Commutative Algebra 88-813
 5772 Semester A
 Question Sheet 11

Due 9/2/2012, ט"ז שבט תשע"ב
(1) Let F be a field. If $V \subset F^{n}$ is an irreducible algebraic variety of dimension $n-1$, prove that it is defined by a single polynomial, i.e. that there exists $f \in F\left[x_{1}, \ldots, x_{n}\right]$ such that $V=\left\{\left(a_{1}, \ldots, a_{n}\right) \in F^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0\right\}$.
(2) Let F be an algebraically closed field, and let $Z \subset F^{n}$ be any algebraic set. Prove that there exists a finite number of irreducible algebraic sets V_{1}, \ldots, V_{r} such that $Z=V_{1} \cup V_{2} \cup \cdots V_{r}$.

Recall that an algebraic set Z is called irreducible if for any two algebraic sets Z_{1}, Z_{2} such that $Z=Z_{1} \cup Z_{2}$, one always has either $Z_{1} \subseteq Z_{2}$ or $Z_{2} \subseteq Z_{1}$.
(3) Let F be a field which is not algebraically closed. Prove that the Nullstellensatz fails for F, in other words that there exists a radical ideal $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ for which there is so algebraic set $Z \subset F^{n}$ such that $I=\mathcal{I}(Z)$.
(4) Let R be a Noetherian domain. Prove that R is a principal ideal domain (PID) if and only if every maximal ideal is principal.
(5) Let $C \subset \mathbb{C}^{3}$ be the curve defined parametrically as follows:

$$
C=\left\{\left(t^{3}, t^{4}, t^{5}\right): t \in \mathbb{C}\right\}
$$

Prove that C is an algebraic set. Let $P \subset \mathbb{C}[x, y, z]$ be the ideal $\mathcal{I}(C)$, and justify our choice of notation by proving that P is prime.
(6) Let $C \subset \mathbb{C}^{3}$ and the ideal $P \subset \mathbb{C}[x, y, z]$ be as in the previous question. Prove that $\operatorname{ht}_{\mathbb{C}[x, y, z]}(P)=2$ but that P cannot be generated by any two elements. This shows that the inequality in the Hauptidealsatz is sometimes a strict inequality.

