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Abstract. We compute the local pro-isomorphic zeta functions at all but finitely

many primes for a certain family of class-two-nilpotent Lie lattices of even rank,

parametrized by irreducible monic non-linear polynomials f(x) ∈ Z[x]. These Lie

lattices correspond to a family of groups introduced by Grunewald and Segal. The

result is expressed in terms of a combinatorially defined family of rational functions.

1. Introduction

1.1. Pro-isomorphic zeta functions. Let G be a finitely generated group. The pro-

isomorphic zeta function of G, which was originally introduced by Grunewald, Segal, and

Smith [14], is the Dirichlet series ζ∧G(s) =
∑∞

m=0 a
∧
m(G)m−s. Here s is a complex variable

and a∧m(G) is the (necessarily finite) number of subgroups H ≤ G of index m such that

the profinite completion of H is isomorphic to that of G. In practice it is convenient

to interpret this series as counting linear objects. Let L be a Z-algebra, which for our

purposes is a free Z-module of finite rank endowed with a Z-bilinear multiplication. Its

pro-isomorphic zeta function is the Dirichlet series ζ∧L(s) =
∑∞

m=0 b
∧
m(L)m−s, where

b∧m(L) is the number of subalgebras M ≤ L of index n such that M⊗ Zp ' L ⊗ Zp

for all primes p. An elementary but fundamental result [14, Proposition 4] is the Euler

decomposition ζ∧L(s) =
∏

p ζ
∧
L,p(s), where ζ∧L,p(s) counts only subalgebras of p-power

index or, equivalently, Zp-subalgebras of L ⊗ Zp that are isomorphic to L ⊗ Zp. An

analogous decomposition holds for finitely generated torsion-free nilpotent groups. If G

is such a group, then there is a Lie lattice L(G), namely a Z-algebra whose multiplication

is a Lie bracket, such that ζ∧L(G),p(s) = ζ∧G,p(s) for all but finitely many p. If G is of class

two, then this equality holds for all primes p; see, for instance, [14, §4] and [3, §2.1].

The present work computes the pro-isomorphic zeta functions of many members of

a certain family of class-two-nilpotent Lie lattices of even rank considered by Berman,

Klopsch, and Onn [5]. This family corresponds to the representatives constructed by

Grunewald and Segal [13] of commensurability classes of D∗-groups of even Hirsch

length; see Section 1.5.1 below.

1.2. Statement of results. We now present our main results more precisely. Let

∆(x) ∈ Z[x] be a primary polynomial, i.e. ∆(x) = f(x)` for an irreducible monic poly-

nomial f(x) and ` ∈ N. If ∆(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 for ai ∈ Z, recall its
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companion matrix

C∆ =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

 ∈ Mn(Z).

Let L∆ be the Lie lattice of rank 2n+ 2 with basis x1, . . . , xn, y1, . . . , yn, z1, z2 and Lie

bracket determined by the following:

• [xi, xj ] = [yi, yj ] = 0 for all 1 ≤ i, j ≤ n;

• [xi, yj ] = δijz1 + (C∆)ijz2 for all 1 ≤ i, j ≤ n, where δij is the Kronecker delta;

• z1 and z2 lie in (and indeed span) the center of L∆.

We consider the case where ∆(x) = f(x) is an irreducible polynomial of degree n ≥ 2

and determine ζ∧Lf ,p(s) for all but finitely many p. Indeed, let β be a root of f(x) and

consider the number field Kf = Q(β). Recall that the conductor Ff is the largest ideal

of the ring of integers OKf
that is contained in Z[β]. For all primes p coprime to Ff , we

compute ζ∧Lf ,p(s) explicitly when n ≥ 3. Theorem 1.4 treats the case n = 2, which was

actually treated 35 years ago, under a different name, by Grunewald, Segal, and Smith.

Moreover, we prove the following finite uniformity statement. Suppose that K is a

number field, p is a prime, and e = (e1, . . . , er) and f = (f1, . . . , fr) are vectors of natural

numbers. We say that p has decomposition type (e, f) in K if pOK = pe1
1 · · · perr , where

the pi /OK are distinct prime ideals with residue fields of cardinality |OK/pi| = pfi for

every 1 ≤ i ≤ r. This implies that n =
∑r

i=1 eifi. Let 1 denote the vector (1, . . . , 1).

Theorem 1.1. Let n ≥ 3, and let e = (e1, . . . , er) and f = (f1, . . . , fr) satisfy n =∑r
i=1 eifi. Consider the rational function

We,f (X,Y ) =

r∏
i=1

(
1

1−Xfi

) ∑
I⊆{1,...,r}

(−1)|I|
X

∑
i∈I fi

1−X4n+
∑

i∈I eifiY n+2
∈ Q(X,Y ).

If f(x) ∈ Z[x] is any irreducible monic polynomial of degree n, and if the prime p is

coprime to Ff and has decomposition type (e, f) in Kf , then ζ∧Lf ,p(s) = We,f (p, p
−s).

Moreover, if e = 1, i.e. p is unramified in Kf , then W1,f (X,Y ) satisfies the following

functional equation:

(1.1) W1,f (X
−1, Y −1) = (−1)r+1p9n−(2n+4)sW1,f (X,Y ).

In fact, in (3.4) below we realize the functions W1,f as specializations of combinato-

rially defined functions Φr in 2r variables introduced for every r ∈ N in Definition 2.1.

While these Φr are reminiscent of some functions that have appeared recently in the lit-

erature in the context of enumerative problems arising from algebra [21, 8, 20, 18], they

do not seem to be special cases of them. Then (1.1) is immediate from Proposition 2.2,

which proves a self-reciprocity of the functions Φr under inversion of the variables.

We illustrate the explicit formulas of Theorem 1.1 in a simple example:

Corollary 1.2. Let f(x) = x3 − 2.
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(1) If p ≡ 1 mod 3 and there exist a, b ∈ Z such that p = a2 + 27b2 (equivalently, if

p is totally split in Kf = Q( 3
√

2)), then

ζ∧Lf ,p(s) =
1 + 2p13−5s + 2p14−5s + p27−10s

(1− p12−5s)(1− p13−5s)(1− p14−5s)(1− p15−5s)
.

(2) If p ≡ 1 mod 3 and there do not exist a, b ∈ Z such that p = a2 + 27b2 (equiva-

lently, if p is inert in Kf ), then

ζ∧Lf ,p(s) =
1

(1− p12−5s)(1− p15−5s)
.

(3) If p > 2 and p ≡ 2 mod 3 (equivalently, if pOKf
= p1p2 with OKf

/p1 ' Fp and

OKf
/p2 ' Fp2) then

ζ∧Lf ,p(s) =
1− p27−10s

(1− p12−5s)(1− p13−5s)(1− p14−5s)(1− p15−5s)
.

(4) If p ∈ {2, 3} (equivalently, if p is totally ramified in Kf ), then

ζ∧Lf ,p(s) =
1 + p13−5s + p14−5s

(1− p12−5s)(1− p15−5s)
.

Note that the rational function governing ζ∧Lf ,p(s) for the ramified primes p ∈ {2, 3}
does not satisfy a functional equation for any symmetry factor.

Remark 1.3. Observe in passing that the functional equation (1.1) satisfies [5, Conjec-

ture 1.5]. Unlike the situation for zeta functions counting subrings, ideals, and some

related structures [25, 17], it is not known in general whether local pro-isomorphic zeta

functions of nilpotent Lie lattices, even of class two, satisfy functional equations. See [4]

for an example of a Lie lattice of class four none of whose local pro-isomorphic zeta

functions satisfies a functional equation. However, Berman, Klopsch, and Onn have

conjectured, based on a study of known examples, that if L is graded and ζ∧L,p(s) sat-

isfies a functional equation at almost all primes p, then the exponent of p−s in the

symmetry factor at almost all primes should be the weight of a minimal grading of

L; see [5] for definitions and details. Indeed, the Lie lattices Lf considered above are

naturally graded in the sense of [5], and hence the weight of a minimal grading is

rkZLf + rkZ[Lf ,Lf ] = (2n+ 2) + 2 = 2n+ 4.

1.3. The quadratic case. For completeness, we state the pro-isomorphic zeta func-

tions ζ∧Lf ,p(s) at all but finitely many primes when f(x) ∈ Z[x] is an irreducible monic

quadratic polynomial. Note that there are only three decomposition types for a prime in

a quadratic number field: inert ((e, f) = ((1), (2))), totally split ((e, f) = ((1, 1), (1, 1)))

and totally ramified ((e, f) = ((2), (1))). The following claim is essentially due to

Grunewald, Segal, and Smith [14] and is analogous to Theorem 1.1.

Theorem 1.4. Consider the rational function

W (X,Y ) =
1

(1−X4Y 2)(1−X5Y 2)
.
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For each of the three decomposition types (e, f) above, set We,f (X,Y ) =
∏r

i=1W (Xfi , Y fi).

If f [x] ∈ Z[x] is an irreducible monic quadratic polynomial and p is coprime to Ff and

has decomposition type (e, f) in the quadratic number field Kf , then

ζ∧Lf ,p(s) = We,f (p, p
−s).

For all three decomposition types, the following functional equation holds:

We,f (X
−1, Y −1) = p(

∑r
i=1 fi)(9−4s)We,f (X,Y ).

Proof. Let β1 and β2 be the roots of f(x). They are both contained in the Galois

extension Kf/Q. Let H be the Heisenberg Lie lattice H = 〈x, y, z〉Z such that [x, y] = z

and the product of any other pair of generators vanishes. Consider H⊗Z OKf
as a Lie

lattice by restriction of scalars. Since p is coprime to Ff , we have Zp[β1] = OKf
⊗Z Zp

and it is easy to verify that there is an isomorphism ϕ : Lf ⊗Z Zp
∼→ (H⊗Z OKf

)⊗Z Zp

given by

(x1, x2, y1, y2, z1, z2) 7→ (x⊗ 1, x⊗ β1, y ⊗ (−β2), y ⊗ 1, z ⊗ (−β2), z ⊗ 1).

Thus ζ∧Lf ,p(s) = ζ∧H⊗ZOKf
,p(s), and the right-hand side of this equality was computed by

Grunewald, Segal, and Smith in Theorem 7.1 and Lemma 7.2 of [14]; see Theorem 5.10

and Remark 5.12 of [3] for an alternative derivation of the same explicit result. �

Observe that the local pro-isomorphic zeta functions ζ∧Lf ,p(s) appearing in Theo-

rem 1.4 decompose as products of factors parametrized by primes of Kf dividing p.

This is a special case of a general phenomenon [3, Proposition 3.14]. The Lie algebras

H⊗ZQp satisfy a rigidity property [3, Definition 3.8] originally introduced by Segal [22];

as a consequence, the pro-isomorphic zeta function ζ∧H⊗OK ,p(s) may be computed easily

for any number field K. Such rigidity does not hold for the Lie algebras Lf ⊗Z Qp of

Theorem 1.1; this is essentially a consequence of the arithmetic of the number field Kf ,

which is larger than Q, controlling the local pro-isomorphic zeta functions ζ∧Lf ,p(s).

1.4. Overview. It is a simple but fundamental observation that computations of local

factors of pro-isomorphic zeta functions can be reduced to p-adic integrals of a certain

form. Consider the Q-Lie algebra L∆ = L∆⊗ZQ, and let G∆ be its algebraic automor-

phism group. This is the algebraic group defined over Q characterized by the property

that G∆(E) ' AutE(L∆ ⊗Q E) for every field E of characteristic zero. Fixing the

ordered basis (x1, . . . , xn, y1, . . . , yn, z1, z2) of L∆ gives an embedding G∆ ↪→ GL2n+2.

Now set G+
∆(Qp) = G∆(Qp)∩M2n+2(Zp), and let G∆(Zp) = G∆(Qp)∩GL2n+2(Zp). Let

µ be the right Haar measure on the group G∆(Qp), normalized so that µ(G∆(Zp)) = 1.

Then by [14, Proposition 3.4] we have

(1.2) ζ∧L∆,p(s) =

∫
G+

∆(Qp)
| det g|spdµ,

where | · |p is the normalized valuation on Qp. The structure of G∆, for all primary

polynomials ∆(x) = f(x)`, was determined by Berman, Klopsch, and Onn; see Proposi-

tion 3.1 below for the case deg f(x) ≥ 3. When ∆(x) = f(x) is irreducible, the domain

of integration of (1.2) is sufficiently simple that the integral may be computed directly

using the Cartan decomposition of SL2(F ) for p-adic fields F/Qp. See Remark 3.5 for
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the reason for the restriction to the irreducible case. The earlier work cited in the proof

of Theorem 1.4 also amounts to the computation of an integral (1.2). After establishing

several preliminary results, we prove Theorem 1.1 and its corollary in Section 3 below.

The algebraic group G∆ has a particularly complicated structure when ∆(x) is a

power of a linear polynomial. The pro-isomorphic zeta functions of L∆ are obtained

in [5] for ∆(x) = x2 and ∆(x) = x3 after computations substantially more involved

than the ones in Section 3; it is notable that the simplifying assumptions used in [11] to

analyze the integrals (1.2) do not hold in these cases.

1.5. Related work and questions. This section mentions some results related to our

work, as well as directions for future research.

1.5.1. D∗-Lie lattices of odd rank. A D∗-group is a radicable, finitely generated, class-

two-nilpotent, and torsion free group with finite Hirsch length and with a derived sub-

group of Hirsch length two. Grunewald and Segal [13, §6] classified D∗-groups up to

commensurability. They showed that every D∗-group has a central decomposition into

indecomposable constituents, which are unique up to isomorphism. The Lie lattices cor-

responding to indecomposable D∗-groups of even Hirsch length are precisely the family

L∆, parametrized by primary polynomials ∆(x) ∈ Z[x], that is considered in this arti-

cle. The indecomposable D∗-groups of odd Hirsch length were also determined in [13].

The pro-isomorphic zeta functions of the associated Lie lattices, and indeed of a family

of Lie lattices generalizing them, were obtained by a lengthy calculation by Berman,

Klopsch, and Onn [7, Theorem 1.4]; these have a somewhat different flavor from the

functions of Theorem 1.1. The results of [7] were generalized in [3, Theorem 5.17] to the

pro-isomorphic zeta functions of the restriction of scalars to Z of the base extension of

such Lie lattices to the ring of integers of an arbitrary number field.

1.5.2. Ideal zeta functions. We note that the ideal zeta functions ζ/L(s), namely the

Dirichlet series counting ideals of finite index in L, were computed explicitly by Voll [24,

Propositions 2 and 3] for Lie lattices L corresponding to indecomposable D∗-groups of

arbitrary Hirsch length. He also computed [26, Theorem 1.1] the ideal zeta functions of

the generalized family considered in [7].

1.5.3. General D∗-groups. As mentioned above, Lie lattices corresponding to general

D∗-groups arise as central amalgamations of the lattices corresponding to indecompos-

able D∗-groups. The pro-isomorphic zeta function of the central amalgamation of n

copies of the Heisenberg Lie lattice H was computed in [3, Theorem 5.10]; see also [11,

§3]. The complexity of the expression obtained grows factorially with n, suggesting that

computing the pro-isomorphic zeta functions of arbitrary D∗-groups remains a signif-

icant challenge. By contrast, observe that an algorithm for computing the ideal zeta

functions of arbitrary D∗ groups is given in [24, §3.3]; see also [2, Theorem 1.2], which

shows that ideal zeta functions behave well, in a precise way, under central amalgamation

of copies of the same Lie lattice.

1.5.4. Uniformity on Frobenius sets. A well-known consequence of Takagi’s existence

theorem in global class field theory states that if the Galois closure of a finite extension

K/Q is non-abelian, then the set SplK of totally split primes in K/Q is not characterized,
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among the unramified primes, by any finite collection of congruences. Precisely, there

do not exist m ∈ N and S ⊆ {0, . . . ,m − 1} such that SplK = {p : p ≡ amodm, a ∈
S}; see, for instance, [12, Theorem 7.21]. In particular, Theorem 1.1 shows that for

any monic irreducible f(x) ∈ Z[x] such that Kf/Q has non-abelian Galois closure,

the function p 7→ ζ∧Lf ,p(s) is not uniform on residue classes. Corollary 1.2 provides

an example of this phenomenon; note that the Galois closure of Q( 3
√

2)/Q has Galois

group S3. By contrast, it is follows from the proof of [16, Theorem 1.2] that the set

of primes of fixed decomposition type in Kf/Q is a Frobenius set, namely that it is

defined by the solvability of a fixed collection of polynomial congruences; see [16] for

precise definitions. It was recently shown [23, Corollary 1.8] that the function assigning

to a prime p the order of the automorphism group of the group of Fp-points of certain

unipotent group schemes is polynomial on Frobenius sets, but not on residue classes. It

would be interesting to describe classes of enumerative problems of algebraic structures

whose solution is uniform on Frobenius sets.

2. Preliminaries

This section contains two results that will be used in the computation of pro-isomorphic

zeta functions and their functional equations that comprise the core of the paper. We

give their proofs here to avoid breaking the flow of the computation later.

2.1. A combinatorial function. We introduce a family of combinatorially defined

functions in terms of which it will be convenient to express the local pro-isomorphic

zeta functions ζ∧Lf ,p(s). For every r ∈ N, let [r] denote the set {1, 2, . . . , r}.

Definition 2.1. Let r ∈ N. Let {XI}I⊆[r] be a collection of 2r variables, one for each

subset I ⊆ [r]. We consider the following function in these variables:

Φr({XI}I⊆[r]) =
∑
I⊆[r]

(−1)|I|
XI

1−XI
.

Proposition 2.2. The function Φr satisfies the following self-reciprocity upon inversion

of the variables:

Φr({X−1
I }) = −Φr({XI}).

Proof. Let P[r] denote the power set of [r]. Writing the rational function over a common

denominator, we find that

(2.1) Φr({X−1
I }) =

∑
I∈P[r]

(−1)|I|
X−1

I

1−X−1
I

=
∑

I∈P[r]

(−1)|I|+1

1−XI
=

∑
I∈P[r](−1)|I|+1

∏
J∈P[r]
J 6=I

(1−XJ)∏
J∈P[r](1−XJ)

.

Similarly,

(2.2) −Φr({XI}) =

∑
I∈P[r](−1)|I|+1XI

∏
J∈P[r]
J 6=I

(1−XJ)∏
J∈P[r](1−XJ)

.
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Thus it suffices to show that the numerators of the two expressions are the same. Mul-

tiplying out the parentheses and computing the coefficient of the monomial
∏

J∈T XJ

for each T ⊆ P[r], we find that the numerator of (2.1) is∑
I∈P[r]

(−1)|I|+1
∏

J∈P[r]
J 6=I

(1−XJ) =
∑

I∈P[r]

(−1)|I|+1
∑

T ′⊆P[r]

I 6∈T ′

(−1)|T
′|
∏
J∈T ′

XJ =

∑
T⊆P[r]

(−1)|T |+1

 ∑
I∈P[r]\T

(−1)|I|

∏
J∈T

XJ =
∑

T⊆P[r]

(−1)|T |

(∑
I∈T

(−1)|I|

) ∏
J∈T

XJ ,

where the last equality follows from the elementary observation that
∑

I∈P[r](−1)|I| =∏r
i=1(1− 1) = 0. Analogously, the numerator of (2.2) is∑
I∈P[r]

(−1)|I|+1XI

∑
T ′⊆P[r]

I 6∈T ′

(−1)|T
′|
∏
J∈T ′

XJ =
∑

I∈P[r]

(−1)|I|+1
∑

U⊆P[r]
I∈U

(−1)|U |−1
∏
J∈U

XJ =

∑
T⊆P[r]

(∑
I∈T

(−1)|T |+|I|

) ∏
J∈T

XJ ,

where the first equality is obtained by setting U = T ′ ∪ {I}. This completes the proof

of our claim. �

2.2. The Cartan decomposition of SL2(F ), for a p-adic field F . Let p be a prime,

and let vp be the normalized additive valuation on Qp. Let F/Qp be a finite extension

with ring of integers OF . Fix a uniformizer π ∈ OF . Let kF = OF /(π) be the residue

field, and let q denote its cardinality. Given λ ∈ k×F , let [λ] ∈ OF denote the (q − 1)-st

root of unity lifting λ, and set [0] = 0. Let I0 = {0}, and for every m ∈ N define the set

Im =
{

[λ0] + π[λ1] + · · ·+ πm−1[λm−1] : (λ0, . . . , λm−1) ∈ kmF
}
⊂ OF .

Lemma 2.3. Let F/Qp be a finite extension, and let π ∈ OF be a uniformizer. A list

of representatives of right cosets of SL2(OF ) in SL2(F ) is given by∐
m≥0

{(
πm 0

π−mκ π−m

)
: κ ∈ I2m

}∐ ∐
m≥1

{(
0 −πm

π−m −π−m+1κ

)
: κ ∈ I2m−1

}
.

Proof. Set δ =

(
π 0

0 π−1

)
∈ SL2(F ). From the Cartan decomposition

SL2(F ) =
∐
m≥0

SL2(OF )δmSL2(OF ),

setting Km = SL2(OF ) ∩ δ−mSL2(OF )δm for m ≥ 0, one deduces the decomposition

SL2(F ) =
∐
m≥0

∐
Kmk∈Km\SL2(OF )

SL2(OF )δmk

of SL2(F ) into right cosets of SL2(OF ). The claim follows by a straightforward com-

putation. An alternative list of coset representatives may be obtained from [1, Propo-

sition 1.1], noting that left cosets of SL2(OF ) correspond to vertices of the Bruhat-Tits

tree of SL2(F ) lying at an even distance from v0, in the notation of [1]. �
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Corollary 2.4. Let e denote the ramification degree of F/Qp. Let νF be the right Haar

measure on SL2(F ), with the normalization µ(SL2(OF )) = 1. For a ∈ Zp \ {0}, set

SF (a) =

{(
α11 α12

α21 α22

)
∈ SL2(F ) :

(
aα11 α12

aα21 α22

)
∈ M2(OF )

}
.

Then νF (SF (a)) = 1−qevp(a)+1

1−q .

Proof. It is easy to see that SF (a) is invariant under left multiplication by any element

of SL2(OF ) and thus consists of a union of right cosets of SL2(OF ). Observe that

aOF = πevp(a)OF . Among the coset representatives listed in Lemma 2.3, the ones

contained in SF (a) are precisely

(
1 0

0 1

)
and

(
0 −πm

π−m −π−m+1κ

)
for m ∈ [evp(a)]

and κ =
∑2m−2

i=1 πi[λi] divisible by πm−1, i.e. satisfying λ0 = · · · = λm−2 = 0. There are

1 +

evp(a)∑
m=1

qm =
1− qevp(a)+1

1− q

of these. Since each right coset has measure 1, the claim follows. �

3. Computation

3.1. The algebraic automorphism group. Let f(x) ∈ Z[x] be an irreducible monic

polynomial of degree n ≥ 3. Consider the primary polynomial ∆(x) = f(x)` for ` ∈ N,

and set K∆ = Q[x]/(∆(x)); this ring has dimension `n as a Q-vector space. To describe

the algebraic automorphism group of L∆ we define three algebraic subgroups of GL2`n+2.

There is a morphism of algebraic groups ρ2 : ResK∆/QSL2 → SL2`n+2 given by

ρ2

(
α11 α12

α21 α22

)
=

 ι(α11) ι(α12)

ι(α21) ι(α22)

I2

 ,

where for any Q-algebra R the map ι : K∆⊗QR→ M`n(R) is determined by ι(βi⊗r) =

rCi
∆ for any i ∈ N ∪ {0} and r ∈ R, and β = x + (∆(x)) ∈ K∆. Equivalently, ι(α) is

the matrix of the R-linear endomorphism of K∆ ⊗Q R corresponding to multiplication

by α, with respect to the basis (βi ⊗ 1)`n−1
i=0 . By a standard exercise in linear algebra,

or [15, Theorem 1], the image of ρ2 is indeed contained in SL2`n+2.

Consider the embedding of algebraic groups ρ1 : Gm → GL2`n+2 given by

ρ1(a) =

 aI`n 0 0

0 I`n 0

0 0 aI2


and the embedding ρ3 : G4`n

a → SL2`n+2 given by

ρ3(c1, . . . , c4`n) =


1 c1 c2`n+1

. . .
...

...

1 c2`n c4`n

1 0

0 1

 .
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Recall that our chosen Z-basis of L∆ allows us to identify the algebraic automorphism

group G∆ of L∆ with an algebraic subgroup of GL2`n+2. Its structure, which was

determined by Berman, Klopsch, and Onn, consists essentially of an internal semi-direct

product of the three subgroups of GL2`n+2 just defined. There exists a symmetric matrix

σ ∈ GL`n(Z) such that σC∆σ
−1 = CT

∆; see [5, §2.1]. Set

Σ =

 I`n
σ

I2

 ∈ GL2`n+2(Z).

Proposition 3.1. Let ∆(x) = f(x)`, where f(x) ∈ Z[x] is an irreducible monic polyno-

mial of degree n ≥ 3. Then

G∆ = (ρ3(G4`n
a ) o Σ(ρ2(ResK∆/QSL2))Σ−1) o ρ1(Gm),

where the action in each internal semi-direct product is by conjugation.

Proof. The subgroup G0,∆ ⊂ G∆ of automorphisms acting trivially on the center 〈z1, z2〉
is described by [5, Theorem 2.3] and its proof and is ρ3(G4`n

a )oΣ(ρ2(ResK∆/QSL2))Σ−1.

Under the assumption n ≥ 3, every automorphism acts on the center as a scalar by [6,

Theorem 1.4]; this case is not treated in the final version of [5], which focuses on n = 1.

It is easy to check that ρ1(Gm) ⊂ G∆. Thus, for any field extension E/Q, any element

of G∆(E) may be expressed uniquely as a product of an element of ρ1(E×) and one of

G0,∆(E), and the claim follows. �

Remark 3.2. Observe that when f(x) ∈ Z[x] is an irreducible monic quadratic polyno-

mial, the expression of Theorem 1.1 coincides with the correct local factor ζ∧Lf ,p(s), as

given in Theorem 1.4, when p is inert in Kf , but not for the remaining two decompo-

sition types. We showed in Section 1.3 that Lf ⊗Z Zp ' (H ⊗Z OKf
) ⊗Z Zp when p

is coprime to Ff , and this gives rise to extra symmetries of Lf . Indeed, by [6, Theo-

rem 1.4], the structure of Gf (Qp) in this case is described by Proposition 3.1, except

that ρ1(Gm(Qp)) is replaced by a group isomorphic to K×f rather than Q×p .

3.2. Notation. From now on we assume ` = 1, namely that ∆(x) = f(x) ∈ Z[x]

is an irreducible monic polynomial of degree n ≥ 3. To simplify the notation, write

G ⊂ GL2n+2 for G∆. Similarly, write K for K∆; this is the number field Q(β), where β

is a root of f(x). Let OK denote the ring of integers of K, and recall that the conductor

Ff is the largest ideal of OK contained in Z[β].

Now let p be a rational prime that decomposes in K as pOK = pe1
1 · · · perr , where the

distinct prime ideals pi / OK have residue fields OK/pi of cardinality qi = pfi . Then

Qp ⊗Q K ' F1 × · · · × Fr, where for every i ∈ [r] we write Fi for the localization Kpi .

Similarly, Zp ⊗Z OK ' OF1 × · · · × OFr .

Assume that p is coprime to Ff . In this case Zp[x]/(f(x)) = Zp⊗Z Z[β] = Zp⊗ZOK .
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3.3. Setup and evaluation of a p-adic integral. It is immediate from Proposition 3.1

that

G(Qp) =ρ1(Q×p ) n (Σ(ρ2(SL2(Qp ⊗Q K)))Σ−1 n ρ3(Q4n
p )) =

ρ1(Q×p ) n

(
Σ

(
ρ2

(
r∏

i=1

SL2(Fi)

))
Σ−1 n ρ3(Q4n

p )

)
.

We now explicitly determine the two subsets of G(Qp) necessary for our calculation.

Lemma 3.3. Suppose that p is coprime to the conductor Ff . Suppose that a ∈ Q×p ,

that A =

(
α11 α12

α21 α22

)
∈ SL2(Qp ⊗Q K), and that c = (c1, . . . , c4n) ∈ Q4n

p . Then

ρ3(c)Σρ2(A)Σ−1ρ1(a) ∈ G(Zp) if and only if a ∈ Z×p , whereas A ∈ SL2(Zp ⊗Z OK) and

c ∈ Z4n
p . Given a ∈ Zp \ {0}, define

G+
2 (a) =

{
A ∈ SL2(Qp ⊗Q K) :

(
aα11 α12

aα21 α22

)
∈ M2(Zp ⊗Z OK)

}
G+

3 (a) = {c ∈ Q4n
p : (ac1, . . . , ac4n) ∈ Z4n

p }.

Then ρ3(c)Σρ2(A)Σ−1ρ1(a) ∈ G+(Qp) if and only if a ∈ Zp \ {0}, while A ∈ G+
2 (a) and

c ∈ G+
3 (a).

Proof. A simple computation shows that

(3.1) ρ3(c)Σρ2(A)Σ−1ρ1(a) =

 aι(α11) ι(α12)σ−1 aC1

aσι(α21) σι(α22)σ−1 aC2

0 0 aI2

 ,

where we use ρ1, ρ2, ρ3 to denote the corresponding morphisms on Qp-points, and where

C1 =

 c1 c2n+1

...
...

cn c3n

 , C2 =

 cn+1 c3n+1

...
...

c2n c4n

 .

Observe, given α ∈ Qp ⊗Q K, that ι(α) ∈ Mn(Zp) if and only if α ∈ Zp ⊗Z Z[β], which

is equivalent to α ∈ Zp ⊗Z OK by our hypothesis on p. Since σ ∈ GL2(Z) ⊂ GL2(Zp),

the claim is now immediate from (3.1). �

The previous claim allows us to express the pro-isomorphic zeta function ζ∧Lf ,p(s) as

an iterated integral. Indeed, let µ1 be the right Haar measure on Q×p , normalized so

that µ1(Z×p ) = 1. Similarly, let µ2 and µ3 be the right Haar measures on SL2(Qp⊗QK)

and on Q4n
p , respectively, normalized to µ2(SL2(Zp ⊗Z OK)) = 1 and µ3(Z4n

p ) = 1. By

the first part of Lemma 3.3, these normalizations are compatible with that of the right
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Haar measure µ on G(Qp). Then

ζ∧Lf ,p(s) =

∫
G+(Qp)

| det g|spdµ(g) =∫
Zp\{0}

∫
G+

2 (a)

∫
G+

3 (a)
|det ρ3(c)Σρ2(A)Σ−1ρ1(a)|spdµ3(c)dµ2(A)dµ1(a) =∫

Zp\{0}

∫
G+

2 (a)

∫
G+

3 (a)
|a|(n+2)s

p dµ3(c)dµ2(A)dµ1(a) =∫
Zp\{0}

∫
G+

2 (a)
|a|(n+2)s−4n

p dµ2(A)dµ1(a).

Here the first equality is (1.2), the second follows from the second part of Lemma 3.3

and [19, Proposition 28], and the last equality holds because the integrand is constant

on each set G+
3 (a) and µ3(G+

3 (a)) = |a|−4n
p for every a ∈ Zp \ {0}. Since the integrand

is also constant on each G+
2 (a), we have

(3.2) ζ∧Lf ,p(s) =

∫
Zp\{0}

|a|(n+2)s−4n
p µ2(G+

2 (a))dµ1(a).

Recall the notation defined in Section 3.2.

Lemma 3.4. Suppose that p is coprime to Ff . Then µ2(G+
2 (a)) =

∏r
i=1

1−qeivp(a)+1

i
1−qi for

all a ∈ Zp \ {0}.

Proof. The decomposition SL2(Qp ⊗Q K) =
∏r

i=1 SL2(Fi) induces SL2(Zp ⊗Z OK) =∏r
i=1 SL2(OFi) and G+

2 (a) =
∏

i=1 SFi(a), for the sets SFi(a) defined in Section 2.2, and

the Haar measure µ2 is the product of the measures νFi defined there. Hence the claim

follows from Corollary 2.4. �

Remark 3.5. Lemma 3.4 is the step in our computation that obliges us to restrict to

the case of irreducible ∆(x). For a general primary polynomial ∆(x), it appears to be

difficult to compute the measure of the set{
A ∈ SL2(Qp[x]/(∆(x))) :

(
aα11 α12

aα21 α22

)
∈ M2(Zp[x]/(∆(x)))

}
in the absence of a suitable analogue of the p-adic Cartan decomposition.

3.4. Proof of Theorem 1.1. We can now easily deduce the main result stated in the

introduction. Indeed, let f(x) ∈ Z[x] be an irreducible monic polynomial of degree

n ≥ 3. Let p be a prime coprime to Ff having decomposition type (e, f) in the number

field Kf = Q(x)/(f(x)). We deduce from (3.2) and Lemma 3.4 that

ζ∧Lf ,p(s) =

∫
Zp\{0}

p(4n−(n+2)s)vp(a)
r∏

i=1

1− peifivp(a)+fi

1− pfi
dµ1(a).
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For any v ≥ 0, we have µ1({a ∈ Zp : vp(a) = v}) = µ1(pvZ×p ) = 1. Hence

ζ∧Lf ,p(s) =

∞∑
v=0

p(4n−(n+2)s)v
r∏

i=1

1− peifiv+fi

1− pfi
=

∑
I⊆[r](−1)|I|

∑∞
v=0 p

(4n−(n+2)s)v · p(
∑

i∈I eifi)v+
∑

i∈I fi∏r
i=1(1− pfi)

,

and by summing geometric series we find that ζ∧Lf ,p(s) = We,f (p, p
−s) for

(3.3) We,f (X,Y ) =
r∏

i=1

(
1

1−Xfi

) ∑
I⊆[r]

(−1)|I|
X

∑
i∈I fi

1−X4n+
∑

i∈I eifiY n+2
,

which indeed depends only on e and f . If e = 1, we observe by inspection of (3.3) that

(3.4) W1,f (X,Y ) =
1

X4nY n+2
∏r

i=1(1−Xfi)
Φr({XI}I⊆[r]),

with Φr as in Definition 2.1 and XI = X4n+
∑

i∈I fiY n+2 for all I ⊆ [r]. The claimed

functional equation (1.1) follows from Proposition 2.2 and a simple calculation.

3.5. Proof of Corollary 1.2. If f(x) = x3 − 2, then K = Kf = Q( 3
√

2), and it is a

classical fact (see, for instance, [9, Theorem 6.4.13]) that OK = Z[ 3
√

2]. Thus Ff = (1)

and Theorem 1.1 applies to all primes. The discriminant of K is −108, so the only

ramified primes are p ∈ {2, 3}, and one easily verifies that they are both totally ramified.

If p > 3, then it follows from [9, Corollary 6.4.15] and the characterization of the totally

split primes in e.g. [10, Theorem 9.8] that p is totally split if p = a2 + 27b2 (which

implies p ≡ 1 mod 3), whereas pOK = p1p2 with f1 = 1 and f2 = 2 if p ≡ 2 mod 3 and

p is inert otherwise. With this classification of primes by decomposition type in hand,

the claimed formulas are obtained from Theorem 1.1 by straightforward computation.

Acknowledgements. We are grateful to the anonymous referee for helpful suggestions.
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