Commutative Algebra 88-813
5770 Semester A
Question Sheet 1

1. MODULES

(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram
of R-modules:

Ay gr Ay 92 As g3 Ay 94 As
f1 fo /3 fa f5

B - B - B - B > Br.
L > A S 5

Suppose that the two rows are exact and that fi, fo, f1, and f5 are isomorphisms. Then
f3 is also an isomorphism.

(2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.

(3) Recall that I(M) is the length of a module M. If M = M; & M,, prove that [(M) =
I(My) + I(Ma).

(4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose
that there is a surjective map ¢ : M — R(™ . Prove that m > n.

(5) Let K be a finite extension of Q and let O be its ring of integers. Prove that an Ox-module
M has a composition series if and only if M is finite.

(6) Classify the finitely generated modules over the ring Z[X]/(X?).

(7) Let R be a commutative ring. An element s € R is called regular if sr # 0 for all 0 # r € R.
Let M be an R-module, and define tor(M) = {m € M : sm = 0 for some regular s € R}.
Prove the following:

(a) tor(M) is a submodule of M, and tor(R) = 0.
(b) tor(M; & Ms) ~ tor(My) & tor(Ms).
(c) If A= M/tor(M) is a free R-module, then M ~ A & tor(M).

(8) Let R be a commutative ring and r, s € R. Prove that a ring homomorphism R/Rr — R/Rs
exists if and only if Rr C Rs. In particular, R/Rr ~ R/Rs if and only if Rr = Rs.

(9) Let Ny, N2, and K be submodules of M such that Ny D Ny and K N N; = 0. Then
(K + N1)/(K + N2) ~ N1 /Ns.

(10) Let T,,(F) be the ring of all upper triangular n x n matrices with entries in a field F'.
Consider F" as a T,,(F)-module in the obvious way. Find a composition series.
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2. NOETHERIAN AND ARTINIAN RINGS AND MODULES

(1) Consider the Z-module Q/Z. Is it Noetherian? Is it Artinian?
(2) Let R be a commutative Artinian ring. Recall that R has finitely many maximal ideals
Py, ..., P.. Let J(R) be the Jacobson radical of R. Prove that J(R) = PP --- P,.
(3) Let R be a Noetherian ring, and let ¢ : R — R be a ring homomorphism. Prove that if ¢
is surjective, then it is injective.
(4) Let R be a Noetherian ring and I an ideal. Show that the Rees ring R = R+ Y5, 'z’ C
Rlz] is Noetherian. Hint: R = R[aiz, ..., anz], where a; are generators of 1. -
(5) Show that Nakayama’s lemma is false for non-finitely generated modules. Here is one
counter-example:
(a) Consider the ring S = {% €Q:qis odd}. (In a few weeks we will study such rings
and see that this is the localization of Z at the prime ideal 2Z). Take the S-module
M = Q. Show that it is not finitely generated.
(b) Show that the Jacobson radical of S is the ideal J(S) = 2S.
(c) Show that J(S)M = M.
(6) Let R be a commutative ring and I C J(R) an ideal. Let M be a finitely generated
R-module and N C M a submodule. Prove that if M = IM + N, then N = M.

3. AFFINE ALGEBRAS

(1) Let F be a field and let R be an affine F-algebra. Prove that if M is a simple R-module
then M has finite rank over F.

If you also assume that F' is algebraically closed, then what can you say about the rank
of M over F7?

(2) Let R be an affine domain over a field F'. Prove that R is algebraic if and only if it is
Artinian.

(3) Let F be a field. The polynomial F-algebra F[X;, Xs] is clearly affine. But prove that the
subalgebra generated by 1, X1 Xo, X1X3, X1X3,... is not affine. Hence a subalgebra of an
affine algebra is not necessarily affine.

(4) Prove that any affine F-algebra has countable dimension as an F-vector space.

(5) Let I be an ideal of a commutative ring R. Prove that the following conditions are equiva-
lent:

(a) I is a prime ideal (for any elements x,y € R, we have zy € I if and only if x € I or
yel).

(b) The quotient ring R/I is an integral domain.

(c) If Jy, Jo are ideals of R with JyJo C I, then J; C I or Jo C I.

(d) If Jy, Jo, ..., J, are ideal of R such that JyJy---J, C I, then J; C I for some 1 <i <n.



(e) The complement R\! is a multiplicative submonoid (*>92 ™»n-nn) of R.
(6) Let F' be a field that is not algebraically closed. Find a counterexample to the Nullstellensatz
for F.

4. DEDEKIND DOMAINS

(1) Is the element @ € R integral over Z?

(2) Let A be an integral domain that is not a field. If each non-zero ideal of A can be written
uniquely as a product of prime ideals, prove that A is a Dedekind domain.

(3) Let A be a Dedekind domain and let I, J C A be two ideals. We say that I|.J if there exists
an ideal I’ C A such that II' = J. Show that I|.J if and only if J C I.

(4) Prove that a Dedekind domain is a principal ideal domain if and only if it is a unique
factorization domain.

(5) Let K be a finite extension of Q and Ok its ring of integers. For every non-zero ideal
I C Ok, prove that the quotient O /I is finite.

(6) In view of the previous exercise, we can define the norm of an ideal I C Og by N(I) =
|Ok/I|. Prove that the norm is multiplicative: N(I.J) = N(I)N(J).

(7) Show that the ring R = Z[/—1] is integral over Z, and that it has two different maximal
ideals lying over 5Z. In general, prove that for any odd prime p € Z, there are two different
prime ideals lying over pZ if p can be written in the form p = m? + n? for m,n € Z and
one prime ideal lying over pZ otherwise. (In fact, p = m? +n? if and only if p =1 mod 4).



