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Abstract. To determine an unknown function belonging to a known n-dimensional space,

it suffices to evaluate the function at n generic points. We apply the character theory of

finite groups towards finding optimal designs of such points.

Let Z ⊂ Rm and suppose that X = {x1, . . . , xs} ⊂ Z is a set of s distinct points of Z. Let
B be an s-dimensional space of complex-valued functions on Z, and let {B1(x), . . . , Bs(x)} be
a basis of B. If the matrix (Bi(xj)) is non-singular, then there exist Lagrange fundamental
functions L1(x), . . . , Ls(x) ∈ B such that Li(xj) = δij . Define the variance

VX ,B = sup
x∈Z

s∑
i=1

|Li(x)|2.

Clearly VX ,B ≥ 1. We call X an optimal design for B if VX ,B = 1. More generally, if C ≥ 1,
then we say that X is C-optimal for B if VX ,B ≤ C.

The motivation for this definition is as follows. Suppose we know that f is a function defined
on Z and that it lies in an s-dimensional space B. For instance, f(x) might be the activation
energy of a certain chemical reaction in the presence of a concentration x of a catalyst, and we
may want to approximate it by a polynomial of degree at most s− 1. Generically, evaluating
f at s points of Z will provide enough information to determine f . If X = {x1, . . . , xs} is a
set of s points as above, let Yi be a random variable measuring f(xi). Then for all x ∈ Z we
have f(x) =

∑s
i=1 Li(x)Yi. Hence if the random variables Yi are independent and normalized

so that Var(Yi) = 1 for all 1 ≤ i ≤ s, then Var(f(x)) =
∑s

i=1 |Li(x)|2. By choosing X to be
an optimal design for B we minimize these variances and thereby can determine the entire
function f to a given level of confidence with a minimal number of observations.

This note uses basic results from the representation theory of finite groups to study optimal
designs when X and B carry some symmetries. More precisely, let G = {g1, . . . , gs} be a
finite abelian group, where we assume that g1 ∈ G is the identity element. Suppose that Z
is endowed with a (left) G-action. We will consider designs X that are orbits of this action:
xj = gjx1 for all 1 ≤ j ≤ s. There is a natural left action of G on the functions on Z: for any
function f and any g ∈ G and x ∈ Z we have (gf)(x) = f(g−1x). Suppose that B is stable
under this G-action.

Our main result is a theorem establishing some sufficient conditions for X to be C-optimal
for B. As applications, we recover a result of D. Lee about optimal designs in the case where
X consists of equally spaced points on an interval, as well as a multi-dimensional analogue of
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Lee’s result. For some other sets X , we can find spaces B for which VX ,B is arbitrarily close
to 1. It is natural to seek to extend our method to cases where an arbitrary finite group,
not necessarily abelian, acts on the spaces X and B. We remark upon this at the end of the
second section. To the author’s knowledge this is the first application of algebra to problems
in the theory of designs.

The author is grateful to Prof. Boris Levit for introducing him to this problem and for
useful discussions.

1. Characters of finite groups

In this section we establish some notation and recall the facts that we will need about
characters of finite groups. A more complete exposition may be found in [2], among many
other references.

Let G = {g1, . . . , gs} be an arbitrary finite group of order |G| = s, where g1 is the identity
element. Suppose that G has r distinct conjugacy classes C1, . . . , Cr. Then G has r irreducible
representations (over C) up to isomorphism. Let χ1, . . . , χr be their characters. Then ([2],
Corollary 2.7):

|G| =
r∑
i=1

χi(g1)
2. (1)

Furthermore, the first orthogonality relation ([2], Corollary 2.14) states that

1

|G|
∑
g∈G

χi(g)χj(g) = δij . (2)

Here δij is the Kronecker delta function. Let Is be the s×s identity matrix. The character
table of G is the r×s matrix H with entries given by Hij = χi(gj) for 1 ≤ i ≤ r and 1 ≤ j ≤ s.
Using it, we can restate (2) as

1

|G|
HH∗ = Ir. (3)

For the remainder of the paper (except for Remark 2.5) we assume that G is an abelian
group. Then all conjugacy classes of G are singletons, and r = s. Thus H is a square matrix,
and (3) implies H∗H = |G|Is. It follows from (1) that all the entries in the first column of H
are ones. Considering the first column of the product H∗H, we obtain

1

|G|

s∑
i=1

χi(gj) =

{
1 : j = 1

0 : j 6= 1.
(4)

Since all the irreducible representations of G are one-dimensional, the characters χi : G→
C∗ are group homomorphisms. Moreover, any homomorphism χ : G → C∗ = GL1(C) must
be one of χ1, . . . , χs.

Remark. Note that (4) also follows from the fact ([2], Lemma 2.11) that, for any finite group
G, the regular representation of G is isomorphic to

∑r
i=1(dimVi)ρi, where (ρ1, V1), . . . , (ρr, Vr)

are the irreducible representations of G up to isomorphism.
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2. The main theorem

Let F be a C-vector space of complex-valued functions on Z, and suppose that F is
preserved by the action of G. Note that we allow F to be infinite-dimensional. Since G is
finite abelian, it follows from [2], Theorem 2.13, that F =

⊕s
i=1Fi, where Fi is the subspace

consisting of all f ∈ F such that f(g−1z) = χi(g)f(z) for all g ∈ G and all z ∈ Z.
In particular, F has a basis {fα}α∈A consisting of eigenfunctions for the G-action. For each

1 ≤ i ≤ s, set Ai = {α ∈ A : fα ∈ Fi}. We assume that each character χi appears in the
G-module F , or equivalently that Ai 6= ∅ for all 1 ≤ i ≤ s. If α, β ∈ A, we say that α ≡ β if
fα and fβ lie in the same isotypical component Fi of F . Then the Ai are just the equivalence

classes for the relation ≡. Finally, define A−i = Aj , where j is such that χj = χ−1i .
Recall that the design X = {x1, . . . , xs} is assumed to satisfy xi = gix1 for each 1 ≤ i ≤ s.

Suppose that B ⊂ F is an s-dimensional space with a basis {b1(x), . . . , bs(x)} of conjugates
of a single function: bi(x) = gib1(x) for all 1 ≤ i ≤ s. In particular, B is stable under the
action of G. Suppose that b1(x) may be written as a linear combination of the fα as follows:

b1(x) =
∑
α∈A

B̂αfα(x).

As we will see, this expression may be viewed as a generalized Fourier decomposition.

Lemma 2.1. Suppose that fα(x1) = 1 for all α ∈ A and that
∑

α∈Ai B̂α 6= 0 for all 1 ≤ i ≤ s.
Then the function L(x) =

∑
α∈A L̂αfα(x), where

L̂α =
B̂α

|G|
∑

β∈A
β≡α

B̂β
.

satisfies L(x1) = 1 and L(xj) = 0 for 2 ≤ j ≤ s.

Proof. Let 1 ≤ j ≤ s. For all α ∈ A, observe that fα(xj) = fα(gjx1) = χα(gj)
−1fα(x1) =

χα(gj)
−1. Then∑

α∈A
L̂αfα(xj) =

∑
α∈A

L̂αχα(gj)
−1 =

s∑
i=1

∑
α∈Ai

L̂αχi(gj)
−1 =

s∑
i=1

1

|G|
∑

α∈Ai B̂α

∑
α∈Ai

B̂αχi(gj)
−1 =

s∑
i=1

1

|G|
χi(gj)

−1 =

{
1 : j = 1

0 : j 6= 1.

Here the final equality comes from (4). �

Lemma 2.2. Maintain the hypotheses of Lemma 2.1. Then the function L(x) defined in the
statement of Lemma 2.1 is contained in B.

Proof. For each 1 ≤ k ≤ s, let b(k)(x) =
∑

α∈Ak B̂αfα(x). Then b1(x) =
∑s

k=1 b
(k)(x), and for

all 1 ≤ i ≤ s we have

bi(x) = gib1(x) =

s∑
k=1

χk(gi)b
(k)(x).

Since the matrix H is non-singular by (3), it follows that b(k)(x) ∈ B for all 1 ≤ k ≤ s.

Finally observe that L(x) is a linear combination of the b(k)(x). �
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From the previous lemma it follows that the Lagrange fundamental functions for X in B
are given by Li(x) = giL(x) for all 1 ≤ i ≤ s.

Now we define an interpolant S as follows. Let L(x) = (L1(x), . . . , Ls(x)) be a column
vector, and define S(x) = (S1(x), . . . , Ss(x)) by S = HL. Then by (3) we see that L =
|G|−1H∗S.

Lemma 2.3. Let C ≥ 1. If |Si(x)| ≤ C for all 1 ≤ i ≤ s and all x ∈ Z, then X is a
C2-optimal design for B.

Proof. Suppose that supx∈Z |Si(x)| ≤ C for all i. Observe that
s∑
i=1

|Li(x)|2 = L∗L =
1

|G|2
S∗HH∗S = |G|−1S∗S = |G|−1

s∑
i=1

|Si(x)|2 ≤ C2.

�

Theorem 2.4. Maintain the notation defined at the beginning of this section. Suppose that
there exists a constant C ≥ 1 such that supx∈Z |fα(x)| ≤ C for all α ∈ A satisfying B̂α 6= 0.

Suppose also that fα(x1) = 1 for all α ∈ A and that
∑

α∈Ai B̂α 6= 0 for all 1 ≤ i ≤ s. If B̂α
is a non-negative real number for every α ∈ A, then X is a C2-optimal design for B.

Proof. Observe that, by definition, Si(x) =
∑

g∈G χi(g)L(g−1x). It follows from Lemma 2.1

that the “Fourier coefficients” of Si(x) =
∑

α∈A Ŝ
i
αfα(x) are:

Ŝiα =
∑
g∈G

χi(g)
B̂αχα(g)

|G|
∑

β≡α B̂β
=


B̂α∑
β≡α B̂β

: χα = χ−1i

0 : χα 6= χ−1i .
(5)

From this we conclude that

|Si(x)|2 =
∑

α,β∈A−i

ŜiαŜ
i
βfα(x)fβ(x) ≤ C2

|
∑

α∈A−i
B̂α|2

∑
α,β∈A−i

|B̂αB̂β|.

If all the B̂α are non-negative real, then we obtain that |Si(x)|2 ≤ C2. Since 1 ≤ i ≤ s was
arbitrary, Lemma 2.3 implies that X is a C2-optimal design for B. �

Remark 2.5. It is not too difficult to obtain analogues of Lemma 2.1 and Lemma 2.2 in special
cases when G is not abelian, such as for dihedral groups. We also note that, for an arbitrary
group G of order s, the question of finding the Lagrange fundamental functions Li(x) is
considerably simpler computationally than that of inverting a general s × s matrix. To see
this, let Bij = bi(xj), where bi(x) = gib1(x) and xi = gix1 as above. Then Bij = b1(g

−1
i gjx1),

so that the matrix B is just a weighted sum of permutation matrices. Indeed, the Cayley
embedding of G into the symmetric group Ss sends each gi to the permutation σi ∈ Ss such
that gσi(j) = gjg

−1
i for all 1 ≤ j ≤ s. The regular representation ρreg : G → GLs(C) is the

composition of the Cayley embedding with the standard representation of Ss; this corresponds
to the left action of G on itself, where g ∈ G acts by right multiplication by g−1. Observe
that B =

∑s
k=1 b1(xk)ρreg(gk).

By assumption B is non-singular, so that the Li(x) are well-defined. Observe that

Li(x) =
s∑
j=1

(B−1)ijbj(x), (6)
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for all 1 ≤ i ≤ s. We compute that

Li(x) = giL1(x) =
s∑
j=1

(B−1)1jgibj(x) =
s∑
j=1

(B−1)1jgigjb1(x) = (7)

s∑
k=1

(B−1)1,σk(i)gkb1(x) =

s∑
k=1

(B−1)1,σk(i)bk(x).

Comparing (6) and (7) we see that (B−1)ij = (B−1)1,σj(i). This means that we need only

compute s cofactors to find the inverse of B, and not s2 cofactors as for a general s×s matrix.

3. Examples

3.1. Optimal designs. As a special case of Theorem 2.4 we recover the following result
of D. Lee [3], which was originally proved by direct computations with Fourier coefficients
relying on work of de Boor [1] on splines. Let N > 1 be an integer and let Z = R/NZ, on
which the group G = Z/NZ acts by translations: gx = x+ g for x ∈ Z and g ∈ G. Here F is
the set of functions on Z (i.e. N -periodic functions on R) which have Fourier decompositions,

and its chosen basis is {fα(x) = e2πiαx/N : α ∈ A}, indexed by the set A = Z. Note that the
distinct characters of G = Z/NZ are precisely

χj(g) = e2πigj/N , 1 ≤ j ≤ N.

It is easy to see that χα = χj , where 1 ≤ j ≤ N is such that −α ≡ j mod N . In this case
the equivalence relation ≡ on A is just congruence modulo N . Let X = {0, 1, . . . , N − 1} =
{g · 0 : g ∈ G}. Since for all α ∈ Z we have |fα(x)| = 1 for all x ∈ Z and fα(0) = 1, the
following is immediate from Theorem 2.4.

Corollary 3.1 (Lee). Let N > 1 be an integer and let B(x) be an N -periodic function on

R with Fourier decomposition B(x) =
∑∞

α=−∞ B̂αe
2πiαx/N . Suppose that the set {α ∈ Z :

B̂α 6= 0} includes at least one element from each congruence class modulo N and that all

the Fourier coefficients B̂α are non-negative real numbers. Then X = {0, 1, . . . , N − 1} is an
optimal design for the space B spanned by the functions B(x), B(x− 1), . . . , B(x− (N − 1)).

We may obtain a multi-variable analogue of the previous result at no extra cost. Let
m ≥ 1 be an integer, and let N1, . . . , Nm be integers greater than 1. The group G = Z/N1Z×
Z/N2Z×· · ·×Z/NmZ acts on Z = R/N1Z×· · ·×R/NmZ by translations in the obvious way.
Then Theorem 2.4 implies:

Corollary 3.2. Let m ≥ 1, let (N1, . . . , Nm) ∈ Zm>1, and let X = {(y1, . . . , ym) ∈ Zm : 0 ≤
yk < Nk}. Let B(x1, . . . , xm) be a function on Rm that is Nk-periodic in the variable xk for
each 1 ≤ k ≤ m. Suppose that its multi-variable Fourier decomposition is:

B(x1, . . . , xm) =
∑

(α1,...,αm)∈Zm
B̂α1,...,αme

2πi(α1x1/N1+···+αmxm/Nm).

Suppose that for every m-tuple (C1, . . . , Cm), where Ck is a congruence class modulo Nk for each

1 ≤ k ≤ m, there exists (α1, . . . , αm) ∈ Zm such that αk ∈ Ck for each k and B̂α1,...,αm 6= 0.
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If all the Fourier coefficients B̂α1,...,αm are non-negative real numbers, then X is an optimal
design for the N1N2 · · ·Nm-dimensional space spanned by the functions

{B(x1 −D1, . . . , xm −Dm) : (D1, . . . , Dm) ∈ Zm, 0 ≤ Dk < Nk}.

3.2. Almost optimal designs. The next simplest automorphisms of an interval, after the
translations considered in the previous section, are reflections. In this section, let Z = R/2πZ.
Let t : Z → Z be translation by π, so that t(x + 2πZ) = x + π + 2πZ. Let r : Z → Z be
reflection about zero: r(x + 2πZ) = −x + 2πZ. The group G ' Z/2Z × Z/2Z generated by
these two operators acts on Z.

The four characters of G are determined by:

χ1(r) = −1 χ1(t) = −1

χ2(r) = −1 χ2(t) = 1

χ3(r) = 1 χ3(t) = −1

χ4(r) = 1 χ4(t) = 1

Let a ∈ Z be any point that is not a rational multiple of π. We will consider the design
X = {a,−a, a + π,−a + π}, with a in the role of x1. Consider the space F of functions
spanned by fα : α ∈ Z, where

fα(x) =

{
(cosαx)/(cosαa) : α ≥ 0

(sinαx)/(sinαa) : α < 0.

Then F is the space of 2π-periodic functions on R with Fourier decompositions. Note that
fα(a) = 1 for all α ∈ A and that

A1 = {α ∈ Z : α < 0, α odd} A3 = {α ∈ Z : α ≥ 0, α odd}
A2 = {α ∈ Z : α < 0, α even} A4 = {α ∈ Z : α ≥ 0, α even}.

In other words,

span{fα : α ∈ A1} = span{sinmx : m ≥ 1 odd}
span{fα : α ∈ A2} = span{sinmx : m ≥ 1 even}
span{fα : α ∈ A3} = span{cosmx : m ≥ 1 odd}
span{fα : α ∈ A4} = span{cosmx : m ≥ 0 even}

In our situation, when translated into a more usual basis for Fourier decompositions, The-
orem 2.4 says the following:

Corollary 3.3. Consider the 2π-periodic function

B(x) = c0 +

∞∑
m=1

(cm cosmx+ dm sinmx).

Suppose that cm 6= 0 for at least one even and one odd index m, and that dm 6= 0 for at least
one even and one odd index m. Let a ∈ [−π, π] be a number which is not a rational multiple
of π. Define

C = sup

(
{ 1

| cosma|
: cm 6= 0} ∪ { 1

| sinma|
: dm 6= 0}

)
.
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If (sgn(cosma))cm and (sgn(sinma))dm are non-negative real numbers for all m ≥ 0, then
X = {a,−a, a+ π,−a+ π} is a C2-optimal design for the four-dimensional space B spanned
by the functions B(x), B(−x), B(x+ π), and B(−x+ π).

Observe that Za is dense in R/2πZ if a is not a rational multiple of π. Therefore, given
any such a and any ε > 0 we can find a function B(x) such that X is (1 + ε)-optimal for B by
Corollary 3.3. For instance, let a = 1, so that X = {±1,±(π − 1)}. Observe that | sin 11|−1,
| sin 366|−1, | cos 0|−1, and | cos 355|−1 are all less than

√
1.00002. Therefore, if we set

B(x) = c0 − c355 cos 355x− d11 sin 11x+ d366 sin 366x,

where c0, c355, d11, and d366 are any positive real numbers, then the space B spanned by the
orbit of B(x) under the action of G ' Z/2Z× Z/2Z satisfies 1 ≤ VX ,B < 1.00002.

At the expense of making the design X somewhat less optimal, we can take smaller har-
monics in B(x). For instance, if

B(x) = c0 − c3 cos 3x− d11 sin 11x+ d14 sin 14x,

where c0, c3, d11, and d14 are positive, then the space B spanned by the orbit of B(x) satisfies
VX ,B < 1.0204.

On the other hand, if we want our function to have the form B(x) = c0+c1 cosx+d1 sinx+
d2 sin 2x, then observe that the quantity

C = max{ 1

cos a
,

1

sin a
,

1

sin 2a
}

is minimized when a = π/4, in which case C =
√

2. Therefore, the best optimality result we
can extract from Theorem 2.4 for functions of this form is the following: if

B(x) = c0 + c1 cosx+ d1 sinx+ d2 sin 2x,

where the constants c0, c1, d1, d2 are all positive real, if B is the space spanned by the G-orbit
of B(x), and if X = {π4 ,−

π
4 ,

3π
4 ,−

3π
4 }, then VX ,B ≤ 2.
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