Commutative Algebra 88-813
5770 Semester A
Question Sheet 1

1. Modules

(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram of R-modules:

Suppose that the two rows are exact and that f_{1}, f_{2}, f_{4}, and f_{5} are isomorphisms. Then f_{3} is also an isomorphism.
(2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.
(3) Recall that $l(M)$ is the length of a module M. If $M=M_{1} \oplus M_{2}$, prove that $l(M)=$ $l\left(M_{1}\right)+l\left(M_{2}\right)$.
(4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose that there is a surjective map $\varphi: M \rightarrow R^{(n)}$. Prove that $m \geq n$.
(5) Let K be a finite extension of \mathbb{Q} and let \mathcal{O}_{K} be its ring of integers. Prove that an \mathcal{O}_{K}-module M has a composition series if and only if M is finite.
(6) Classify the finitely generated modules over the ring $\mathbb{Z}[X] /\left(X^{2}\right)$.
(7) Let R be a commutative ring. An element $s \in R$ is called regular if $s r \neq 0$ for all $0 \neq r \in R$. Let M be an R-module, and define $\operatorname{tor}(M)=\{m \in M: s m=0$ for some regular $s \in R\}$. Prove the following:
(a) $\operatorname{tor}(M)$ is a submodule of M, and $\operatorname{tor}(R)=0$.
(b) $\operatorname{tor}\left(M_{1} \oplus M_{2}\right) \simeq \operatorname{tor}\left(M_{1}\right) \oplus \operatorname{tor}\left(M_{2}\right)$.
(c) If $A=M / \operatorname{tor}(M)$ is a free R-module, then $M \simeq A \oplus \operatorname{tor}(M)$.
(8) Let R be a commutative ring and $r, s \in R$. Prove that a ring homomorphism $R / R r \rightarrow R / R s$ exists if and only if $R r \subseteq R s$. In particular, $R / R r \simeq R / R s$ if and only if $R r=R s$.
(9) Let N_{1}, N_{2}, and K be submodules of M such that $N_{1} \supset N_{2}$ and $K \cap N_{1}=0$. Then $\left(K+N_{1}\right) /\left(K+N_{2}\right) \simeq N_{1} / N_{2}$.
(10) Let $T_{n}(F)$ be the ring of all upper triangular $n \times n$ matrices with entries in a field F. Consider F^{n} as a $T_{n}(F)$-module in the obvious way. Find a composition series.

2. Noetherian and Artinian rings and modules

(1) Consider the Z-module \mathbb{Q} / \mathbb{Z}. Is it Noetherian? Is it Artinian?
(2) Let R be a commutative Artinian ring. Recall that R has finitely many maximal ideals P_{1}, \ldots, P_{r}. Let $J(R)$ be the Jacobson radical of R. Prove that $J(R)=P_{1} P_{2} \cdots P_{r}$.
(3) Let R be a Noetherian ring, and let $\varphi: R \rightarrow R$ be a ring homomorphism. Prove that if φ is surjective, then it is injective.
(4) Let R be a Noetherian ring and I an ideal. Show that the Rees ring $\tilde{R}=R+\sum_{i \geq 1} I^{i} x^{i} \subset$ $R[x]$ is Noetherian. Hint: $\tilde{R}=R\left[a_{1} x, \ldots, a_{m} x\right]$, where a_{i} are generators of I.
(5) Show that Nakayama's lemma is false for non-finitely generated modules. Here is one counter-example:
(a) Consider the ring $S=\left\{\frac{p}{q} \in \mathbb{Q}: q\right.$ is odd $\}$. (In a few weeks we will study such rings and see that this is the localization of \mathbb{Z} at the prime ideal $2 \mathbb{Z}$). Take the S-module $M=\mathbb{Q}$. Show that it is not finitely generated.
(b) Show that the Jacobson radical of S is the ideal $J(S)=2 S$.
(c) Show that $J(S) M=M$.
(6) Let R be a commutative ring and $I \subset J(R)$ an ideal. Let M be a finitely generated R-module and $N \subset M$ a submodule. Prove that if $M=I M+N$, then $N=M$.

3. Affine algebras

(1) Let F be a field and let R be an affine F-algebra. Prove that if M is a simple R-module then M has finite rank over F.

If you also assume that F is algebraically closed, then what can you say about the rank of M over F ?
(2) Let R be an affine domain over a field F. Prove that R is algebraic if and only if it is Artinian.
(3) Let F be a field. The polynomial F-algebra $F\left[X_{1}, X_{2}\right]$ is clearly affine. But prove that the subalgebra generated by $1, X_{1} X_{2}, X_{1} X_{2}^{2}, X_{1} X_{2}^{3}, \ldots$ is not affine. Hence a subalgebra of an affine algebra is not necessarily affine.
(4) Prove that any affine F-algebra has countable dimension as an F-vector space.
(5) Let I be an ideal of a commutative ring R. Prove that the following conditions are equivalent:
(a) I is a prime ideal (for any elements $x, y \in R$, we have $x y \in I$ if and only if $x \in I$ or $y \in I)$.
(b) The quotient ring R / I is an integral domain.
(c) If J_{1}, J_{2} are ideals of R with $J_{1} J_{2} \subseteq I$, then $J_{1} \subseteq I$ or $J_{2} \subseteq I$.
(d) If $J_{1}, J_{2}, \ldots, J_{n}$ are ideal of R such that $J_{1} J_{2} \cdots J_{n} \subseteq I$, then $J_{i} \subseteq I$ for some $1 \leq i \leq n$.
(e) The complement $R \backslash I$ is a multiplicative submonoid (תת-מונויד כפלי) of R.
(6) Let F be a field that is not algebraically closed. Find a counterexample to the Nullstellensatz for F.

4. Dedekind domains

(1) Is the element $\frac{\sqrt{2}}{2} \in \mathbb{R}$ integral over \mathbb{Z} ?
(2) Let A be an integral domain that is not a field. If each non-zero ideal of A can be written uniquely as a product of prime ideals, prove that A is a Dedekind domain.
(3) Let A be a Dedekind domain and let $I, J \subset A$ be two ideals. We say that $I \mid J$ if there exists an ideal $I^{\prime} \subset A$ such that $I I^{\prime}=J$. Show that $I \mid J$ if and only if $J \subset I$.
(4) Prove that a Dedekind domain is a principal ideal domain if and only if it is a unique factorization domain.
(5) Let K be a finite extension of \mathbb{Q} and \mathcal{O}_{K} its ring of integers. For every non-zero ideal $I \subset \mathcal{O}_{K}$, prove that the quotient \mathcal{O}_{K} / I is finite.
(6) In view of the previous exercise, we can define the norm of an ideal $I \subset \mathcal{O}_{K}$ by $N(I)=$ $\left|\mathcal{O}_{K} / I\right|$. Prove that the norm is multiplicative: $N(I J)=N(I) N(J)$.
(7) Show that the ring $R=\mathbb{Z}[\sqrt{-1}]$ is integral over \mathbb{Z}, and that it has two different maximal ideals lying over $5 \mathbb{Z}$. In general, prove that for any odd prime $p \in \mathbb{Z}$, there are two different prime ideals lying over $p \mathbb{Z}$ if p can be written in the form $p=m^{2}+n^{2}$ for $m, n \in Z$ and one prime ideal lying over $p \mathbb{Z}$ otherwise. (In fact, $p=m^{2}+n^{2}$ if and only if $p \equiv 1 \bmod 4$).

