Commutative Algebra 88-813 5770 Semester A Question Sheet 2

(1) Prove the Noether Normalization Theorem in general. (In class we assumed that the field F was infinite).

Hint: To do this, recall that $R = F[a_1, \ldots, a_n]$ and let f be the polynomial that appeared in our proof in class, and write

$$f = \sum \gamma_{i_1,\dots,i_n} X_1^{i_1} \cdots X_n^{i_n}.$$

Now let u_j be the highest degree of X_j that appears in any monomial of f, and define $u = 1 + max\{u_1, \ldots, u_n\}$. Now set

$$\hat{f} = f(X_1 + X_n^{u^{n-1}}, X_2 + X_n^{u^{n-2}}, \dots, X_{n-1} + X_n^u, X_n)$$

and define $c_i = a_i - a_n^{u^{n-1}}$ for $1 \le i \le n-1$. Then $\hat{f}(c_1, \ldots, c_{n-1}, a_n) = 0$. Set $R' = F[c_1, \ldots, c_{n-1}]$ and define $h \in R'[X_n]$ by $h(X_n) = \hat{f}(c_1, \ldots, c_{n-1}, X_n)$. Now show that h has an invertible leading coefficient.

- (2) Prove that any ring R contains a prime ideal P such that ht(P) = 0.
- (3) Let F be a field and let $R = F[x_1, x_2, ...]$ be the commutative polynomial ring in infinitely many variables. Consider the ideal

$$P_i = \langle x_{i(i-1)/2+1}, \dots, x_{i(i+1)/2-1}, x_{i(i+1)/2} \rangle.$$

Show that P_i is a prime ideal with *i* generators. Let $S = R \setminus (\bigcup_{i=1}^{\infty} P_i)$. Show that the ring $S^{-1}R$ is Noetherian and that if $M \subset S^{-1}R$ is a maximal ideal, then $M = S^{-1}P_i$ for some *i*. Show that $\operatorname{ht}_{S^{-1}R}(S^{-1}P_i) = i$. Conclude that every prime ideal of $S^{-1}R$ has finite height but that $\operatorname{Kdim}(S^{-1}R) = \infty$.

- (4) Let R be a local ring with maximal ideal J. Let F = R/J.
 - (a) Prove that J is not generated by fewer than Kdim(R) elements.
 - (b) Let M be a finitely generated R-module. Prove that the minimal number of generators needed to generate M over R is equal to the dimension of M/JM as an F-vector space. Conclude that $\operatorname{Kdim}(R) \leq \dim_F(J/J^2)$.
- (5) Let R be a local ring and J the maximal ideal. Suppose that J is a principal ideal (אידאל) and that $\bigcap_{n=1}^{\infty} J^n = 0$.

Prove that R is Noetherian and that if $0 \neq I \subset R$ is a proper ideal (אידאל אמיתי) then $I = J^n$ for some n.

(6) Let F be a field. Prove that any maximal ideal of $F[x_1, \ldots, x_n]$ is generated by n elements f_1, \ldots, f_n , where each f_i involves only the variables x_1, \ldots, x_i .

Hint: Look at the proof that each maximal ideal of $F[x_1, \ldots, x_n]$ has height n.

(7) Consider the ideal $I = (x^2 - y) \subset F[x, y]$. Show that it is prime and find its height.

- (8) Let F be an arbitrary field that is not algebraically closed. Find a counterexample showing that the Nullstellensatz is false for F.
- (9) Prove the prime exclusion principle: Let R be a commutative ring and let P_1, \ldots, P_r be prime ideals. Then an ideal $I \subset R$ such that $I \subset P_1 \cup \cdots \cup P_r$ must be contained in some P_i .

Hint: Assume not. Without loss of generality, r is minimal such that $I \subset P_1 \cup \cdots \cup P_r$. Then $I \cap P_i \notin \bigcup_{j \neq i} P_j$ for each $1 \leq i \leq r$. Choose a suitable element $a \in I$ and elements $a_i \in (I \cap P_i) \setminus P_r$ for $1 \leq i \leq r-1$. Show that $a + a_1 \cdots a_{r-1}$ is not contained in any of the P_i .

(10) Let R be a noetherian ring, $P \subset R$ a prime ideal such that $ht_R(P) \ge 2$. Prove that P contains infinitely many prime ideals of height 1.

Hint: Deduce a contradiction to the principal ideal theorem.

(11) Let $P \subset Q$ be prime ideals of a noetherian ring R. Prove that if there is a prime ideal strictly between P and Q, then there are infinitely many such prime ideals.