Commutative Algebra 88-813 5772 Semester A Question Sheet 9 Due 19/1/2012, כ"ד טבת תשע"ב

(1) Let R be a ring and S a sub-monoid such that $S \subset Z(R)$. In class we defined an equivalence relation on $R \times S$ as follows: $(r_1, s_1) \sim (r_2, s_2)$ if there exists $s \in S$ such that $r_1 s_2 s = r_2 s_1 s$. We defined $S^{-1}R$ to be the set of equivalence classes and claimed that it can be given a ring structure as follows:

$$(r_1, s_1) + (r_2, s_2) = (r_1 s_2 + r_2 s_1, s_1 s_2)$$

 $(r_1, s_1) \cdot (r_2, s_2) = (r_1 r_2, s_1 s_2).$

Show that these operations are well-defined.

- (2) Let R be a ring and $I \subset R$ a left ideal. Let $\overline{R} = R/I$, and let $\overline{S} = \{s + I : s \in S\} \subset \overline{R}$. Prove that $\overline{S}^{-1}\overline{R} \simeq S^{-1}R/S^{-1}I$.
- (3) Construct an integral domain with exactly 5772 maximal ideals.
- (4) Let F be a field and let R = F[[x]] be the ring of power series with coefficients in F. Show that R is a local ring.
- (5) Let R be a commutative ring and S a sub-monoid (not containing zero). If M is an R-module, we define an equivalence relation on $M \times S$ by $(m_1, s_1) \sim (m_2, s_2)$ if there exists $s \in S$ such that $s(s_2m_1 s_1m_2) = 0$. Show that this is an equivalence relation, that the set $S^{-1}M$ of equivalence classes can be made into an abelian group by defining $(m_1, s_1) + (m_2, s_2) = (s_2m_1 + s_1m_2, s_1s_2)$, and that it is a well-defined $S^{-1}R$ -module under the scalar multiplication $(r, s) \cdot (m, s') = (rm, ss')$.
- (6) Let R be a commutative ring and M an R-module. If $P \subset R$ is a prime ideal and S = R P is its complement, we write R_P for $S^{-1}R$ and M_P for $S^{-1}M$. Prove that the following three statements are equivalent:
 - (a) $M_P = 0$ for all prime ideals $P \subset R$.
 - (b) $M_Q = 0$ for all maximal ideals $Q \subset R$.
 - (c) M = 0.