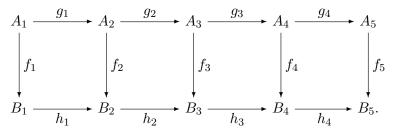
Commutative Algebra 88-813

5772 Semester A

Question Sheet 1

Due 15/11/2011, יח בחשון תשע"ב

(1) Prove the Five Lemma: Let R be a ring and consider the following commutative diagram of R-modules:



Suppose that the two rows are exact and that f_1 , f_2 , f_4 , and f_5 are isomorphisms. Prove that f_3 is also an isomorphism.

- (2) Let M be a finitely generated R-module. Prove that M has a maximal submodule.
- (3) Recall that l(M) is the composition length of a module M. If $M = M_1 \oplus M_2$, prove that $l(M) = l(M_1) + l(M_2)$.
- (4) Let R be a commutative ring and let M be an R-module generated by m elements. Suppose that there is a surjective map $\varphi: M \to R^{(n)}$. Prove that $m \ge n$.
- (5) Let R be a commutative ring. An element $s \in R$ is called regular if $sr \neq 0$ for all $0 \neq r \in R$. Let M be an R-module, and define $tor(M) = \{m \in M : sm = 0 \text{ for some regular } s \in R\}$. Prove the following:
 - (a) tor(M) is a submodule of M, and tor(R) = 0.
 - (b) $tor(M_1 \oplus M_2) \simeq tor(M_1) \oplus tor(M_2)$.
 - (c) If A = M/tor(M) is a free R-module, then $M \simeq A \oplus \text{tor}(M)$.
- (6) Let N_1, N_2 , and K be submodules of M such that $N_1 \supset N_2$ and $K \cap N_1 = 0$. Then $(K + N_1)/(K + N_2) \simeq N_1/N_2$.
- (7) Let $0 \to K \to M \to N \to 0$ be an exact sequence of R-modules. If K is free of rank k and N is free of rank n, prove that M is free of rank k + n.