Commutative Algebra 88-813 5770 Semester A Question Sheet 1

1. Modules

(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram of R-modules:

$$A_{1} \xrightarrow{g_{1}} A_{2} \xrightarrow{g_{2}} A_{3} \xrightarrow{g_{3}} A_{4} \xrightarrow{g_{4}} A_{5}$$

$$\downarrow f_{1} \qquad \downarrow f_{2} \qquad \downarrow f_{3} \qquad \downarrow f_{4} \qquad \downarrow f_{5}$$

$$B_{1} \xrightarrow{h_{1}} B_{2} \xrightarrow{h_{2}} B_{3} \xrightarrow{h_{3}} B_{4} \xrightarrow{h_{4}} B_{5}.$$

Suppose that the two rows are exact and that f_1 , f_2 , f_4 , and f_5 are isomorphisms. Then f_3 is also an isomorphism.

- (2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.
- (3) Recall that l(M) is the length of a module M. If $M = M_1 \oplus M_2$, prove that $l(M) = l(M_1) + l(M_2)$.
- (4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose that there is a surjective map $\varphi: M \to R^{(n)}$. Prove that $m \ge n$.
- (5) Let K be a finite extension of \mathbb{Q} and let \mathcal{O}_K be its ring of integers. Prove that an \mathcal{O}_K -module M has a composition series if and only if M is finite.
- (6) Classify the finitely generated modules over the ring $\mathbb{Z}[X]/(X^2)$.
- (7) Let R be a commutative ring. An element $s \in R$ is called *regular* if $sr \neq 0$ for all $0 \neq r \in R$. Let M be an R-module, and define $tor(M) = \{m \in M : sm = 0 \text{ for some regular } s \in R\}$. Prove the following:
 - (a) tor(M) is a submodule of M, and tor(R) = 0.
 - (b) $\operatorname{tor}(M_1 \oplus M_2) \simeq \operatorname{tor}(M_1) \oplus \operatorname{tor}(M_2).$
 - (c) If A = M/tor(M) is a free *R*-module, then $M \simeq A \oplus \text{tor}(M)$.
- (8) Let R be a commutative ring and $r, s \in R$. Prove that a ring homomorphism $R/Rr \to R/Rs$ exists if and only if $Rr \subseteq Rs$. In particular, $R/Rr \simeq R/Rs$ if and only if Rr = Rs.
- (9) Let N_1, N_2 , and K be submodules of M such that $N_1 \supset N_2$ and $K \cap N_1 = 0$. Then $(K+N_1)/(K+N_2) \simeq N_1/N_2$.
- (10) Let $T_n(F)$ be the ring of all upper triangular $n \times n$ matrices with entries in a field F. Consider F^n as a $T_n(F)$ -module in the obvious way. Find a composition series.

2. NOETHERIAN AND ARTINIAN RINGS AND MODULES

- (1) Consider the Z-module \mathbb{Q}/\mathbb{Z} . Is it Noetherian? Is it Artinian?
- (2) Let R be a commutative Artinian ring. Recall that R has finitely many maximal ideals P_1, \ldots, P_r . Let J(R) be the Jacobson radical of R. Prove that $J(R) = P_1 P_2 \cdots P_r$.
- (3) Let R be a Noetherian ring, and let $\varphi : R \to R$ be a ring homomorphism. Prove that if φ is surjective, then it is injective.
- (4) Let R be a Noetherian ring and I an ideal. Show that the Rees ring $\tilde{R} = R + \sum_{i \ge 1} I^i x^i \subset R[x]$ is Noetherian. Hint: $\tilde{R} = R[a_1x, \ldots, a_mx]$, where a_i are generators of I.
- (5) Show that Nakayama's lemma is false for non-finitely generated modules. Here is one counter-example:
 - (a) Consider the ring $S = \left\{ \frac{p}{q} \in \mathbb{Q} : q \text{ is odd} \right\}$. (In a few weeks we will study such rings and see that this is the localization of \mathbb{Z} at the prime ideal 2 \mathbb{Z}). Take the S-module $M = \mathbb{Q}$. Show that it is not finitely generated.
 - (b) Show that the Jacobson radical of S is the ideal J(S) = 2S.
 - (c) Show that J(S)M = M.
- (6) Let R be a commutative ring and $I \subset J(R)$ an ideal. Let M be a finitely generated R-module and $N \subset M$ a submodule. Prove that if M = IM + N, then N = M.

3. Affine Algebras

(1) Let F be a field and let R be an affine F-algebra. Prove that if M is a simple R-module then M has finite rank over F.

If you also assume that F is algebraically closed, then what can you say about the rank of M over F?

- (2) Let R be an affine domain over a field F. Prove that R is algebraic if and only if it is Artinian.
- (3) Let F be a field. The polynomial F-algebra $F[X_1, X_2]$ is clearly affine. But prove that the subalgebra generated by 1, X_1X_2 , $X_1X_2^2$, $X_1X_2^3$,... is not affine. Hence a subalgebra of an affine algebra is not necessarily affine.
- (4) Prove that any affine F-algebra has countable dimension as an F-vector space.
- (5) Let I be an ideal of a commutative ring R. Prove that the following conditions are equivalent:
 - (a) I is a prime ideal (for any elements $x, y \in R$, we have $xy \in I$ if and only if $x \in I$ or $y \in I$).
 - (b) The quotient ring R/I is an integral domain.
 - (c) If J_1, J_2 are ideals of R with $J_1J_2 \subseteq I$, then $J_1 \subseteq I$ or $J_2 \subseteq I$.
 - (d) If J_1, J_2, \ldots, J_n are ideal of R such that $J_1 J_2 \cdots J_n \subseteq I$, then $J_i \subseteq I$ for some $1 \leq i \leq n$.

- (e) The complement $R \setminus I$ is a multiplicative submonoid (תת–מונויד כפלי) of R.
- (6) Let F be a field that is not algebraically closed. Find a counterexample to the Nullstellensatz for F.

4. Dedekind domains

(1) Is the element $\frac{\sqrt{2}}{2} \in \mathbb{R}$ integral over \mathbb{Z} ?

- (2) Let A be an integral domain that is not a field. If each non-zero ideal of A can be written uniquely as a product of prime ideals, prove that A is a Dedekind domain.
- (3) Let A be a Dedekind domain and let $I, J \subset A$ be two ideals. We say that I|J if there exists an ideal $I' \subset A$ such that II' = J. Show that I|J if and only if $J \subset I$.
- (4) Prove that a Dedekind domain is a principal ideal domain if and only if it is a unique factorization domain.
- (5) Let K be a finite extension of \mathbb{Q} and \mathcal{O}_K its ring of integers. For every non-zero ideal $I \subset \mathcal{O}_K$, prove that the quotient \mathcal{O}_K/I is finite.
- (6) In view of the previous exercise, we can define the norm of an ideal $I \subset \mathcal{O}_K$ by $N(I) = |\mathcal{O}_K/I|$. Prove that the norm is multiplicative: N(IJ) = N(I)N(J).
- (7) Show that the ring $R = \mathbb{Z}[\sqrt{-1}]$ is integral over \mathbb{Z} , and that it has two different maximal ideals lying over 5 \mathbb{Z} . In general, prove that for any odd prime $p \in \mathbb{Z}$, there are two different prime ideals lying over $p\mathbb{Z}$ if p can be written in the form $p = m^2 + n^2$ for $m, n \in \mathbb{Z}$ and one prime ideal lying over $p\mathbb{Z}$ otherwise. (In fact, $p = m^2 + n^2$ if and only if $p \equiv 1 \mod 4$).