank
of M over F?

(2) Let R be an affine domain over a field F . Prove that R is algebraic if and only if it is
Artinian.

(3) Let F be a field. The polynomial F -algebra F [X1, X2] is clearly affine. But prove that the
subalgebra generated by 1, X1X2, X1X

2
2 , X1X

3
2 , . . . is not affine. Hence a subalgebra of an

affine algebra is not necessarily affine.
(4) Prove that any affine F -algebra has countable dimension as an F -vector space.
(5) Let I be an ideal of a commutative ring R. Prove that the following conditions are equiva-

lent:
(a) I is a prime ideal (for any elements x, y ∈ R, we have xy ∈ I if and only if x ∈ I or

y ∈ I).
(b) The quotient ring R/I is an integral domain.
(c) If J1, J2 are ideals of R with J1J2 ⊆ I, then J1 ⊆ I or J2 ⊆ I.
(d) If J1, J2, . . . , Jn are ideal of R such that J1J2 · · ·Jn ⊆ I, then Ji ⊆ I for some 1 ≤ i ≤ n.
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(e) The complement R\I is a multiplicative submonoid (תת-מונויד כפלי) of R.
(6) Let F be a field that is not algebraically closed. Find a counterexample to the Nullstellensatz

for F .

4. Dedekind domains

(1) Is the element
√

2
2 ∈ R integral over Z?

(2) Let A be an integral domain that is not a field. If each non-zero ideal of A can be written
uniquely as a product of prime ideals, prove that A is a Dedekind domain.

(3) Let A be a Dedekind domain and let I, J ⊂ A be two ideals. We say that I|J if there exists
an ideal I ′ ⊂ A such that II ′ = J . Show that I|J if and only if J ⊂ I.

(4) Prove that a Dedekind domain is a principal ideal domain if and only if it is a unique
factorization domain.

(5) Let K be a finite extension of Q and OK its ring of integers. For every non-zero ideal
I ⊂ OK , prove that the quotient OK/I is finite.

(6) In view of the previous exercise, we can define the norm of an ideal I ⊂ OK by N(I) =
|OK/I|. Prove that the norm is multiplicative: N(IJ) = N(I)N(J).

(7) Show that the ring R = Z[
√
−1] is integral over Z, and that it has two different maximal

ideals lying over 5Z. In general, prove that for any odd prime p ∈ Z, there are two different
prime ideals lying over pZ if p can be written in the form p = m2 + n2 for m,n ∈ Z and
one prime ideal lying over pZ otherwise. (In fact, p = m2 + n2 if and only if p ≡ 1 mod 4).


