Commutative Algebra 88-813
 5772 Semester A
 Question Sheet 8
 Due 12/1/2012, י"ז טבת תשע"ב

In your solution to any question you may assume the statements of previous questions to be true even if you did not prove them.
(1) Let F be a field, and suppose the integral domain R is an F-algebra. If $r \in R$ is algebraic over F, prove that $r^{-1} \in$ Frac R is also algebraic over F.
(2) Let $A \subset R$ be integral domains, and suppose that R is integral over A. Prove that R is a field if and only if A is a field.
(3) Let $F \subset K$ be an extension of fields such that K is algebraic over F. Let $\alpha \in K$. Then $I_{\alpha}=\{f \in F[x]: f(\alpha)=0\}$ is a non-zero ideal in $F[x]$. Since $F[x]$ is a PID, I_{α} is principal. Therefore there is a uniquely defined monic polynomial (פולינום מתוקו) f_{α} such that $I_{\alpha}=\left(f_{\alpha}\right)$. This f_{α} is called the minimal polynomial of α.

Suppose that A is an integrally closed domain such that Frac $A=F$. Prove that $\alpha \in K$ is integral over A if and only if $f_{\alpha} \in A[x]$.

Hint: One direction is trivial. To prove the other, let $K \subset E$ be the splitting field of f_{α}. Then in $E[x]$ we have $f_{\alpha}(x)=\prod_{i=1}^{n}\left(x-\beta_{i}\right)$, where $\beta_{1}=\alpha$. Show that every β_{i} is integral over A and express the coefficients of f_{α} in terms of the elements β_{i}.
(4) The aim of the remaining exercises is to prove the Going-Down Theorem: Let $A \subset R$ be an extension of integral domains, where A is an integrally closed domain and R is integral over A. Then $A \subset R$ has the property GD.

Recall that this means that, given prime ideals $P_{0} \subset P_{1} \subset A$ and a prime ideal $Q_{1} \in$ Spec R lying over P_{1}, there exists $Q_{0} \in \operatorname{Spec} R$ such that $Q_{0} \subset Q_{1}$ and Q_{0} lies over P_{0}.

Let $S_{0}=A-P_{0}$, and define

$$
S=\left\{a r: a \in S_{0}, r \in R-Q_{1}\right\} \subset R .
$$

Show that S is a monoid under multiplication.
(5) Let $\left\langle P_{0}\right\rangle$ be the ideal of R generated by the set P_{0} (note that P_{0} is an ideal of A, but not necessarily of R). Suppose that there exists an element $s \in S \cap\left\langle P_{0}\right\rangle$. Then we may write $s=a r$, where $a \in S_{0}$ and $r \in R-Q_{1}$. Similarly, we can write $s=\sum_{i=1}^{m} p_{i} r_{i}$ for a suitable m, where $p_{i} \in P_{0}$ and $r_{i} \in R$.

Show that there exist $h_{0}, h_{1}, \ldots, h_{m-1} \in P_{0}$ such that $g(s)=0$, where

$$
g(x)=x^{m}+h_{m-1} x^{m-1}+\cdots+h_{1} x+h_{0} .
$$

Hint: Let $M=A\left[r_{1}, \ldots, r_{m}\right]$. Prove that M is finitely generated as an A-module. Consider the map $\varphi: M \rightarrow M$ given by $\varphi(x)=s x$ (why is this indeed a homomorphism of modules?) and use the proof of Nakayama's lemma.
(6) We use the notation of the previous question. Let $F=$ Frac A, and let $f_{s}(x)=x^{n}+$ $d_{n-1} x^{n-1}+\cdots+d_{1} x+d_{0} \in F[x]$ be the minimal polynomial of s. Show that $d_{i} \in P_{0}$ for all $0 \leq i \leq n-1$.

Hint: The ring $\left(A / P_{0}\right)[x]$ is a UFD.
(7) Let $f_{r}(x)=x^{n}+d_{n-1}^{\prime} x^{n-1}+\cdots+d_{1}^{\prime} x+d_{0}^{\prime} \in F[x]$ be the minimal polynomial of r. Why does f_{r} indeed have degree n ? Prove that $d_{i}=a^{n-i} d_{i}^{\prime}$ for all $0 \leq i \leq n-1$.
(8) Prove that $d_{i}^{\prime} \in P_{0}$ for all $0 \leq i \leq n-1$ and deduce from this that $r \in Q_{1}$. On the other hand, we know that $r \in R-Q_{1}$. It follows from this contradiction that $S \cap\left\langle P_{0}\right\rangle=\varnothing$.
(9) Consider the set $\mathcal{S}=\left\{Q \subset R: S \cap Q=\varnothing,\left\langle P_{0}\right\rangle \subset Q\right\}$ of ideals of R. By the result of the previous question, \mathcal{S} is non-empty. Prove that it contains a maximal element and that any maximal element is a prime ideal.
(10) Let Q_{0} be a maximal element of \mathcal{S}. Prove that $\mathbb{Q}_{0} \subset Q_{1}$ and that $Q_{0} \cap A=P_{0}$. Therefore the extension $A \subset R$ does indeed satisfy the property GD.

