Commutative Algebra 88-813
 5770 Semester A
 Question Sheet 2

(1) Prove the Noether Normalization Theorem in general. (In class we assumed that the field F was infinite).

Hint: To do this, recall that $R=F\left[a_{1}, \ldots, a_{n}\right]$ and let f be the polynomial that appeared in our proof in class, and write

$$
f=\sum \gamma_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \cdots X_{n}^{i_{n}} .
$$

Now let u_{j} be the highest degree of X_{j} that appears in any monomial of f, and define $u=1+\max \left\{u_{1}, \ldots, u_{n}\right\}$. Now set

$$
\hat{f}=f\left(X_{1}+X_{n}^{u^{n-1}}, X_{2}+X_{n}^{u^{n-2}}, \ldots, X_{n-1}+X_{n}^{u}, X_{n}\right)
$$

and define $c_{i}=a_{i}-a_{n}^{u^{n-1}}$ for $1 \leq i \leq n-1$. Then $\hat{f}\left(c_{1}, \ldots, c_{n-1}, a_{n}\right)=0$. Set $R^{\prime}=$ $F\left[c_{1}, \ldots, c_{n-1}\right]$ and define $h \in R^{\prime}\left[X_{n}\right]$ by $h\left(X_{n}\right)=\hat{f}\left(c_{1}, \ldots, c_{n-1}, X_{n}\right)$. Now show that h has an invertible leading coefficient.
(2) Prove that any ring R contains a prime ideal P such that $\operatorname{ht}(P)=0$.
(3) Let F be a field and let $R=F\left[x_{1}, x_{2}, \ldots\right]$ be the commutative polynomial ring in infinitely many variables. Consider the ideal

$$
P_{i}=\left\langle x_{i(i-1) / 2+1}, \ldots, x_{i(i+1) / 2-1}, x_{i(i+1) / 2}\right\rangle .
$$

Show that P_{i} is a prime ideal with i generators. Let $S=R \backslash\left(\bigcup_{i=1}^{\infty} P_{i}\right)$. Show that the ring $S^{-1} R$ is Noetherian and that if $M \subset S^{-1} R$ is a maximal ideal, then $M=S^{-1} P_{i}$ for some i. Show that $\operatorname{ht}_{S^{-1} R}\left(S^{-1} P_{i}\right)=i$. Conclude that every prime ideal of $S^{-1} R$ has finite height but that $\operatorname{Kdim}\left(S^{-1} R\right)=\infty$.
(4) Let R be a local ring with maximal ideal J. Let $F=R / J$.
(a) Prove that J is not generated by fewer than $\operatorname{Kdim}(R)$ elements.
(b) Let M be a finitely generated R-module. Prove that the minimal number of generators needed to generate M over R is equal to the dimension of $M / J M$ as an F-vector space. Conclude that $\operatorname{Kdim}(R) \leq \operatorname{dim}_{F}\left(J / J^{2}\right)$.
(5) Let R be a local ring and J the maximal ideal. Suppose that J is a principal ideal (אידאל (ראשי) and that $\bigcap_{n=1}^{\infty} J^{n}=0$.

Prove that R is Noetherian and that if $0 \neq I \subset R$ is a proper ideal (אידאל אמיתי) then $I=J^{n}$ for some n.
(6) Let F be a field. Prove that any maximal ideal of $F\left[x_{1}, \ldots, x_{n}\right]$ is generated by n elements f_{1}, \ldots, f_{n}, where each f_{i} involves only the variables x_{1}, \ldots, x_{i}.

Hint: Look at the proof that each maximal ideal of $F\left[x_{1}, \ldots, x_{n}\right]$ has height n.
(7) Consider the ideal $I=\left(x^{2}-y\right) \subset F[x, y]$. Show that it is prime and find its height.
(8) Let F be an arbitrary field that is not algebraically closed. Find a counterexample showing that the Nullstellensatz is false for F.
(9) Prove the prime exclusion principle: Let R be a commutative ring and let P_{1}, \ldots, P_{r} be prime ideals. Then an ideal $I \subset R$ such that $I \subset P_{1} \cup \cdots \cup P_{r}$ must be contained in some P_{i}.

Hint: Assume not. Without loss of generality, r is minimal such that $I \subset P_{1} \cup \cdots \cup P_{r}$. Then $I \cap P_{i} \notin \cup_{j \neq i} P_{j}$ for each $1 \leq i \leq r$. Choose a suitable element $a \in I$ and elements $a_{i} \in\left(I \cap P_{i}\right) \backslash P_{r}$ for $1 \leq i \leq r-1$. Show that $a+a_{1} \cdots a_{r-1}$ is not contained in any of the P_{i}.
(10) Let R be a noetherian ring, $P \subset R$ a prime ideal such that $\operatorname{ht}_{R}(P) \geq 2$. Prove that P contains infinitely many prime ideals of height 1 .

Hint: Deduce a contradiction to the principal ideal theorem.
(11) Let $P \subset Q$ be prime ideals of a noetherian ring R. Prove that if there is a prime ideal strictly between P and Q, then there are infinitely many such prime ideals.

