Commutative Algebra 88-813 5772 Semester A Question Sheet 8 Due 12/1/2012, י"ז טבת תשע"ב

In your solution to any question you may assume the statements of previous questions to be true even if you did not prove them.

- (1) Let F be a field, and suppose the integral domain R is an F-algebra. If $r \in R$ is algebraic over F, prove that $r^{-1} \in \text{Frac } R$ is also algebraic over F.
- (2) Let $A \subset R$ be integral domains, and suppose that R is integral over A. Prove that R is a field if and only if A is a field.
- (3) Let $F \subset K$ be an extension of fields such that K is algebraic over F. Let $\alpha \in K$. Then $I_{\alpha} = \{f \in F[x] : f(\alpha) = 0\}$ is a non-zero ideal in F[x]. Since F[x] is a PID, I_{α} is principal. Therefore there is a uniquely defined *monic* polynomial (פולינום מתוקו) f_{α} such that $I_{\alpha} = (f_{\alpha})$. This f_{α} is called the minimal polynomial of α .

Suppose that A is an integrally closed domain such that Frac A = F. Prove that $\alpha \in K$ is integral over A if and only if $f_{\alpha} \in A[x]$.

Hint: One direction is trivial. To prove the other, let $K \subset E$ be the splitting field of f_{α} . Then in E[x] we have $f_{\alpha}(x) = \prod_{i=1}^{n} (x - \beta_i)$, where $\beta_1 = \alpha$. Show that every β_i is integral over A and express the coefficients of f_{α} in terms of the elements β_i .

(4) The aim of the remaining exercises is to prove the Going-Down Theorem: Let $A \subset R$ be an extension of integral domains, where A is an integrally closed domain and R is integral over A. Then $A \subset R$ has the property GD.

Recall that this means that, given prime ideals $P_0 \subset P_1 \subset A$ and a prime ideal $Q_1 \in$ Spec R lying over P_1 , there exists $Q_0 \in$ Spec R such that $Q_0 \subset Q_1$ and Q_0 lies over P_0 . Let $S_0 = A - P_0$, and define

$$S = \{ar : a \in S_0, r \in R - Q_1\} \subset R.$$

Show that S is a monoid under multiplication.

(5) Let $\langle P_0 \rangle$ be the ideal of R generated by the set P_0 (note that P_0 is an ideal of A, but not necessarily of R). Suppose that there exists an element $s \in S \cap \langle P_0 \rangle$. Then we may write s = ar, where $a \in S_0$ and $r \in R - Q_1$. Similarly, we can write $s = \sum_{i=1}^m p_i r_i$ for a suitable m, where $p_i \in P_0$ and $r_i \in R$.

Show that there exist $h_0, h_1, \ldots, h_{m-1} \in P_0$ such that g(s) = 0, where

$$g(x) = x^m + h_{m-1}x^{m-1} + \dots + h_1x + h_0.$$

Hint: Let $M = A[r_1, \ldots, r_m]$. Prove that M is finitely generated as an A-module. Consider the map $\varphi : M \to M$ given by $\varphi(x) = sx$ (why is this indeed a homomorphism of modules?) and use the proof of Nakayama's lemma.

(6) We use the notation of the previous question. Let F = Frac A, and let $f_s(x) = x^n + d_{n-1}x^{n-1} + \cdots + d_1x + d_0 \in F[x]$ be the minimal polynomial of s. Show that $d_i \in P_0$ for all $0 \le i \le n-1$.

Hint: The ring $(A/P_0)[x]$ is a UFD.

- (7) Let $f_r(x) = x^n + d'_{n-1}x^{n-1} + \dots + d'_1x + d'_0 \in F[x]$ be the minimal polynomial of r. Why does f_r indeed have degree n? Prove that $d_i = a^{n-i}d'_i$ for all $0 \le i \le n-1$.
- (8) Prove that $d'_i \in P_0$ for all $0 \le i \le n-1$ and deduce from this that $r \in Q_1$. On the other hand, we know that $r \in R Q_1$. It follows from this contradiction that $S \cap \langle P_0 \rangle = \emptyset$.
- (9) Consider the set $S = \{Q \subset R : S \cap Q = \emptyset, \langle P_0 \rangle \subset Q\}$ of ideals of R. By the result of the previous question, S is non-empty. Prove that it contains a maximal element and that any maximal element is a prime ideal.
- (10) Let Q_0 be a maximal element of S. Prove that $\mathbb{Q}_0 \subset Q_1$ and that $Q_0 \cap A = P_0$. Therefore the extension $A \subset R$ does indeed satisfy the property GD.