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Before starting, we’ll say a few words of motivation. We wish to understand the infinite
Galois groupG = Gal(Q/Q), which is very important in number theory. In particular, we wish
to understand G-modules, namely modules over some ring that are endowed with an action
of G. Such objects tend to be complicated. Recall that in algebraic topology, we define the
homology and cohomology of simplicial complexes. These are collections of invariants that can
be used, for instance, to prove that two simplicial complexes are not homeomorphic. One loses
information when passing from a complex to its cohomology – two different complexes can
have the same cohomology groups in every dimension – but retains enough to do some useful
things. On the other hand, the cohomology groups have the advantage of sometimes being
computable; for simple complexes they can be computed directly, and for more complicated
ones they can often be deduced with tools such as the long exact cohomology sequence, the
Mayer-Vietoris sequence, etc. The aim of this course is to develop an analogous theory in the
setting of G-modules.

1. Profinite groups

Definition 1.1. Let I be a directed partially ordered set. This means that every pair of
elements has a common upper bound: if i, j ∈ I then there exists k ∈ I such that i ≤ k
and j ≤ k. A projective system of groups indexed by I consists of a collection of groups
{Gi : i ∈ I}, and, for each pair i ≥ j of elements of I, a group homomorphism ϕij : Gi → Gj
such that ϕii is always the identity. Moreover, we demand that these maps be compatible, in
the sense that if i ≥ j ≥ k then ϕik = ϕjk ◦ ϕij .

Definition 1.2. Let {Gi}i∈I be a projective system. Its projective limit lim←−I Gi is the sub-

group of
∏
i∈I Gi consisting of “compatible” tuples (ai)i∈I , namely those satisfying ϕij(ai) =

aj for all i > j.
If the Gi are topological groups and the homomorphisms ϕij are continuous maps, then

we can define the projective limit topology on lim←−I Gi as the weakest topology such that the
maps

πi : lim←−
I

Gi → Gi

(aj)j 7→ ai

are continuous for all i ∈ I.

Proposition 1.3. The projective limit topology on lim←−I Gi coincides with the subspace topol-

ogy induced from the product topology on
∏
i∈I Gi.
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Proof. A base of open subsets of the projective limit topology is given by

{π−1
i (Ui) : i ∈ I, Ui ⊂ Gi open}.

Observe that π−1
i (Ui) = (lim←−I Gi) ∩ (Ui ×

∏
j∈I\{i}Gj) is open in the subspace topology.

Conversely, a base of the subspace topology is given, by definition, by sets of the form
U = (lim←−I Gi) ∩

∏
i∈S Ui ×

∏
i∈I\S Gi, where S ⊂ I is finite and Ui ⊂ Gi is open. Clearly

U =
⋂
i∈S π

−1
i (Ui), which is open in the projective limit topology. �

For our purposes, the Gi will usually be finite groups endowed with the discrete topology.
As an example, let I be the set of all finite Galois extensions of Q, ordered by inclusion.

Then {Gal(K/Q)}K∈I is a projective system, with the obvious homomorphisms. We ob-
serve that Gal(Q/Q) ' lim←−I Gal(K/Q). Indeed, define a homomorphism f : Gal(Q/Q) →
lim←−I Gal(K/Q) by f(σ) = (σ|K)K∈I . Since every element of Q lies in some finite Galois ex-

tension of Q, we see that f is injective. Moreover, given an element (σK)K of the projective
limit, define σ ∈ Gal(Q/Q) by σ(α) = σK(α), where α ∈ Q and K is a finite Galois extension
of Q containing α. The compatibility condition of the projective limit exactly ensures that
the σK glue and σ is well-defined.

Since we are interested in representations of Gal(Q/Q), it is natural to study projective
limits of finite groups. It will be convenient to have an alternative characterization of such
groups.

Definition 1.4. A topological space X is called totally disconnected if its only non-empty
connected subsets are single points. It is called totally separated if for any pair of distinct
points x, y ∈ X there exist open sets U, V ⊂ X such that x ∈ U , y ∈ V , U ∩ V = ∅, and
U ∪ V = X.

Remark 1.5. Some books define “totally disconnected” to be what we have called “totally
separated,” so one must exercise caution when using the literature. These two notions are not,
in general, equivalent. Indeed, a totally separated space is obviously both totally disconnected
and Hausdorff. By contrast, a totally disconnected space need not be totally separated or
even Hausdorff; see the exercises for examples.

However, a compact Hausdorff space is totally disconnected if and only if it is totally
separated; see the exercises for a guided proof.

Definition 1.6. A topological group is called profinite if it is compact and totally separated.

Remark 1.7. Profinite groups are most commonly defined in the literature to be compact,
Hausdorff, and totally disconnected. In view of Remark 1.5, this definition is equivalent to
the one above.

The following basic results will be used frequently throughout the course.

Proposition 1.8. Let G be a compact group. Any subgroup H ⊂ G is open if and only if it
is closed and has finite index in G.

Proof. Suppose that H is open. The cosets of H are open, disjoint, and cover G. Since G is
compact, there are only finitely many of them. Moreover, the complement of H is a union of
cosets and hence open; thus H is closed.

Conversely, if H is closed and of finite index, then its complement is a finite union of closed
cosets, thus closed. Hence H is open. �
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Proposition 1.9. Let G be a topological group and H ≤ G a subgroup. Then H is open if
and only if it contains an open neighborhood of the identity.

Proof. One direction is obvious. If H contains an open set e ∈ U , then H =
⋃
h∈H hU is

open. �

Theorem 1.10. A topological group G is profinite if and only if G ' lim←−I Gi, where {Gi}i∈I
is a projective system of (discrete) finite groups.

Proof. Suppose that G = lim←−I Gi, and consider the natural inclusion f : G →
∏
i∈I Gi. By

Proposition 1.3, the map f is a topological isomorphism onto its image. We claim that f(G) is
closed; since each Gi is finite and thus compact, and hence

∏
i∈I Gi is compact by Tychonoff’s

theorem, this will imply the compactness of G. Now, for each pair i > j, let

Xij = {(ak)k ∈
∏
k

Gk : ϕij(ai) = aj}.

Observe that Xij is the preimage of the diagonal under the continuous map (recall that the
ϕij are continuous) ∏

k

Gk → Gj ×Gj

(ak)k 7→ (aj , ϕij(ai)).

Therefore Xij is closed; here we have finally used the discreteness of Gj . Thus G =
⋂
i>j Xij

is closed and hence compact.
The Gi are discrete and hence totally separated, and a product of totally separated spaces is

clearly totally separated. (Indeed, let a = (ai)i and b = (bi)i be distinct elements of
∏
i∈I Xi.

Let j be such that aj 6= bj , and let Uj , Vj ⊂ Xj be open sets such that aj ∈ Uj , bj ∈ Vj ,
Uj ∪ Vj = Xj , Uj ∩ Vj = ∅. Set U = Uj ×

∏
i 6=j Xi and V = Vj ×

∏
i 6=j Xi.) But a subspace

of a totally separated space is clearly totally separated. Thus G is profinite.
Conversely, suppose that G is a profinite group, and let {Hq}q∈Q be the family of its open

normal subgroups, ordered by inclusion: q > q′ if Hq ⊂ Hq′ . Note that the quotient subgroups
G/Hq are all finite (by Proposition 1.8) and form a projective system of groups. We have a
natural homomorphism of groups

f : G → lim←−
Q

G/Hq

g 7→ (gHq)q

We claim that f is a topological isomorphism. The pre-image under the quotient map
G→ G/Hq of any subset of G/Hq is a union of cosets of the open subgroup Hq and hence is
open. From this it follows that f is continuous. Any closed subset of the compact group G is
compact, hence its image under f is compact and hence closed, since lim←−QG/Hq is Hausdorff

by the first half of this proof. Thus, it suffices to show that f is an isomorphism of abstract
groups.

To show that f is surjective, let (gqHq)q ∈ lim←−QG/Hq. We claim that
⋂
q∈Q gqHq 6= ∅.

If this is true, then (gqHq)q = f(g) for any g in the above intersection. Assume, by way of
contradiction, that the intersection is empty. This means that

⋃
q∈Q(G \ gqHq) = G. Since G

is compact and each gqHq is closed, there is a finite subcover G =
⋃r
i=1(G \ gqiHqi). Hence
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i=1 gqiHqi = ∅. The subgroup Hq1 ∩ · · · ∩ Hqr is open and normal, so it is Hq for some

q ∈ Q. Clearly gq ∈
⋂r
i=1 gqiHqi , contradicting the emptiness of this intersection.

It remains to show that f is injective, and this will follow immediately from the following
claim. �

Proposition 1.11. Let G be a profinite group, and let {Hq}q∈Q be the family of all open
normal subgroups of G (note that G is in the family, so it is non-empty). Then

⋂
q∈QHq =

{e}.

Proof. Let x ∈ G be a non-trivial element. We need to construct an open normal subgroup
H � G such that x 6∈ H. By total separatedness of G, there exist open and closed sets U
and V that separate e and x. Suppose that e ∈ U . Then x 6∈ U . We will construct an open
normal subgroup H that is contained in U and hence does not contain x.

It suffices to show that there exists an open subgroup K of G such that K ⊂ U . Indeed,
K has finite index by Proposition 1.8. Then H = ∩g∈GgKg−1 = ∩giK∈G/KgiKg

−1
i is an open

(since the second intersection is finite) normal subgroup of G and H ⊂ U .
For any subset A ⊂ G, we denote by An the set of all products of n elements of A and by

A−1 the set of all inverses of elements of A. Thus A is a subgroup if and only if A2 ⊂ A and
A−1 ⊂ A. Note that U2 is the image of the compact set U × U (closed subset of compact
G×G) under the continuous multiplication map µ : G×G→ G. Hence U2 is compact, and
thus closed, since G is Hausdorff. By an easy induction, Un is compact for all n ∈ N.

Set W = (G \ U) ∩ U2; then W consists of all elements of U2 that do not lie in U . This
is a closed subset of G, hence compact. Note that U ⊂ G \ W . We claim that for any
u ∈ U , there exist open neighborhoods u ∈ Xu and e ∈ Yu, contained in U , such that
XuYu ⊂ (G \ W ) ∩ U2 ⊂ U (the last inclusion holds since the middle set consists of all
elements of U2 that do lie in U). Indeed, u ∈ G \W . Thus µ−1(G \W ) ⊂ G×G is open and
contains (u, e). In particular, it contains an open box of the form X ′u × Y ′u, where u ∈ X ′u
and e ∈ Y ′u are open. Setting Xu = X ′u ∩ U and Yu = Y ′u ∩ U (recall that e ∈ U), we get the
desired neighborhoods.

Now {Xu}u∈U is an open cover of U , and since U is compact there exists a finite subcover
{Xu1 , . . . , Xur}. Set Y = Yu1 ∩ · · · ∩ Yur . This is an open set containing e. Set Z = Y ∩ Y −1.
This is still an open set containing e, since the inversion map is continuous. Moreover, we
have Z ⊂ Y ⊂ U .

Observe that UZ = ∪ri=1XuiZ ⊂ U , since Z ⊂ Yui for each i. By induction, UZn ⊂ U
for all n ≥ 1. Since e ∈ U , this implies Zn ⊂ U for all n ≥ 1. Moreover, Z is closed under
inversion by construction, and it follows easily that so is each Zn. Set K = 〈Y 〉 =

⋃∞
n=1 Z

n.
Then K is a subgroup of G that is contained in U . Since K contains the open set Z, it is open.
We have now completed the proof of our claim and consequently that of Theorem 1.10. �

Corollary 1.12. Let G be a profinite group. Any open neighborhood of e contains an open
normal subgroup.

Proof. Let U be an open neighborhood of e. Observe that if U is open and closed, then the
claim follows from the proof of the previous proposition.

Let {Hq}q∈Q be the family of open normal subgroups of G. From the previous proposition
it follows that

⋃
q∈Q(G \Hq) = G \ {e}, hence U ∪

⋃
q∈Q(G \Hq) = G. By compactness of G,

there is a finite subcover G = U∪(G\Hq1)∪· · ·∪(G\Hqr). Hence (G\U)∩Hq1∩· · ·∩Hqr = ∅.
Set H = Hq1 ∩ · · · ∩Hqr . This is an open normal subgroup of G, and H ⊂ U . �
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Corollary 1.13. Let G be a profinite group and H ⊂ G a subgroup. Then H is closed
(normal) if and only if it is an intersection of open (normal) subgroups.

Proof. Since open subgroups are closed, one direction is trivial. Conversely, let H be a closed
subgroup. Let {Kq}q∈Q be the family of open normal subgroups of G. Observe that for every
q ∈ Q,

HKq = {hk : h ∈ H, k ∈ Kq},
since the Kq are normal, and that HKq is normal if H is normal as well. We claim that

⋂
q∈Q

HKq = H

⋂
q∈Q

Kq


for any closed H. Since the right-hand side is equal to H by Proposition 1.11, this implies
our claim. It is obvious that the right-hand side is contained in the left-hand side for any
subgroup H. To prove the opposite containment, let g ∈

⋂
q∈QHKq. We want to show that

g is contained in the right-hand side, or, equivalently, that Hg ∩
(⋂

q∈QKq

)
6= ∅.

Indeed, if this intersection were empty, then, by the argument that is by now standard for
us, (G\Hg)∪

⋃
q∈Q(G\Kq) would be an open cover of G, hence would have a finite subcover,

hence Hg∩ (Kq1 ∩· · ·∩Kqr) = ∅. But K = Kq1 ∩· · ·∩Kqr is itself an open normal subgroup,
hence by assumption g ∈ HK. Thus we have arrived at a contradiction. �

Proposition 1.14. Let G be a profinite group and H ⊂ G a closed subgroup. Then H is
profinite. Moreover, if H is normal, then G/H (with the quotient topology) is profinite.

Proof. Easy to see that H and G/H are compact and totally separated. Alternatively, if
G ' lim←−I Gi and Hi = πi(H) ⊂ Gi for each i ∈ I, then one can show that H ' lim←−I Hi and

G/H ' lim←−I Gi/Hi. �

Proposition 1.15. Suppose that G is profinite and K ⊂ H ⊂ G are closed subgroups. There
exists a continuous section s : G/H → G/K of the natural surjection G/K → G/H.

Proof. First consider the case [H : K] < ∞. Then K is open in H, so there exists an open
set V ⊂ G such that K = V ∩ H. Let U � G be an open normal subgroup contained in V
(this exists by Corollary 1.12), hence that H ∩ U ⊂ K.

Decompose G into double cosets G = tri=1UgiH; there are only finitely many double cosets
because U has finite index in G. On each piece, define s : UgiH/H → UgiH/K by s(ugihH) =
ugiK. This is well-defined, since if ugih = u′gih

′, then h(h′)−1 = g−1
i u−1u′gi ∈ U ∩H ⊂ K,

since U is normal in G. Thus ugiK = u′giK, so s is indeed well-defined. It is obvious that s
is continuous.

We treat the general case by a Zorn’s Lemma argument. Consider the set S of pairs (T, s),
where H ⊇ T ⊇ K is a closed subgroup of G and s is a continuous section of the surjection
G/T → G/H. We define an order on S by setting (T, s) ≥ (T ′, s′) if T ⊆ T ′ and the obvious
diagram commutes:

G/H

G/T -
�

s

G/T ′

s ′

-
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If (T1, s1) ≤ (T2, s2) ≤ · · · is a chain, we can set T∞ =
⋂∞
i=1 Ti (this is a closed subgroup

containing K). It is easy to see that G/T∞ = lim←−G/Ti, and by the universal property of the

projective limit (which we haven’t stated – can also just say that the si glue) we get a section
s∞ : G/H → G/T∞ that is compatible with all the other data. Thus the chain has an upper
bound, and by Zorn’s Lemma the set S contains a maximal element (T, s).

We need to prove that T = K. Since K is the intersection of all open subgroups containing
K by Corollary 1.13, it suffices to show that T ⊂ U for any open subgroup U ⊃ K. However,
for any such U , we have that V = T ∩ U is a closed subgroup such that T ⊇ V ⊇ K and
[T : V ] <∞.

By the first case we treated in this proof, there is a continuous section G/T → G/V .
Composing it with s gives a continuous section G/H → G/V . By maximality of (T, s), this
implies that V = T and hence T ⊂ U . �

1.1. Profinite completion. Let G be an “abstract group.” By this we mean that G is a
set with a binary operation satisfying the group axioms, as defined in the first lecture of your
group theory course, without any topology or any other further structure. We associate a
canonical profinite group to G.

Definition 1.16. Let G be a group. Let {Ni}i∈I be the collection of normal subgroups of G
of finite index, partially ordered by reverse inclusion. If j ≤ i, i.e. Ni ⊆ Nj , then there is a
natural surjection of finite groups ϕij : G/Ni → G/Nj . The profinite completion of G is the

profinite group Ĝ = lim←−I G/Ni.

There is a natural homomorphism η : G → Ĝ given by η(g) = (gNi)i. Observe that η
is not necessarily injective: its kernel is

⋂
i∈I Ni. A group is called residually finite if the

intersection of all its normal subgroups of finite index is trivial. Thus η is an embedding
precisely when G is residually finite. We conclude this section with two essential properties
of profinite completion.

Proposition 1.17. Let G be an abstract group, and let Ĝ be its profinite completion. The

image η(G) is dense in Ĝ.

Proof. Let U ⊂ Ĝ be an open subset. We need to show that U ∩ η(G) 6= ∅. For every normal

subgroup N � G of finite index, let N̂ ⊂ Ĝ be the kernel of the map πN : Ĝ → G/N . By

the definition of the profinite topology, we have gN̂ ⊂ U for some g ∈ Ĝ and N �G of finite
index. Let x ∈ G be such that xN = πN (g). Clearly πN (η(x)) = xN = πN (g), so g and η(x)

lie in the same coset of N̂ = ker fN . Hence η(x) ∈ gN̂ ⊂ U . �

Proposition 1.18. Let G be an abstract group and let H be a profinite group. Let f : G→ H
be a homomorphism of abstract groups. Then there exists a unique continuous homomorphism

f̂ : Ĝ→ H such that f̂ ◦ η = f .

Proof. Let H = lim←−K Hk for a projective system {Hk}k∈K of finite groups. For every k ∈ K,

let fk be the composition G
f→ H → Hk. Then ker fk�G is a normal subgroup of finite index,

so ker fk = Ni(k) for some i(k) ∈ I. This induces a homomorphism G/Ni(k) → Hk, which we

continue to call fk, and hence a continuous homomorphism f̂k : Ĝ→ Hk, where Hk of course

has the discrete topology, given by f̂k((giNi)i) = fk(gi(k)Ni(k)). The f̂k are compatible with
the transition maps of the projective system {Hk}k, so we obtain a continuous homomorphism
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f̂ : Ĝ → H by the universal property of projective limits. It is clear from the construction

that f̂ ◦ η = f . Since f̂ is continuous and is determined by f on the dense (by the previous

proposition) subset η(G) ⊂ Ĝ, it is unique. �

Exercises

(1) Let X = N ∪ {x, y}, where x and y are distinct elements not contained in N. Declare
a subset U ⊂ X to be open if and only if either U ⊂ N or U contains all but finitely
many elements of N. Prove that this gives a topology on X, and that X is compact
and totally disconnected but not Hausdorff.

(2) Let X be a compact Hausdorff topological space. Let x ∈ X, let C be the connected
component of x, and let Q be the intersection of all neighborhoods of x that are both
closed and open (“clopen”); this Q is called the quasi-component of x. The aim of
this exercise is to prove that C = Q.
(a) Show that C ⊂ Q. Thus it remains to show that Q is connected.
(b) Suppose that Q is not connected. Show that there exist disjoint open subsets U

and V of X such that Q = (Q∩U)∪ (Q∩V ) and that Q∩U and Q∩V are both
non-empty.

(c) Prove that there exist finitely many clopen neighborhoods U1, . . . , Ur of x such
that (X \ (U ∪ V )) ∩ (U1 ∩ · · · ∩ Ur) = ∅.

(d) Let U ′ = U1 ∩ · · · ∩ Ur. Then U ′ is a clopen neighborhood of x, but also U ′ =
(U ′ ∩ U) ∪ (U ′ ∩ V ). Derive a contradiction.

(3) Let X be a compact Hausdorff topological space. Prove that X is totally disconnected
if and only if it is totally separated.

2. G-modules

Definition 2.1. Let G be a topological group. A G-module is a topological abelian group
M endowed with a continuous action G ×M → M such that every g ∈ G acts by group
homomorphisms. In other words, we require:

• g1(g2m) = (g1g2)m for all g1, g2 ∈ G and m ∈M .
• em = m for all m ∈M .
• g(m1 +m2) = gm1 + gm2 for all g ∈ G and m1,m2 ∈M .

Unless otherwise stated, we will assume from now on that G is profinite and M has the
discrete topology. The continuity of the action of G is then equivalent to the following
condition: for every m ∈ M the stabilizer stabG(m) = {g ∈ G : gm = m} is an open
subgroup of G.

Remark 2.2. If G is profinite and M is discrete (as is now our running assumption), then
clearly M =

⋃
U M

U , where U runs over open subgroups of G, and MU = {m ∈ M : ∀u ∈
U, um = m} is the space of U -invariants.

Example 2.3. Let K be a number field and G = Gal(K/K). Then G acts on K in the
obvious way. Moreover, for any α ∈ K, the field K(α) has finite degree over K, so that
stabG(α) = Gal(K/K(α)) is open in G. (If K(α)/K is Galois, then Gal(K/K(α)) is the
kernel of the continuous map G→ Gal(K(α)/K) and hence open. Otherwise, it contains the
absolute Galois group of the Galois closure of K(α), which is open.) Thus K is a G-module.
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Example 2.4. Let G = {e}. (Note that finite groups, which we always assume to have
the discrete topology, are profinite). A G-module is just an abelian group, with no extra
structure.

We write ModG for the category of (discrete) G-modules. The morphisms are, of course,
group homomorphisms f : M → N that respect the G-action, i.e. such that f(gm) = gf(m)
for all g ∈ G and m ∈M . Such maps are often called G-equivariant . One checks that ModG
is an abelian category.

Definition 2.5. Let G be a profinite group, H ⊂ G a closed subgroup, and M an H-module.
The induced module IndGHM is the space of functions f : G→M such that

(1) For all h ∈ H and g ∈ G, we have f(hg) = hf(g).
(2) f is continuous, i.e. locally constant (recall that M has the discrete topology).

The group G acts on this space by right translation: (gf)(x) = f(xg) for any x, g ∈ G and
any f ∈ IndGHM .

Proposition 2.6. The G-action defined above gives IndGHM the structure of a G-module.

Proof. Let f ∈ IndGHM . Then for every g ∈ G there exists an open set g ∈ Vg such that f is
constant on Vg. Since a base of the topology on G is given by the cosets of open subgroups,
there exists an open subgroup Ug such that g ∈ gUg ⊂ Vg. Then G =

⋃
g∈G gUg, and by

compactness of G there is a finite subcover G = g1Ug1 ∪ · · · ∪ grUgr such that f is constant
on each giUgi . Let U = Ug1 ∩ · · · ∩ Ugr . This is an open subgroup of G that is contained in
stabG(f). Indeed, for any u ∈ U and x ∈ G, if x ∈ giUgi , then xu ∈ giUgi as well, and thus
(uf)(x) = f(xu) = f(x). �

Proposition 2.7. Let G be a profinite group and H ⊂ G a closed subgroup.

(1) IndGH : ModH → ModG is a functor.
(2) If K ⊂ H ⊂ G are closed subgroups, then IndGK ' IndGHIndHK .
(3) The functor IndGH is exact. In other words, if 0 → M → N → P → 0 is an exact

sequence of H-modules, then 0→ IndGHM → IndGHN → IndGHP → 0 is also exact.

Proposition 2.8 (Frobenius Reciprocity). Let G be a profinite group and H ⊂ G a closed
subgroup. Let M ∈ ModG and N ∈ ModH . Then

HomG(M, IndGHN) ' HomH(M,N).

Proof. We can write down an explicit bijection. Indeed, if ϕ ∈ HomG(M, IndGHN), define
A(ϕ) ∈ HomH(M,N) by A(ϕ)(m) = (ϕ(m))(e) ∈ N for any m ∈M .

In the other direction, if ψ ∈ HomH(M,N), we define B(ψ) ∈ HomG(M, IndGHN) by
(B(ψ)(m))(g) = ψ(gm). To check that B(ψ) is G-equivariant, observe for any g, x ∈ G and
m ∈M that

(B(ψ)(xm))(g) = ψ(gxm) = (B(ψ)(m))(gx) = (x(B(ψ)(m)))(g).

and hence (B(ψ))(xm) = x(B(ψ)(m)). It is simple to check that B(A(ϕ)) = ϕ and A(B(ψ)) =
ψ. For instance, for all m ∈M and g ∈ G and ϕ ∈ HomG(M, IndGHN), we have

B(A(ϕ))(m)(g) = A(ϕ)(gm) = ϕ(gm)(e) = g(ϕ(m))(e) = ϕ(m)(g).

Similarly, A(B(ψ))(m) = (B(ψ)(m))(e) = ψ(em) = ψ(m). �
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Definition 2.9. A G-module I is called injective if for any G-module morphism f : M → I
and any injective g : M ↪→ N , there exists f̃ : N → I that completes the diagram:

M
f
- I

N

g

?

f̃

-

Proposition 2.10. An abelian group is an injective {e}-module if and only if it is divisible.
In particular, Q and Q/Z are injective {e}-modules.

Proof. Recall that a group G, written additively, is called divisible if for any x ∈ G and any
n ∈ N there exists y ∈ G such that ny = x.

Let G be a divisible abelian group, and f and g as in Definition 2.9 above. View M as a
submodule of N via g, and consider the set of all pairs (M ′, h), where M ⊂ M ′ ⊂ N and h
extends f . Define a partial order on this set by extension: (M ′, h′) ≤ (M ′′, h′′) if M ′ ⊂ M ′′

and h′′|M ′ = h′. Any ascending chain glues, so has an upper bound, so by Zorn’s Lemma there

exists a maximal pair (M ′, h). We need to show that M ′ = N . Suppose not. Then there

exists n ∈ N \M ′. Let s be the order of n in N/M ′. Then the map h̃ : M ′ + 〈n〉 → G given
by

h̃(m′ + an) =

{
h(m′) : s =∞
h(m′) + at : s <∞

extends h, contradicting the maximality of (M ′, h). Here a ∈ Z is arbitrary and t ∈ G is an
element satisfying st = h(sn).

Now we prove the converse direction, which will not be used later. Suppose that G is an
injective {e}-module and let x ∈ G. Consider the map f : Z→ G given by f(m) = mx for all
m ∈ Z. Given n ∈ N, consider the injection g : Z→ Z given by g(m) = mn. By injectivity of

G there exists f̃ : Z→ G such that f = f̃ ◦ g. Let y = f̃(1). Then x = f(1) = f̃(n) = ny, so
G is divisible. �

Corollary 2.11. Let G be a profinite group and H ⊂ G a closed subgroup. If I is an injective
H-module, then IndGHI is an injective G-module.

Proof. Suppose we have f : M → IndGHI and ε : M ↪→ N is an embedding of G-modules. By
Frobenius reciprocity, f ∈ HomG(M, IndGHI) corresponds to an H-module morphism A(f) ∈
HomH(M, I). By injectivity of I, we get an H-module map f̃ : N → I satisfying f̃ ◦ε = A(f),

hence, by a second application of Frobenius reciprocity, a map B(f̃) : N → IndGHI of G-
modules.

We claim that B(f̃) is the map we are looking for, namely that it satisfies B(f̃) ◦ ε = f .
Indeed, for any m ∈M and any g ∈ G, since ε is a map of G-modules we have

(B(f̃) ◦ ε)(m)(g) = f̃(gε(m)) = f̃(ε(gm)) = A(f)(gm) = f(gm)(e) =

g · (f(m))(e) = f(m)(eg) = f(m)(g).

Thus (B(f̃) ◦ ε)(m) = f(m) ∈ IndGHI for each m ∈M , which proves our claim. �

Corollary 2.12. If G is a profinite group and M is any G-module, there exists a G-module
I into which M embeds (i.e. the category ModG has enough injectives).
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Proof. The claim is true for {e}-modules, i.e. abelian groups. Indeed, let M be any abelian
group and m ∈ M a non-trivial element. If 〈m〉 is a torsion group, then it embeds in
Im = Q/Z, and otherwise it embeds in Im = Q. Since 〈m〉 ⊂ M , we can extend this
embedding to a map fm : M → Im satisfying fm(m) 6= 0. We can collect all of these into
a map M →

∏
m∈M Im which clearly has trivial kernel. (Observe that a direct product of

injective modules is injective.)
Now let M be any G-module, and let I be an injective group such that there exists an em-

bedding ψ : M → I of abelian groups. By Frobenius reciprocity, it corresponds to a G-module
map B(ψ) : M → IndG{e}I. Note that IndG{e}I is an injective G-module by Corollary 2.11, so it

remains only to show that B(ψ) is injective. But for any m ∈M , we have that B(ψ)(m) is the
map g 7→ ψ(gm). Since ψ is an embedding, this can be the zero map only when m = 0. �

Exercises

(1) Let G be a torsion abelian group with the discrete topology and let H ⊂ G be a
subgroup. Let g ∈ G be such that g 6∈ H. Prove that there exists a homomorphism
f : G→ Q/Z such that H ⊂ ker f but g 6∈ ker f .

(2) This exercise is a variant of the previous one. Suppose now that G is a profinite
abelian group and H ⊂ G is a closed subgroup. Let g ∈ G \ H as above, and show
that there is a continuous homomorphism f : G → Q/Z such that H ⊂ ker f and
g 6∈ ker f .

(3) Let I be a directed partially ordered set. For every i ∈ I, let Ai be a topological
(unital) ring. One can define a projective system analogously to Definition 1.1, where
now ϕij : Ai → Aj is a continuous ring homomorphism whenever i ≥ j. One obtains
a topological ring lim←−I Ai analogously to Definition 1.2.

(a) We define a topological ring A to be profinite if it is compact and totally sepa-
rated. Prove that A is profinite if and only if A ' lim←−I Ai for some projective

system {Ai}i∈I of finite rings with the discrete topology.
(b) Let A be a topological ring. Consider the group A∨ = Hom(A,Q/Z) of continuous

group homomorphisms, where we consider A as an abelian group under addition.
Endow A∨ with the compact-open topology; this is the coarsest topology such
that the sets B(K,U) = {f ∈ A∨ : f(K) ⊂ U} are open for all compact K ⊂ A
and all open U ⊂ Q/Z. The topology on Q/Z is taken to be the subspace topology
arising from the embedding ι : Q/Z ↪→ C given by ι(x) = e2πix. Prove that A∨ is
discrete if A is compact and that A∨ is a profinite group if A is a discrete torsion
group.

(c) A topological abelian group M is said to be an A-module if it is endowed with
an A-module structure such that the scalar multiplication map A × M → M
is continuous. Show that A∨ is an A-module if we set (af)(b) = f(ba) for all
f ∈ A∨ and a, b ∈ A.

(d) Let A be a topological ring. Suppose that A is compact and Hausdorff, and let
C ⊂ A be the connected component of 0. Prove that af = 0 for any a ∈ C and
f ∈ A∨. Deduce that C = {0}.

(e) Show that a topological ring A is profinite if and only if it is compact and Haus-
dorff.

(4) Give an example showing that a compact Hausdorff group is not necessarily profinite.
Why does your solution to the previous exercise fail for groups?
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(5) Prove Proposition 2.7.
(6) Let G be a profinite group, and let H ⊂ G be an open subgroup. Let M ∈ ModG and

N ∈ ModH . Prove the following version of Frobenius reciprocity:

HomG(IndGHN,M) ' HomH(N,M).

The maps, in notation corresponding to that of Proposition 2.8, are A(ϕ)(n) = ϕ(fn)
and B(ψ)(f) =

∑
Hg∈H\G g

−1ψ(f(g)), where fn ∈ IndGHN is the function fn : G→ N

satisfying fn(h) = hn for h ∈ H and fn(g) for g 6∈ H.
(7) Let G be a profinite group and let M be a G-module.

(a) Let m ∈ M , and let U = stabG(m). Let 1U be the trivial U -module; more
precisely, 1U is an infinite cyclic group with the action ua = a for all u ∈ U and
a ∈ 1U . Show that there is a G-module homomorphism f : IndGU1U → M such
that the image of f is the submodule of M generated by m.

(b) Let N ⊂M be a monogenic submodule, i.e. N is generated by a single element.
Prove that N is isomorphic to a quotient of IndGU1U for some open subgroup
U ⊂ G.

(8) Show that I ∈ ModG is injective if and only if HomG(−, I) is an exact contravariant
functor.

(9) Let I be an injective G module, and let H ⊂ G be an open subgroup. Prove that I,
with the natural H-action obtained by restriction, is an injective H-module.

(10) Let H � G be a closed normal subgroup, and let I be an injective G-module. Prove
that IH = {i ∈ I : hi = i for allh ∈ H} is an injective G/H-module.

3. Cohomology of G-modules

3.1. Definition of cohomology. For any profinite group G, there is a left exact functor
ModG → Ab sending a G-module M to the space of invariants MG = {m ∈ M : ∀g ∈
G, gm = m}. The cohomology of M will be defined as the right derived functors of this
functor. To make the exposition more elegant, we will define some notions (first introduced
by Grothendieck in the famous Tohoku paper) that axiomatize the properties of derived
functors.

Definition 3.1. A (cohomological) δ-functor ModG → Ab (the same definition can be made
for any two abelian categories) consists of the following data:

• A series of covariant functors H i : ModG → Ab, for i ∈ N0.
• For each exact sequence of G-modules 0 → M → N → P → 0 and each i ≥ 0, a
G-module homomorphism δi : H i(P )→ H i+1(M) with the following properties:
(1) For 0 → M → N → P → 0 exact as above, there is a long exact sequence of

cohomology groups

0→ H0(M)→ H0(N)→ H0(P )
δ0→ H1(M)→ H1(N)→ H1(P )

δ1→ H2(M)→ · · ·
(2) Given a morphism of short exact sequences

0 - M - N - P - 0

0 - M ′
?

- N ′
?

- P ′
?

- 0
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(where the diagram is commutative with exact rows), for each i ≥ 0 the corre-
sponding diagram commutes:

H i(P )
δi
- H i+1(M)

H i(P ′)

?
δi
- H i+1(M ′)

?

Proposition 3.2. Let G be a profinite group. There exists a unique δ-functor (H i(G,−), δi)
from ModG to Ab satisfying the following two properties:

(1) For every M ∈ ModG, we have H0(G,M) = MG.
(2) If I ∈ ModG is injective, then H i(G, I) = 0 for every i > 0.

Proof. Suppose that such a δ-functor exists. What can we say about it? Any M ∈ ModG
embeds into an injective G-module I0; let N be the cokernel, so that we have a short exact

sequence 0 → M
ι→ I0 π→ N → 0. By (2) and the long exact sequence, we would have an

exact sequence

0→MG ιG→ (I0)G
πG→ NG → H1(G,M)→ H1(G, I0)→ · · · ,

whence H1(G,M) = cokerπG and we must have H i+1(M) ' H i(N) for all i ≥ 1. Since we
know that H0(G,M) = MG for any M ∈ ModG, the observations above provide a recursive
algorithm for computing H i(G,M).

We can streamline this process by fixing an injective resolution of M , namely an exact
sequence

0→M → I0 α0→ I1 α1→ I2 α2→ · · · .
This is possible because the category ModG has enough injectives by Corollary 2.12. Indeed,
M embeds in an injective module I0 as above. The quotient I0/M = N embeds into an
injective module I1, and this lifts to a map α0 : I0 → I1. Then I1/α0(I0) embeds into I2,
and this lifts to a map α1 : I1 → I2. Continue forever.

Now apply the G-invariants functor to the injective resolution above, to obtain a complex

0→MG → (I0)G
d0→ (I1)G

d1→ (I2)G
d2→ · · · (1)

This complex need not be exact, since the G-invariants functor is only left exact. However,
it obviously inherits the property that di+1 ◦ di = 0 for all i ≥ 0, and hence im di−1 ⊆ ker di
for all i ≥ 1.

We claim that H1(G,M) ' cokerπG ' (ker d1)/(im d0). Indeed, since α0 : I0 → I1 is the
composition of π with an embedding ε : N ↪→ I1, we see that im d0 = ε(imπG). On the
other hand, α1 : I1 → I2 is the composition I1 � I1/α0(I0) = I1/ε(N) ↪→ I2, hence we
see that kerα1 = ε(N) and ker d0 = ε(NG). Thus, the embedding ε induces an isomorphism
(ker d1)/(im d0) ' NG/(imπG) = cokerπG.

Observe that 0 → N → I1 → I2 → · · · is an injective resolution of N . Thus, by the ar-
gument of the previous paragraph, H2(G,M) ' H1(G,N) ' (ker d2)/(im d1). By induction,
for all i ≥ 1, we get

H i(G,M) = (ker di)/(im di−1).
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So far we have shown that if a δ-functor with the desired properties exists, then it is unique.
In fact, this construction works, so the δ-functor does exist. However, it is not at all obvious
that the H i(G,−) are well-defined functors and that there exist maps δi that turn all this
data into a δ-functor. We will soon sketch a proof of these facts, but for the time being we
will assume them. �

The construction of the cohomology groups H i(G,M) that we just gave does not, in prac-
tice, provide a useful way of computing them. Indeed, the injective modules constructed in
Corollaries 2.11 and 2.12 are huge and unwieldy. Moreover, the definition of the maps αi
involves extending maps into injective modules, and this ultimately relies on the argument
with Zorn’s Lemma in the proof of Proposition 2.10 and thus is completely non-constructive.
Hence an injective resolution as in the proof of Proposition 3.2 cannot usually be constructed
explicitly. Thus, our first priority is to find a more explicit way to compute cohomology.

Definition 3.3. A G-module J is called acyclic if H i(G, J) = 0 for all i > 0.

Clearly, all injective G-modules are acyclic. Note that in the construction of the previous
proof, all we used about injective modules was their acyclicity and the existence of injective
resolutions. The injectivity will be used more intensively in the proof that the above con-
struction actually gives a δ-functor. In the meantime, we can conclude the following, which
is useful for computing cohomology in practice.

Proposition 3.4. Let M be a G-module, and consider an acyclic resolution

0→M → J0 → J1 → J2 → · · · ,
namely an exact sequence where the J i are acyclic for all i ≥ 0. Taking G-invariants gives
rise to a complex

0→MG → (J0)G
d0→ (J1)G

d1→ (J2)G · · ·
Then for all i > 0 we have H i(G,M) ' (ker di)/(im di−1).

Definition 3.5. Let G be a profinite group and M a G-module. For each i ≥ 0, define
Ci(G,M) to be the space of continuous (i.e. locally constant) functions ϕ : Gi+1 → M . Let
G act on this space by

(gϕ)(g0, . . . , gi) = g · (ϕ(g0g, . . . , gig))

for ϕ ∈ Ci(G,M) and g, g0, . . . , gi ∈ G.

We have an obvious injective map f : M → C0(G,M) that sends each m ∈ M to the
constant function ϕm : G → M satisfying ϕm(g) = m for all g ∈ G. Observe that f is
G-equivariant, since (xϕm)(g) = xϕm(gx) = xm = ϕxm(g) for all x, g ∈ G.

Moreover, for all i ≥ 0 we have a map fi : Ci(G,M)→ Ci+1(G,M) given by

(fiϕ)(g0, . . . , gi+1) =

i+1∑
j=0

(−1)jϕ(g0, . . . , ĝj , . . . , gi+1), (2)

where ĝj denotes omission of the variable gj , so that each summand on the right-hand side
provides i+ 1 arguments for the function ϕ. It is clear that fi is G-equivariant.

Lemma 3.6. The complex

0→M
f→ C0(G,M)

f0→ C1(G,M)
f1→ C2(G,M)

f2→ · · · (3)

is exact.
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Proof. It is easy to check that this is indeed a complex, namely that the composition of
any two consecutive arrows is the zero map. Observe that f is obviously injective. For any
ϕ ∈ C0(G,M) we have (f0ϕ)(g0, g1) = ϕ(g1)−ϕ(g0). Hence, if ϕ ∈ ker f0 then ϕ is a constant
function and thus contained in the image of f .

Now let i > 0. Suppose that ϕ ∈ Ci(G,M) lies in the kernel of fi, and define a locally
constant map ψ : Gi →M by ψ(g1, . . . , gi) = −ϕ(e, g1, . . . , gi). Then one checks that

(fi−1(ψ))(g1, . . . , gi+1) =
i+1∑
j=1

(−1)j−1ψ(g1, . . . , ĝj , . . . , gi+1) =

i+1∑
j=1

(−1)jϕ(e, g1, . . . , ĝj , . . . , gi+1) =

(fi(ϕ))(e, g1, . . . , gi+1) + ϕ(g1, . . . , gi+1) = ϕ(g1, . . . , gi+1),

where the last equality follows from ϕ ∈ ker fi. Thus ϕ = fi−1(ψ). This gives exactness at
Ci(G,M). �

3.2. Universal δ-functors and Shapiro’s Lemma. If we knew that the complex (3) were
an acyclic resolution of M , we would be able to apply Proposition 3.4 to compute cohomology.
To prove the acyclicity of Ci(G,M) we will need a few more tools at our disposal.

Definition 3.7. A functor F : ModG → Ab is called effaceable1 if for any M ∈ ModG there
exists an injection ι : M ↪→ N such that F(ι) : F(M)→ F(N) is the zero map.

Definition 3.8. A δ-functor (H i, δi) is called universal if, for any δ-functor (Gi, εi) and any
natural transformation f0 : H0 → G0, there exists a unique sequence of natural transforma-
tions fi : H i → Gi that commutes with the δi maps.

(Recall that a natural transformation of functors f : F → G provides, for each M ∈ Ob(F),
a map fM : F(M) → G(M), such that for any arrow M → N the obvious square below
commutes.)

F(M)
fM- G(M)

F(N)
? fN- G(N).

?

Lemma 3.9 (Grothendieck). If (H i, δi) is a δ-functor such that the functors H i are effaceable
for all i > 0, then (H i, δi) is a universal δ-functor.

Proof. Let (Gi, εi) be another δ-functor, and let f0 : H0 → G0 be a natural transformation.
The first step is to construct the unique natural transformations fi : H i → Gi for all i > 0.
Assume, by induction, that fj has been constructed and shown to be unique for all j < i.
Let M ∈ ModG and let ι : M → J be an embedding, where J is a G-module such that

1“Effaceable” is a French word taken directly from Grothendieck’s Tohoku paper. S. Lang argues forcefully
that authors writing in English should employ its English translation “erasable.” Nevertheless, here we follow
the standard usage.
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H i(ι) : H i(M) → H i(J) is the zero map; this exists because (H i, δi) is effaceable. Let C be

the cokernel. Then the short exact sequence 0→M
ι→ J → C → 0 gives rise to the diagram

H i−1(M) - H i−1(J) - H i−1(C)
δi−1
- H i(M)

H i(ι)
- H i(J)

Gi−1(M)

?
- Gi−1(J)

?
- Gi−1(C)

fi−1,C

?
εi−1
- Gi(M)

?

...............
- Gi(J).

The dotted arrow fi,M is constructed by a simple diagram chase. Indeed, let c ∈ H i(M).
Since δi−1 is surjective, there exists b ∈ H i−1(C) such that δi−1(c). Then we define fi,M (c) =
εi−1fi−1,C(b). It is easy to check that this is independent of the choice of b. It remains to
show that fi,M : H i(M) → Gi(M) is independent of the choice of ι and that fi is a natural
transformation. We will omit these details here. �

Corollary 3.10. For any profinite group G, the δ-functor (H i(G,−), δi) constructed in Propo-
sition 3.2 is universal.

Proof. Since every G-module M injects into an injective module, the functors H i(G,−) are
effaceable for all i > 0. �

Proposition 3.11 (Shapiro’s Lemma). Let G be a profinite group, H ⊂ G a closed subgroup,
and M an H-module. Then there is a natural isomorphism H i(H,M) ' H i(G, IndGHM) for
all i ≥ 0.

By “natural” we mean that these isomorphisms arise from a natural transformation of
functors H i(H,−)→ H i(G,−) ◦ IndGH .

Proof. The strategy of the proof is to show that both functors are universal δ-functors extend-
ing the same H0. Indeed, observe that H0(G, IndGHM) = (IndGHM)G consists of (continuous)
functions f : G → M such that f(hg) = h · f(g) for all h ∈ H, g ∈ G and f(gx) = f(g)
for all g, x ∈ G. The second condition forces f to be a constant function fm : g 7→ m for
some m ∈ M , while the first condition imposes hm = m for all h ∈ H, in other words that
m ∈ MH . Thus we have MH ∼→ (IndGHM)G for all M ∈ ModH , and this is clearly a natural
isomorphism of functors.

We already know by Corollary 3.10 that (H i(H,−), δi) is a universal δ-functor. Since
(H i(G,−), δi) is a δ-functor and IndGH is exact, it is not hard to see that (H i(G, IndGH−)) is a
δ-functor. For any H-module M , let ι : M → I be an embedding of M into an injective H-
module. The induced map H i(G, IndGHM)→ H i(G, IndGHI) = 0 is the zero map when i > 0,
since IndGHI is an injective G-module by Corollary 2.11. Thus the functors H i(G, IndGH−) are
effaceable for i > 0, and universality follows from Lemma 3.9. �

Lemma 3.12. All {e}-modules are acyclic. If G is any profinite group and M any {e}-
module, then IndG{e}M is an acyclic G-module.

Proof. Since the functor taking {e}-invariants is just the identity functor, the complex (1) is
exact for any {e}-module M . Thus M is acyclic. The second part of the claim now follows
from Shapiro’s Lemma. �

Before returning to our explicit computation of the cohomology H i(G,M), we point out a
simple consequence of Lemma 3.12.
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Corollary 3.13. Let L/K be a finite Galois extension of fields. Then H i(Gal(L/K), L) = 0
for all i > 0.

Proof. Here G = Gal(L/K) acts on L in the obvious way. Since any finite separable extension
is simple, there exists an element α ∈ L such that L = K(α). By the Normal Basis Theorem,
α may be chosen so that {σ(α) : σ ∈ G} is a K-basis of L. Thus any β ∈ L can be written
in the form β =

∑
σ∈G βσσ(α), where βσ ∈ K.

We can obtain a G-module isomorphism L → IndG{e}K by sending β ∈ L to the function

fβ : G→ K given by fβ(σ) = βσ−1 . Indeed, for any τ ∈ G we have τ(β) =
∑

σ∈G βστσ(α) =∑
σ∈G βτ−1σσ(α). On the other hand, we have

(τfβ)(σ) = fβ(στ) = βτ−1σ−1 = fτ(β)(σ)

for all σ, τ ∈ G. The claim now follows from Lemma 3.12. �

3.3. Explicit computation of cohomology. We are now ready to return to the G-modules
Ci(G,M) that were defined earlier.

Lemma 3.14. For every i ≥ 0, let LCi(G,M) be the abelian group of locally constant func-

tions f : Gi →M , viewed as a {e}-module. There is a G-module isomorphism θ : Ci(G,M)
∼→

IndG{e}LC
i(G,M).

Proof. Given ϕ ∈ Ci(G,M), define θϕ ∈ IndG{e}LC
i(G,M) by

θϕ(g)(g1, . . . , gi) = gϕ(g, g1g, . . . , gig).

Clearly θ is a group homomorphism. We note that θ is G-equivariant. Indeed, if x ∈ G, then

θxϕ(g)(g1, . . . , gi) = g(xϕ)(g, g1g, . . . , gig) = gxϕ(gx, g1gx, . . . , gigx) = θϕ(gx)(g1, . . . , gi).

Thus θxϕ(g) = θϕ(gx) = (xθϕ)(g) for all g ∈ G.

Note that if θϕ(g) is the zero element of LCi(G,M) for all g ∈ G, then ϕ(g, g1g, . . . , gig) = 0

for all g, g1, . . . , gi ∈ G, whence ϕ = 0. Thus θ is injective. Moreover, given ψ ∈ LCi(G,M)
we can define η ∈ Ci(G,M) by η(g0, . . . , gi) = g−1

0 ψ(g0)(g1g
−1
0 , . . . , gig

−1
0 ). It is easy to see

that ψ = θη, so that θ is also surjective. �

Corollary 3.15. Let G be a profinite group and M a G-module. The G-modules Ci(G,M)
are acyclic for all i ≥ 0.

Proof. This is immediate from Lemma 3.14 and Lemma 3.12. �

Therefore, the complex (3) is an acyclic resolution of M , and by Proposition 3.4 it may be
used to compute the cohomology of M . We will now do this and observe some consequences.

First of all, it will be useful to find a convenient parametrization of the spaces Ci(G,M)G

of G-invariants. Recall that these spaces consist of locally constant functions ϕ : Gi+1 → M
such that g · ϕ(g0g, . . . , gig) = ϕ(g0, . . . , gi) for all g, g0, . . . , gi ∈ G.

If i > 0, let Ci(G,M) be the space of locally constant functions ψ : Gi → M , with
no G-module structure. There is a group homomorphism Ci(G,M) → Ci(G,M)G sending
ψ ∈ Ci(G,M) to the map

ϕψ(g0, . . . , gi) = g−1
0 ψ(g0g

−1
1 , g1g

−1
2 , . . . , gi−1g

−1
i ).
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We wish to show that this is an isomorphism of groups by constructing an inverse map. Given
ϕ ∈ Ci(G,M)G, we want to find ψϕ ∈ Ci(G,M) such that g−1

0 ψϕ(g0g
−1
1 , g1g

−1
2 , . . . , gi−1g

−1
i ) =

ϕ(g0, . . . , gi) = g−1
0 ϕ(e, g1g

−1
0 , . . . , gig

−1
0 ). The map

ψϕ(x1, . . . , xi) = ϕ(e, x−1
1 , (x1x2)−1, . . . , (x1x2 · · ·xi)−1) (4)

works. Note that all of this holds for i = 0 as well, where C0(G,M) is the space of constant
functions. The next step is to determine the map di : Ci(G,M) → Ci+1(G,M) induced by
fi. Given ψ ∈ Ci(G,M), a straightforward computation shows that

(fiϕψ)(g0, . . . , gi+1) = g−1
1 ψ(g1g

−1
2 , . . . , gig

−1
i+1) +

i∑
j=1

(−1)jg−1
0 ψ(g0g

−1
1 , . . . , gj−1g

−1
j+1, . . . , gig

−1
i+1) +

(−1)i+1g−1
0 ψ(g0g

−1
1 , . . . , gi−1g

−1
i ).

It follows that diψ = ψfi(ϕψ) is given by the following formula:

di(ψ)(x1, . . . , xi+1) = x1ψ(x2, . . . , xi+1)− ψ(x1x2, x3, . . . , xi+1) + (5)

ψ(x1, x2x3, x4, . . . , xi+1) + · · ·+ (−1)iψ(x1, x2, . . . , xixi+1) +

(−1)i+1ψ(x1, . . . , xi).

Finally, note that if ϕ ∈ C0(G,M)G, then ϕ(g1) = gϕ(g1g) for all g, g1 ∈ G. Taking g1 = e,
we see thatm = gϕ(g) is independent of g. Moreover, ψf0(ϕ)(g) = f0ϕ(e, g−1) = ϕ(g−1)−ϕ(e).
Thus im d0 consists of functions ψ : G→M of the form ψ(g) = gm−m for a fixed m ∈M .

For each i > 0, let Zi(G,M) = ker di and Bi(G,M) = im di−1 denote the cocycles and
coboundaries, respectively. The Proposition 3.4 tells us that:

Proposition 3.16. Let G be a profinite group and M a G-module. Then for all i > 0, we
have H i(G,M) ' Zi(G,M)/Bi(G,M).

Remark 3.17. In particular, if ψ ∈ C1(G,M), then d1(ψ)(g1, g2) = g1ψ(g2)−ψ(g1g2) +ψ(g1).
Thus the 1-cocycles are maps ψ : G → M satisfying ψ(g1g2) = ψ(g1) + g1ψ(g2). These are
called crossed homomorphisms. Similar, B1(G,M) consists of maps ψ : G → M of the form
ψ(g) = gm−m for a fixed m ∈M .

Example 3.18. If G is a finite cyclic group and M is a G-module, then Z1(G,M) is isomor-
phic to the abelian group N(M) = {m ∈M :

∑
g∈G gm = 0}.

Proof. Let σ be a generator of G and let ϕ ∈ Z1(G,M). Observe that ϕ(e) = ϕ(e) + eϕ(e),
whence ϕ(e) = 0. Similarly, for all j ≥ 1 we have ϕ(σj) = ϕ(σ) + σ(ϕ(σj−1)). It follows by

induction that ϕ(σj) =
∑j−1

k=0 σ
k(ϕ(σ)) for all j ≥ 1. Taking j = |G|, we get

0 = ϕ(e) = ϕ(σj) =

j−1∑
k=0

σk(ϕ(σ)) =
∑
τ∈G

τ(ϕ(σ)).

Thus ϕ(σ) ∈ N(M), and ϕ 7→ ϕ(σ) is our candidate for an isomorphism between Z1(G,M)
and N(M). Clearly it is injective, since ϕ is determined by ϕ(σ) by the recursive for-
mula above. To show surjectivity, let m ∈ N(M) and define ϕm : G → M by ϕm(σj) =∑j−1

k=0 σ
k(m). It is easy to check that this is indeed a 1-cocycle, and clearly ϕm(σ) = m. �
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The following important result is a generalization, by Emmy Noether, of Theorem 90 in
Hilbert’s Zahlbericht , which itself originated with Kummer.

Theorem 3.19 (Hilbert 90). If L/K is a finite Galois extension, then H1(Gal(L/K), L×) =
0.

Proof. We write the abelian group L× multiplicatively and denote G = Gal(L/K). Let
ϕ ∈ Z1(G,L×). For every α ∈ L× consider the “Poincaré series”

b(α) =
∑
σ∈G

ϕ(σ)σ(α) ∈ L.

By Dedekind’s Lemma the automorphisms σ are linearly independent over L, so there must
exist some α ∈ L× such that b = b(α) 6= 0. This means that for all σ, τ ∈ G we have
ϕ(στ) = ϕ(σ)σ(ϕ(τ)). Now for every σ ∈ G we have

σ(b) =
∑
τ∈G

σ(ϕ(τ))στ(α) =
∑
τ∈G

ϕ(στ)ϕ(σ)−1στ(α) = (ϕ(σ))−1
∑
τ∈G

ϕ(στ)στ(α) = (ϕ(σ))−1b.

This means that ϕ(σ) = σ(b−1) · b = σ(m)m−1, where m = b−1. Thus ϕ ∈ B1(G,L×). �

We now derive the original Hilbert 90 as a corollary.

Corollary 3.20. Let L/K be a cyclic Galois extension and let σ be a generator of G =
Gal(L/K). Let α ∈ L be an element with NL/K(α) = 1. Then there exists β ∈ L× such that

α = σ(β)β−1.

Proof. In the notation of Example 3.18, we have that N(L×) = {γ ∈ L× : NL/K(γ) = 1}.
By that example, there exists ϕ ∈ Z1(G,L×) such that ϕ(σ) = α. By Hilbert 90, we see
that Z1(G,L×) = B1(G,L×), hence there exists β ∈ L× such that ϕ(τ) = τ(β)β−1 for all
τ ∈ G. �

3.4. Some homological algebra. At this point we finally go back to the construction in
Proposition 3.2 and show why it indeed gives a well-defined δ-functor. Recall that a complex
C consists of the data

C0 ∂0→ C1 ∂1→ C2 ∂2→ C3 · · ·
where ∂i+1 ◦ ∂i = 0 for all i ≥ 0. The cohomology of the complex is given by H i(C) =
(ker ∂i+1)/(im ∂i) for all i ≥ 0.

Definition 3.21. Let C and D be two complexes. A cochain map ϕ : C→ D is a collection
of morphisms ϕi : Ci → Di that commute with the coboundary maps of the complexes. In
other words, the diagram

· · ·
∂i−1

- Ci
∂i
- Ci+1 ∂i+1

- · · ·

· · ·
∂i−1

- Di

ϕi

?
∂i
- Di+1

ϕi+1

?
∂i+1

- · · ·
commutes for each i.
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Observe that a cochain map ϕ : C→ D induces maps H i(ϕ) : H i(C)→ H i(D) in a natural
way. We will sometimes write ∂iC and ∂iD to distinguish the coboundary maps coming from
our two complexes. The main tool for proving that two complexes have the same cohomology
is the notion of homotopy.

Definition 3.22. Let C and D be two complexes, and let ϕ,ψ : C→ D be two cochain maps.
A homotopy Σ : ϕ→ ψ is a family of morphisms Σi : Ci → Di−1 such that ψ−ϕ = ∂Σ + Σ∂,
i.e. ψi − ϕi = ∂i−1 ◦ Σi + Σi+1 ◦ ∂i for all i.

Lemma 3.23. Let C and D be two complexes, and let ϕ,ψ : C → D be two cochain maps.
Suppose that there exists a homotopy Σ : ϕ→ ψ. Then H i(ϕ) = H i(ψ) for all i.

Proof. Suppose that x ∈ Ci lies in the kernel of ∂i. We need to show that the two elements
ϕi(x) and ψi(x) of Di, which clearly lie in the kernel of ∂i, differ by an element of the image
of ∂i−1. However,

ψi(x)− ϕi(x) = ∂i−1(Σi(x)) + Σi+1(∂i(x)) = ∂i−1(Σi(x))

by the definition of homotopy, and this is exactly what we need. �

We say that ϕ and ψ are homotopic if there exists a homotopy Σ : ϕ → ψ and leave it to
the reader to verify that this is an equivalence relation on the set of cochain maps.

Proposition 3.24. Let C and D be two complexes. Suppose that C is acyclic, i.e. that
H i(C) = 0 for all i ≥ 1, whereas D is injective, namely that all the Di are injective objects.
Let η : H0(C) → H0(D) be a homomorphism. Then there exists a cochain map ϕ : C → D
inducing η. Moreover, any two cochain maps inducing η are homotopic.

Proof. Observe that H0(C) = ker ∂0
C ⊂ C0, and similarly H0(D) ⊂ D0. Thus η gives

a homomorphism H0(C) → D0, which extends to a homomorphism ϕ0 : C0 → D0 by
injectivity of D0. Now assume by induction that ϕi−1 has been constructed. Observe that
ϕi−1 maps ker ∂i−1

C to ker ∂i−1
D . Indeed, if i = 1 and z ∈ ker ∂0

C = H0(C), then ϕ0(z) = η(z) ∈
H0(D) = ker ∂0

D. If i > 1 and z ∈ ker ∂i−1
C , then z ∈ im ∂i−2

C by the acyclicity of C. Since

ϕi−1 ◦ ∂i−2
C = ∂i−2

D ◦ ϕi−2, this implies that ϕi−1(z) ∈ im ∂i−2
D ⊂ ker ∂i−1

D as claimed.

If y ∈ im ∂i−1
C , then choose x ∈ Ci−1 such that ∂i−1

C (x) = y and define ϕi(y) = ∂i−1
D (ϕi−1(x)).

This is well-defined; indeed, if x and x′ are two preimages of x, then z = x′ − x ∈ ker ∂i−1
C

and thus ϕi−1(z) ∈ ker ∂i−1
D . Hence we get a map ϕi : im ∂i−1

C → Di. It extends to a homo-

morphism ϕi : Ci → Di by the injectivity of Di, and our definition ensures that the following
square commutes:

Ci−1 ∂i−1
C - Ci

Di−1

ϕi−1

? ∂i−1
D - Di

ϕi

?

Now let ϕ and ψ be two cochain maps inducing H0(ϕ); we will construct a homotopy Σ
between them. If y ∈ im ∂0

C , then define Σ1(y) = ψ0(x) − ϕ0(x), where ∂0(x) = y; observe
that this is well-defined. We can extend this to a homomorphism Σ1 : C1 → D0 by injectivity
of D0.
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Suppose now that Σi has been constructed. If y ∈ im ∂iC , then define Σi+1(y) = ψi(x) −
ϕi(x) − ∂i−1

D (Σi(x)), where x ∈ Ci satisfies ∂iC(x) = y. If this is well-defined, it will extend

to a homomorphism Σi+1 : Ci+1 → Di by the injectivity of Di. It is indeed well-defined,
because if x′ is another pre-image of y, then z = x′−x ∈ ker ∂iC = im ∂i−1

C by acyclicity of C.

Let w ∈ Ci−1 satisfy ∂i−1
C (w) = z. Then

(ψi − ϕi)(z) = (ψi − ϕi)(∂i−1
C (w)) =

∂i−1
D (ψi−1 − ϕi−1)(w) = ∂i−1

D (∂i−2
D Σi−1w + Σi∂i−1

C w) = ∂i−1
D Σi(z). �

Corollary 3.25. Let G be a profinite group and M a G-module. The cohomology groups
H i(G,M), as constructed in the proof of Proposition 3.2, do not depend on the choice of
injective resolution. Moreover, H i(G,−) : ModG → Ab is a functor for all i ≥ 0.

Proof. Let 0 → M → I0 ∂0I→ I1 ∂1I→ · · · and 0 → M → J0 ∂0J→ J1 ∂1J→ · · · be two injective
resolutions of M . Note that H0(I) = H0(J) = M . By the previous proposition, the identity
maps in either direction extend to cochain maps ϕ : I → J and ψ : J → I. Moreover, the
cochain map ψ ◦ ϕ : I → I induces the identity on H0(I) and is thus homologous to the
identity cochain map 1I : I→ I. Let Σ : 1I → ψ ◦ ϕ be a homotopy.

Now apply the G-invariants functor to everything in sight. The resulting complexes IG and
JG are no longer necessarily acyclic or injective, so we can’t apply the previous proposition
directly. However, the relation ψi◦ϕi−1 = ∂i−1

I ◦Σi+Σi+1◦∂iI clearly survives the application
of the G-invariants functor. Since 1IG obviously induces the identity on cohomology, we find

that the composition H i(IG)
Hi(ϕ)→ H i(JG)

Hi(ψ)→ H i(IG) is the identity by Lemma 3.23. Hence
we get isomorphic results when we compute H i(G,M) via the injective resolutions I and J.

Finally if f : M → N is any map of G-modules, then we can choose injective resolutions
0 → M → I and 0 → N → J. Then H0(I) ' M and H0(J) ' N , so the homomorphism
f : H0(I)→ H0(J) is induced by a cochain map ϕ. By the previous proposition, all possible
choices of ϕ are homologous and thus induce the same maps on cohomology. Applying the
G-invariants functor as above, we find that H i(f) : H i(G,M) → H i(G,N) is well-defined
and functorial. �

It remains to show that the functors H i(G,−) may be supplemented with boundary maps
δn to obtain a δ-functor. This is a consequence of the Snake Lemma.

Lemma 3.26 (Snake Lemma). Suppose we have a commutative diagram of G-modules

A
f
- B

g
- C - 0

0 - A′

α

? f ′
- B′

β

? g′
- C ′

γ

?

in which the horizontal rows are exact. There exists a canonical exact sequence

kerα
f̃
- kerβ

g̃
- ker γ

δ
- cokerα

f̃ ′
- cokerβ

g̃′
- coker γ,

in which f̃ and g̃ are the restrictions of f and g, respectively, whereas f̃ ′ and g̃′ are induced
from f ′ and g′. Moreover, f̃ is injective if f is, and g̃′ is surjective if g′ is.
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Proof. There is only one natural way to obtain a map δ : ker γ → cokerα. Let x ∈ ker γ.
Since g is surjective, there exists y ∈ B such that g(y) = x. Moreover, β(y) ∈ ker g′ = im f ′

by commutativity of the right square and exactness at B′. Since f ′ is injective, there is a
unique z ∈ A′ satisfying f ′(z) = β(y), and we set δ(x) = z + imα.

If y′ ∈ B satisfies g(y′) = x and z′ ∈ A′ satisfies f ′(z′) = β(y′), then y′ − y ∈ ker g = im f ,
so y′ − y = f(w) for some w ∈ A. But then α(w) = z′ − z, whence δ is well-defined. This
argument is presented, among other sources, in the opening scene of the 1980 film It’s My
Turn. It remains to prove the exactness of the claimed sequence. This diagram chase is left
as an exercise for the reader. �

To apply the Snake Lemma, we will need to find injective resolutions I′, I, and I′′ of M ,
N , and P , respectively, and chain maps ϕ and ψ extending ι and π, respectively, such that

0 → I ′,i
ϕi→ Ii

ψi→ I ′′,i → 0 is a short exact sequence for every i ≥ 0. This is a stronger claim
than we can get from Proposition 3.24 directly.

Lemma 3.27. Suppose that 0→M → N → P → 0 is a short exact sequence of G-modules.
Suppose that we are given embeddings ε′ : M ↪→ I ′ and ε′′ : P ↪→ I ′′, where I ′ and I ′′ are
injective objects. Then we can complete this picture to a commutative diagram

0 - M
ι
- N

π
- P - 0

0 .....................- I ′

ε′

?
.....................- I

ε

?

..................
.....................- I ′′

ε′′

?
....................- 0,

where I is injective, ε : N → I is an embedding, and the bottom row is a split short exact
sequence.

Proof. Let I = I ′ ⊕ I ′′; clearly this is an injective object. The maps on the bottom row will
be the standard embedding and projection. It remains to define ε. By injectivity of I ′ there
exists a map ϕ : N → I ′ such that ϕ ◦ ι = ε′. The diagram above already includes a map
from N to I ′′, and we take these to be the components of ε = (ϕ, ε′′ ◦ π). This works. �

Corollary 3.28. Suppose that 0 → M → N → P → 0 is a short exact sequence and
0 → M → I′ and 0 → P → I′′ are injective resolutions. These data can be extended to a
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commutative diagram

0 - M
ι
- N

π
- P - 0

0 ..................- (I0)′

ε′

?

.................
.................- I0

ε

?

.................
.................- (I0)′′

ε′′

?

.................
..................- 0

0 ..................- (I1)′
?

................
.................- I1

?

.................
.................- (I1)′′

?

................
..................- 0

...

?

..............
...

?

...............
...

?

..............

where the columns are injective resolutions and the rows are short exact sequences. Moreover,
all the rows, except for possibly the top one, are split.

Proof. We are given embeddings ε′ : M ↪→ (I0)′ and ε′′ : P ↪→ (I0)′′ of M and P into injective
objects. By the previous lemma we can fill in the second row of the diagram. Recalling that
the map ε factors through the inclusion (I0)′ → I0, we check that the cokernels naturally lie
in a short exact sequence

0→ coker ε′ → coker ε→ coker ε′′ → 0.

The injective resolutions we have been given provide for embeddings of coker ε′ and coker ε′′

into injective objects (I1)′ and (I1)′′, respectively. We apply the previous subclaim again and
continue forever. �

Remark 3.29. The proofs of Lemma 3.27 and Corollary 3.28 work in any abelian category
with enough injectives.

Proposition 3.30. Let 0→M
ι→ N

π→ P → 0 be a short exact sequence of G-modules. For
every i ≥ 0 there exists a map δi : H i(G,P ) → H i+1(G,M) satisfying the properties of a
cohomological δ-functor.

Proof. Fix injective resolutions 0 → M → I and 0 → P → K. Note that M = H0(I) and
P = H0(K). By Corollary 3.28 there is an injective resolution 0→ N → J and cochain maps

ϕ : I→ J and ψ : J→ K extending ι and π, respectively, such that 0→ Ii
ϕi→ J i

ψi→ Ki → 0
is a short exact sequence for every i ≥ 0. Moreover, by the construction in the proof of
Lemma 3.27 we can take this sequence to be split. Since left exact functors preserve split

short exact sequences (prove this!), the sequence 0 → (Ii)G
ϕi→ (J i)G

ψi→ (Ki)G → 0 is still
split for all i ≥ 0.
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For each X ∈ {I, J,K}, let diX : (Xi)G → (Xi+1)G be as in (1). Now we apply the Snake
Lemma to the diagram

coker di−1
I

ϕi
- coker di−1

J

ψi
- coker di−1

K
- 0

0 - ker di+1
I

∂iI

?
ϕi+1
- ker di+1

J

∂iJ

?
ψi+1
- ker di+1

K

∂iK

?

(6)

where ∂iX is induced from diX . The exactness of the rows can be verified as an easy exercise,
or, alternatively, by applying the Snake Lemma to the diagram

0 - (Ij)G
ϕj
- (J j)G

ψj
- (Kj)G - 0

0 - (Ij+1)G

djI

?
ϕj+1
- (J j+1)G

djJ

?
ψj+1
- (Kj+1)G

djK

?
- 0

for j ∈ {i− 1, i+ 1}. Note that ker ∂iI = H i(G,M) and coker ∂iI = H i+1(G,M), and similarly
for the other two columns of (6). Applying the Snake Lemma to (6) thus gives an exact
sequence

H i(G,M)→ H i(G,N)→ H i(G,P )
δi→ H i+1(G,M)→ H i+1(G,N)→ H i+1(G,P ),

where the unlabeled arrows arise from ι and π by the functoriality ofH i(G,−) andH i+1(G,−).
It remains to show that δi is itself functorial in the sense of the second part of Definition 3.1.
Given a morphism of short exact sequences

0 - M - N - P - 0

0 - M ′
?

- N ′
?

- P ′
?

- 0

we obtain the diagram

· · · - H i(G,N) - H i(G,P )
δi
- H i+1(G,M) - H i+1(G,N) - · · ·

· · · - H i(G,N ′)

?
- H i(G,P ′)

?
(δ′)i
- H i+1(G,M ′)

?
- H i+1(G,N ′)

?
- · · ·

in which all the unlabeled maps arise from the functors H i(G,−) and H i+1(G,−). In partic-
ular,, the squares on the left and right commute. We need to show that the central square
commutes. This is proved by following the definition of the connecting map δ in the proof of
the Snake Lemma and is left as an exercise. �
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Remark 3.31. A careful inspection of our arguments shows that the only property of the
G-invariants functor that figures in the proof that H i(G,−) indeed gives a δ-functor is that
M 7→ MG is left exact. Thus we can make the same construction for any left exact functor
F : A → B, where A and B are abelian categories and A has enough injectives. Indeed, if M
is an object of A, we can find a resolution by injective objects:

0→M → I0 ∂0→ I1 ∂1→ I2 · · ·

Applying F , we get a complex in B that need no longer be exact:

F(I0)
F(∂0)→ F(I1)

F(∂1)→ F(I2) · · ·

Note that kerF(∂0) = F(M). By the arguments above, the cohomology of this complex is
independent of the choice of injective resolution. We obtain the series of right derived functors
of F , given by

RiF(M) = (kerF(∂i))/(imF(∂i−1)).

Observe that R0F = F . The connecting maps to make this a δ-functor are obtained by a
Snake Lemma argument as above.

Exercises

(1) Prove that the G-invariants functor is left exact. In other words, given a short exact
sequence 0 → M → N → P → 0 of G-modules, show that 0 → MG → NG → PG is
an exact sequence.

Prove that the functor is not exact, i.e. that 0→MG → NG → PG → 0 need not
be an exact sequence.

(2) Let G be a profinite group, and let k be a field. Let Repk(G) be the category of all
k-vector spaces V such that V , viewed as an abelian group, is endowed with a G-
module structure that respects the k-linear structure: in other words, for every g ∈ G
the map v 7→ gv is a k-linear automorphism of V . The morphisms in this category are,
of course, k-linear G-equivariant maps. Let Veck be the category of k-vector spaces.
(a) Verify that the left exact functor (−)G : Repk(G) → Veck gives rise to right

derived functors H i
k(G,−).

(b) Let V ∈ Repk(G) be a two-dimensional representation of G. For any g ∈ G, let
ρ(g) ∈ Autk(V ) denote the map v 7→ gv. Suppose that V is reducible, i.e. it has
a G-invariant non-trivial proper subspace. Show that there exists a k-basis of V
with respect to which

ρ(g) =

(
χ1(g) c(g)

0 χ2(g)

)
for all g ∈ G, where χ1, χ2 : G → k× are group homomorphisms and c : G → k
is a function. Show that (g 7→ c(g)χ−1

2 (g)) ∈ Z1
k(G,χ1χ

−1
2 ). Here χ1χ

−1
2 denotes

a one-dimensional k-vector space with the G-action gv = χ1(g)χ−1
2 (g)v. Let

cV ∈ H1
k(G,χ1χ

−1
2 ) be the corresponding cohomology class.

(c) Show that V determines cV up to multiplication by a non-zero scalar in k. Con-
versely, show that every one-dimensional subspace of H1

k(G,χ1χ
−1
2 ) gives rise to

a two-dimensional representation V ∈ Repk(G) admitting a short exact sequence
0→ χ1 → V → χ2 → 0.
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(3) Prove that Z2(G,M) consists of locally constant functions ψ : G2 →M satisfying

ψ(g1, g2) + ψ(g1g2, g3) = ψ(g1, g2g3) + g1ψ(g2, g3)

for all g1, g2, g3 ∈ G. Show that ψ ∈ B2(G,M) if and only if there exists a function
ϕ : G→M such that ψ(g1, g2) = ϕ(g1)− ϕ(g1g2) + g1ϕ(g2) for all g1, g2 ∈ G.

(4) Let G be a profinite group and let A be a finite abelian group. An extension of G

by A is a short exact sequence 0 → A
ι→ E

π→ G → 0 of profinite groups, where
the maps are continuous group homomorphisms. (Beware that some authors call this
an extension of A by G). By abuse of notation, we will call the extension E. Let
u : G→ E be a continuous section of π, namely a continuous map (not necessarily a
homomorphism) such that π ◦ u is the identity on G; this exists by Proposition 1.15.
(a) For g ∈ G and a ∈ A, define ga = u(g)au(g)−1. Show that this action is

independent of the choice of u and endows A with a G-module structure.
(b) Let E be an extension as above. For all g1, g2 ∈ G, show that there exists

ψ(g1, g2) ∈ A such that ψu(g1, g2) = u(g1)u(g2)u(g1g2)−1. Show that the map
ψu : G×G→ A is a 2-cocycle, namely that it lies in Z2(G,A).

(c) Show that if we choose a different section u′ : G → E, then the 2-cocycles ψu
and ψu′ give rise to the same class in H2(G,A).

(d) Two extensions E1 and E2 are called congruent if there exists a continuous ho-
momorphism f : E1 → E2 such that the diagram

0 - A - E1
- G - 0

0 - A

=

?
- E2

f

?
- G

=

?
- 0

commutes. Prove that f is necessarily an isomorphism and that congruence of
extensions is an equivalence relation.

(e) Prove that congruent extensions E1 and E2 give rise to the same class inH2(G,A).
(f) Now, let A be a finite abelian group with a G-module structure, and let ψ ∈

Z2(G,A). Consider the set E = A × G with the product topology and the
multiplication

(a1, g1)(a2, g2) = (a1 + g1a2 + ψ(g1, g2), g1g2).

Show that this construction naturally produces an extension of G by A that
depends, up to congruence, only on the class [ψ] ∈ H2(G,A).

(g) Prove that the above gives a bijection between H2(G,A) and the set E(G,A) of
congruence classes of extensions of G by A. In particular, this endows E(G,A)
with the structure of an abelian group. Show that its identity element corresponds

to the trivial extension 0 → A → ι→ A × G π→ G → 0 with ι(a) = (a, eG) and
π(a, g) = g.

4. Restriction, Corestriction, and Inflation

Let G be a profinite group and H ⊂ G a closed subgroup. The “restriction of scalars”
functor ResGH : ModG → ModH is clearly an exact functor, and hence (H i(H,ResGH−), δi) is
a δ-functor.
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Definition 4.1. For any G-module M we have an embedding MG ↪→ MH . This gives
a natural transformation of functors H0(G,−) → H0(H,ResGH−). By the universality of
(H i(G,−)), we get natural transformations res : H i(G,−) → H i(H,ResGH−) for all i > 0 as
well. This is called restriction.

Lemma 4.2. Let H ⊂ G be an open subgroup. For each i > 0, the functor H i(H,ResGH−) is
effaceable.

Proof. Let M be a G-module. As we saw in the proof of Corollary 2.12, as an abelian group
M injects into a divisible group I. We concluded, using Frobenius reciprocity, that M injects,
as a G-module, into the injective G-module IndG{e}I. To establish our claim, it suffices to

show that ResGHIndG{e}I is an injective H-module. In the exercises for Section 2 we showed

that any restriction of an injective module is injective. Here we give a more direct proof.
Observe that ResGHIndG{e}I =

⊕
gH∈G/H ΦgH , where ΦgH is the abelian group of locally

constant functions gH → I; note that each ΦgH is stable under the H-action on ResGHIndG{e}I.

For each g ∈ G, there is an H-module isomorphism

ΦgH → IndH{e}I

f 7→ (h 7→ f(gh)).

Since IndH{e}I is an injective H-module by Corollary 2.11, and a direct sum of injective H-

modules is injective, we are done. �

Definition 4.3. Let H ⊂ G be an open subgroup and M a G-module. If m ∈ MH and
g ∈ G, then gm depends only on the left coset gH. Therefore, since H has finite index in G,
we have a map

MH → MG

m 7→
∑

gH∈G/H

gm.

It is simple to check that the right-hand side is indeed G-invariant. This is a natural
transformation trG/H : H0(H,ResGH−) → H0(G,−). Since (H i(H,ResGH−), δi) is a uni-
versal δ-functor by Lemma 3.9 and the previous lemma, we obtain a natural transformation
cor : H i(H,ResGH−)→ H i(G,−) for all i ≥ 0. This is called corestriction.

Lemma 4.4. Let H ⊂ G be an open subgroup and M a G-module. For any i ≥ 0, the
composition cor ◦ res : H i(G,M)→ H i(G,M) is multiplication by the index [G : H].

Proof. If m ∈ MG, then trG/H(m) =
∑

gH∈G/H gm =
∑

gH∈G/H m = [G : H]m, so the claim

is true if i = 0. It follows for i > 0 by universality. �

For any open subgroup H ⊂ G and any G-module M , consider the G-module map i :
M → IndGHM given by i(m) = (g 7→ gm); note that i(m) is locally constant because M is
a discrete G-module. Similarly, consider the trace map tr : IndGHM → M given by tr(f) =∑

Hg∈H\G g
−1f(g); one quickly checks that this is well-defined.



GROUP COHOMOLOGY 27

Lemma 4.5. Let H ⊂ G be an open subgroup and M a G-module. Then for each i ≥ 0 there
is a commutative diagram

H i(G,M)
i
- H i(G, IndGHM)

H i(H,M)

res

?

cor
-

∼
-

H i(G,M)

tr

?

where the diagonal isomorphism comes from Shapiro’s Lemma.

Proof. Since all the cohomology functors here are universal, it suffices to show that in the
case i = 0 our maps arise from a commutative diagram of natural transformations. This
is easily checked using the definitions above and the proof of Shapiro’s Lemma. The only
point that is not completely obvious is the bottom triangle: here one uses the observation
that if {g1, . . . , gr} is a system of coset representatives of G/H, then {g−1

1 , . . . , g−1
r } are coset

representatives of H\G. �

The construction of the restriction map can be generalized. Let f : G′ → G be a continuous
group homomorphism, and let M be a G-module. Then M can be given the structure of a
G′-module by g′ ·m = f(g′) ·m for all g′ ∈ G′ and m ∈ M . We denote this G′-module (why
is it discrete?) by f∗M . Observe that if H ⊂ G is a subgroup and f : H → G is the inclusion
map, then f∗M = ResGHM . Note that M 7→ f∗M is an exact functor, and clearly MG ⊂
(f∗M)G

′
, so by universality this inclusion gives rise to functors H i(G,M)→ H i(G′, f∗M) for

all i ≥ 0. Moreover, if h : f∗M → M ′ is a G′-module homomorphism, then we can consider
the composition

(f, h)∗ : H i(G,M)→ H i(G′, f∗M)→ H i(G′,M ′).

Definition 4.6. Let G be a profinite group and H �G a closed normal subgroup. Consider
the natural projection f : G → G/H, which is continuous by definition of the quotient
topology. Let M be a G-module. Then MH is a G-submodule (since for any g ∈ G, h ∈ H,
and m ∈MH we have h(gm) = g(g−1hg)m = gm). It has an obvious G/H-module structure.
The inclusion h : f∗MH →M is G-equivariant, and the map (f, h)∗ is called inflation:

inf : H i(G/H,MH)→ H i(G,M).

It is often very helpful to be able to compute explicitly with cocyles. Given a cocyle
ψ ∈ Zi(G,M), we denote its cohomology class by [ψ]. The following explicit description of
the action of the boundary map is useful.

Lemma 4.7. Let 0 → M
ι→ N

π→ P → 0 be a short exact sequence of G-modules. Let
ψ ∈ Zi(G,P ). The connecting map δi : H i(G,P )→ H i+1(G,M) sends [ψ] to the cohomology
class of η ∈ Zi+1(G,M), where η : Gi+1 →M is given by

η(g1, . . . , gi+1) = g1
˜ψ(g2, . . . , gi+1)− ˜ψ(g1g2, g3, . . . , gi+1) + ˜ψ(g1, g2g3, g4, . . . , gi+1) + · · ·+

(−1)i ˜ψ(g1, g2, . . . , gigi+1) + (−1)i+1 ˜ψ(g1, . . . , gi).

Here, for any p ∈ P , we denote by p̃ an arbitrary lift of p to N .



28 MICHAEL M. SCHEIN

Proof. This essentially follows from (5) and the proof of Proposition 3.30. However, some
care must be taken, since the resolutions

0→M → C0(G,M)→ C1(G,M)→ C2(G,M)→ · · ·
that we are using to compute cohomology need not be injective. Thus the machinery of
Section 3.4 does not immediately apply. We observe directly that the sequences

0→ Ci(G,M)→ Ci(G,N)→ Ci(G,P )→ 0,

where the maps are given by pre-composition with ι and π, are exact, although not necessarily
split. Moreover, after applying the G-invariants functor we are left with an exact sequence

0→ Ci(G,M)→ Ci(G,N)→ Ci(G,P )→ 0.

Now we may continue as in the proof of Proposition 3.30 and compute the connecting maps
δi by applying the Snake Lemma to the diagrams

0 - Ci(G,M) - Ci(G,N) - Ci(G,P ) - 0

0 - Ci+1(G,M)

di

?
- Ci+1(G,N)

di

?
- Ci+1(G,P )

di

?
- 0. �

It will also be useful to know how restriction and inflation act on cochains.

Lemma 4.8. Let G be a profinite group, and let H ⊂ G be a closed subgroup. Let M be a
G-module.

(1) Let ψ ∈ Zi(G,M). Then resGH([ψ]) = [ψ|Hi ].

(2) Suppose that H is normal. Let ψ ∈ Zi(G/H,MH). Then inf([ψ]) = [ψ̃], where

ψ̃ : Gi →M is the composition Gi � (G/H)i
ψ→M .

Proof. The claim holds trivially for i = 0. Since the formulas in our claim are compatible with
the boundary maps by Lemma 4.7, we obtain the claim in general by the universal property
used to define the restriction and inflation maps. �

Definition 4.9. Let G be a profinite group and let {Gi}i∈I be a projective system of finite
groups, with connecting homomorphisms ϕij : Gi → Gj for i ≥ j, such that G = lim←−Gi.
Suppose that for each i ∈ I we have a Gi-module Mi. Moreover, suppose that whenever
i ≥ j, we have a Gi-module homomorphism hij : ϕ∗ijMj → Mi. Then we can define a G-

module structure on the direct limit M = lim−→Mi: if g = (gi) ∈ G and m = (mi) ∈ M , we

define gm = (gimi) ∈M . (Why is this a discrete G-module?)

Proposition 4.10. Let G = lim←−Gi be a profinite group, and let {Mi} be a system of Gi-
modules as above. Then

Hk(G,M) ' lim−→Hk(Gi,Mi)

for all k ≥ 0. The connecting homomorphisms on the right-hand side are the maps (ϕij , hij)
∗.

Proof. If πi : G → Gi are the natural projections, then the maps (πi : Mi → M)∗ :
Hk(Gi,Mi) → Hk(G,M) are clearly compatible with the (ϕij , hij)

∗, so by the universal

property of direct limits we get a map lim−→Hk(Gi,Mi) → Hk(G,M). We claim that it is
an isomorphism. This can be established by checking on cocycles: it is easy to show that
Ck(G,M) ' lim−→Ck(Gi,Mi). �
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Remark 4.11. The previous proposition does not assume that the Gi are finite groups. Indeed,
if Gi = G for all i, and all the homomorphisms ϕij are identities, then we clearly have
G = lim←−Gi and the proposition states that cohomology commutes with direct limits:

Hk(G, lim−→Mi) = lim−→Hk(G,Mi).

Corollary 4.12. Let K be a field, and let its absolute Galois group GK = Gal(K/K) act on

K
×

in the natural way. Then H1(GK ,K
×

) = 0.

Proof. This is immediate from Proposition 4.10 and Hilbert 90. �

Corollary 4.13. Let G be a profinite group, and let M be a Q-vector space with a G-module
structure. Then H i(G,M) = 0 for all i > 0.

Proof. Let {Hj}j∈J be the family of open normal subgroups of G, ordered by reverse in-

clusion. Since M =
⋃
j∈JM

Hj , it is easy to see that M = lim−→MHj , where the con-

necting homomorphisms are the inclusions MHj ⊂ MHk for j ≤ k, i.e. Hk ⊆ Hj . Thus
H i(G,M) = lim−→H i(G/Hj ,M

Hj ) by Proposition 4.10. Since the MHj are all Q-vector spaces,
it suffices to prove our claim in the case where G is a finite group.

So let G be finite. In this case, {e} ⊂ G is an open subgroup, so by Lemma 4.4 the
composition

H i(G,M)
res→ H i({e},ResG{e}M)

cor→ H i(G,M)

is multiplication by |G|. On the other hand, this composition is the zero map, since we have
H i({e},ResG{e}M) = 0 for i > 0 by Lemma 3.12. Since H i(G,M) is naturally a Q-vector

space (the spaces of cochains are, and the boundary maps commute with the Q-vector space
structure), it follows that H i(G,M) = 0. �

Definition 4.14. A G-module M is said to be a torsion module if every element of m is
annihilated by some integer.

Lemma 4.15. Let G be a profinite group. Suppose there exists i ≥ 1 such that H i(G,M) = 0
for all G-modules M of finite cardinality. Then Hj(G,M) = 0 for all j ≥ i and for all torsion
G-modules M .

Proof. First we prove the claim in the case j = i. Observe that every element m of a
torsion G-module M is contained in a finite G-module. Indeed, since stabG(m) has finite
index in G, the G-orbit of m has only finitely many elements, say m1, . . . ,mr. The subgroup
〈m1, . . . ,mr〉 of the abelian group M is thus finite, and it is clearly stable under the G-
action. Now let {Mk}k∈K be the family of finite G-submodules of M , ordered by inclusion
and with the natural inclusions as the connecting homomorphisms. By the considerations
above we have M = lim−→Mk. By Proposition 4.10 (note the remark following it) we have

H i(G,M) = lim−→H i(G,Mk) = 0.
Now suppose that the claim is known for j − 1. We will prove it for j by a “dimension

shifting” argument. For brevity, we will write IndG{e}M for IndG{e}ResG{e}M . Observe that this

is a torsion G-module. Indeed, every element is a locally constant function f : G→M . Since
G is compact, the function f only takes on finitely many values, so there is an integer that
annihilates all of them. There is a natural injection ε : M → IndG{e}M , where ε(m) is the

function g 7→ gm. Let Q be the cokernel; it is a quotient of a torsion module and thus is a
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torsion module itself. The short exact sequence 0 → M → IndG{e}M → Q → 0 gives rise to

the following bit of the long exact sequence:

· · · → Hj−1(G, IndG{e}M)→ Hj−1(G,Q)→ Hj(G,M)→ Hj(G, IndG{e}M)→ · · ·

Since Hj−1(G,Q) = 0 by the inductive hypothesis and Hj(G, IndG{e}M) = 0 by Shapiro’s

Lemma, we conclude that Hj(G,M) = 0. �

Our next goal is to prove the “inflation-restriction exact sequence”: if G is a profinite
group, H � G is a normal subgroup, and M is a G-module, then the following sequence is
exact:

0→ H1(G/H,MH)
inf→ H1(G,M)

res→ H1(H,ResGHM)G/H → H2(G/H,MH)
inf→ H2(G,M).

Here the action of G on H1(H,ResGHM) is the one arising naturally from the G-action on
cocycles, and the unlabelled map has yet to be defined. The desired result could be proven by
direct computations on cocycles; while long and unpleasant, such a proof would still be shorter
than the one we will give. However, we will take the opportunity to develop the machinery of
spectral sequences in the next section. This is a tool for computing cohomology that turns out
to be ubiquitous in number theory and algebraic geometry. The inflation-restriction sequence
will turn out to be a special case of a very general phenomenon.

Exercises

(1) A triple (x, y, z) ∈ Z3 is called a Pythagorean triple if x2 +y2 = z2. It has been known
since ancient times that (x, y, z) is a Pythagorean triple if and only if it is proportional
to (m2 − n2, 2mn,m2 + n2) for some integers m,n. It was observed by N. Elkies that
this fact can be deduced straightforwardly from Hilbert 90. Do it.

Hint : Let (x, y, z) be a Pythagorean triple such that z 6= 0. Consider the element
x+y
√
−1

z ∈ Q(
√
−1).

(2) Generalize your solution to the preceding exercise to obtain a parametrization of all
solutions (x, y, z) to the Diophantine equation x2 +axy+ by2 = z2, where a, b ∈ Z are
such that a2 − 4b is not a perfect square.

(3) Let K be a field of characteristic prime to n ≥ 1. Let µn ⊂ K
×

be the subgroup of
n-th roots of unity; clearly it is preserved by the action of the absolute Galois group
GK . Prove that H1(GK , µn) ' K×/(K×)n.

(4) Let G be a finite group and let M be a G-module. Show that, for any i ≥ 0 and any
c ∈ H i(G,M), the equality |G|c = 0 holds.

(5) Let G be a finite group and let M be a G-module which is finitely generated as an
abelian group. Prove that H i(G,M) is finite.

5. Spectral sequences

5.1. Basic definitions. The goal of this section is to understand the Hochschild-Serre spec-
tral sequence, which is an important tool for computing cohomology. We start off with a
general treatment of spectral sequences. The underlying theory is not complicated, once one
sees past all the cluttered diagrams. Let R be a ring.

Definition 5.1. (1) A bigraded R-module E is a family of R-modules {Ep,q : p, q ∈ Z}.
(2) A differential d : E → E of degree (r, s) is a family of R-module homomorphisms

d : Ep,q → Ep+r,q+s such that d ◦ d = 0.
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Definition 5.2. A spectral sequence is a sequence {Er}r≥t, for some integer t, of bigraded
R-modules Er = (Ep,qr ) equipped with differentials dr : Er → Er of degree (r, 1−r) such that,
for every p, q ∈ Z and every integer r ≥ r0, the following holds:

Ep,qr+1 ' ker(dr : Ep,qr → Ep+r,q−r+1
r )/im(dr : Ep−r,q+r−1

r → Ep,qr ). (7)

The spectral sequence is called positive if Ep,qr = 0 whenever p < 0 or q < 0. Most of the
interesting applications of spectral sequences happen in the case t = 2, and we will assume
this from now on, except in Example 5.6 below.

From now on, all our spectral sequences will be assumed to be positive. The bigraded
modules Er are called sheets of the spectral sequence. For a fixed r, think of the modules
Ep,qr as lattice points on the plane. Then the differential maps are slanted arrows that form
complexes which run in slanted lines across the plane. The (co)homology of these complexes
computes the modules Ep,qr+1 of the following sheet.

The terms of the form Ep,0r and E0,q
r are called base terms and fiber terms, respectively.

Lemma 5.3. Let {Er} be a positive spectral sequence. Fix p, q ∈ N, and let r0 = max{p, q +
1}+ 1. Then Ep,qr ' Ep,qr0 for all r ≥ r0.

Proof. If r ≥ r0, then Ep+r,q−r+1
r and Ep−r,q+r−1

r both vanish. The claim is then immediate
from (7). �

Definition 5.4. A filtered R-module is an R-module A together with a family of submodules

A = F 0A ⊇ F 1A ⊇ F 2A ⊇ · · ·
We will assume throughout that

⋂∞
i=0 F

iA = 0. The graded pieces are the quotients griA =
F iA/F i+1A.

Definition 5.5. Let {Ep,qr } be a spectral sequence.

(1) For any p, q ∈ N, we define Ep,q∞ = Ep,qr0 , in the notation of Lemma 5.3.
(2) We say that the spectral sequence {Ep,qr } converges to or abuts to the family {An}n∈N

of filtered modules if Ep,q∞ ' grpAp+q for all p, q ∈ N. In this case, one writes Ep,qr ⇒ An

or Ep,q2 ⇒ An.

Example 5.6. As our simplest example of a spectral sequence, let C0 ∂0→ C1 ∂1→ · · · be
a cochain complex. Define Ep,q1 = Cp whenever p and q are both non-negative, and set

d1 : Ep,q1 → Ep+1,q
1 to be ∂p. Then (7) forces Ep,q2 = Hp(C). The only natural choice for the

differential is the zero map. Thus we get Ep,q∞ = Ep,q2 = Hp(C) for all p, q. If for all n we
define Hn =

⊕∞
i=0H

i(C), with the grading F jHn =
⊕∞

i=j H
i(C), then clearly Ep,q1 ⇒ Hn.

While this example is silly, it already suggests that spectral sequences could be useful for
computing cohomology.

5.2. The five-term exact sequence. In this section we derive a general five-term exact
sequence associated to any positive spectral sequence. The inflation-restriction sequence will
be the special case of this result for the Hochschild-Serre spectral sequence.

Lemma 5.7. Let {Ep,qr } ⇒ An be a spectral sequence. For each n ≥ 1 there is a natural

injection eB : En,0∞ ↪→ An and a natural surjection eF : An � E0,n
∞ . Moreover, in the case

n = 1 the sequence

E1,0
∞

eB→ A1 eF→ E0,1
∞

is exact.
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Proof. Observe by the definition of abutment that if m > n, then grmAn ' Em,n−m∞ = 0,
since our spectral sequences are positive. Since

⋂
i F

iAn = 0, this implies that Fn+1An = 0,

and hence that grnAn = FnAn is a submodule of An. Since En,0∞ ' grnAn, this provides our
injection.

Similarly, E0,n
∞ ' gr0An = An/F 1An. Since this is a quotient of An, we obtain the desired

surjection. It follows from the above that ker eF = F 1An for all n, whereas im eB = FnAn,
and hence we get exactness when n = 1. �

Lemma 5.8. Let {Ep,qr } be a spectral sequence. Then for all n ≥ 1 there is a natural surjection

En,02 � En,0∞ and injection E0,n
∞ ↪→ E0,n

2 .

Proof. This is immediate from (7). Indeed, for every r ≥ 2 we have En+r,−r+1
r = 0 by

positivity, whence En,0r+1 = En,0r /im(dr : En−r,r−1
r → En,0r ) is a quotient of En,0r . By induction,

every En,0r is thus naturally a quotient of En,02 .

Similarly, E0,n
r+1 = ker(dr : E0,n

r → Er,n−r+1
r ) ⊆ E0,n

r for every r ≥ 1, and hence E0,n
r ⊆ E0,n

2
for every r ≥ 2. �

Definition 5.9. The compositions of the maps from Lemmas 5.7 and 5.8 provide maps
En,02 → An and An → E0,n

2 , which we abusively call eB and eF , respectively. Note that these
maps are not necessarily injective or surjective.

Definition 5.10. Let n ≥ 1. The spectral sequence {Ep,qr } is said to satisfy condition (∗)n if
Ep,q2 = 0 for all pairs p, q such that 1 ≤ q ≤ n− 1 and p+ q ∈ {n− 1, n, n+ 1}. Observe that
the condition (∗)1 is vacuous and thus is satisfied by all spectral sequences.

Remark 5.11. Observe that if condition (∗)n holds, then for all 2 ≤ r ≤ n we have Er,n−r+1
2 =

0, and hence Er,n−r+1
r = 0 by (7). This implies that the inclusions E0,n

n+1 ⊆ E
0,n
n ⊆ · · · ⊆ E0,n

2

of Lemma 5.8 are isomorphisms. Similarly, we have E
(n+1)−r,r−1
2 = 0 for all 2 ≤ r ≤ n, and

thus the projections En+1,0
2 � En+1,0

3 � · · ·� En+1,0
n+1 are also all isomorphisms. This means

that, for all n ≥ 1, we may consider the composition

E0,n
2 ' E0,n

n+1

dn+1→ En+1,0
n+1 ' En+1,0

2 ,

which is called the transgression map and will be denoted dn+1.

We finally have all the necessary ingredients to establish the “five-term exact sequences”
associated to the spectral sequence {Ep,qr }.
Proposition 5.12. Let {Ep,qr ⇒ An} be a spectral sequence satisfying condition (∗)n for some
n ≥ 1. Then there is an exact sequence

0→ En,02
eB→ An

eF→ E0,n
2

dn+1→ En+1,0
2

eB→ An+1.

Proof. We successively verify exactness at each node.
Exactness at En,02 : We need to show that eB : En,02 → An is injective. Since En,0n+1 =

En,0∞ → An is injective by Lemma 5.8, it suffices to show that the maps En,0r � En,0r+1 are

injective, hence isomorphisms, for all 2 ≤ r ≤ n. Now by (7) we have ker(En,0r → En,0r+1) =

im(dr : En−r,r−1
r → En,0r ) = 0 for each 2 ≤ r ≤ n, since En−r,r−1

r = 0 by condition (∗)n.
Exactness at An: In view of the injectivity of eB and the end of the proof of Lemma 5.7, we

find that im eB = FnAn, whereas ker eF = F 1An. However, these are equal, since condition

(∗)n implies that for all 1 ≤ i ≤ n− 1 we have griAn = Ei,n−i∞ = 0.
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Exactness at E0,n
2 : Observe by Lemma 5.3 that E0,n

∞ = E0,n
n+2 and An → E0,n

∞ is surjective.

Thus im eF = im(E0,n
n+2 ↪→ E0,n

n+1) = ker(dn+1 : E0,n
n+1 → En+1,0

n+1 ), which implies exactness by
the definition of the transgression map.

Exactness at En+1,0
2 : Again by Lemma 5.3, we see that En+1,0

n+2 = En+1,0
∞ injects into An+1,

and hence that ker eB = ker(En+1,0
n+1 � En+1,0

n+2 ) = im(dn+1 : E0,n
n+1 → En+1,0

n+1 ), which is what
we need by the definition of the transgression map. �

Corollary 5.13. Let Ep,qr ⇒ An be any positive spectral sequence. Then there is an exact
sequence

0→ E1,0
2

eB→ A1 eF→ E0,1
2

d2→ E2,0
2

eB→ A2.

Proof. As noted above, the condition (∗)1 is vacuous. �

5.3. Double complexes. So far the only example we have seen of a spectral sequence is the
trivial one in Example 5.6. In this section we will study a general construction that produces
many useful examples of spectral sequences.

Definition 5.14. A filtered complex is a complex C0 ∂0→ C1 ∂1→ · · · of filtered modules whose
filtrations are compatible with the boundary maps. In other words, for every i, j, we have
∂i(F jCi) ⊆ F jCi+1.

A filtration of a complex induces a filtration on its cohomology. Indeed, for every i, j ≥ 0
we may define F jH i(C) = im (H i(F jC) → H i(C)), where the maps whose image we are
considering is the one induced by the natural inclusion of complexes F jC ↪→ C. The family
of filtered modules {H i(C)} will be denoted H(C).

For every r ∈ Z, we set Zp,qr = {x ∈ F pCp+q : ∂p+q(x) ∈ F p+rCp+q+1}. Similarly, set

Bp,q
r = ∂p+q−1Zp−r+1,q+r−2

r−1 = ∂p+q−1F p−r+1Cp+q−1 ∩ F pCp+q, the second equality following

immediately from the definition. Observe that Bp,q
r ⊆ Zp,qr , since the composition of two

boundary maps is zero. Similarly, note that Zp+1,q−1
r−1 ⊆ Zp,qr . Now set

Ep,qr = Zp,qr /(Bp,q
r + Zp+1,q−1

r−1 ). (8)

Proposition 5.15. Let C be a filtered complex as above.

(1) There exists a spectral sequence, with Ep,qr defined as in (8) and differentials induced
by the boundary maps of C.

(2) If the filtration of each Ci is bounded, so that there exists some j such that F jCi = 0
(we allow j to depend on i), then Ep,qr ⇒ H(C).

Proof. The definitions of Zp,qr and Ep,qr are exactly the ones needed to make this claim work.
Since ∂p+qZp,qr ⊆ Zp+r,q−r+1

r by definition, the boundary map ∂p+q clearly induces a map
dr : Ep,qr → Ep+r,q−r+1

r , and the composition of two such maps is zero.
Again by definition, im(∂p+q−1 : Zp−r,q+r−1

r → Zp,qr ) = Bp,q
r+1. Observing that Bp,q

r ⊆ Bp,q
r+1,

we conclude that

im (dr : Ep−r,q+r−1
r → Ep,qr ) = (Bp,q

r+1 + Zp+1,q−1
r−1 )/(Bp,q

r + Zp+1,q−1
r−1 ).

Furthermore, for x ∈ Zp,qr , we have ∂p+q(x) ∈ Zp+r+1,q−r
r if and only if ∂p+q(x) ∈

F p+r+1Cp+q+1, which is equivalent to x ∈ Zp,qr+1. Also, Bp+r,q−r+1
r = ∂p+q(Zp+1,q−1

r−1 ). Thus,

∂p+q(x) ∈ Bp+r,q−r+1
r implies x ∈ Zp+1,q−1

r−1 + ker ∂p+q.

Hence, ker(dr : Ep,qr → Ep+r,q−r+1
r ) = (Zp,qr+1 + Zp+1,q−1

r−1 )/(Bp,q
r + Zp+1,q−1

r−1 ).
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Therefore, ker(dr : Ep,qr → Ep+r,q−r+1
r )/im (dr : Ep−r,q+r−1

r → Ep,qr ) ' Ep,qr+1, as claimed.
To prove the second part of the proposition, let p, q be fixed. For sufficiently large r, we have

that F p+rCp+q+1 = 0, and hence Zp,qr = {x ∈ F pCp+q : ∂p+q(x) = 0}. But for sufficiently
large r we have F p−r+1Cp+q−1 = Cp+q−1 and hence Bp,q

r = ∂p+q−1Cp+q−1∩F pCp+q. It follows
that Ep,q∞ is exactly im (Hp+q(F pC)→ Hp+q(C))/im (Hp+q(F p+1C)→ Hp+q(C)). �

Definition 5.16. A double complex is a family K = {Kp,q} of R-modules, where the indices
p and q run over the natural numbers, equipped with horizontal and vertical differential maps

∂′ : Kp,q → Kp+1,q

∂′′ : Kp,q → Kp,q+1

such that ∂′ ◦ ∂′ = 0, ∂′′ ◦ ∂′′ = 0, and ∂′ ◦ ∂′′ + ∂′′ ◦ ∂′ = 0.

Observe that a double complex is not a commutative diagram, since the squares

Kp,q ∂′
- Kp+1,q

Kp,q+1

∂′′

?
∂′
- Kp+1,q+1

∂′′

?

anti-commute. Moreover, it is conventional to refer to the maps ∂′ and ∂′′ as horizontal and
vertical, respectively, so one visualizes Kp,q as lying in the q-th row and p-th column of the
double complex. Given a double complex as in Definition 5.16, we define a (usual) cochain
complex C as follows: for each i ≥ 0 set

Ci =
⊕
p+q=i

Kp,q (9)

and define the boundary maps ∂i : Ci → Ci+1 by ∂i = ∂′ + ∂′′. It is simple to check that
∂i+1 ◦ ∂i = 0 for all i ≥ 0; this is the reason for the condition ∂′ ◦ ∂′′ + ∂′′ ◦ ∂′ = 0 in the
definition of double complexes. The complex C is called the total complex of K and is often
denoted Tot K in the literature.

We give C the structure of a filtered complex in two different ways. Define two filtrations

′F jCi =
⊕
p+q=i
p≥j

Kp,q

′′F jCi =
⊕
p+q=i
q≥j

Kp,q

Both filtrations are compatible with the boundary maps and are obviously bounded. By
Proposition 5.15 we get two spectral sequences, {′Ep,qr } and {′′Ep,qr }, that both abut to the
family H(C), although with different filtrations on H(C).

We now investigate the terms of these sequences. For any element x ∈ A of a filtered module
A with bounded filtration, let deg(x) = max{p : x ∈ F pA}. Considering the filtrations ′F jCi,
observe that if x ∈ Ci, then deg(∂′(x)) = deg(x) + 1, whereas deg(∂′′(x)) = deg(x). It follows
that

′Zp,q1 = ker(∂′′ : Kp,q → Kp,q+1)⊕ ′F p+1Cp+q,
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whereas ′Bp,q
1 = ∂′F pCp+q−1 ∩ ′F pCp+q = ∂′F pCp+q−1. Now ′Zp+1,q−1

0 = ′F p+1Cp+q by
definition, and ∂′(′F pCp+q−1) ⊂ ′F p+1Cp+q, so

′Bp,q
1 + ′Zp+1,q−1

0 = im (∂′′ : Kp,q−1 → Kp,q)⊕ ′F p+1Cp+q.

We conclude that

′Ep,q1 = ker(∂′′ : Kp,q → Kp,q+1)/im (∂′′ : Kp,q−1 → Kp,q),

Thus the spectral sequence {′Ep,q1 } computes the cohomology of the columns of the double

complex {Kp,q}. Precisely, ′Ep,q1 = Hq(Kp,•), where Kp,• is the cochain complex Kp,0 ∂′′→
Kp,1 ∂′′→ Kp,2 → · · · .

Similarly, by definition we have

′′Zp,q1 = ker(∂′ : Kq,p → Kq+1,p)⊕ ′′F p+1Cp+q.

By an analogous argument to the one just above, we conclude that

′′Ep,q1 = ker(∂′ : Kq,p → Kq+1,p)/im (∂′ : Kq−1,p → Kq,p) = Hq(K•,p) (10)

computes the cohomology of the rows of the original double complex.
Such a setup is very useful, since often one can arrange a double complex for which one of

these two spectral sequences is of independent interest, whereas the other one is less interesting
but has a readily computable limit. The prime example of such a situation is described in
the following section.

5.4. Grothendieck’s theorem. Recall, from Remark 3.31, the right derived functors RiF
of a left exact functor F : A → B, where A and B are abelian categories and A has enough
injectives.

Definition 5.17. Let G : B → C be a left exact functor between two abelian categories,
where B has enough injectives. An object B ∈ Ob(B) is said to be G-acyclic if RiG(B) = 0
for all i > 0.

Theorem 5.18 (Grothendieck). Let A,B, and C be abelian categories, and suppose that A
and B have enough injectives. Let F : A → B and G : B → C be additive left exact functors,
and suppose that F takes injective objects of A to G-acyclic objects of B. Then for each object
A ∈ Ob(A) there exists a spectral sequence

Ep,q2 = (RpG ◦RqF)(A)⇒ Rp+q(G ◦ F)(A).

Proof. Let A be an object of A, and let A → I0 → I1 → I2 → · · · be a resolution of A by
injective objects. This exists because A has enough injectives. We denote it by I. Suppose
we can construct a “resolution of the resolution F(I),” namely a commutative diagram of
objects of B as follows, in which each row is a cochain complex (i.e. the composition of two
consecutive maps is zero) and for each p ≥ 0, the p-th column is an injective resolution of
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F(Ip):

F(I0) - F(I1) - F(I2) - · · ·

J0,0
?

∩

- J1,0
?

∩

- J2,0
?

∩

- · · ·

J0,1
?

- J1,1
?

- J2,1
?

- · · ·

J0,2
?

- J1,2
?

- J2,2
?

- · · ·

...

?
...

?
...

?

A minor annoyance is that this diagram is not a double complex, since the squares are
commutative rather than anti-commutative. We remedy this by changing the sign of the ver-
tical arrows in every other column, i.e. by replacing d′ : Jp,q → Jp,q+1 with (−1)pd′. Clearly
the columns remain injective resolutions. Now apply G to this diagram, to produce a double
complex of objects of C. We write Kp,q for G(Jp,q). Since the F(Ip) are G-acyclic by assump-
tion, the columns of the double complex {Kp,q} remain exact. In particular, considering the
two spectral sequences associated to this double complex, we find that ′Ep,q1 = Hq(Kp,•) = 0

whenever q > 0, whereas ′Ep,01 = G(F(Ip)). Thus the differential maps d1 : ′Ep,q1 → ′Ep+1,q
1

induce

′Ep,q2 =

{
Rp(G ◦ F)(A) : q = 0

0 : q > 0.

Since the differentials of ′E2 connect objects in different rows of the sheet, it is clear that they
are all zero maps. Hence ′Ep,q∞ = ′Ep,q2 for all p, q. Thus, for every p ≥ 0 we see that Hp(C)
has only one non-zero graded piece, where C is the filtered complex defined as in (9) from
the double complex {Kp,q}. We conclude for all p that

Hp(C) = Rp(G ◦ F)(A). (11)

To compute the left-hand side of this equation in a different way, we will use the second
spectral sequence associated to the double complex K. It is determined by the cohomology
of the rows of K, over which we don’t have much control in the generality in which we have
worked so far in this proof. We will need to construct the diagram of resolutions {Jp,q} in
a rather specific way. Thereby we will also prove that such diagrams exist; recall that their
existence was only assumed above.
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We started with an injective resolution 0→ A→ I of A ∈ Ob(A) and applied the functor
F to it to obtain a complex

0→ F(A)→F(I0)
d0→ F(I1)

d1→ · · ·
Defining Bi = im di−1 and Zi = ker di for each i ≥ 0, we refine this sequence to a sequence

Z0 ↪→ F(I0) � B1 ↪→ Z1 ↪→ F(I1) � B2 ↪→ Z2 ↪→ F(I2) · · ·
which, by construction, is exact at each F(Ii). We wish to construct a commutative diagram
of the form

Z0 ⊂ - F(I0) -- B1 ⊂ - Z1 ⊂ - F(I1) -- · · ·

L0,0
?

∩

⊂ - J0,0
?

∩

-- N1,0
?

∩

⊂ - L1,0
?

∩

⊂ - J1,0
?

∩

-- · · ·

L0,1
?
⊂ - J0,1

?
-- N1,1

?
⊂ - L1,1

?
⊂ - J1,1

?
-- · · ·

...

?
...

?
...

?
...

?
...

?

whose columns are injective resolutions and whose rows are exact at each Jp,q. Note that
the rows will not in general be complexes, i.e. the composition of two consecutive horizontal
arrows need not be zero. Choosing arbitrary injective resolutions of Z0 = F(A) and of B1,
which exist since B has enough injectives, we obtain the first three columns by applying
Corollary 3.28 to the short exact sequence 0→ Z0 → F(I0)→ B1 → 0. Choose an arbitrary
injective resolution of Z1/B1 and apply Corollary 3.28 to the sequence 0 → B1 → Z1 →
Z1/B1 → 0 to get a resolution L1,• of Z1; observe that the maps N1,q → L1,q are injective as
desired. Choose an arbitrary injective resolution of B2 and apply Corollary 3.28 to the short
exact sequence 0→ Z1 → F(I1)→ B2 → 0 to finish the next three columns of our diagram,
with exactness at each J1,q. Continue forever. By construction, the horizontal segments
0→ Lp,q → Jp,q → Np,q → 0 are split short exact sequences for every pair (p, q).

Remark 5.19. A consequence of our construction is the following. For each p > 0, we applied
Corollary 3.28 to 0 → Bp → Zp → Zp/Bp → 0. At that point, the injective resolution
0 → Bp → Np,• had already been chosen, and we chose an arbitrary injective resolution
0 → Zp/Bp →Mp,• and obtained an injective resolution 0 → Zp → Lp,• such that the rows
0→ Np,q → Lp,q →Mp,q → 0 are split short exact sequences. In particular, Mp,q ' Lp,q/Np,q

and thus
Zp/Bp ↪→ Lp,0/Np,0 → Lp,1/Np,1 → Lp,2/Np,2 → · · ·

is an injective resolution. Observe also that Zp/Bp = RpF(A) by the construction of
right derived functors. Thus the q-th cohomology of the complex G(Lp,•/Np,•) computes
RqG(RpF(A)).
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Consider the commutative diagram {Jp,q} obtained from the previous construction by
deleting two out of every three columns. We apply G to it and flip the sign of the vertical
maps in the odd-numbered columns as above to obtain a double complex

G(F(I0)) - G(F(I1)) - G(F(I2)) - · · ·

K0,0
?

∩

- K1,0
?

∩

- K2,0
?

∩

- · · ·

K0,1
?

- K1,1
?

- K2,1
?

- · · ·

...

?
...

?
...

?

where Kp,q = G(Jp,q). The analysis of ′Ep,q2 given above applies to this double complex. Now
we consider the second associated spectral sequence ′′Ep,qr .

Since all the Np,q are injective, it is possible to complete each triangle

Np,q ⊂ - Lp,q

Np,q

id

?�...
....

....
....

....
....

....
....

The triangles are preserved after applying G. It follows that the maps G(Np,q) → G(Lp,q)
are all injections, and similarly for the maps G(Lp,q)→ G(Jp,q) = Kp,q. By construction, we
have Jp,q = Lp,q ⊕Np,q, so the maps Jp,q � Np+1,q have sections, and thus the maps Kp,q →
G(Np+1,q) are surjective. Finally, applying the left exact functor G to the short exact sequence
0→ Lp,q → Jp,q → Np+1,q → 0, we find that ker(Kp,q → G(Np+1,q)) = im (G(Lp,q)→ Kp,q).

In particular, the kernel of the horizontal map ∂′ : Kq,p → Kq+1,p is G(Lq,p), and its
image is G(N q+1,p). The second spectral sequence of the double complex K computes the
cohomology of the rows. It follows from (10) that

′′Ep,q1 = G(Lq,p)/G(N q,p) = G(Lq,p/N q,p),

where the second equality follows from G preserving split short exact sequences and N0,p = 0.
The differential d1 : ′′Ep,q1 → ′′Ep+1,q

1 is induced by the vertical map Lq,p → Lq,p+1. Thus it
follows from Remark 5.19 that

′′Ep,q2 = RpG(Zq/Bq) = RpG(RqF(A)).

We know that ′′Ep,q∞ = F pHp+q(Tot K), for a suitable filtration of Hp+q(Tot K). We deter-
mined in (11) that Hp+q(Tot K) = Rp+q(G ◦F)(A). Hence RpG(RqF(A))⇒ Rp+q(G ◦F)(A),
as claimed. �
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5.5. The Hochschild-Serre spectral sequence. Having developed the tools we need from
the theory of spectral sequences, we can finally specialize them to the study of G-modules.

Let G be a profinite group and H � G a normal subgroup. We apply Grothendieck’s
Theorem 5.18 to the following situation. Let F : ModG → ModG/H be the functor sending

a G-module M to the submodule MH , with the obvious G/H-module structure. Let G :

ModG/H → Ab be the functor M 7→ MG/H . Both of these functors are left exact, and the

corresponding right derived functors are RpF = Hp(H,ResGH−) and RqG = Hq(G/H,−).
Both ModG and ModG/H have enough injectives.

Thus, to verify the hypotheses of Theorem 5.18 it remains to show that, for every injective
G-module I, the G/H-module IH is G-acyclic. We claim that if IH is, in fact, an injective
G/H-module. Indeed, if we are given a diagram

M ⊂ - N

IH
?

of G/H-modules, we can consider it as a diagram of G-modules via the natural projection
π : G→ G/H:

π×M ⊂ - π×N

IH ⊂ I
?�...

....
....

....
....

....
....

...

By injectivity of I, we can fill in the dotted G-module map N → I. Since H acts trivially
on N , the image of this map is contained in IH .

Definition 5.20. Let G be a profinite group and H � G a normal subgroup. In view of
the preceding discussion, for every G-module M Theorem 5.18 provides us with an explicit
spectral sequence

Hp(G/H,Hq(H,ResGHM))⇒ Hp+q(G,M).

Thus is called the (Lyndon)-Hochschild-Serre spectral sequence.

Theorem 5.21. Let G be a profinite group, let H � G be a normal subgroup, and let M be
a G-module. The following sequence is exact:

0→ H1(G/H,MH)
inf→ H1(G,M)

res→ H1(H,ResGHM)G/H → H2(G/H,MH)
inf→ H2(G,M).

Proof. We apply Corollary 5.13 to the Hochschild-Serre spectral sequence. It remains to check
that the maps induced by the spectral sequence are indeed inflation and restriction. �

Corollary 5.22. Let G be a profinite group, let H �G be a normal subgroup, and let M be a
G-module. Suppose that H i(H,ResGHM) = 0 for all i > 0. Then H i(G/H,MH) ' H i(G,M)
for all i > 0.

Proof. If i = 1 this is immediate from the inflation-restriction sequence. Otherwise, our
hypothesis implies that the Hochschild-Serre spectral sequence for M satisfies condition (∗)n
for all n ≥ 1. �
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Exercises

(1) Prove Theorem 5.21 (the inflation-restriction sequence) directly, without using spec-
tral sequences.

(2) Let X be a topological space. Recall that a presheaf F on X consists of the following
data:
• For every open set U ⊂ X, a set F(U), called the set of sections;
• For every inclusion V ⊂ U of open sets, a restriction map resFU,V : F(U)→ F(V )

such that resFU,U : F(U)→ F(U) is the identity and resFV,W ◦ resFU,V = resFU,W for
W ⊂ V ⊂ U .

Often F(U) is the collection of functions with suitable properties defined on U . If
s ∈ F(U), we write s|V for resFU,V (s) by analogy with restriction of functions. A
presheaf F is called a sheaf if it satisfies two additional properties:
• (Locality) If U =

⋃
i∈I Ui is an open cover and s, t ∈ F(U) satisfy s|Ui = t|Ui for

all i ∈ I, then s = t;
• (Gluing) Let U =

⋃
i∈I Ui be an open cover as above. Suppose we are given

si ∈ F(Ui) for all i ∈ I such that (si)|Ui∩Uj = (sj)|Ui∩Uj for all i, j ∈ I. Then

there exists a section s ∈ F(U) such that s|Ui = si for all i ∈ I.
We will assume that the sets of sections F(U) are abelian groups and that the

restriction maps are group homomorphisms. A morphism of presheaves f : F → G is
a family of group homomorphism f(U) : F(U) → G(U) for every open U ⊂ X that
are compatible with the restriction maps, i.e. the square

F(U)
f(U)
- G(U)

F(V )

resU,V

? f(V )
- G(V )

resU,V

?

commutes for every V ⊂ U . Thus we may speak of the category ShX of sheaves on
X. Define the kernel of f to be the presheaf (ker f)(U) = ker f(U) ⊂ F(U); the
restriction maps are restrictions of those of F .
(a) Prove that ker f is indeed a presheaf, and that it is a sheaf if F and G are sheaves.
(b) Now we want to define the image of f . This is a bit trickier. First define a

presheaf preim f by (preim f)(U) = im f(U) ⊂ G(U), where the restriction maps
are induced by those of G. Prove that this is indeed a presheaf. Thus, in the
category PreshX of presheaves on X, we may take preim f as the image of f . In
particular, we can define exact sequences of objects of PreshX .

(c) Show that preim f need not be a sheaf even if F and G are both sheaves. Observe
that the locality property always holds if G is a sheaf, but that gluing may fail.
Hint: let X = S1 be the unit circle in C, with the usual topology, and for every
U ⊂ X let C(U) be the (additive) abelian group of continuous functions U → C.
Show that this is indeed a sheaf. Let C×(U) be the (multiplicative) abelian group
of non-vanishing continuous functions on U . Show that C× is also a sheaf and
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that

exp : C → C×

ϕ(x) 7→ eϕ(x)

is a morphism. Prove that preim exp is not a sheaf.
(d) Let f : F → G be a morphism of sheaves. We are led to define im f as the

smallest subsheaf of G that contains preim f . Prove that this is indeed a well-
defined object.

(e) Let f : F → G be a morphism of sheaves. Show that it is an epimorphism
(i.e. that im f = G) if and only if for every open U ⊂ X and every section
s ∈ G(U) there exists an open cover U =

⋃
i∈I Ui such that s|Ui ∈ im f(Ui) for all

i ∈ I.
(3) Let X be a topological space. A sheaf F on X is said to be a sheaf of rings if the

abelian group F(U), for every open U ⊂ X, is endowed with a multiplication that
gives it the structure of a unital ring, and if all the restriction maps resU,V are ring
homomorphisms. A ringed space (X,OX) consists of a topological space X and a
sheaf of rings OX on X.

Given a ringed space (X,OX), an OX -module is a sheafM on X such thatM(U) is
endowed with an OX(U)-module structure for every open U ⊂ X, and the restriction
maps ofM are compatible with those of OX . More precisely, if V ⊂ U , then for every
a ∈ OX(U) and s ∈M(U) we require that

resMU,V (as) = resOXU,V (a) · resMU,V (s).

(a) Let R be a unital ring. Show that there exists a constant sheaf of rings R on X
such that R(U) = R for all open U ⊂ X, and all the restriction maps are identity
maps.

(b) Show that a Z-module on X is the same thing as a sheaf.
(c) Generalize all the notions developed in the previous exercise to OX -modules on

a ringed space. In particular, define the category OX −Mod of OX -modules and
the notion of a short exact sequence 0→M→N → P → 0 of OX -modules.

(d) Show thatM 7→M(X) gives a left exact functor from OX−Mod to the category
ModOX(X) of left modules over the ring OX(X). We denote this functor by Γ.

Since the category OX − Mod has enough injectives2 we may define the right
derived functors H i(X,−) : OX −Mod→ ModOX(X) of Γ.

(4) The definition of sheaf cohomology in the previous exercise, as right derived functors
of the global sections functor, doesn’t give us a way to compute it. In this exercise we
will provide a way and will finally obtain another application of spectral sequences.

6. The Brauer group

If L/K is a finite Galois extension with Galois group G = Gal(L/K), then H0(G,L×) =
K×, whereas H1(G,L×) = 0 by Hilbert 90. Our next aim is to understand H2(G,L×), which
turns out to be most conveniently done in terms of the theory of central simple algebras.

2Insert exercise proving this
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6.1. Non-abelian cohomology. Let G be a profinite group, and let M be a group, not
necessarily abelian. We write the operation of M multiplicatively. For the purposes of this
section, M will be called a (discrete) G-module if it is equipped with a G-action such that
g(m1m2) = (gm1)(gm2) for all g ∈ G and m1,m2 ∈M , and if stabG(m) is an open subgroup
of G for every m ∈M .

Example 6.1. Let L/K be a finite Galois extension. For every n ≥ 1, the Galois group
G = Gal(L/K) acts on GLn(L) by acting on the matrix elements. Since matrix multiplication
is given by polynomials in the matrix elements, it is respected by the action of G. Thus, the
group M = GLn(L), which is of course non-abelian if n > 1, is naturally a G-module.

We would like to have a cohomology theory in this situation. We still have a G-invariants
functor M 7→MG from the category of G-modules to the category of groups. Unfortunately,
the category of groups is not abelian, so most of the standard constructions of homological
algebra don’t work. For instance, the image of an injective group homomorphism ι : H → G
need not be a normal subgroup of G, and thus it is not possible in general to extend the exact
sequence 0 → H → G. However, for small i we can try to mimic the definition of H i(G,M)
“by hand” and see what we get.

Definition 6.2. Let G be a profinite group and M a G-module.

(1) Set H0(G,M) = MG.
(2) Let Z1(G,M) be the set of functions ψ : G → M satisfying ψ(g1g2) = ψ(g1) ·

(g1(ψ(g2))). Note that there is no natural group structure on this set, but it does
have a distinguished element, namely the trivial function given by ψ(g) = eM for all
g ∈ G.

(3) Given ψ, η ∈ Z1(G,M), say that ψ ∼ η if there exists an element m ∈ M such that
ψ(g) = m−1η(g) · gm for all g ∈ G. This is clearly an equivalence relation, and we
define H1(G,M) to be the set of equivalence classes Z1(G,M)/ ∼. Again, H1(G,M)
is a pointed set, namely a set with a distinguished element.

Observe that if M is abelian, then these definitions coincide (as pointed sets) with the
cohomology groups we have defined already. Moreover, if PtSet denotes the category of
pointed sets, where the morphisms are set maps A → B sending the distinguished element
of A to that of B, then H1(G,−) is a naturally a functor from the category of G-modules to
PtSet; the proof is left to the reader.

If f : A→ B is a morphism of pointed sets, then its image is a pointed subset of B. If we
set the kernel of f to be the preimage of the distinguished element of B, then clearly ker f is
a pointed subset of A. Thus, we have a notion of exact sequences of pointed sets.

Proposition 6.3. Let G be a profinite group, and let 0 → M
ε→ N

π→ P → 0 be an exact
sequence of G-modules. Then there is an exact sequence of pointed sets

0→ H0(G,M)→ H0(G,N)→ H0(G,P )
δ0→ H1(G,M)→ H1(G,N)→ H1(G,P ),

where, for p ∈ PG, we set δ0(p) to be the equivalence class of the 1-cocycle m 7→ p̃−1 · gp̃.
Here p̃ is an arbitrary lift of p to N .

Furthermore, suppose that ε(M) lies in the center of N . In this case M is abelian, so

H2(G,M) is defined. Then the exact sequence above can be extended by the map H1(G,P )
δ1→

H2(G,M), where, for ψ ∈ Z1(G,P ), we set

δ1([ψ]) = [(g1, g2) 7→ ψ̃(g1) · g1ψ̃(g2) · ˜ψ(g1g2)−1].
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Proof. Explicit computation. �

Proposition 6.4. Let L/K be a finite Galois extension with Galois group G = Gal(L/K),
and let V be a finite-dimensional L-vector space endowed with a semi-linear G-action: for
every σ ∈ G, a ∈ L, and v ∈ V we have σ(av) = σ(a) · σ(v). Then dimK V

G = dimL V and
the natural map

V G ⊗K L
γ→ V

v ⊗ a 7→ av

is an isomorphism of L-vector spaces.

Proof. First we will show that γ is surjective. Suppose not, and let u ∈ V be an element
that is not contained in im γ. Then there exists a subspace W ⊂ V such that im γ ⊂W and
V 'W ⊕Lu, and projection onto the second component provides a non-zero linear functional
λ : V → L such that λ(im γ) = 0. For any a ∈ L and v ∈ V , the element w =

∑
σ∈G σ(av)

lies in V G. Thus w = γ(w ⊗ 1), and hence

0 = λ(w) =
∑
σ∈G

λ(σ(av)) = σ(a)
∑
σ∈G

λ(σ(v)).

In particular, for all a ∈ L we have
∑

σ∈G λ(σ(v)) · σ(a) = 0. By Dedekind’s Lemma this
means that λ(σ(v)) = 0 for all σ ∈ G and all v ∈ V , contradicting λ 6= 0.

Hence γ is surjective. In view of this, to establish the remaining parts of our claim it
suffices to show that dimK V

G ≤ dimL V . Note that V G need not be an L-vector subspace of
V , but it is a K-vector subspace. Let {e1, . . . , er} be a K-basis of V G. We claim that these
vectors are linearly independent over L. Set

B =

{
(b1, . . . , br) ∈ Lr :

r∑
i=1

biei = 0

}
.

Clearly B is an L-linear subspace of Lr. We know that B∩Kr = {0}, since the ei are linearly
independent over K. Also, since the ei are G-invariants, we observe that if b = (b1, . . . , br) ∈ B
and σ ∈ G, then (σ(b1), . . . , σ(br)) ∈ B. Thus, for all a ∈ L and all b ∈ B, we have

(TrL/K(ab1), . . . ,TrL/K(abr)) =
∑
σ∈G

(σ(ab1), . . . , σ(abr)) ∈ B ∩Kr = {0}. (12)

We claim that the trace map TrL/K is not identically zero. (In fact, it is true that a finite
extension L/K is separable if and only if the trace map TrL/K : L → K is not identically
zero). Since we are assuming that L/K is Galois, we can give a quick proof. Indeed, if
charK = 0, then TrL/K(1) = [L : K] 6= 0. In general, since L/K is finite and separable, it
is primitive, so that L = K(α) for some α ∈ L. We may assume that α 6= 0, since otherwise
L = K and the claim is trivial. Let α = α1, . . . , αn be the roots of the minimal polynomial
fα(x) ∈ K[x] of α; since L/K is Galois, these are all distinct and contained in K. Moreover,
αm1 , . . . , α

m
n are the conjugates of αm for any m ∈ Z. Let f ′α ∈ K[x] be the formal derivative

of fα; observe that f ′α(α) 6= 0. Thus, in the power series ring L[[x]], we have

f ′α
fα

=

n∑
i=1

1

x− αi
= −

∞∑
m=0

n∑
i=1

α
−(m+1)
i xn = −

∞∑
m=0

TrL/K(α−(m+1))xm,

where the first equality is immediate from the Leibniz rule. Since the left-hand side is non-
zero, the right-hand side is also non-zero. Thus TrL/K(α−m+1) 6= 0 for some m ≥ 0.
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Now, by (12) we have that TrL/K(abi) = 0 for all a ∈ L and all 1 ≤ i ≤ r. Thus we must
have bi = 0 for all 1 ≤ i ≤ r. Hence B = {0}, and so {e1, . . . , er} is linearly independent over
L. We conclude that dimK V

G ≤ dimL V , and the claim follows. �

We now deduce a corollary, which may be viewed as a non-abelian version of Hilbert 90.

Corollary 6.5. Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then H1(G,GLn(L)) has one element for all n ≥ 1.

Proof. Let ψ ∈ Z1(G,GLn(L)). Observe that V = Ln carries a semilinear G-action by
vσ = (σ(a1), . . . , σ(an)), where σ ∈ G and v = (a1, . . . , an) ∈ V . We consider a modified
G-action, setting σ(v) = ψ(σ) · vσ. This is clearly semilinear, and it is an action because

(τσ)(v) = ψ(τσ) · vτσ = ψ(τ) · τ(ψ(σ)) · (vσ)τ = ψ(τ) · (ψ(σ) · vσ)τ = τ(σ(v)),

where the second equality holds because ψ is a 1-cocycle.
By Proposition 6.4, V has an L-basis {e1, . . . , en} consisting of G-invariants. Let A ∈

GLn(L) be the matrix whose columns are e1, . . . , en. Since ψ(σ)(ei)σ = ei for all σ ∈ G
and 1 ≤ i ≤ n, and since the columns of the matrix σ(A) are the (ei)σ, we find that
A−1ψ(σ)σ(A) = A−1A = In for all σ ∈ G, where In is the identity matrix. Thus ψ is equiva-
lent to the constant function σ 7→ In and lies in the distinguished class of H1(G,GLn(L)). �

For every a ∈ L×, let ε(a) ∈ GLn(L) denote the scalar matrix aIn. Then the image of
ε : L× ↪→ GLn(L) is the center of GLn(L), and the cokernel is, by definition, the projective
linear group PGLn(L).

Lemma 6.6. Let L/K be a finite Galois extension with Galois group G, let n = [L : K], and

consider the short exact sequence 0 → L×
ε→ GLn(L) → PGLn(L) → 0 of G-modules. The

map

δ1 : H1(G,PGLn(L))→ H2(G,L×)

defined in Proposition 6.3 is a surjection of pointed sets.

Proof. Let V = L[G] be an n-dimensional L-vector space spanned by {eσ : σ ∈ G}. Fixing
an enumeration of the elements of G, identify AutLV with GLn(L). If A ∈ GLn(L), denote
by A its image in PGLn(L).

Let ψ ∈ Z2(G,L×). For each σ ∈ G, define ϕ(σ) ∈ AutLV ' GLn(L) by ϕ(σ)eτ =
ψ(σ, τ)eστ for all τ ∈ G. For every η ∈ G we have by definition that ϕ(στ)eη = ψ(στ, η)eστη,
whereas

(ϕ(σ) · σϕ(τ))eη = ϕ(σ)(σ(ψ(τ, η))eτη) = σ(ψ(τ, η))ψ(σ, τη)eστη = ψ(σ, τ)ψ(στ, η)eστη,

where the last equality holds because it follows from (5) that

σ(ψ(τ, η)) · ψ(στ, η)−1ψ(σ, τη)ψ(σ, τ)−1 = 0 (13)

for all σ, τ, η ∈ G. Hence, although the map ϕ : G → GLn(L) need not be a 1-cocycle, the

map ϕ : G→ PGLn(L) given by ϕ(σ) = ϕ(σ) is a 1-cocycle.
Finally, it follows from (13) that ϕ(σ) · σϕ(τ) · ϕ(στ)−1eη = ψ(σ, σ−1η) · σψ(τ, τ−1σ−1η) ·

ψ(στ, τ−1σ−1η)eη = ψ(σ, τ)eη. Hence

δ1([ϕ]) = [(σ, τ) 7→ ϕ(σ) · σϕ(τ) · ϕ(στ)−1] = [ψ]

and δ1 is surjective. �
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Remark 6.7. It follows from Corollary 6.5 and the exact sequence of Proposition 6.3 that δ1

has trivial kernel for all n ≥ 1. However, since δ1 is only a morphism of pointed sets and not of
groups, this does not imply that it is injective. Nevertheless, we will manage in Theorem 6.36
below to get some substantial mileage out of this observation.

We state the following result, which follows immediately from the Skolem-Noether Theo-
rem. The precise statement and proof of Skolem-Noether (Theorem 6.28 below) will have to
wait until we have developed the theory of central simple algebras.

Lemma 6.8 (Skolem-Noether). Let L be a field, let m ≥ 1, and let f, g : Mm(L) → Mm(L)
be two L-algebra homomorphisms. Then there exists an invertible matrix b ∈ Mm(L) such
that g(a) = b · f(a) · b−1 for all a ∈ A.

Using the previous lemma, we may describe the pointed sets H1(G,PGLm(L)) in terms of
central simple algebras; see Definition 6.10 below.

Lemma 6.9. Let L/K be a finite Galois extension with Galois group G = Gal(L/K), and
for every m ≥ 1 let A(L/K,m) denote the set of K-isomorphism classes of central simple
K-algebras A such that A⊗K L 'Mm(L). Then A(L/K,m) ' H1(G,PGLm(L)) as pointed
sets, where the distinguished element of A(L/K,m) is (the isomorphism class of) Mm(K).

Proof. Let A be a K-algebra such that A ⊗K L ' Mm(L). Fix such an isomorphism of
L-algebras, and let σ ∈ G. On the one hand, σ acts on matrices c ∈ Mm(L) by acting on
each matrix element; we denote the image by σ(c). On the other hand, σ acts on A⊗K L by
sending c =

∑r
j=1 aj ⊗ bj to (1⊗ σ)c =

∑r
j=1 aj ⊗ σ(bj), where aj ∈ A and bj ∈ L. We view

this as an action on Mm(L) by transport of structure via the isomorphism we fixed.
The maps c 7→ σ(c) and c 7→ (1 ⊗ σ)c are semilinear, not linear, over L. However, the

map f : Mm(L) → Mm(L) given by f(c) = σ−1((1 ⊗ σ)(c)) is L-linear. We can apply
Lemma 6.8, taking g to be the identity map, to obtain an invertible matrix b ∈ GLm(L) such
that c = b · σ−1(1 ⊗ σ)c · b−1 for all c ∈ Mm(L). Hence (1 ⊗ σ)c = Ψ(σ)σ(c)Ψ(σ)−1, where
Ψ(σ) = σ(b−1). Observe that such b is well-defined up to left multiplication by an element of

the center of Mm(L). Thus Ψ(σ) depends on the choice of b, but Ψ(σ) ∈ PGLm(L) depends
only on σ.

We claim that (σ 7→ Ψ(σ)) ∈ Z1(G,PGLm(L)). Indeed,

(1⊗ στ)c = (1⊗ σ)((1⊗ τ)c) = Ψ(σ)σ(Ψ(τ)τ(c)Ψ(τ)−1)Ψ(σ)−1.

However, the previous construction depended on the choice of an isomorphism ι : A⊗K L
∼→

Mm(L). Any automorphism of Mm(L) is inner (i.e. conjugation by some β ∈ Mm(L)) by
Lemma 6.8, and any isomorphism A ⊗K L → Mm(L) is the composition of ι with such an
automorphism of Mm(L). This amounts to replacing the map 1⊗ σ defined as above using ι
with the map c 7→ β · (1⊗σ)(β−1cβ) ·β−1. We know that β−1cβ = b ·σ−1(1⊗σ)(β−1cβ) · b−1

by the defining property of b. Hence

c = βbσ−1(β−1) · σ−1(β · (1⊗ σ)(β−1cβ) · β−1) · σ−1(β)b−1β−1.

Thus b is replaced with βbσ−1(β−1), up to scalar multiple, and the cocycle (σ 7→ Ψ(σ))

is replaced with the cocycle (σ 7→ β · Ψ(σ) · σ(β
−1

)), which clearly is equivalent to it un-
der the equivalence relation of Definition 6.2. In all, we have obtained a well-defined map
A(L/K,m)→ H1(G,PGLm(L)).

Conversely, given a cocycle (σ 7→ Ψ(σ)), we can define an action of G on Mm(L) by
(1 ⊗ σ)c = Ψ(σ)σ(c)Ψ(σ)−1. The set of elements c ∈ Mm(L) that are invariant under every
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1⊗ σ is a central simple K-algebra A, which satisfies A⊗K L ' Mm(L) by Proposition 6.4.
One checks that this gives a well-defined map H1(G,PGLm(L)) → A(L/K,m): indeed, any

1-cocycle that is cohomologous to (σ 7→ Ψ(σ)) will give rise to a K-algebra of G-invariants
that is conjugate to, and hence isomorphic to, A. It is obvious from the construction that
this map is inverse to the map A(L/K,m)→ H1(G,PGLm(L)) that was defined above.

Finally, if A = Mm(K), then the two actions c 7→ σ(c) and c 7→ (1 ⊗ σ)(c) coincide, and
thus we may take Ψ(σ) to be the identity matrix for every σ ∈ G. Thus our maps preserve
distinguished elements. �

6.2. Central simple algebras. Before we can proceed, we’ll need a crash course in the
theory of central simple algebras. We’ll now do a bit of beautiful pure ring theory, although
for our purposes in this course it is a tool for computing cohomology. As Rowen writes
about central simple algebras (Ring Theory , Volume II, p.187): “There is some question
among experts as to whether this theory belongs more properly to ring theory, field theory,
cohomology theory, or algebraic K-theory.”

Let F be a field.

Definition 6.10. (1) An F -algebra is a ring A, not necessarily commutative, equipped
with a ring homomorphism F → Z(A). Here Z(A) denotes the center of A. This
homomorphism is necessarily injective, so we view F as a subring of A.

(2) An F -algebra A is called simple if has no non-zero proper two-sided ideals. It is called
central simple if F ' Z(A).

(3) An F -algebra A is called a division algebra if A \ {0} is a group under multiplication.
(4) Given an F -algebra A, we let Aop be the algebra with the same underlying abelian

group as A, but with a multiplication operation ∗ given by a ∗ b = ba. Observe that
Aop is simple if and only if A is.

Lemma 6.11 (Schur). Let A be an F -algebra, and let M and N be simple A-modules (i.e. they
have no non-trivial A-submodules). If f ∈ HomA(M,N), then either f = 0 or f is an
isomorphism. In particular, if M is a simple A-module, then EndA(M) is a division algebra.

Proof. If f ∈ HomA(M,N), then ker f is a submodule of M and im f is a submodule of N .
This implies the first claim. Taking M = N , we find that any non-zero element of EndA(M)
is an isomorphism, so it has a multiplicative inverse. �

Proposition 6.12. Let D be a division ring, and let M be a left D-module. Then M is free.
Moreover, any D-linearly independent subset of M may be extended to a basis.

Proof. This claim is proved in every linear algebra course in the case where D is a commutative
division ring, i.e. a field. It is usually not pointed out that the commutativity isn’t necessary.
By a standard Zorn’s Lemma argument, there exists a D-linearly independent subset S ⊂M
that is maximal under inclusion. We claim that S spans M . Indeed, suppose that v 6∈
spanD(S). Then S ∪ {v} is linearly dependent by the maximality of S, so there exists a
non-trivial linear relation dv+

∑
s∈S dss = 0, where only finitely many of the ds are non-zero.

Since d 6= 0 by the linear independence of S, we find that −v =
∑

s∈S dss, contradicting
v 6∈ spanD(S). Thus M is free as a D-module. In fact, we have shown that any maximal
linearly independent subset of M is a basis; this implies the second claim. �

In the sequel we shall only have cause to work with algebras that have finite dimension
over F . In order to avoid writing this condition over and over, we shall make it a running
hypothesis: from now on, all F -algebras are assumed to be finite-dimensional.
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Theorem 6.13 (Jacobson Density Theorem). Let A be a finite-dimensional F -algebra, and
let M be a simple A-module such that dimF (M) < ∞. Let D = EndA(M). Suppose that
m1, . . . ,mr ∈ M are linearly independent over D, and let n1, . . . , nr ∈ M . Then there exists
an element a ∈ A such that ami = ni for all 1 ≤ i ≤ r.

Proof. By Proposition 6.12 the set {m1, . . . ,mr} extends to a D-basis of M . Thus there exists
a D-submodule N ⊂ M such that M = Dm1 ⊕ Dm2 ⊕ · · · ⊕ Dmr ⊕ N . In particular, the
map ϕ ∈ EndD(M) sending (d1m1, . . . , drmr, n) to (d1n1, . . . , drnr, 0) with respect to this
decomposition satisfies ϕ(mi) = ni for all 1 ≤ i ≤ r.

Consider the element m = (m1, . . . ,mr) ∈M r. Since M r is a semisimple A-module, being
a direct sum of simple modules, any submodule is a direct summand. Thus there exists an
A-submodule P ⊂M r such that M r = Am⊕ P . Let π ∈ EndA(M r) = Mr(D) be projection
onto the component Am.

Since ϕ is D-linear, the map ϕr : M r → M r given by ϕr(x1, . . . , xr) = (ϕ(x1), . . . , ϕ(xr))
is a map of Mr(D)-modules, and thus

(n1, . . . , nr) = ϕr(m1, . . . ,mr) = ϕrπ(m1, . . . ,mr) = πϕr(m1, . . . ,mr) = π(n1, . . . , nr).

Hence (n1, . . . , nr) ∈ Am, which is exactly our claim. �

Corollary 6.14. Suppose that A is a central simple F -algebra. Then A ⊗F Aop ' Mn(F ),
where n = dimF (A).

Proof. We wish to prove that A ⊗F Aop ' EndF (A). Let {a1, . . . , an} be an F -basis of A.
Since A ⊗F Aop acts on A by (x ⊗ y)a = xay, for a, x ∈ A and y ∈ Aop, we get an F -linear
map f : A ⊗F Aop → EndF (A). Since the two algebras are both of dimension n2 over F , it
suffices to show that f is surjective.

Observe that EndA(A) ' Aop via the map θ 7→ θ(1). Thus any element ψ ∈ EndA⊗FAop(A)
is of the form ψ(a) = ab for some b ∈ A. In order for this to be compatible with the Aop-action
as well, by analogous considerations we must have ψ(a) = ca for all a ∈ A and some fixed
c ∈ A. It follows that b = c ∈ Z(A) ' F . Thus D = EndA⊗FAop(A) ' F , so that a1, . . . , an
are linearly independent over D.

Note that A is a simple A⊗F Aop-module, since any submodule would be a two-sided ideal.
Let ϕ ∈ EndF (A). By the Jacobson density theorem, there exists an element c ∈ A ⊗F Aop

such that cai = ϕ(ai) for all 1 ≤ i ≤ n. Then f(c) = ϕ, so f is indeed surjective. �

Corollary 6.15. Let A be a central simple F -algebra and B any simple F -algebra. Then
A⊗F B is a simple F -algebra.

Proof. As in the proof of Corollary 6.14, let {a1, . . . , an} be an F -basis of A. By that corollary,
for each 1 ≤ i ≤ n there exists an element ci ∈ A⊗F Aop such that

ci(aj) = δij =

{
1 : i = j

0 : i 6= j.

Suppose that I ⊂ A ⊗F B is a two-sided ideal and thus is preserved by left and right
multiplication by elements of A⊗FF . Let

∑n
j=1 aj⊗bj ∈ I. Then

∑n
j=1 ci(aj)⊗bj = 1⊗bi ∈ I,

for all 1 ≤ i ≤ n, since I is a two-sided ideal. However, 1⊗ bi ∈ F ⊗F B.
Since J = I ∩ (F ⊗F B) is a two-sided ideal of F ⊗F B ' B, we have either J = 0 or J = B.

In the first case, bi = 0 for all i, and hence I = 0. In the second case, 1 ⊗ b ∈ I for every
b ∈ B, so clearly I = A⊗F B. �
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Corollary 6.16. If A and B are central simple F -algebras, then so is A⊗F B.

Proof. By the previous corollary, it suffices to verify that Z(A ⊗F B) ' F . As before, let
{a1, . . . , an} be an F -basis of A, and suppose that

∑n
j=1 aj ⊗ bj ∈ Z(A ⊗F B). Then 1 ⊗ b

commutes with this element for all b ∈ B, so that
∑n

j=1 aj ⊗ (bjb− bbj) = 0 for every b ∈ B.
Since the aj are F -linearly independent, it follows that bjb− bbj = 0 for all b ∈ B, hence that
bj ∈ Z(B) = F . Hence c = α ⊗ 1 for some α ∈ A. Since c commutes with a ⊗ 1 for every
a ∈ A, we find that α ∈ Z(A) = F , hence c ∈ F . �

Let R be a unital ring. Recall that an element e ∈ R such that e2 = e is called an
idempotent. If e ∈ R is an idempotent, then eRe = {eae : a ∈ R} is easily seen to be a ring.
A left (respectively, right) ideal I ⊂ R is called minimal if I 6= (0) and there does not exist
any left (respectively, right) ideal J ⊂ R such that J is strictly contained in I; in other words,
I is a minimal element of the set of non-zero left (respectively, right) ideals of R, partially
ordered by inclusion.

Lemma 6.17 (Brauer). Let R be a ring, and let I ⊂ R be a minimal left ideal such that
I2 6= 0. Then there exists an idempotent e ∈ I such that I = Re and eRe is a division ring.

Proof. Since I2 6= 0, there exist x, y ∈ I such that yx 6= 0. Let Ix = {ax : a ∈ I}. Clearly Ix
is a left ideal of R, and (0) 6= Ix ⊆ Rx ⊆ I, where the last inclusion follows from x ∈ I. By
minimality of I we conclude Ix = I. In particular, there exists an element e ∈ I such that
ex = x. Then e2x = e(ex) = ex = x, so (e2− e)x = 0. Therefore e2− e ∈ I ∩AnnR(x), where
AnnR(x) = {a ∈ R : ax = 0} is the annihilator obtained by viewing R as a left module over
itself.

Now I ∩ AnnR(x) is a left ideal of R contained in I. Moreover, the containment is strict,
since ex = x and hence e 6∈ AnnR(x). Thus I ∩ AnnR(x) = (0) by minimality of I. Hence
e2−e = 0 and e is an idempotent. Furthermore, (0) 6= Re ⊆ I, so I = Re, again by minimality
of I.

It remains to show that eRe is a division ring. Observe that the multiplicative identity of
eRe is e. Let 0 6= a ∈ eRe. Then a = ebe for some b ∈ R. Since eRe = eI ⊂ I, we have
(0) 6= Ra ⊆ I and hence Ra = I by minimality of I. Since e ∈ I, there exists r ∈ R such that
ra = e. Now r need not be contained in eRe, but ere certainly is. Moreover,

(ere)a = (ere)(ebe) = ere2be = erebe = era = e2 = e.

It remains to show that a(ere) = e; then ere ∈ eRe is a two-sided inverse of a, and we will
conclude that eRe is a division ring. But we have just shown that every non-zero element
of eRe has a left inverse. Since ere 6= 0, there exists x ∈ eRe such that x(ere) = e. Then
a = ea = x(ere)a = xe = x. Hence a = x and a(ere) = e as desired. �

Now we are ready to prove Wedderburn’s structure theorem; see the exercises for a different
proof using the Jacobson density theorem. Recall that a simple ring is one with no non-zero
proper two-sided ideals.

Theorem 6.18. Let R be a simple ring. Suppose that R has a minimal left ideal. Then there
exists a division ring D and a natural number n ∈ N such that R 'Mn(D).

Proof. Let I ⊂ R be a minimal left ideal. For any two subsets S, T ⊂ R, we write ST for
the collection of finite sums of products st, with s ∈ S and t ∈ T . This “multiplication” of
sets is clearly associative. Moreover, RI = I since I is a left ideal. On the other hand, IR
is easily seen to be a two-sided ideal of R. Since (0) 6= I ⊆ IR, we have IR = R by the
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simplicity of R. Therefore, R = RR = IRIR = I2R. In particular, I2 6= (0) and we may
apply Brauer’s Lemma 6.17. Thus there exists an idempotent e ∈ I such that I = Re and
D = eRe is a division ring. Clearly D ⊆ Re = I. Since I is closed under right multiplication
by elements of I, it naturally has the structure of a right D-module. Let EndD(I) be the ring
of right D-module homomorphisms α : I → I whose multiplication is given by right-to-left
composition, so that (αβ)(a) = α(β(a)) for α, β ∈ EndD(I) and a ∈ I.

We claim that the rings R and EndD(I) are isomorphic. Indeed, for every r ∈ R define
αr : I → I by αr(a) = ra for all a ∈ I. Clearly αr respects the D-module structure of I,
so we obtain a map f : R → EndD(I) by f(r) = αr. It is easy to check that f is a ring
homomorphism. Recall that IR = R. If r ∈ ker f , then rI = (0) and hence rR = rIR = (0),
so necessarily r = 0. Thus f is injective.

Finally, since 1 ∈ R = IR = ReR, we may express 1 =
∑m

i=1 riesi for some m ∈ N and
ri, si ∈ R. Let α ∈ EndD(I). Then for any r ∈ R we have

α(re) = α(1re) = α

(
m∑
i=1

riesire

)
= α

(
m∑
i=1

rie · esire

)
=

m∑
i=1

α(rie) · esire,

where the last equality holds since esire ∈ eRe = D and α is a homomorphism of right
D-modules. We conclude that

α(re) =

(
m∑
i=1

α(rie)esi

)
re = αx(re),

where x =
∑m

i=1 α(rie)esi ∈ R. Thus α = f(x), so f is surjective and we have shown that
R ' EndD(I).

In particular, we now know that EndD(I) is a simple ring. It is easy to check that

J = {α ∈ EndD(I) : α(I) is a finitely generated D-module}

is a two-sided ideal. We claim J 6= (0). Indeed, since I 6= (0) and I is a free D-module by
Proposition 6.12, we may express I as a direct sum I = I ′⊕I ′′, where I ′ is a D-module of rank
one. The projection onto the first component is a non-zero element of J . Hence J = EndD(I)
and I = id(I) is a finitely-generated D-module. Thus I is a free D-module of finite rank
n ∈ N and R ' EndD(I) 'Mn(D), completing the proof. �

The following special case is the form in which the theorem was originally proved by
Wedderburn.

Corollary 6.19. Let F be a field, and let A be a simple finite-dimensional F -algebra. Then
there exist a division algebra D and a natural number r ∈ N such that A 'Mr(D).

Proof. Since any left ideal I ⊂ A is closed under multiplication with b · 1 for any b ∈ F , we
see that I is an F -subspace of A. Since A is finite-dimensional, there must exist minimal left
ideals. Hence the previous theorem applies. Moreover, its proof shows that D = eRe, which
is naturally an F -algebra. �

Lemma 6.20. Let D be a division ring and r ∈ N. Any non-zero simple Mr(D)-module
is isomorphic to Dr, with the natural action of Mr(D). In particular, if A is a simple
finite-dimensional F -algebra, then there is only one isomorphism class of non-zero simple
A-modules.
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Proof. The second claim is immediate from the first one by Corollary 6.19. To prove the
first claim, let M be a simple Mr(D)-module, and let 0 6= m ∈ M . There exists a matrix
c ∈ Mr(D) with only one non-zero column such that cm 6= 0, since every element of Mr(D)
is the sum of sum matrices. Suppose that the j-th column of c is not all zeroes, and define a
map ϕ : Dr →M by

ϕ((a1, . . . , ar)
T ) =


0 · · · a1 · · · 0
0 · · · a2 · · · 0
...

...
...

0 · · · ar · · · 0

m,

where all the elements of the matrix are zero apart from those in the j-th column. We claim
that ϕ is Mr(D)-linear. Indeed, this follows from the definition of ϕ and the observation that
if c ∈Mr(D) and (a1, . . . , ar)

T ∈ Dr and we set (b1, . . . , br)
T = c(a1, . . . , ar)

T , then
0 · · · b1 · · · 0
0 · · · b2 · · · 0
...

...
...

0 · · · br · · · 0

 = c


0 · · · a1 · · · 0
0 · · · a2 · · · 0
...

...
...

0 · · · ar · · · 0

 .

Since M is simple and ϕ has non-zero image, it must be surjective. Since Dr is clearly a
simple Mr(D)-module and ϕ is non-zero, it must be injective. Thus ϕ is an isomorphism of
Mr(D)-modules. �

Lemma 6.21. Let D be a division algebra, and let r ≥ 1. Consider Dr as a left Mr(D)-
module in the natural way. Then EndMr(D)(D

r) ' Dop.

Proof. We write elements ofDr as columns. Let f ∈ EndMr(D)(D
r), and let ε = (1, 0, . . . , 0)T ∈

Dr. Since the Mr(D)-orbit of ε is all of Dr, we see that f is determined by f(ε). If C ∈Mr(D)
is any matrix whose first column consists entirely of zeroes, then Cε = (0, . . . , 0)T and hence
Cf(ε) = (0, . . . , 0)T . It follows that f(ε) = (d, 0, . . . , 0)T for some d ∈ D. Thus, for any
d1, . . . , dr ∈ D, we must have

f


d1

d2
...
dr

 = f




d1 0 · · · 0
d2 0 · · · 0
...

...
...

dr 0 · · · 0




1
0
...
0


 =


d1 0 · · · 0
d2 0 · · · 0
...

...
...

dr 0 · · · 0




d
0
...
0

 =


d1d
d2d

...
drd

 .

On the other hand, any f as above is indeed a Mr(D)-endomorphism of Dr, since Mr(D) acts
by left multiplication on the components of elements of Dr, and this commutes with right
multiplication by d. Identifying the element f as above with d ∈ D, we clearly obtain an
isomorphism EndMr(D)(D

r) ' Dop. �

A consequence of the previous lemma is that the division ring D and the natural number
n in the statement of Wedderburn’s theorem are unique.

Corollary 6.22. Let D and D′ be division algebras, and let m,n ∈ N. If Mn(D) 'Mm(D′)
as rings, then D ' D′ and n = m.

Proof. Let R = Mn(D). Combining Lemmas 6.20 and 6.21, we may recover the division
algebra D from Dop ' EndR(M), where M is any non-zero simple R-module. It can be
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proved just as for vector spaces that any two bases of a D-module have the same cardinality;
this is called its rank. Viewing D ⊂ R as a the subring of scalar matrices, we obtain a
D-module structure on M and recover n as the rank of M . �

Definition 6.23. Let A and B be two central simple F -algebras. We say that they are
equivalent if there exists a division algebra D such that A ' Mr(D) and B ' Ms(D). Let
Br(F ) be the set of equivalence classes of central simple F -algebras.

Lemma 6.24. The set Br(F ) is an abelian group under the operation [A][B] = [A⊗F B].

Proof. The only bit of the proof that is non-trivial at this point is to verify that the operation
is well-defined. This follows from the fact that Mr(D) ⊗F Ms(D

′) ' Mrs(D ⊗ D′). If we
view F as an algebra over itself, then the class [F ] ∈ Br(F ) is an identity element. Since
[A][Aop] = [A⊗F Aop] = [MdimF (A)(F )] = [F ], every element of Br(F ) has an inverse. �

Definition 6.25. Let L/K be an extension of fields. There is a natural homomorphism of
groups

Br(K) → Br(L)

[A] 7→ [A⊗K L].

We write Br(L/K) for the kernel.

Proposition 6.26 (Double Centralizer Theorem). Suppose that A is a central simple F -
algebra, and let B ⊂ A be a simple subalgebra. Write CA(B) for the centralizer of B, namely
the set of all a ∈ A such that ab = ba for every b ∈ B. Then CA(B) is a simple F -algebra.

Moreover, dimF CA(B) = dimF (A)
dimF (B) and CA(CA(B)) = B.

Proof. Since B ⊗F Aop is simple by Corollary 6.15, we have B ⊗F Aop ' Mr(D) for some
division algebra D and some r ≥ 1 by Wedderburn’s theorem. The algebra A is a B ⊗F
Aop-module in the obvious way; thus it is semisimple. Since any simple Mr(D)-module is
isomorphic to Dr by Wedderburn’s theorem, we have A ' (Dr)s as a Mr(D)-module, for
some integer s.

Now observe that any f ∈ EndB⊗FAop(A) is determined by f(1). Moreover, if f(1) = c,
then for any a ∈ A and b ∈ B we have the equality bca = (b⊗a)f(1) = f((b⊗a)1) = f(ba) =
f((1 ⊗ ba)1) = (1 ⊗ ba)f(1) = cba, which forces c ∈ CB(A). This gives an isomorphism
CA(B) ' EndB⊗FAop(A). But EndB⊗FAop(A) ' EndMr(D)((D

r)s) ' Ms(EndMr(D)(D
r)) '

Ms(D
op), where the last isomorphism comes from Lemma 6.21. Hence CA(B) is simple.

It follows from the previous paragraph that

r2 dimF D = dimF Mr(D) = dimF (B ⊗F Aop) = (dimF A)(dimF B).

On the other hand, A ' (Dr)s, so dimF A = rsdimF D. This in turn implies that dimF B = r
s .

We have also shown that CA(B) ' Ms(D
op), hence dimF CA(B) = s2 dimF D, and the

claimed relation of dimensions follows immediately.
Finally, since CA(B) is simple, the second part of the claim implies that dimF CA(CA(B)) =
dimF A

dimF CA(B) = dimF (B). Clearly B ⊆ CA(CA(B)). Since these two F -algebras have the same

dimension, they are equal. �

The following statement was essentially established in the proof of the Double Centralizer
Theorem, but it is not traditionally stated as part of that theorem.
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Corollary 6.27. Let A be a central simple F -algebra and B ⊂ A a simple subalgebra. Let
n = dimF B. Then A⊗F Bop 'Mn(CA(B)).

Proof. We saw in the proof of Proposition 6.26 that B⊗F Aop 'Mr(D) for a suitable division
algebra D. Hence A⊗F Bop ' (B⊗F Aop)op ' (Mr(D))op 'Mr(D

op). It was shown later in
the same proof that CA(B) ' Ms(D

op). Thus A⊗F Bop ' Mr/s(CA(B)). But dimF B = r
s ,

which establishes our claim. �

Theorem 6.28 (Skolem-Noether). Let F be a field, and let A and B be two simple F -algebras.
Suppose that Z(B) = F and that B has finite dimension over F . Let f, g : A → B be two
F -algebra homomorphisms. Then there exists a unit b ∈ B such that g(a) = b · f(a) · b−1 for
all a ∈ A.

Proof. First we treat the special case B = Mn(F ) = EndF (Fn). In this case, we can view
the maps f and g as specifying two A-actions on the vector space Fn. Let Vf and Vg be the
corresponding A-modules. Since there is only one simple A-module up to isomorphism, every
finite-dimensional A-module is a direct sum of simple A-modules, and dimF Vf = dimF Vg =
n, we see that Vf and Vg must be isomorphic as A-modules. Let b : Vf → Vg be an A-module
isomorphism. Forgetting the A-module structure, we have that b : Fn → Fn is a linear
transformation and hence b ∈ Mn(F ) = B. Since B respects the A-module structure, for all
a ∈ A we have bf(a) = g(a)b as claimed.

Now consider the general case. Since B is central simple, we know that B⊗F Bop 'Mn(F )
by Corollary 6.14, where n = dimF (B). Moreover, A ⊗F Bop is a simple F -algebra by
Corollary 6.15. We obtain a map

f ⊗ 1 : A⊗F Bop → B ⊗F Bop 'Mn(F )

a⊗ c 7→ f(a)⊗ c,
for all a ∈ A and c ∈ Bop. We define g⊗1 similarly. By the case that we have proved already,
there exists an element β ∈ B ⊗F Bop such that

(g ⊗ 1)(a⊗ c) = β · (f ⊗ 1)(a⊗ c) · β−1 (14)

for all a ∈ A and c ∈ Bop. Taking a = 1, we find that β(1 ⊗ c)β−1 = 1 ⊗ c, namely that
β ∈ CB⊗FBop(F ⊗F Bop) = B ⊗F F . To establish the last equality, note that B ⊗F F is
obviously contained in the centralizer, and it has the same dimension as the centralizer by
the Double Centralizer Theorem. Hence β = b⊗ 1 for some b ∈ B, and taking c = 1 in (14),
we see that b has the property we want. �

Note that the matrix algebras Mm(F ) are central simple F -algebras, and Lemma 6.8, which
was already used above, is just the previous theorem in the case A = B = Mm(F ). Having
repaid our Skolem-Noether debt, we deduce some further corollaries of the Double Centralizer
Theorem.

Corollary 6.29. Let D be a central division F -algebra. Then dimF D is a square, and any
maximal subfield L of D has degree [L : F ] =

√
dimF D over F . Moreover, D ⊗F L '

M[L:F ](L).

Proof. Observe that D does have subfields, since F is one. Let L be a maximal subfield
of D. Since L is commutative, we have L ⊆ CD(L). This inclusion is in fact an equality;
otherwise, we could take x ∈ CD(L) \ L, and the subalgebra L(x) would be a commutative
division algebra, hence a field, contradicting the maximality of L. Hence L = CD(L). Then
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the Double Centralizer Theorem tells us that dimF L = dimF D
dimF L

, whence dimF D = [L : F ]2.

Since L = Lop, the final claim follows from Corollary 6.27. �

Definition 6.30. Let A be a simple F -algebra. Let L/F be a field extension. If A ⊗F L '
Mn(L) for some n ∈ N, we say that L is a splitting field of A, or that A splits over L.

It is an exercise to show that if L is a splitting field of A, then so is any field containing L.

Lemma 6.31. Let A be a central simple F -algebra, and let A 'Mr(D) for a division algebra
D and r ∈ N. Then A splits over an extension L/F if and only if D splits over L.

Proof. IfD⊗FL 'Mn(L) for some n ∈ N, then clearlyA⊗FL 'Mr(D)⊗FL 'Mr(D⊗FL) '
Mr(Mn(L)) 'Mrn(L).

Conversely, suppose that A ⊗F L ' Mn(L). We know that D ⊗F L is a simple F -algebra
by Corollary 6.15, hence D ⊗F L 'Mm(D′) by Wedderburn, for some division F -algebra D′

and some m ∈ N. Thus Mn(L) ' A⊗F L ' Mr(D ⊗F L) ' Mrm(D′). By the uniqueness of
Corollary 6.22 we must have D′ ' L, and thus D splits over L. �

Corollary 6.32. Let A be a central simple F -algebra, and let A 'Mr(D). If L is a maximal
subfield of D, then A⊗F L 'Mn(L) for some n ∈ N. In particular, A ∈ Br(L/F ).

Proof. Embedding D ⊂ A as a the subalgebra of scalar matrices, we see that Z(D) = Z(A) '
F . Thus D is a central division F -algebra. The claim now follows from Corollary 6.29 and
Lemma 6.31. �

Thus we have shown that for every central simple F -algebra A, there is a finite extension
L/F splitting A. We will need a bit more, namely that the extension L/F may be taken to
be separable. If F has characteristic zero or is a perfect field of positive characteristic, then
any finite extension of F is separable and this is automatic, but a bit of work is needed to
obtain this claim in general.

Proposition 6.33. Let D be a central division F -algebra, and let L ⊂ D be a subfield such
that L/F is a separable extension. Then there exists a maximal subfield of D that contains L
and is separable over F .

Proof. We start with two reduction steps. First, it clearly suffices to prove our claim in the
case where L is maximal among subfields of D that are separable over F . In this case, the
claim is that L is itself a maximal subfield of D. We will now assume that we are in this
case. Secondly, any subfield K ⊂ D that contains L must be contained in the centralizer
CD(L). If K/L is separable, then K/F is also separable since L/F is separable. By the
Double Centralizer theorem, we know that Z(CD(L)) ⊂ CD(CD(L)) = L and hence CD(L)
is a central division L-algebra.3 Thus, replacing D by CL(D), we may assume without loss of
generality that L = F and that there is no non-trivial separable extension of F contained in
D.

Let p = charF ; as noted above, we may assume that p > 0. Let n =
√

dimF D. We
will now prove that D = F ; by Corollary 6.29 this is equivalent to the claim that F is a
maximal subfield of D. Indeed, suppose that n > 1 and let a ∈ D \ F . Then F (a)/F is a

purely inseparable field extension, so the minimal polynomial of a has the form xp
t − c for

some c ∈ F and t ∈ N. Moreover, the degree pt is bounded by n, which is the degree of a
maximal subfield of D. Thus there exists t ∈ N such that ap

t ∈ F = Z(D) for all a ∈ D; for

3Explain why division algebra.
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instance, we may take t = blogp nc. Hence all a, b ∈ D satisfy the identity ap
t
b − bapt = 0.

This identity continues to hold after extending scalars, in the ring D⊗F K 'Mn(K), where
K is a maximal subfield of D; indeed, the identity clearly holds for pure tensors, and it is
easily checked to hold for mixed tensors since charF = p. This gives rise to a contradiction,
however, since n > 1 and the element a = diag(1, 0, . . . , 0) ∈ Mn(K) is an idempotent that
does not lie in the center; thus a suitable b ∈Mn(K) will violate the identity. �

Corollary 6.34. Let A be a central simple F -algebra. There exists a finite separable extension
L/F that splits A.

Proof. This is immediate from Lemma 6.31 and Proposition 6.33. �

Using the tools we have developed, we can finally understand the structure of the coho-
mology group H2(Gal(L/K), L×). Observe that if m|q are two natural numbers, then the
diagonal embedding ∆ : GLm(L) ↪→ GLq(L) sending A ∈ GLm(L) to the block-diagonal
matrix diag(A,A, . . . , A) maps scalar matrices, and only scalar matrices, to scalar matri-
ces in GLq(L). Thus it induces an embedding PGLm(L) ↪→ PGLq(L) and hence a map
∆ : H1(G,PGLm(L)) → H1(G,PGLq(L)). Recall that A(L/K,m) denotes the set of K-
isomorphism classes of central simple K-algebras A such that A ⊗K L ' Mm(L). We want
to understand the map A(L/K,m) → A(L/K, q) that corresponds to ∆ under the bijection
of Lemma 6.9.

Let (σ 7→ Ψ(σ)) ∈ Z1(G,PGLm(L)) be a 1-cocycle. Recall that in Lemma 6.9 we defined
an action of G on Mm(L) as follows: an element σ ∈ G sends c ∈ Mm(L) to the matrix
(1 ⊗ σ)(c) = Ψ(σ)σ(c)Ψ(σ)−1, where σ(c) denotes the action of G on matrix elements as in
Example 6.1. Then the element of A(L/K,m) associated to our cocycle is (the isomorphism
class of) the algebra A of G-invariants under this new action.

It is easy to check that the algebra associated to the cocyle (σ 7→ diag(Ψ(σ), . . . ,Ψ(σ))) ∈
Z1(G,PGLq(L)) consists of all matrices of the form

c =


c11 c12 · · · c1d

c21 c22 · · · c2d
...

...
. . .

...
cd1 cd2 . . . cdd

 ,

where d = q
m and each cij ∈Mm(L) is contained in A. Thus, if a class ψ ∈ H1(G,PGLm(L))

corresponds to an algebra isomorphic to Mr(D) for some division algebra D and some r ≥ 1,
then ∆(ψ) ∈ H1(G,PGLq(L)) corresponds to Mrd(D). We have thus proved the following.

Lemma 6.35. The bijections of Lemma 6.9 induce a bijection of pointed sets

lim−→H1(G,PGLm(L))→ Br(L/K). (15)

Proof. The content of the claim is that the direct limit lim−→A(L/K,m) induced by the maps

of Lemma 6.9 is exactly Br(L/K), as a set. This is immediate from the calculation we just
did. �

Since Br(L/K) is a group under the operation [A][B] = [A ⊗K L], it follows that the
injective limit on the left-hand side of (15) has a natural group structure even though the sets
H1(G,PGLm(L)) do not. Moreover, recalling the maps δ1 : H1(G,PGLm(L)) → H2(G,L×)
from Lemma 6.6, the universal property of the injective limit and the previous lemma produce
a map Br(L/K)→ H2(G,L×), which we continue to label δ1.
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Theorem 6.36. The map δ1 : Br(L/K)→ H2(G,L×) is an isomorphism of abelian groups.

Proof. It is enough to show that δ1 is a group homomorphism. Indeed, δ1 is surjective by
Lemma 6.6, and by Corollary 6.5 it has trivial kernel, which for group homomorphisms implies
injectivity.

So let A and B be two central simple K-algebras such that [A], [B] ∈ Br(L/K). Let

A ∈ A(L/K,m) and B ∈ A(L/K,m′). If A and B correspond to the cocycles (σ 7→ Ψ(σ))

and (σ 7→ Φ(σ)) in H1(G,PGLm(L)) and H1(G,PGLm′(L)), respectively, then it is easy to

see that A ⊗K B corresponds to (σ 7→ Ξ(σ)), where Ξ(σ) ∈ Mmm′(L) corresponds to the

endomorphism of Lmm
′

= Lm ⊗L Lm
′

satisfying

(Ξ(σ))(v ⊗ v′) = (Ψ(σ))v ⊗ Φ(σ)v′

for all v ∈ Lm and v′ ∈ L′. By the definition of δ1, we have

Ξ(g1) ◦ g1Ξ(g2) ◦ Ξ(g1g2)−1 = δ1([A⊗K B])Imm′

as automorphisms of Lm ⊗L Lm
′
, for any g1, g2 ∈ G. Applying both sides to a vector of the

form v ⊗ v′, we find that δ1([A⊗K L]) = δ1([A])δ1([B]), as claimed. �

Corollary 6.37. Let K be a field, let K denote a separable closure, and let GK = Gal(K/K)

be the absolute Galois group of K. Then Br(K) ' H2(GK ,K
×

).

Proof. On one hand, H2(GK ,K
×

) = lim−→H2(Gal(L/K), L×) by Proposition 4.10, where L/K
runs over finite Galois extensions. On the other hand, by Corollary 6.34, every central simple
K-algebra is split by some finite Galois extension L/K, so that Br(K) is the union of the
Br(L/K). Thus Br(K) = lim−→Br(L/K), where the connecting maps are inclusions. Finally,

one checks that the maps δ1 : Br(L/K)
∼→ H2(Gal(L/K), L×) are compatible with the

injective systems. �

Corollary 6.38. Let L/K be a finite Galois extension of degree n = [L : K]. Then Br(L/K)
is a torsion group with exponent dividing n.

Proof. Let G = Gal(L/K). Then {e} is an open subgroup of G, and as in the proof of
Corollary 4.13, we observe that the composition

H2(G,L×)
res→ H2({e},ResG{e}L

×)
cor→ H2(G,L×)

is zero since the middle group is trivial. On the other hand, this composition is multiplication
by [G : {e}] = n by Lemma 4.4. Thus all elements of H2(G,L×) ' Br(L/K) are killed by
multiplication by n. �

Exercises

(1) Let G be a profinite group, and letMG be the category of groups M , not necessarily
abelian, with a G-module structure as in Section 6.1. The morphisms are, of course, G-
equivariant group homomorphisms. Show that H1(G,−) :MG → PtSet is a covariant
functor.

(2) Let A be a central simple F -algebra and let B ⊂ A be a subfield containing F . Prove
that the following statements are equivalent:
(a) B is maximal as a commutative subring of A;
(b) CA(B) = B;
(c) dimF A = (dimF B)2.
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7. Examples of Brauer groups and the invariant map

7.1. Trivial Brauer groups. So far we have not explicitly computed a single Brauer group.
We will now remedy this situation, developing useful techniques along the way. Some of the
arguments we give are much more complicated than is necessary to compute the relevant
Brauer groups, but the idea is to introduce tools that will serve us well later in the course,
and in later life.

Proposition 7.1. If K is an algebraically closed field, then Br(K) is trivial.

Proof. Let A be a central simple K-algebra. By Corollary 6.32 we see that [A] ∈ Br(L/K)
for some finite extension L/K. Since K has no nontrivial finite extensions, it follows that
[A] ∈ Br(K/K) = 0. �

Lemma 7.2 (Wedderburn’s little theorem). Let D be a finite division ring. Then D is a
field.

Proof. Let K = Z(D) be the center of D. Clearly this is a field, and D is a central division
K-algebra. Suppose, by way of contradiction, that D is not a field, so that n =

√
dimK D > 1.

Any element x ∈ D is contained in the subfield K(x) ⊂ D and hence in some maximal subfield
of D. By Corollary 6.29, all maximal subfields of D have degree n over K and thus have
cardinality |K|n.

Let L and L′ be two maximal subfields of D. Since they have the same finite cardinality,
there exists an isomorphism ι : L → L′, which may be taken to be K-linear. Now we apply
Skolem-Noether to the two maps f, g : L → D, where f is the natural inclusion of L in D,
and g is the composition of ι with the natural inclusion of L′ in D. We find that L and
L′ are conjugate in D, and hence that the group D× is the union of the conjugates of the
subgroup L×. Moreover, since D is not a field and hence D 6= L, we have that L× is a proper
subgroup of D×. We have arrived at a contradiction, since a finite group cannot be a union
of conjugates of a proper subgroup.

Indeed, if G is a finite group and H is a subgroup, then the number of conjugates of H
is [G : NG(H)]. Since all the conjugates contain the identity element of G, we find that the
cardinality of the union of the subgroups conjugate to H is at most [G : NG(H)](|H|−1)+1 ≤
[G : H](|H| − 1) + 1, and this is strictly smaller than |G| if H is proper. �

Proposition 7.3. If K is a finite field, then Br(K) is trivial.

Proof. Let A be a central simple K-algebra. Then, by Wedderburn’s big theorem (Corol-
lary 6.19), we have A ' Mr(D), where D is a division ring that is central as a K-algebra.
Since D is finite-dimensional over K, it is finite. Thus D is a field by Wedderburn’s little
theorem (Lemma 7.2), so that D = Z(D) = K. �

7.2. Brauer groups of local fields. We now begin to consider one of the most interesting
cases, namely that of local fields. The study of their Brauer groups will lead to a deeper
understanding of their Galois cohomology. From this point onwards in the course, we will
rely on standard theorems from algebraic number theory.

Proposition 7.4. Let K/Qp be a finite extension and let D be a division K-algebra. There
exists an unramified finite extension L/K such that D splits over L.

Proof. Let k be the residue field of K, and let n =
√

dimK(D). Let | · |K denote the (mul-
tiplicative) valuation of K. We claim that one can construct a non-Archimedean valuation
| · |D : D → R≥0 such that
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• For any x ∈ D, we have |x|D = 0 if and only if x = 0.
• For any x, y ∈ D, we have |xy|D = |x|D|y|D.
• For any x, y ∈ D, we have |x+ y|D ≤ max{|x|D, |y|D}.

Indeed, for every x ∈ D, we define |x|D = |detAx|K , where Ax is a matrix, with entries in
K, representing the K-linear map

D → D

y 7→ yx

with respect to some K-basis of D. It is clear that | · |D, thus defined, satisfies the first two of

the three desired properties, and that |x|D = |x|dimK(D)
K whenever x ∈ K. Note that the third

property is equivalent to the claim that |1 + z|D ≤ 1 whenever z ∈ D is such that |z|D ≤ 1.
As in the previous proof, K(z) is a subfield of D. Judiciously choosing a K-basis of D of the
form αiβj , where {αi} is a K(z)-basis of D and {βj} is a K-basis of K(z), we see that, if
t ∈ K(z), then Az is a block-diagonal matrix and that

|t|D = | detAt|K = |NK(z)/K(t)|dimK(z)(D)

K . (16)

We know from algebraic number theory that the right-hand side of (16) defines a multiplicative
valuation of K(z). Considering t = z and t = 1 + z, we obtain the third property as well.

As in the commutative case, we define OD = {x ∈ D : |x|D ≤ 1}. By our three properties,
this is a ring, and mD = {x ∈ D : |x|D < 1} is a two-sided ideal. It is a maximal ideal
since all elements of OD \ mD have inverses in OD, and hence the quotient ∆ = OD/mD is
a division ring. For every subfield K ⊂ L ⊂ D we have OD ∩ L = OL by (16), and thus
OD consists precisely of the elements of D that are integral over K. The same argument
as in the commutative case shows that (the underlying abelian group of) OD is a finitely
generated OK-module. Since OD is torsion-free and OK is a principal ideal domain, OD is a
free OK-module, and its rank must be dimK D = n2, since OD⊗OK K = D. Since mK ⊂ mD,
we find that ∆ is naturally a finite-dimensional vector space over k. Hence ∆ is finite, and
thus it is a field by Lemma 7.2. Set f = dimk ∆.

Since all extensions of finite fields are finite and separable and hence simple, there exists
an element δ ∈ ∆ such that ∆ = k(δ). Let δ ∈ OD be a lift of δ. Then K(δ) is a subfield of D
with residue field ∆. Thus f ≤ [K(δ) : K] ≤ n, where the second inequality is Corollary 6.29.

Since OD is discretely valued, we can prove exactly as for commutative discretely valued
rings that any two-sided ideal of OD is principal, generated by an element of maximal val-
uation, and hence is either zero or of the form mr

D for some r ≥ 0. Thus we can define the
ramification index of D/k, as in the commutative case, to be the natural number e satisfying
mKOD = me

D. Finally, if πD and πK are uniformizers (i.e. elements of maximal valuation) in
OD and OK , respectively, then (16) implies that

|πD|D = |NK(πD)/K(πD)|
dimK(πD)(D)

K = |π
[K(πD):K]

e(K(πD)/K)

K |
dimK(πD)(D)

K = |πK |
1

e(K(πD)/K)

D ,

where e(K(πD)/K) is the ramification index of the field extension K(πD)/K. Hence e =
e(K(πD)/K) ≤ [K(πD) : K] ≤ n. Now ef = rankOKOD = n2; one can check that the proof
for the commutative case given in, say, Proposition II.6.8 of Neukirch’s Algebraic Number
Theory transfers verbatim to our case. However, we have already shown that f ≤ n and
e ≤ n. Hence e = f = n. In particular, we must have [K(δ) : K] = f = [∆ : k], so that
K(δ)/K is an unramified extension. However, [K(δ) : K] = n, so D⊗KK(δ) splits over K(δ)
by Corollaries 6.29 and 6.32. �
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For the rest of this section, K will always denote a local field. Let k denote the residue
field OK/mK , and let Knr be the maximal unramified extension of K; this is the compositum
of all the unramified extensions of K inside some fixed algebraic closure. Recall that Knr/K
is an infinite Galois extension, and that Gal(Knr/K) is isomorphic in a standard way to the
absolute Galois group Gk = Gal(k/k) of the residue field k. The kernel of the projection
GK � Gk is IK = Gal(K/Knr), which is called the inertia subgroup of GK . Furthermore,
Gk has a dense cyclic subgroup generated by the arithmetic Frobenius element Φk : k → k,
where Φk(x) = xq for all x ∈ k and q is the cardinality of k. We write Frobk for the
geometric Frobenius, namely the inverse of Φk. Of course, Frobk and Φk generate the same
cyclic subgroup of Gk. Be aware that some books use the notation Frobk for the arithmetic
Frobenius.

Corollary 7.5. Let K/Qp be a finite extension. Then Br(K) = Br(Knr/K) ' H2(Gk, (K
nr)×).

Proof. The first equality is the content of Proposition 7.4. The isomorphism of Br(Knr/K)
with H2(Gk, (K

nr)×) is proved in exactly the same way as Corollary 6.37. �

Before proceeding, we make a brief study of the cohomology of the group Ẑ = lim←−Z/nZ.

The transitions maps are the surjections Z/mZ → Z/nZ for n|m. It is easy to see that Ẑ is
indeed the profinite completion of Z.

Proposition 7.6. If k is any finite field, then Gk = Gal(k/k) ' Ẑ.

Proof. This follows from the fact that k has a unique extension of any degree n ≥ 1 inside a
fixed algebraic closure k. Moreover, this extension is Galois with a cyclic Galois group. �

Lemma 7.7. Let M be a finite Ẑ-module. Then H2(Ẑ,M) = 0.

Proof. Let E be an extension of Ẑ by M , namely a short exact sequence 0→M
ι→ E

π→ Ẑ→ 0

of profinite groups, where the maps are continuous group homomorphisms. Let F ∈ Ẑ be
a topological generator, and let x ∈ E be a preimage of F . The map Z → E given by

n 7→ xn extends to a continuous homomorphism ε : Ẑ → E by Proposition 1.18. Since π ◦ ε
is continuous and is equal to the identity on the dense subgroup 〈F 〉 ⊂ Ẑ, it must be the

identity. Hence π has a section, and we conclude that E ' Ẑ×M is a split extension. Since

the group H2(Ẑ,M) classifies extensions up to congruence by an exercise in Section 3, it must
be trivial.

An alternative proof of this lemma, relying on Tate cohomology rather than the properties
of profinite completion, will be given at the end of this section. �

Corollary 7.8. Let M be a torsion Ẑ-module. Then H i(Ẑ,M) = 0 for all i ≥ 2.

Proof. This is immediate from the previous lemma by Lemma 4.15. �

The next result often provides a handy way to verify that cohomology groups of a G-module
M vanish, if we can find a filtration of M with tractable graded pieces. In principle we could
have proved it much earlier, but we had no need for it until now.

Lemma 7.9. Let G be a finite group and let M be a G-module. Suppose that we have a
descending filtration of M by open submodules:

M = M0 ⊇M1 ⊇M2 ⊇M3 ⊇ · · ·



GROUP COHOMOLOGY 59

such that
⋂∞
j=0Mj = 0. Suppose that M is complete for the topology defined by the filtration

{Mj} (cosets of the submodules Mj form a base of open sets). Let i ≥ 0 and suppose that
H i(G,Mj/Mj+1) = 0 for all j ≥ 0. Then H i(G,M) = 0.

Proof. Let ψ0 : Gi → M be an i-cocycle; our aim is to show that it is also a cobound-
ary. Composing ψ0 with the natural projection M = M0 � M0/M1, we get a cocy-
cle ψ0 ∈ Zi(G,M0/M1). Since H i(G,M0/M1) = 0 by assumption, there exists a cochain
ϕ1 ∈ Ci−1(G,M0/M1) such that di−1(ϕ1) = ψ0. Let ϕ1 : Gi−1 → M0 be any lift of ϕ1; since
G is finite, ϕ1 is automatically continuous and thus a cochain. Now define ψ1 = ψ0−di−1(ϕ1).
Then diψ1 = 0 and the image of ψ1 lies in M1, so ψ1 ∈ Zi(G,M1).

We can now play the same game with ψ1. Continuing this process, we obtain a sequence
of cocycles ψj ∈ Zi(G,Mj) and of cochains ϕj ∈ Zi(G,Mj−1) such that for each j ≥ 0 we
have ψj = di−1(ϕj+1) +ψj+1. Now define ϕ =

∑∞
j=1 ϕj . By our assumptions on M the series

converges. The difference ψ0 − di−1ϕ is congruent to zero modulo every Mj , hence it is zero.
We have proved that ψ0 is a coboundary, as claimed. �

Our next goal is to obtain an explicit description of the Brauer group Br(K) of a finite
extension K/Qp. To this end, we prepare some final tools. First of all, let vK : K× � Z be
the normalized additive valuation of K: if x ∈ K× and m ∈ Z, then vK(x) = m if and only
if x = uπmK , where u ∈ O×K . We continue to denote the unique extension of vK to (Knr)×

by vK . Since πK is still a uniformizer in Knr, we have that vK((Knr)×) = Z. Since the
action of Gk on (Knr) preserves the ideals of OKnr and hence preserves valuation, we see that
vK : (Knr)× → Z is a Gk-module map, where Gk acts on Z trivially. This induces a natural
map on cohomology:

vK : Br(K) ' H2(Gk, (K
nr)×)→ H2(Gk,Z).

Next consider the short exact sequence 0 → Z → Q → Q/Z → 0 of abelian groups. We
view all three groups as Gk-modules, with a trivial action of Gk. Looking at the following bit
of the long exact cohomology sequence:

· · · → H1(Gk,Q)→ H1(Gk,Q/Z)→ H2(Gk,Z)→ H2(Gk,Q)→ · · ·
and observing that the leftmost and rightmost groups vanish by Corollary 4.13, we conclude
that H2(Gk,Z) ' H1(Gk,Q/Z).

Finally we have a map γ : H1(Gk,Q/Z) → Q/Z given by γ([ψ]) = ψ(Frob−1
k ) for every

ψ ∈ Z1(Gk,Q/Z). This is well-defined: since Gk acts trivially on Q/Z, there are no non-
zero 1-coboundaries, and so every cohomology class in H1(Gk,Q/Z) contains only one 1-
cocycle. Furthermore, again because Gk acts trivially on Q/Z, the 1-cocycles are nothing more
than continuous group homomorphisms Gk → Q/Z. This implies that γ is an isomorphism.
Indeed, γ is injective because a continuous homomorphism Gk → Q/Z is determined by its
restriction to the dense cyclic subgroup 〈Frobk〉. It is surjective because any homomorphism
〈Frobk〉 → Q/Z can be extended to Gk by the injectivity of Q/Z. (Why can we always extend
to a continuous homomorphism?)

Putting all this together, we define the Hasse invariant InvK : Br(K)→ Q/Z as a compo-
sition of four maps:

Br(K) ' H2(Gk, (K
nr)×)

vK→ H2(Gk,Z) ' H1(Gk,Q/Z)
γ→ Q/Z.

Remark 7.10. To visualize the Hasse invariant map, observe that any non-trivial element of
Q/Z contains a unique representative a

b ∈ Q such that 0 < a < b and (a, b) = 1. Let Kb/K
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be the unique unramified extension of K of degree b. Define a vector space

D = Kb · 1⊕Kbπ ⊕Kbπ
2 ⊕ · · · ⊕Kbπ

b−1

and endow it with a K-algebra structure as follows. Of course, πi is the i-th power of π ∈ D
for all 0 ≤ i ≤ b − 1. Let β0, . . . , βb−1 ∈ K be such that vK(β0) = 1 and vK(βi) ≥ 1 for all
1 ≤ i ≤ b − 1. Set πb = β0 + β1π + · · · + βb−1π

b−1. This defines all powers of π. Finally, if
α ∈ Kb, then set πα = Frob−ak (α)π. Recall that Gal(Kb/K) ' Gal(kb/k), where the residue
field kb of Kb is the extension of degree b of the finite field k, and that Frobk ∈ Gal(Kb/K)
corresponds to the inverse of the map (x 7→ xp) ∈ Gal(kb/k).

We leave it as an exercise for the reader to show that D is a central simple K-algebra and
that InvK(D) = a

b .

Proposition 7.11. Let K/Qp be a finite extension. The map InvK : Br(K) → Q/Z is an
isomorphism of abelian groups.

Proof. We defined InvK as a composition of four maps, and we already know that three of
them are isomorphisms. So it suffices to show that vK : H2(Gk, (K

nr)×) → H2(Gk,Z) is

an isomorphism. The short exact sequence 0 → O×Knr → (Knr)×
vK→ Z → 0 of Gk-modules

produces the fragment

· · ·H2(Gk,O×Knr)→ H2(Gk, (K
nr)×)

vK→ H2(Gk,Z)→ H3(Gk,O×Knr)→ · · ·

of the long exact cohomology sequence, and thus it suffices to prove that H i(Gk,O×Knr) = 0
for i ∈ {2, 3}. Proposition 4.10 tells us that

H i(Gk,O×Knr) = lim−→H i(Gal(`/k),O×L ),

where L/K runs over all finite unramified Galois extensions and ` is the residue field of L;
since L/K is unramified, note that Gal(`/k) ' Gal(L/K). Therefore it suffices to show that
H i(Gal(`/k),O×L ) = 0 for any finite unramified Galois L/K and i ∈ {2, 3}.

So let L/K be a finite unramified extension and consider the following filtration of O×L by
Gal(`/k)-submodules:

O×L ⊃ 1 + mL ⊃ 1 + m2
L ⊃ 1 + m3

L ⊃ · · ·

where mL is the maximal ideal of OL. Since O×L/(1+mL) ' `× and (1+mj
L)/(1+mj+1

L ) ' ` for

all j ≥ 1, by Lemma 7.9 it suffices to show that H i(Gal(`/k), `) = 0 and H i(Gal(`/k), `×) = 0
for i ∈ {2, 3}.

We know that H i(Gal(`/k), `) = 0 for all i ≥ 1 by Corollary 3.13, and furthermore we
know that H2(Gal(`/k), `×) = Br(`/k) = 0, where the first equality is Theorem 6.36 and the
second is immediate from Proposition 7.3. It remains only to prove that H3(Gal(`/k), `×) = 0;
however, our proof of this will also establish the other three vanishings.

Indeed, consider the Hochschild-Serre spectral sequence of Definition 5.20, with G =
Gal(k/k), H = Gal(k/`), and M = `×. We obtain a spectral sequence

Ep,q2 = Hp(Gal(`/k), Hq(G`, k
×

))⇒ Hp+q(Gk, k
×

).

Since G` ' Ẑ and k
×

= `
×

is a union of unit groups of finite fields and thus torsion, we have

Hq(G`, `
×) = 0 for all q ≥ 2 by Corollary 7.8. In addition, H1(G`, `

×
) = 0 by Hilbert 90.

Thus the E2-sheet of our spectral sequence has only one non-zero row, and we conclude that

Hp(Gal(`/k), `×) = Ep,02 = Ep,0∞ = F pHp(Gk, k
×

) = 0 for all p ≥ 1, where the last equality
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holds since Hp(Gk, k
×

) = 0 for all p ≥ 1, again by Corollary 7.8 for p ≥ 2 and Hilbert 90 for
p = 1. �

Remark 7.12. It is possible to give shorter and more direct proofs of the isomorphism Br(K) '
Q/Z. In particular, the isomorphism may be viewed purely as a statement about central
simple K-algebras, and it may be proved within that theory. We have chosen a proof that
allows us to practice cohomological techniques that are useful in a wide variety of situations.

7.3. Tate cohomology. Let G be a finite group and let M be a G-module. In this case, M
is equipped with a norm map N : M →M given by

N(m) =
∑
g∈G

gm (17)

for all m ∈M . We now define a slightly modified version of cohomology as follows:

Definition 7.13. Let G be a finite group and M a G-module. Then we set

Ĥ i(G,M) =

{
MG/N(M) : i = 0

H i(G,M) : i > 0.

Proposition 7.14. Let G be a finite group, and let 0 → A → B → C → 0 be a short exact
sequence of G modules. There is a long exact sequence

Ĥ0(G,A)→ Ĥ0(G,B)→ Ĥ0(G,C)
δ0→ Ĥ1(G,A)→ Ĥ1(G,B)→ Ĥ1(G,C)→ Ĥ2(G,A)→ · · ·

where, if c ∈ CG belongs to the class [c] ∈ Ĥ0(G,C), then δ0([c]) = [g 7→ gc̃ − c̃], where c̃ is
an arbitrary lift of c to B.

Proof. We only have to check exactness at the first four groups, since from then onwards this
is the usual long exact cohomology sequence. The checking is straightforward. �

Remark 7.15. Tate also defined Ĥ i(G,M) for i < 0. These groups see the homology of the G-
module M and allow the exact sequence of the previous proposition to be continued infinitely
to the left, accounting for the failure of the map Ĥ0(G,A)→ Ĥ0(G,B) to be injective. Since
we have not introduced homology in this course, we do not consider Tate cohomology in
negative degree – but see the exercises!

Now let G be a finite cyclic group of order n, and let σ ∈ G be a generator. Let M be a
G-module and define a map D : M → M by D(m) = σ(m)−m for all m ∈ M . We define a
complex K(M) as follows:

· · · ∂
−2

→ M−1 ∂−1

→ M0 ∂0→M1 ∂1→M2 ∂2→ · · ·
where M i is a copy of M for each i ∈ Z, and the maps ∂i : M i →M i+1 are given by

∂i(m) =

{
D(m) : m even

N(m) : m odd.

for all m ∈M . Note that this is indeed a complex, since for any m ∈M we have

N(D(m)) = D(N(m)) = (σ − 1)(1 + σ + σ2 + · · ·+ σn−1)m = (σn − 1)m = 0.

Here we implicitly treat M as a module over the group ring Z[G]. Let H i(K(M)) =
(ker ∂i)/(im ∂i−1) denote the cohomology of this complex. It is manifestly clear that the
abelian groups H i(K(M)) depend only on the parity of i.
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Proposition 7.16. Let G be a finite cyclic group and M a G-module. Given a generator
σ ∈ G, let K(M) be the complex defined as above. Then H i(K(M)) ' Ĥ i(G,M) for all i ≥ 0.
In particular, H i(G,M) ' H i+2(G,M) for all i ≥ 1.

Proof. Since G is cyclic, we have MG = {m ∈ M : σ(m) = m}. It follows immediately that

H0(K(M)) = MG/N(M) = Ĥ0(G,M). Similarly, we have already observed in Example 3.18
that there is an isomorphism

Z1(G,M)
∼→ ker N

ψ 7→ ψ(σ).

Under this isomorphism, B1(G,M) corresponds to the set of elements of M of the form

σ(m)−m, namely to im D. Thus Ĥ1(G,M) = H1(G,M) ' H1(K(M)).
It is easy to see that H i(K(−)) : ModG → Ab is a functor for every i ≥ 0. Moreover, if

0 → M → N → P → 0 is a short exact sequence of G-modules, then we clearly get a short
exact sequence of complexes 0 → K(M) → K(N) → K(P ), and by the Zigzag Lemma this
produces a long exact cohomology sequence. Thus {H i(K(−))} is a δ-functor. We claim that
it is universal; this implies our proposition.

As usual, we prove universality by means of Lemma 3.9, so we need to show that the
functors H i(K(−)) are effaceable for all i ≥ 1. In the course of proving Corollary 2.12, we
showed that any G-module M embeds in a module of the form IndG{e}I, where I is an injective

abelian group. Let f ∈ (IndG{e}I)G. This means that f is a constant function sending every

g ∈ G to some fixed element ι ∈ I. Define hι ∈ IndG{e}I by

hι(σ) =

{
ι : σ = e

0 : σ 6= e.

Then it is clear that N(fι) = f . Hence Ĥ0(G, IndG{e}I) = H0(K(IndG{e}I)) = 0, which in turn

implies that H i(K(IndG{e}I)) = 0 for any even i.

Similarly, suppose that f ∈ IndG{e}I lies in the kernel of N. This means that
∑

τ∈G f(τ) = 0.

Thus the element h ∈ IndG{e}I given by h(σj) = σj−1
k=0f(σk) for all j ≥ 0 is well-defined. One

checks that f(τ) = h(τσ) − h(τ) for all τ ∈ G and hence that f ∈ im D. It follows that
H i(K(IndG{e}I)) = 0 for all odd i, and we have obtained the required effaceability. �

We now deduce two corollaries of the previous proposition. The first gives an alternative
argument, avoiding the Hochschild-Serre spectral sequence, for the last step of the proof of
Proposition 7.11 (the isomorphism Br(K) ' Q/Z for any finite extension K/Qp).

Corollary 7.17. Let `/k be an extension of finite fields. Then H i(Gal(`/k), `×) = 0 for any
odd i ≥ 1.

Proof. If i ≥ 1 is odd, then H i(Gal(`/k), `×) ' H1(Gal(`/k), `×) by Proposition 7.16. Now
H1(Gal(`/k), `×) = 0 by Hilbert 90. �

We can also now give the promised alternative proof of Lemma 7.7:

Corollary 7.18. Let M be a finite Ẑ-module. Then H i(Ẑ,M) = 0 for any even i ≥ 2.

Proof. By Proposition 7.16 it suffices to show that Ĥ0(Ẑ,M) = 0. It is an exercise to

show that every open subgroup of Ẑ is of the form nẐ for n ∈ N. Thus Ĥ0(Ẑ,M) =
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M Ẑ/N(M) = lim−→MnẐ/N(MnẐ). The modules MnẐ/N(MnẐ) need not be trivial. How-

ever, unraveling the definitions of Section 4 shows that the transition maps, when n|m, are

the maps lim−→MmẐ/N(MmẐ) → MnẐ/N(MnẐ) induced by multiplication by m
n in M . In

particular, this is the zero map whenever m
n = |M |, which implies our claim. �

Exercises

(1) Let `/k be an extension of finite fields. Show that the norm map N`/k : ` → k is
surjective and use this to obtain another proof of Proposition 7.3.

(2) Prove, using direct computations with cocycles, that H2(Gal(C/R),C×) ' Z/2Z.
(3) Prove that any central simple R-algebra is isomorphic either to R itself or to Hamil-

ton’s quaternion algebra H. Prove directly that Br(R) ' Z/2Z.
(4) Prove the claims of Remark 7.10.
(5) Let G be a profinite group, and let M be a G-module. Let M ′ ⊆M be the submodule

generated by all elements of the form gm − m, for g ∈ G and m ∈ M . Define the
G-coinvariants of M to be MG = M/M ′. Prove that the functor M 7→MG is a right
exact functor ModG → Ab.

(6) A G-module P is called projective if, given a surjection g : M � N of G-modules and

a map f : P → N , there exists f̃ : P →M completing the triangle:

P

M
g
-

�...
....

....
....

....
....

....
....

.

f̃

N.

f

?

This is dual to the notion of an injective G-module from Definition 2.9. Prove that
every G-module M has a projective resolution, namely an exact sequence

· · · → P2 → P1 → P0 →M → 0.

(7) Let M be a G-module. Choose a projective resolution as above and apply the G-
coinvariants functor to get a complex

· · · → (P2)G → (P1)G → (P0)G.

The homology of this complex is called the homology of M and denoted Hi(G,M).
Prove that it is independent of the choice of projective resolution.

(8) Let G be a finite group and let M be a G-module. Observe that the map N : M →M
of (17) above vanishes on M ′ and thus defines a map N : MG → MG. Define Tate
cohomology in negative degrees by

Ĥ i(G,M) =

{
kerN ⊆MG : i = −1

H−(i+1)(G,M) : i ≤ −2.

Given an exact sequence 0 → M → N → C → 0 of G-modules, show that there is
long exact sequence that extends infinitely in both directions:

· · · → Ĥ−2(G,C)→Ĥ−1(G,M)→ Ĥ−1(G,N)→ Ĥ−1(G,C)→ Ĥ0(G,M)→

Ĥ0(G,N)→ Ĥ0(G,C)→ Ĥ1(G,M)→ · · ·
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(9) If G is finite cyclic and M is a G-module, prove that Ĥ i(G,M) ' Ĥ i+2(G,M) for
any i ∈ Z.

8. Cohomological dimension

Our next big aim in this course is to understand the cohomology of local fields, namely
to obtain an explicit description of H i(GK ,M), where K/Qp is a finite extension and GK ,
as usual, is the absolute Galois group of K. It turns out that essentially nothing of interest
happens when i > 2. In this section we will prove this result and fit it into the more general
framework of the theory of cohomological dimension.

8.1. Basic properties. If G is any abelian group and n ≥ 1, then we denote the n-torsion
of G by G[n] = {g ∈ G : ng = 0}. Of course, G[n] is a subgroup of G. The following fact is
basic but essential.

Lemma 8.1. Let G be a profinite group and M a torsion G-module. Then H i(G,M) is a
torsion group for any i ≥ 0. If M [n] = M for some n ∈ N, then H i(G,M)[n] = H i(G,M).

Proof. This is obvious for H0(G,M) = MG, so we assume i ≥ 1. Clearly it suffices to show
that Zi(G,M) is a torsion group. Since Gi is compact, any continuous map ϕ : Gi →M has
finite image. Let {m1, . . . ,mr} be the image of ϕ. Since M is torsion, there exist integers
n1, . . . , nr such that nimi = 0 for all 1 ≤ i ≤ r. Let N = lcm(n1, . . . , nr). Then Nϕ = 0.

In particular, if all the ni divide some n, then so does N . This implies the final statement
of the claim. �

Definition 8.2. Let G be a profinite group and p a prime. The cohomological dimension of G
at p, denoted cdp(G), is defined to be the largest i such that there exists a torsion G-module
M satisfying H i(G,M)[p] 6= 0. We say that cdp(G) =∞ if the set of such i is unbounded.

The cohomological dimension of G is then defined to be

cd(G) = sup
p

cdp(G).

Since H i(G,M) is a torsion group whenever M is torsion, by Lemma 8.1, we observe
that cd(G) is, equivalently, the largest degree i for which there exists a torsion G-module M
satisfying H i(G,M) 6= 0.

Example 8.3. It is immediate from Lemma 3.12 that cd({e}) = 0.

Example 8.4. We have cd(Gk) = 1 for any finite field k. Indeed, in the language of cohomo-
logical dimension Corollary 7.8 states precisely that cd(Gk) ≤ 1. In the discussion preceding
the definition of the Hasse invariant map InvK , we saw that H1(Gk,Q/Z) ' Q/Z, which
implies cd(Gk) ≥ 1.

Definition 8.5. Let K/Qp be a finite extension. For any n ≥ 1, we set µn ⊂ K
×

to be the
subgroup of n-th roots of unity. This is naturally a discrete G-module, where G is any closed
subgroup of GK .

Example 8.6. Let K/Qp be a finite extension. Then cd`(GK) ≥ 2 for all primes `. Indeed,
for any n ≥ 1 we may consider the short exact sequence

0→ µn → K
× x 7→xn→ K

× → 0 (18)
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of GK-modules. This gives rise to the following short exact sequence of cohomology groups:

H1(GK ,K
×

)→ H2(GK , µn)→ H2(GK ,K
×

)→ H2(GK ,K
×

).

The leftmost group is trivial by Hilbert 90. Thus H2(GK , µn) is the kernel of H2(GK ,K
×

)→
H2(GK ,K

×
). This map is just multiplication by n. Hence it follows from Corollary 6.37 and

Proposition 7.11 that H2(GK , µn) ' 1
nZ/Z. Clearly µn is a torsion module, and if `|n then

H2(GK , µn)[`] 6= 0.

The reader may well wonder whether the cohomological dimension of a profinite group G
tells us anything at all about the cohomology of non-torsion modules. It turns out that it
tells us quite a lot.

Definition 8.7. Let G be a profinite group and p a prime. The strict cohomological dimension
of G at p, denoted scdp(G), is defined to be the largest i such that there exists a G-module
M satisfying H i(G,M)[p] 6= 0. As usual, we say that cdp(G) = ∞ if the set of such i is
unbounded. Similarly, we define scd(G) = supp scdp(G).

Proposition 8.8. Let G be a profinite group. Then cdp(G) ≤ scdp(G) ≤ cdp(G) + 1 for any
prime p.

Proof. The first inequality is obvious, so we only prove the second. Moreover, there is nothing
to prove if cdp(G) = ∞, so we assume that n = cdp(G) is finite. We need to show that
Hq(G,M)[p] = 0 for all G-modules M whenever q > n+1. Consider the short exact sequence

0→M [p]→M
π→ pM → 0 arising from multiplication by p. Since M [p] is a torsion module,

we have Hq(G,M [p]) = Hq(G,M [p])[p] = 0, and thus Hq(G,M)
π→ Hq(G, pM) is injective.

On the other hand, consider the short exact sequence 0 → pM
ε→ M → M/pM → 0.

Again M/pM is a p-torsion module, hence Hq−1(G,M/pM) = Hq−1(G,M/pM)[p] = 0,

so that Hq(G, pM)
ε→ Hq(G,M) is injective. Clearly the composition ε ◦ π : M → M is

just multiplication by p, and the same is true of the induced maps on cohomology. But if
multiplication by p is injective on Hq(G,M), then Hq(G,M)[p] = 0. �

Proposition 8.9. Let G be a profinite group, and let H ⊆ G be a closed normal subgroup.
Then cd(G) ≤ cd(H) + cd(G/H).

Proof. Let M be a torsion G-module and let i > cd(H) + cd(G/H). If p, q ∈ N are integers
such that p+ q = i, then either p > cd(H), in which case Hp(H,ResGHM) = 0 and hence

Hq(G/H,Hp(H,ResGHM)) = 0, (19)

or else q > cd(G/H), in which case (19) still holds because Hp(H,ResGHM) is a torsion
module by Lemma 8.1. Thus we have shown that the Hochschild-Serre spectral sequence
of Definition 5.20 associated to the triple (G,H,M) satisfies Ep,q2 = 0 for all p, q such that
p + q = i. Since Ep,qr+1 is a subquotient of Ep,qr for any r ≥ 2, it follows that Ep,q∞ = 0 for all
p, q such that p, q = i. By the abutment of the Hochschild-Serre spectral sequence, we have
F pH i(G,M) = 0 for all 0 ≤ p ≤ i, and hence H i(G,M) = 0. �

8.2. The cohomological dimension of inertia. Let K/Qp be a finite extension. We can
now state precisely the claim to which we alluded at the beginning of this chapter. We would
like to prove that cd(GK) = 2. We already know by Example 8.6 that cd(GK) ≥ 2. Moveover,
we know by Example 8.4 that cd(Gk) = 1. Since GK/IK ' Gk, by Proposition 8.9 it suffices
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to show that cd(IK) = 1. The beginning of this section introduces notions and lemmas that
could have been proved much earlier in the course, but we did not then have need for them.

Definition 8.10. Let p be a prime. A pro-p group is a profinite group whose finite quotients
are all p-groups.

It follows from the proof of Theorem 1.10 that a profinite group G is pro-p if and only
if G ' lim←−I Gi, where the Gi are all finite p-groups. The following fun fact is foundational
in mod p representation theory and accounts for much of its difference from representation
theory over fields of characteristic zero.

Lemma 8.11. Let G be a pro-p group and let M be a G-module. Suppose that M has the
structure of an Fp-vector space, or that M is finite and that its cardinality is a power of p.
Then MG 6= {0}.

Proof. If M is an Fp-vector space and m ∈ M is a non-zero element, then, since stabG(m)
has finite index in G, the G-orbit of m spans a finite-dimensional subspace. Thus we may
assume without loss of generality that M is finite of p-power cardinality. In this case, U =⋂
m∈M stabG(m) is an open subgroup of G, hence of finite index. Moreover U is normal, since

all the conjugates of stabG(m) are stabilizers of translates of m. Thus the action of G on M
factors through G/U , and we may assume without loss of generality that G is a finite p-group.

The finite group M decomposes into a disjoint union of G-orbits, whose cardinalities all
divide |G| and so are powers of p. Since |M | is divisible by p, it follows that |MG|, which is just
the number of G-orbits of cardinality 1, must be divisible by p. In particular, |MG| > 1. �

Corollary 8.12. Let G be a profinite group, let H �G be a pro-p normal subgroup, and let
M be a G-module which has either an Fp-vector space structure or finite p-power cardinality.
Suppose that M is a simple G-module, in the sense that it has no proper non-trivial G-
submodules. Then H acts trivially on M .

Proof. Observe that MH is a G-submodule of M . Indeed, for any g ∈ G, h ∈ H, and m ∈MH

we have hgm = g(g−1hg)m = gm and hence gm ∈MH . By the previous lemma, MH 6= {0}.
Therefore MH = M . �

Definition 8.13. Let G be a profinite group and let p be prime. A pro-p-Sylow subgroup of
G is a maximal closed pro-p subgroup.

Remark 8.14. Suppose that G ' lim←−I Gi, where {Gi}i∈I is a projective system of finite groups.
Let H ⊆ G be a pro-p-Sylow subgroup. It is a pleasant exercise to show that there exist p-
Sylow subgroups Hi ⊆ Gi for every i ∈ I that are compatible, in the sense that ϕij(Hi) ⊆ Hj

whenever i, j ∈ I satisfy i ≥ j, and that H ' lim←−I Hi. It then follows from the usual Sylow
theorems for finite groups that any two pro-p-Sylow subgroups of G are conjugate.

Lemma 8.15. Let G be a profinite group, let p be prime, and let M be a G-module of finite
p-power cardinality. Let H ⊆ G be a pro-p-Sylow subgroup. Then for any i ≥ 0 the restriction
map res : H i(G,M)→ H i(H,M) is injective.

Proof. As in the proof of Corollary 4.13 we can reduce to the case where G is finite. Indeed,
we saw in that proof that H i(G,M) ' lim−→H i(G/Uj ,M

Uj ), where {Uj} is the family of open

normal subgroups of G. If Hj is the image of H under the natural projection G � G/Uj ,
then Hj ⊆ G/Uj is a p-Sylow subgroup. Moreover, H ' lim←−Hj , and the restriction map res :

H i(G,M)→ H i(H,M) arises from the maps H i(G/Uj ,M
Uj )

res→ H i(Hj ,M
Uj )→ H i(H,M).
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So let G be a finite group. Then any p-Sylow subgroup H ⊆ G is open. Since Zi(G,M)
is a finite group of exponent |M |, it has p-power order, and hence so does H i(G,M). By

Lemma 4.4, the composition H i(G,M)
res→ H i(H,M)

cor→ H i(G,M) is multiplication by the
index [G : H]. This is an isomorphism of H i(G,M), since [G : H] is prime to p and hence
to the order of H i(G,M). Thus the restriction map is injective, and the corestriction is
surjective. �

Lemma 8.16. Let K be a finite extension of Qp and n ≥ 1. Then H2(IK , µn) = 0.

Proof. Since IK = Gal(K/Knr), we have H2(IK ,K
×

) ' Br(Knr). Now, let A be a central
simple Knr-algebra. Choose a Knr-basis b1, . . . , br of A, and let c`ij ∈ Knr be the structure

constants satisfying bibj =
∑r

`=1 c
`
ijb`. Let L/K be the finite extension generated by the con-

stants c`ij , and let A′ be the L-algebra spanned by the basis b1, · · · , b` and with multiplication

defined as above. Clearly A′ ⊗L Knr ' A, and A′ is simple: if I ⊂ A′ were a two-sided ideal,
then I⊗LKnr ⊂ A would also be one. Finally, the center of A′ is Z(A)∩L = L. Then A′ is split
by an unramified finite extension L′/L by Proposition 7.4. Thus A ' A′⊗LKnr 'M√r(Knr),

and so Br(Knr) = 0.

Furthermore, H1(IK ,K
×

) = 0 by Hilbert 90 and Proposition 4.10. Considering the long
exact cohomology sequence arising from the short exact sequence (18), whose terms are now

viewed as IK-modules, we see that H2(IK , µn) embeds in H2(IK ,K
×

) = 0. This establishes
the claim. �

Corollary 8.17. Let K/Qp be a finite extension, and let M be a torsion IK-module. Then
H i(IK ,M) = 0 for any i ≥ 2.

Proof. By Lemma 4.15 it suffices to show that H2(IK ,M) for any IK-module M of finite
cardinality. Since the abelian group M decomposes into a direct sum of groups of prime
power order, since each of these direct summands is clearly preserved by the action of IK ,
and since cohomology commutes with direct sums, we may assume without loss of generality
that M has prime power order. So let |M | = `r, where ` is a prime number.

If H ⊂ IK is a pro-`-Sylow subgroup, then by Lemma 8.15 it suffices to prove that
H2(H,M) = 0. We show this by induction on r. If r = 1, then M has prime order and
is thus a simple H-module. It follows from Corollary 8.12 that there is only one possible
H-action on M , namely the trivial one. Thus H2(H,M) = H2(H,µ`).

Let F ⊂ K be the fixed field of H. If L/K is a finite extension, then [IK : IL] =
[Gal(K/Knr) : Gal(K : Lnr)] = [Lnr : Knr] = eL/K , where eL/K is the ramification index
of L/K. In particular, if ` - eL/K then we must have H ⊆ IL, since otherwise the image of H
under the natural projection IK � IK/IL would be a non-trivial subgroup of `-power order.
Thus

H ⊆
⋂

L/K finite, `-eL/K

IL. (20)

On the other hand, suppose that x ∈ F . Then ` - eK(x)/K , hence F is contained in the
compositum of the fields Lnr, where L runs over all finite extensions of K satisfying ` - eL/K .
This implies the inverse inclusion to (20). If we order these fields by inclusion, then the groups
IL naturally from a projective system whose connecting homomorphisms are inclusions. Then
H = lim←− IL, so that H2(H,µ`) = lim−→H2(IL, µ`). Hence H2(H,µ`) = 0 by Lemma 8.16.
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Now suppose the claim is known for |M | ≤ `r−1. Let |M | = `r. Let N ⊆ M be a simple
H-submodule; this exists by the finiteness of M . By Lemma 8.11, the action of H on N is
trivial, so that any subgroup of N is an H-submodule. Since any finite `-group has a subgroup
of order `, it follows that |N | = `. Now the short exact sequence 0→ N → M → M/N → 0
of H-modules gives rise to the exact sequence

H2(H,N)→ H2(H,M)→ H2(H,M/N),

where the two outer groups are trivial by induction. Therefore H2(H,M) = 0 and we are
done.

Note that this induction would fail if we tried to work with IK directly rather than with a
pro-`-Sylow subgroup, since then there could be simple G-modules of order `r for r > 1. �

8.3. Finite GK-modules. We are now in a position to compute the cohomological dimension
of GK and to make an observation about the cohomology of GK-modules that will lay the
groundwork for local duality, which will be developed in the next section.

Proposition 8.18. Let K/Qp be a finite extension. Then cd(GK) = 2.

Proof. As noted above, Example 8.6 shows that cd(GK) ≥ 2, so it suffices to prove that
cd(GK) ≤ 2. Consider the closed normal subgroup IK ⊂ GK . We have cd(IK) ≤ 1 by
Corollary 8.17. Since GK/IK ' Gk and cd(Gk) = 1 by Example 8.4, we have cd(GK) ≤ 2 by
Proposition 8.9. �

Corollary 8.19. Let K/Qp be a finite extension, and let M be a GK-module of finite cardi-
nality. Then H i(GK ,M) is a finite group for all i ≥ 0.

Proof. Observe that
⋂
m∈M stabG(m) is a finite intersection of open subgroups of GK , hence

open. Similarly, there exists an open subgroup of GK that acts trivially on µ|M |. Recall that
{GL}, where L/K runs over all finite Galois extensions, is a base of open neighborhoods of
the identity of GK . Therefore we can find a finite Galois extension L/K such that GL is
contained in the intersection of these two open subgroups and so acts trivially both on M and
on µ|M |, and thus also on µn for any n||M |. By the structure theorem of abelian groups, we
have M ' µn1 ⊕ · · · ⊕µnr as abelian groups for some integers nj such that n1n2 · · ·nr = |M |.
This is also an isomorphism of GL-modules, since GL acts trivially on both sides.

We claim that H i(GL,M) ' ⊕rj=1H
i(GL, µnj ) is finite for all i ≥ 0. Of course it is enough

to show that H i(GL, µn) is finite for all i ≥ 0 and all n ≥ 1. If i ≥ 3, then H i(GL, µn) = 0 by
Proposition 8.18. Note also that H0(GL, µn) = µGLn = µn is finite, and that H2(GL, µn) '
1
nZ/Z by Example 8.6 (recall that this used all the machinery of the Brauer group), so in

particular H2(GL, µn) is finite. Finally, viewing the short exact sequence (18) as a sequence
of GL-modules, we obtain the following bit of the long exact cohomology sequence:

H0(GL,K
×

)→ H0(GL,K
×

)→ H1(GL, µn)→ H1(GL,K
×

).

The rightmost group vanishes by Hilbert 90, and the leftmost map is raising to the power
n. Hence H1(GL, µn) ' L×/(L×)n, and this will be shown to be finite in Proposition 8.25
below.

Thus H i(GL,M) is indeed finite for all i ≥ 0. Consider the Hochschild-Serre spectral
sequence

Ep,q2 = Hp(Gal(L/K), Hq(GL,ResGKGLM))⇒ Hp+q(GK ,M).
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Observe that each Ep,q2 is finite: since Gal(L/K) and Hp(GL,ResGKGLM) are both finite, there

are only finite many possible p-cocycles. Of course, this p clashes with the p of K/Qp, but
it would be bizarre to index the modules Ep,q2 by other parameters. Thus each Ep,q∞ is also
finite, since it is isomorphic to a subquotient of Ep,q2 . Since the filtration of each H i(GK ,M)

produces only finitely many graded pieces, each of which is isomorphic to Ei−q,q∞ for some
0 ≤ q ≤ i, we see that H i(GK ,M) is finite for any i ≥ 0, as claimed. �

One of the statements reached in the course of the proof of Corollary 8.19 is important in
its own right; it encapsulates the results of Kummer theory. We state it as a proposition of
its own.

Proposition 8.20. Let n ≥ 1, and let K be a field whose characteristic is prime to n. Then
H1(GK , µn) ' K×/(K×)n.

Proof. This was established in the proof of Corollary 8.19, where K was called L. While
the setup there assumes that K is a p-adic field and that GK acts trivially on µn, i.e. that
µn ⊂ K×, none of this figures in the proof of our statement. We only require that K(µn) be
separable over K, in order to obtain a GK-action on µn, and this is ensured by our condition
on the characteristic of K. The diligent reader will notice that this statement appeared as an
exercise a few chapters ago. �

Remark 8.21. While Proposition 8.20 is a very general statement, the proof of Corollary 8.19
made use of all of our work on the Brauer group of a finite extension K/Qp and is thus specific
to the p-adic setting. Indeed, Corollary 8.19 may fail for other fields. For instance, let K = Q,
and let M = Z/2Z, where the GQ-action on M is trivial. Then the non-trivial elements of

H1(GK ,M) = Hom(Gal(Q/Q),Z/2Z) correspond to quadratic extensions of Q, and there are
infinitely many of these.

8.4. Finiteness of K×/(K×)n. Before moving on to the next section, we prove an important
statement about local fields that has already been used in the proof of Corollary 8.19 and
will appear several more times in our development of local class field theory. If K/Qp is a
finite extension, write OK for its valuation ring, m /OK for the maximal ideal, and π ∈ m for
a choice of uniformizer. As usual, k denotes the residue field; let q be its cardinality, and let
| · | denote the normalized multiplicative valuation on K. For ` ∈ N, denote U` = 1 + m`.

Lemma 8.22. Let n ∈ N be coprime to p, and let α ∈ U1 = 1 + m. There exists β ∈ OK
such that βn = α.

Proof. This is immediate from (the usual formulation of) Hensel’s Lemma. Consider the
polynomial f(x) = xn − α ∈ OK [x]. Its reduction f(x) = xn − 1 ∈ k[x] factors as f(x) =

(x − 1)g(x), where g(x) ∈ k[x] is coprime to x − 1; indeed, 1 is not a root of f
′

= nxn−1, so
it is not a multiple root of f . Lifting this factorization of f to OK produces an n-th root of
α. �

We need an analogue of the previous lemma when n is divisible by p. One way to achieve
this is by using the following variant of Hensel’s Lemma.

Proposition 8.23 (The Hensel-Rychlik lemma). Let O be a complete discrete valuation ring,
and let f(x) ∈ O[x]. Suppose that γ ∈ O satisfies |f(γ)| < |f ′(γ)|2. Then there exists a unique

β ∈ O such that f(β) = 0 and |β − γ| < |f ′(γ)|. In fact, one has |β − γ| = |f(γ)|
|f ′(γ)| .
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Proof. This can be proved using a variant of the iterative argument in the usual proof of
Hensel’s Lemma, that will be very reminiscent of Newton’s method for finding roots of poly-
nomials over the reals. Indeed, the claim is sometimes called the Hensel-Newton method in the

literature. The idea is to define a recursive sequence by setting a0 = γ and an+1 = an− f(an)
f ′(an) .

One proves by induction that each an is well-defined (i.e. that f ′(an−1) 6= 0) and that an ∈ O
for every n ≥ 0. Moreover, the sequence {an} converges (quite rapidly, in fact) to the β we
want. �

Corollary 8.24. Let K/Qp be a finite extension, and let n ∈ N. Suppose that n = psn′,
where n′ is coprime to p, and let r ≥ 0. If α ∈ U2s+r+1, then there exists β ∈ OK satisfying
βn = α.

Proof. Consider the polynomial f(x) = xn − α ∈ OK [x], and take γ = 1. Then |f(1)| =

|1 − α| ≤ q−(2s+r+1), whereas |f ′(1)| = |n| = q−s. Thus the hypotheses of Proposition 8.23

are satisfied, and there exists β ∈ OK such that βn = α and |β − 1| < q−(r+s+1), so that
β ∈ Ur+s+2. �

Proposition 8.25. Let K/Qp be a finite extension, and let n ∈ N. Then K×/(K×)n and
O×K/(O

×
K)n are finite groups.

Proof. Observe that K× decomposes as an internal direct product K× ' 〈π〉 × O×K , where

O×K = lim←−(OK/m`)× is profinite and hence compact. We have shown that the endomorphism

ϕ : K× → K× given by ϕ(x) = xn is an open mapping. Indeed, any open set U ⊂ K×

contains a coset of Ur+s+2 for a sufficiently large r. Thus ϕ(U) contains a coset of ϕ(Ur+s+2),
but we have just shown that the open subgroup U2s+r+1 is contained in ϕ(Ur+s+2).

Now (K×)n = ϕ(K×) = 〈πn〉 × ϕ(O×K), so that K×/(K×)n ' Z/nZ × O×K/ϕ(O×K). Since

ϕ(O×K) = (O×K)n is open, it has finite index in the compact group O×K , and we are done. �

Exercises

(1) Let G be a profinite group. Prove that cd(G) = 0 if and only if G = {e}.
(2) This exercise outlines an alternative approach to Corollary 8.24. Recall the classical

Taylor series

(1 + x)a =

∞∑
i=0

(
a

i

)
xi =

∞∑
i=0

a(a− 1) · · · (a− i+ 1)

i!
xi.

Let K/Qp be a finite extension with uniformizer π ∈ OK , and let α = 1 + πNy ∈ UN .
Let n ∈ N, and substitute into the Taylor series with a = 1/n to obtain a series

∞∑
i=0

1 · (1− n)(1− 2n) · · · (1− (i− 1)n)

nii!
πNiyi ∈ K[[y]].

(a) Show that if N is sufficiently large, then the series converges for all y ∈ OK .
(b) For a fixed y, let β be the sum. Prove that βn = α = 1 + πNy.
(c) What can you say about the valuation of β − 1?

9. The cup product and local duality

One can define a cup product in the context of group cohomology, analogous to that
appearing in algebraic topology. This will turn out to be a very useful tool.
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9.1. The cup product. Let G be a profinite group, and let M and N be two G-modules.
Viewing their underlying abelian groups as Z-modules, we form the tensor product M ⊗ZN ;
hereafter we will omit Z from the notation. Then M ⊗N carries a G-action determined by
g(m ⊗ n) = gm ⊗ gn for any g ∈ G, m ∈ M , and n ∈ N . It is easy to see that the action
is discrete, so that M ⊗N is a G-module. There is a natural map MG ×NG → (M ⊗N)G

given by (m,n) 7→ m⊗ n. The cup product will generalize this to a map

H i(G,M)×Hj(G,N) → H i+j(G,M ⊗N)

(ϕ,ψ) 7→ ϕ ∪ ψ.
Recall the spaces Ci(G,M) of Definition 3.5. These are spaces of continuous functions

Gi+1 →M , with a G-action as defined there. Consider the map

Ci(G,M)× Cj(G,N)
∪→ Ci+j(G,M ⊗N) (21)

sending the pair (ϕ,ψ) to the function ϕ ∪ ψ ∈ Ci+j(G,M ⊗N) given by

(ϕ ∪ ψ)(g0, . . . , gi+j) = ϕ(g0, . . . , gi)⊗ ψ(gi, . . . , gi+j).

Our first task is to check that the map of (21) does induce induce a map on cohomology.
One verifies immediately that this map is G-equivariant, where G acts diagonally on the left-
hand side. Thus G-invariants are preserved, and by the correspondence (4) we get an induced

map Ci(G,M)× Cj(G,N)
∪→ Ci+j(G,M ⊗N) of cochains.

Lemma 9.1. Let M and N be G-modules, and suppose i, j ≥ 0. Let ϕ ∈ Ci(G,M) and
ψ ∈ Cj(G,N) be cochains. Then

di+j(ϕ ∪ ψ) = diϕ ∪ ψ + (−1)iϕ ∪ djψ.

Proof. Recall the maps fi : Ci(G,M) → Ci+1(G,M) defined by (2); these correspond to the
boundary maps di. It is straightforward to check that, for any ϕ ∈ Ci(G,M) and ψ ∈ Cj(G,N)
and any g0, . . . , gi+j+1 ∈ G, we have

(fi+j(ϕ ∪ ψ))(g0, . . . , gi+j+1) = (fiϕ)(g0, . . . , gi+1)⊗ ψ(gi+1, . . . , gi+j+1) +

(−1)iϕ(g0, . . . , gi)⊗ (fjψ)(gi, . . . , gi+j+1).

In other words, fi+j(ϕ∪ψ) = fiϕ∪ψ+ (−1)iϕ∪ fjψ. Since the correspondence (4) is linear,
the claim follows immediately. �

Corollary 9.2. Let M and N be G-modules. For any i, j ≥ 0, the map of (21) induces a
cup product map on cohomology:

H i(G,M)×Hj(G,N)
∪→ H i+j(G,M ⊗N).

Proof. It is immediate from Lemma 9.1 that if ϕ ∈ Zi(G,M) and ψ ∈ Zj(G,N), then
di+j(ϕ ∪ ψ) = 0, so that ϕ ∪ ψ ∈ Zi+j(G,M ⊗ N). Moreover, if ϕ ∈ Bi(G,M), then there
exists η ∈ Ci−1(G,M) such that ϕ = di−1η. The lemma then implies that

ϕ ∪ ψ = di−1η ∪ ψ = di−1η ∪ ψ + (−1)i−1η ∪ djψ = di+j−1(η ∪ ψ) ∈ Bi+j(G,M ⊗N).

An analogous observation holds if ψ is a j-coboundary and ϕ is any i-cocyle. Hence the cup
product induces a map on cohomology. �

We now observe several basic properties of the cup product. Most of them can be estab-
lished by simple manipulation of cocycles.
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Proposition 9.3. Let M and N be G-modules.

(1) The cup product H0(G,M) × H0(G,N)
∪→ H0(G,M ⊗ N) is just the natural map

MG ×NG → (M ⊗N)G given by (m,n) 7→ m⊗ n.
(2) If ϕ ∈ Ci(G,M) and ψ ∈ Cj(G,N), then the inhomogeneous cochain ϕ ∪ ψ ∈

Ci+j(G,M ⊗N) is given explicitly as

(ϕ ∪ ψ)(g1, . . . , gi+j) = ϕ(g1, . . . , gi)⊗ g1g2 · · · giψ(gi+1, . . . , gi+j).

(3) If m ∈MG = H0(G,M) and ψ ∈ Zj(G,N), then m∪ [ψ] = [m⊗ψ] ∈ Hj(G,M ⊗N),
where m⊗ ψ ∈ Zj(G,M ⊗N) is the cocycle (g1, . . . , gj) 7→ m⊗ ψ(g1, . . . , gj).

(4) If ϕ ∈ Z1(G,M) and ψ ∈ Z1(G,N), then [ϕ] ∪ [ψ] = [η], where η ∈ Z2(G,M ⊗N) is
the cocycle η(g1, g2) = ϕ(g1)⊗ g1ψ(g2).

(5) The cup product is associative: if P is a third G-module, then for any ϕ ∈ H i(G,M),
ψ ∈ Hj(G,N), and η ∈ Hk(G,P ) we have (ϕ ∪ ψ) ∪ η = ϕ ∪ (ψ ∪ η) as elements of
H i+j+k(G,M ⊗N ⊗ P ).

(6) Let H ⊂ G be a closed subgroup. If ϕ ∈ H i(G,M) and ψ ∈ Hj(G,N), then

resGHϕ ∪ resGHψ = resGH(ϕ ∪ ψ).

If, in addition, H is normal and ϕ ∈ H i(G/H,MH) and ψ ∈ Hj(G/H,NH), then

inf ϕ ∪ inf ψ = inf (ϕ ∪ ψ).

Proof. The first claim is obvious from the definition of the cup product. The second follows
from an easy computation using (4). The third and fourth claims are special cases of the
second. The fifth and sixth claims follow from the second and the explicit descriptions of the
restriction and inflation maps from Lemma 4.8. �

Lemma 9.4. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of G-modules.
Observe that the corresponding long exact sequence of cohomology groups produces a map
δi : H i(G,M ′′) → H i+1(G,M ′) for each i ≥ 0. Let N be a G-module such that the sequence
0 → M ′ ⊗ N → M ⊗ N → M ′′ ⊗ N → 0 is also short exact. As above, we obtain maps
δi : H i(G,M ′′ ⊗ N) → H i+1(G,M ′). Let ϕ′′ ∈ H i(G,M ′′) and ψ ∈ Hj(G,N) for some
i, j ≥ 0. Then

(δiϕ′′) ∪ ψ = δi+j(ϕ′′ ∪ ψ).

Proof. This is obtained from a computation on cocycles using Proposition 9.3(2) and the
explicit description of the connecting maps in Lemma 4.7. �

Analogously we obtain the following statement.

Lemma 9.5. Let 0 → N ′ → N → N ′′ → 0 be a short exact sequence of G-modules. Let M
be a G-module, and suppose that the sequence 0→M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0 is also
short exact. Let ϕ ∈ H i(G,M) and ψ′′ ∈ Hj(G,N ′′) for some i, j ≥ 0. Then

ϕ ∪ (δjψ′′) = (−1)iδi+j(ϕ ∪ ψ′′),

where the δi are connecting maps arising from the appropriate long exact sequences.

Lemma 9.6. Let M and N be G-modules, and let H ⊂ G be an open subgroup. Suppose that
ϕ ∈ H i(H,M) and ψ ∈ Hj(G,N). Then (corϕ) ∪ ψ = cor(ϕ ∪ resψ) ∈ H i+j(G,M ⊗N).
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Proof. If (i, j) = (0, 0), we can prove this directly using the explicit description of the core-
striction map in Definition 4.3. Indeed,

(corϕ) ∪ ψ =

 ∑
gH∈G/H

gϕ

 ∪ ψ =
∑

gH∈G/H

(gϕ ∪ ψ) =
∑

gH∈G/H

(gϕ ∪ gψ) =

∑
gH∈G/H

g(ϕ ∪ ψ) = cor(ϕ ∪ resψ),

by the bilinearity of the cup product and since the restriction map res : H0(G,N)→ H0(H,N)
is just the natural inclusion NG ↪→ NH .

Now we can use a dimension shifting argument. Suppose that i > 1 and the claim is known
for the pair (i− 1, j). Consider the short exact sequence

0→M
ε→ IndG{e}ResG{e}M → Q→ 0 (22)

that appeared in the proof of Lemma 4.15. Since IndG{e}ResG{e}M is acyclic by Lemma 3.12,

the boundary map δi−1 : H i−1(G,Q)→ H i(G,M) is surjective. Let η ∈ H i−1(G,Q) be such
that δi−1(η) = ϕ. Since corestriction commutes with boundary maps by construction, we
would like to conclude

corϕ ∪ ψ = δi−1(cor η) ∪ ψ = δi+j−1(cor η ∪ ψ) = δi+j−1(cor(η ∪ resψ)) =

cor(δi+j−1(η ∪ resψ)) = cor(δi−1η ∪ resψ) = cor(ϕ ∪ resψ),

where the third equality holds by our claim for (i−1, j) and we would like to apply Lemma 9.4
to establish the second and fifth equalities. For this to be legitimate, we need to verify that the
hypotheses of Lemma 9.4 hold, namely that 0→M⊗N → (IndG{e}ResG{e}M)⊗N → Q⊗N → 0

is a short exact sequence for an arbitrary G-module N . Since the functor − ⊗ N is always
right exact (see, for instance, Proposition XVI.2.6 in Lang’s Algebra, 3rd ed. or, better yet,
prove it yourself), it suffices to show that the map ε⊗ 1 : M ⊗N → (IndG{e}ResG{e}M)⊗N is

injective. It is an exercise to check that the following map is an isomorphism of G-modules:

(IndG{e}ResG{e}M)⊗N ∼→ IndG{e}ResG{e}(M ⊗N)

f ⊗ n 7→ (g 7→ f(g)⊗ gn).

Recalling the definition of ε, it is easy to see that ε ⊗ 1 sends the pure tensor m ⊗ n to the
map (g 7→ gm⊗ gn), and thus (ε⊗ 1)(v)(e) = v for any v ∈M ⊗N . Hence ε⊗ 1 is injective.

Thus the claim holds for (i, j) if it holds for (i − 1, j). Similarly, suppose that the claim
holds for (i, j− 1). By an argument analogous to the one above, using a short exact sequence

0 → N
ε→ IndG{e}ResG{e}N → Q′ → 0 and applying Lemma 9.5, we prove it for (i, j). This

two-dimensional induction allows us to prove the claim for all pairs (i, j). �

Dimension-shifting arguments as in the previous proof and, in a somewhat simpler version,
in the proof of Lemma 4.15, are a very useful tool for working with cohomology. We now
use a similar idea to show that the cup product is commutative up to sign. This property is
called anti-commutativity .

Proposition 9.7. Let M and N be G-modules. If ϕ ∈ H i(G,M) and ψ ∈ Hj(G,N), then
ϕ∪ψ = (−1)ij(ψ∪ϕ) as elements of H i+j(G,M ⊗N), where we identify M ⊗N with N ⊗M
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by means of the isomorphism

M ⊗N ∼→ N ⊗M
m⊗ n 7→ n⊗m.

Proof. If (i, j) = (0, 0), then ϕ ∪ ψ = ϕ ⊗ ψ ∈ (M ⊗ N)G, so the claim is obvious. We now
use a dimension-shifting argument as in the proof of Lemma 9.6 to prove the proposition
by induction on the pair (i, j). As in that proof, suppose that the claim is known for the
pair (i − 1, j) and arbitrary G-modules, consider the short exact sequence (22), and choose
η ∈ H i−1(G,Q) such that ϕ = δi−1(η). Then

ϕ ∪ ψ = δi−1(γ) ∪ ψ = δi+j−1(γ ∪ ψ) = (−1)(i−1)jδi+j−1(ψ ∪ γ) =

(−1)(i−1)j(−1)j(ψ ∪ δi−1(γ)) = (−1)ij(ψ ∪ ϕ).

Here the second equality is Lemma 9.4, the third comes from the inductive hypothesis, and the
fourth is Lemma 9.5; we checked in the course of the proof of Lemma 9.6 that the hypotheses
of Lemmas 9.4 and 9.5 hold. Hence we obtain the claim for (i, j). Similarly, if the claim is
known for (i, j − 1), then it is obtained for (i, j) by an analogous argument that exchanges
the roles of M and N . Since we already know the claim for (0, 0), these two results imply it
for arbitrary pairs (i, j). �

9.2. Statement of local duality. The cup product enables us to state local duality, which
is an analogue of the Poincaré duality arising in algebraic geometry, in the cohomology of a
complex curve. We will see later that this theorem has wide-ranging implications.

Definition 9.8. Let K/Qp be a finite extension.

(1) Define µ∞ =
⋃
n≥1 µn ⊂ K

×
to be the GK-submodule consisting of all roots of unity.

Note that µ∞ ' Q/Z as a group.
(2) Let M be a GK-module. Its dual module is M∗ = Hom(M,µ∞) with the GK-action

defined by (σf)(m) = σ(f(σ−1m)) for all σ ∈ GK , f ∈M∗, and m ∈M .
(3) Let A be a finite abelian group. Its Pontryagin dual is A∨ = Hom(A,Q/Z).

Example 9.9. Let M = µn. Since we view µn as embedded in µ∞, any element f ∈M∗ has
the form f(ζ) = ζi for all ζ ∈ µn and some i ∈ Z/nZ. Moreover, since any σ ∈ GK acts on
µn by σ(ζ) = ζa for some a ∈ (Z/nZ)×, we find that (σf)(ζ) = σ(f(σ−1(ζ))) = σ(f(ζb)) =
σ(ζib) = ζaib = ζi = f(ζ) for all ζ ∈ µn, where ab ≡ 1 modn. Thus M∗ = Z/nZ, with trivial
GK-action.

Lemma 9.10. If A is a finite abelian group, then A∨ ' A. Moreover, the evaluation map
gives a canonical isomorphism (A∨)∨ ' A.

If M is a finite GK-module, then M ' (M∗)∗ canonically as GK-modules.

Proof. The first claim is immediate from the fact that any finite abelian group A is a direct
product of finite cyclic groups. Now let M be a finite GK-module. The evaluation map
provides a homomorphism

M → (M∗)∗

m 7→ (f 7→ f(m)),

where m ∈ M and f ∈ M∗. It follows from the definition of the GK-action on dual modules
that this map is GK-equivariant. Since M is a direct product of finite cyclic groups, for
any distinct elements m,m′ ∈ M it is easy to construct f ∈ M∗ such that f(m) 6= f(m′).
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Thus the map above is injective. But M 'M∗ ' (M∗)∗ as abelian groups, so it must also be
surjective. The same argument, ignoring the GK-module structure, shows that the evaluation
map provides an isomorphism of A with (A∨)∨ if A is a finite abelian group. �

Definition 9.11. Let A be any topological abelian group. Write A∨ for the group of continu-
ous homomorphisms Hom(A,Q/Z), where Q/Z has the discrete topology. We endow A∨ with
the compact-open topology; this is the coarsest topology such that {f ∈ A∨ : f(K) ⊂ U} is
open for all compact K ⊂ A and all open (i.e. all) U ⊂ Q/Z. Observe that this is consistent
with our previous definition of A∨ in the case of finite A.

Proposition 9.12. Let A be a topological abelian group such that the quotients A/nA are
finite for all n ∈ N and any continuous homomorphism f : A → Q/Z factors through A/nA
for some n ∈ N. Then (A∨)∨ ' lim←−A/nA as topological abelian groups.

Proof. We have A∨ = Hom(A,Q/Z) = lim−→Hom(A/nA,Q/Z) by assumption. Thus

(A∨)∨ = Hom(lim−→Hom(A/nA,Q/Z),Q/Z) =

lim←−Hom(Hom(A/nA,Q/Z),Q/Z) = lim←−((A/nA)∨)∨ = lim←−A/nA,
where the last equality uses the finiteness of the A/nA and Lemma 9.10. We leave it as an
exercise to check that this is a homeomorphism. �

Proposition 9.13. If A is a profinite abelian group, then the evaluation map gives an iso-
morphism A

∼→ (A∨)∨.

Proof. If the quotients A/nA are finite, then this follows easily from the previous proposition.
This is the case, for instance, when A = Zp or, more generally, when A is the additive group
OK or the multiplicative group O×K for any finite extension K/Qp; recall Proposition 8.25.

More generally, it is an exercise to show that if A = lim←−Ai, then A∨ = lim−→A∨i and,

conversely, if A = lim−→Ai, then A = lim←−A
∨
i , with the obvious transition maps. Applying both

of these observations, we see that if A is a profinite group realized as A = lim←−Ai with finite

Ai, then (A∨)∨ = lim←−((Ai)
∨)∨. The evaluation map induces an isomorphism on each Ai by

Lemma 9.10, and the claim follows. �

Proposition 9.14. Let TorModGK be the category of torsion GK-modules. Then M 7→ M∗

is an exact contravariant functor from TorModG to itself.

Proof. The only non-obvious part of the statement is the exactness. This is an exercise; note
that it uses the fact that µ∞ ' Q/Z is injective as an abelian group. �

For any GK-module M , the evaluation map M ×M∗ → µ∞ given by (m, f) 7→ f(m) is
clearly bilinear over Z, and thus it factors through a map α : M ⊗M∗ → µ∞. Moreover, α
is GK-equivariant. Indeed, for all σ ∈ GK we have

α(σ(m⊗ f)) = α(σm⊗ σf) = (σf)(σm) = σ(f(σ−1σm)) = σ(f(m)) = σ(α(m⊗ f)).

Thus α induces a map α∗ : H i(GK ,M ⊗M∗)→ H i(GK , µ∞) on cohomology for all i ≥ 0.

Definition 9.15. Let K/Qp be a finite extension and let M be a GK-module. For each i ∈
{0, 1, 2} we define the pairing 〈, 〉K : H i(GK ,M)×H2−i(GK ,M

∗)→ Q/Z as the composition

H i(GK ,M)×H2−i(GK ,M
∗)
∪→ H2(GK ,M ⊗M∗)

α∗→ H2(GK , µ∞)
InvK→ Q/Z.

The image under this pairing of a pair (ϕ,ψ) ∈ H i(GK ,M) × H2−i(GK ,M
∗) is denoted

〈ϕ,ψ〉K .
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Now suppose that M is a finite GK-module. Clearly M∗ is also finite, and the groups
H i(GK ,M) and H2−i(GK ,M

∗) are finite by Corollary 8.19. The pairing defined above gives
rise to maps

A : H2−i(GK ,M
∗)→ H i(GK ,M)∨ B : H i(GK ,M)→ H2−i(GK ,M

∗)∨

ψ 7→ (ϕ 7→ 〈ϕ,ψ〉K) ϕ 7→ (ψ 7→ 〈ϕ,ψ〉K).

The pairing 〈, 〉K is called a perfect pairing if the maps A and B are isomorphisms for each
i ∈ {0, 1, 2}.

The rest of this section is devoted to proving the following theorem, which is the local
duality advertised above.

Theorem 9.16. Let K/Qp be a finite extension and let M be a finite GK-module. Then 〈, 〉K
is a perfect pairing for every i ∈ {0, 1, 2}.

9.3. Reduction to i = 2. Although Theorem 9.16 consists a priori of three entirely separate
statements, for the three possible values of i, we shall see that the case i = 2 implies the other
two without much difficulty. Throughout this section, K/Qp is a finite extension, and M is a
finite GK-module.

The following statement makes sense by Lemma 9.10.

Lemma 9.17. The pairing 〈, 〉K : H i(GK ,M) × H2−i(GK ,M
∗) → Q/Z of Definition 9.15

satisfies

〈b, a〉K =

{
〈a, b〉K : i ∈ {0, 2}
−〈a, b〉K : i = 1,

for all a ∈ H i(GK ,M) and b ∈ H2−i(GK ,M
∗).

Proof. This follows from Proposition 9.7, which gives the analogous commutativity properties
for the cup product. Note that (−1)i(2−i) is equal to 1 if i ∈ {0, 2} and to −1 if i = 1. �

Corollary 9.18. If Theorem 9.16 holds for i = 2, then it holds for i = 0.

Proof. This follows from the first part of Lemma 9.17, with M∗ in the role of M . �

Proposition 9.19. If Theorem 9.16 holds for i = 2, then it holds for i = 1.

Proof. Let M be a finite GK-module. As an abelian group, M is a direct sum of finitely many,
say r, finite cyclic groups, so it embeds into the divisible abelian group I = (Q/Z)r. As in
the proof of Corollary 2.12, by Frobenius reciprocity we obtain an embedding of GK-modules

M ↪→ IndGK{e} I. We identify M with a submodule of IndGK{e} I by means of this embedding.

Since I is a torsion group, and any f ∈ IndGK{e} I is locally constant and thus takes only finitely

many values since GK is compact, we conclude that IndGK{e} I is a torsion GK-module; see the

proofs of Lemma 4.15 and Lemma 8.1 for similar arguments. Moreover, since every element
of a torsion module is contained in a finite submodule (again, more details in the proof of

Lemma 4.15), we see that IndGK{e} I ' lim−→Nα, where the Nα are finite GK-modules such that

M ⊂ Nα.
By Proposition 4.10 we have lim−→H i(GK , Nα) = H i(GK , IndGK{e} I) = 0 for every i > 0,

where the last equality is because IndGK{e} I is an injective GK-module by Corollary 2.11. For

every i > 0, since H i(GK ,M) is finite by Corollary 8.19, it follows that there exists a finite
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submodule M ⊂ Ni such that H i(GK ,M) → H i(GK , Ni) is the zero map; indeed, every
element ϕ ∈ H i(GK ,M) has zero image in some H i(GK , Nαϕ), and since there are finitely
many elements we can take Ni to be an upper bound of all the Nαϕ . Take a finite submodule

M ⊂ N ⊂ IndGK{e} I that is an upper bound of N1 and N2. Since H i(GK , N) = 0 for all i ≥ 3

by Proposition 8.18, we conclude that H i(GK ,M)→ H i(GK , N) is the zero map for all i ≥ 1.
The short exact sequence 0→ M → N → Q→ 0 of GK-modules, where Q = N/M , gives

rise to a long exact sequence of cohomology groups containing the segment H0(GK , N) →
H0(GK , Q)→ H1(GK ,M).

The sequence 0 → Q∗ → N∗ → M∗ → 0 of duals is also an exact sequence of GK-
modules by Proposition 9.14. Hence we get an exact sequence H1(GK ,M

∗)→ H2(GK , Q
∗)→

H2(GK , N
∗). Taking Pontryagin duals, we get a diagram

H0(GK , N) - H0(GK , Q) - H1(GK ,M)
0
- H1(GK , N)

H2(GK , N
∗)∨

B ∼

?
- H2(GK , Q

∗)∨

B ∼

?
- H1(GK ,M

∗)∨,

B

?

where the rows are exact. This diagram is commutative, as one sees by studying the effect
of the maps on cochains. Since Theorem 9.16 holds for i = 2 by hypothesis and hence the
leftmost and central vertical maps are isomorphisms by Corollary 9.18, we verify by a diagram
chase that the rightmost vertical map is an injection.

By the same argument withM∗ instead ofM , we find thatA : H1(GK ,M
∗)→ H1(GK ,M)∨

is injective. If f : Γ → ∆ is an injective homomorphism of abelian groups, the corre-
sponding map f∨ : ∆∨ → Γ∨ is surjective by the injectivity of Q/Z. Hence B = A∨ :
H1(GK ,M) → H1(GK ,M

∗) is surjective, since H1(GK ,M) is finite by Corollary 8.19 and
hence (H1(GK ,M)∨)∨ ' H1(GK ,M) by Lemma 9.10. We conclude that B is an isomor-
phism. Similarly, A is an isomorphism, and thus the local pairing is perfect in the case
i = 1. �

9.4. Reduction to a finite Galois extension. By the results of the previous section, it
suffices to prove Theorem 9.16 in the case i = 2. In this section, we will show that it suffices
to prove the theorem after replacing K by any finite Galois extension L/K. We will then
choose L wisely in the next section to complete the proof.

We will need to understand the behavior of the Hasse invariant map, which figures in the
definition of local duality, with regards to field extensions.

Proposition 9.20. Let K be a finite extension of Qp, and let L/K be a finite extension.
Both squares in the diagram below commute:

Br(K) 'H2(GK ,K
×

)
InvK - Q/Z

Br(L) 'H2(GL,K
×

)

cor

6

res

?
InvL - Q/Z.

id

6

[L : K]

?
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Proof. The proof is just a matter of unpacking the definition of the Hasse invariant map.
First, denoting the residue fields of L and K by ` and k, respectively, we will show that the
following diagrams commute:

H2(GK ,K
×

) �
∼
inf

H2(Gk, (K
nr)×)

H2(GL,K
×

)

cor

6

res

?

�
∼
inf

H2(G`, (L
nr)×).

eL/Kcor

6

res

?

(23)

Recall that the horizontal inflation maps are known to be isomorphisms by Corollary 7.5.
Our claim can be checked by a direct computation on cocycles using the formulas of Section 4.
Alternatively, since all the maps in this diagram can be defined using the universality of
group cohomology as a δ-functor, it suffices to verify the commutativity of the corresponding
diagrams for H0:

K× = (K
×

)GK �
id

((Knr)×)Gk = K×

L× = (K
×

)GL

trL/K

6

id

?

�
id

((Lnr)×)G` = L×.

eL/Ktr`/k

6

id

?

Here tr`/k : L× → K× denotes the map tr`/k(x) =
∑

σG`∈Gk/G` σ(x). and this is obvious.

By a similar universality argument, and the compatibility of δ-functors with the connecting
maps arising in long exact cohomology sequences, we get the commutation of the diagrams

H2(Gk, (K
nr)×)

vK- H2(Gk,Z)
δ
- H1(Gk,Q/Z)

H2(G`, (L
nr)×)

eL/Kcor

6

res

?
vL- H2(G`,Z)

cor

6

eL/Kres

?
δ
- H1(G`,Q/Z).

cor

6

eL/Kres

?

Finally, noting that FrobL = Frob
fL/K
K , we find that the following commutes:

H1(Gk,Q/Z) - Q/Z

H1(G`,Q/Z)

cor

6

eL/Kres

?
- Q/Z.

β

6

eL/KfL/K = [L : K]

?

Since the composition of the two vertical maps on the right must be multiplication by
eL/K [Gk : G`] = [L : K] by Lemma 4.4, the map β is forced to be the identity. Con-
catenating all these diagrams and taking the perimeter, we obtain the commutative diagrams
of the claim. �

Lemma 9.21. Let M be a finite GK-module, and let L/K be a finite extension. The core-
striction map cor : H2(GL,M)→ H2(GK ,M) is surjective.
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Proof. Consider the map tr : IndGKGL ResGKGLM → M given by tr(f) =
∑

gGL∈GK/GL gf(g−1).

It is easy to see that this is well-defined, and it is GK-equivariant since for all x ∈ GK and

all f ∈ IndGKGL ResGKGLM we have

tr(xf) =
∑

gGL∈GK/GL

g · xf(g−1) =

∑
gGL∈GK/GL

gf(g−1x) = x

 ∑
gGL∈GK/GL

x−1gf((x−1g)−1)

 = x(tr(f)).

Finally, tr is surjective: if m ∈ M , let fm ∈ IndGKGL ResGKGLM be the function defined by

fm(g) = gm if g ∈ GL and fm(g) = 0 otherwise; note that fm is locally constant. Then
tr(fm) = m. Now consider the exact sequence

0→ N → IndGKGL ResGKGLM
tr→M → 0, (24)

where N is the appropriate kernel.

The induced map tr∗ : H2(GK , IndGKGL ResGKGLM) → H2(GK ,M) is surjective, as we see by
observing the bit

H2(GK , IndGKGL ResGKGLM)
tr∗→ H2(GK ,M)→ H3(GK , N)

of the long exact sequence and noting that H3(GK , N) = 0 because cd(GK) = 2 and N is a

torsion module since IndGKGL ResGKGLM is.
The corestriction map in the statement of the lemma is just the composition

H2(GL,ResGKGLM) ' H2(GK , IndGKGL ResGKGLM)
tr∗→ H2(GK ,M),

where the isomorphism comes from Shapiro’s Lemma. Thus the corestriction is a composition
of two surjective maps, so it is surjective. �

Lemma 9.22. Let M be a finite GK-module, and let L/K be a finite Galois extension. If

Theorem 9.16 holds for the GL-module ResGKGLM when i = 2, then it holds for the GK-module
M when i = 2.

Proof. The diagram

H0(GK ,M
∗) = HomGK (M,µ∞)

A
- H2(GK ,M)∨

H0(GL, (ResGKGLM)∗) = HomGL(M,µ∞)

?
A
- H2(GL,ResGKGLM)∨

cor∨

?

where the left vertical map is the natural inclusion, commutes as a consequence of Proposi-
tion 9.20. Since the right vertical map is injective by the previous lemma, we see that the
top horizontal map is also injective. Since M carries an action of GK , the two groups in the
bottom row carry a natural action of GK/GL = Gal(L/K). The map A in the bottom row



80 MICHAEL M. SCHEIN

commutes with this action (this needs to be justified). Thus we get a diagram

HomGK (M,µ∞)
A

- H2(GK ,M)∨

HomGK (M,µ∞)Gal(L/K)

?
A
- (H2(GK ,M)∨)Gal(L/K).

cor∨

?

But now the left vertical map is an isomorphism (in fact, an equality). The bottom horizontal
map is assumed to be an isomorphism, so the composition cor∨ ◦ A is an isomorphism, and
this forces the top horizontal map to be an isomorphism. �

Now we finally complete the proof of Theorem 9.16.

9.5. Properties of the pairing. We now prove several properties of the perfect pairing.
These are all consequences of the definitions and of the functoriality of the Hasse invariant
map.

Lemma 9.23. Let L/K be a finite extension and i ∈ {0, 1, 2}. Let M be a finite GK-module.
Let ϕ ∈ H i(GK ,M) and ψ ∈ H2−i(GL,M

∗). Then 〈ϕ, corψ〉K = 〈resϕ,ψ〉L.

Proof. Recall the definition of the local duality pairing as the composition

〈 , 〉K : H i(GK ,M)×H2−i(GK ,M
∗)
∪→ H2(GK ,M ⊗M∗)→ H2(GK , µ∞)

InvK→ Q/Z.
We know that InvL = InvK ◦ cor by Proposition 9.20. Thus 〈ϕ, corψ〉K = InvK(ϕ ∪ corψ) =
InvK(cor(resϕ ∪ ψ)) = InvL(resϕ,ψ) = 〈resϕ,ψ〉L, where we have used Lemma 9.6 and
Proposition 9.7. �

Lemma 9.24. Let L/K be a finite extension and i ∈ {0, 1, 2}. Let M be a finite GK-module.
Let ϕ ∈ H i(GK ,M) and ψ ∈ H2−i(GK ,M

∗). Then 〈resϕ, resψ〉L = [L : K]〈ϕ,ψ〉K .

Proof. We showed that InvL ◦ res = [L : K] InvK in Proposition 9.20. Thus 〈resϕ, resψ〉L =
InvL(resϕ ∪ resψ) = InvL(res(ϕ ∪ ψ)) = [L : K] InvK(ϕ ∪ ψ) = [L : K] 〈ϕ,ψ〉K , where the
second equality is Proposition 9.3(5). �

Exercises

(1) Let G be a topological group. The usual definition of the Pontryagin dual of G is
G∨ = Hom(G,R/Z), where R/Z is the circle group with its usual topology, and G∨

is endowed with the compact-open topology.
(a) Show that a subgroup H ⊂ R/Z is closed if and only if H = R/Z or H is finite.
(b) Prove that G∨ is discrete if G is compact, and that G∨ is compact if G is discrete.
(c) Show that if G is profinite, then Hom(G,R/Z) = Hom(G,Q/Z).

10. The Artin reciprocity map

We are now in a position to prove the main results of local class field theory. Let K/Qp

be a finite extension as in the previous sections. The unit group K× has a profinite, hence
compact, subgroup O×K = lim←−n(OK/mn

K)×, where mK / OK is the maximal ideal. Consider

the topology on K×, where a base of open neighborhoods of the identity is that from the
topology of O×K . This makes K× into a locally compact group.
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Lemma 10.1. Let f : K× → Q/Z be a continuous group homomorphism, where Q/Z is
endowed with the discrete topology. Then f has finite image.

Proof. The restriction of f to the compact subgroup O×K has finite image; since Q/Z is

discrete, the fibers of f are open, and finitely many of them must cover O×K . If π ∈ OK is

a uniformizer, then K× is generated by O×K and 〈π〉. This f(K×) is generated by the finite

subgroup f(O×K) and the finite-order element f(π) ∈ Q/Z, so it is finite. �

If G is a profinite group, its commutator subgroup [G,G] need not in general be closed.

We define the abelianization of G to be Gab = G/[G,G], where [G,G] is the closure of [G,G].
Then Gab is profinite by Proposition 1.14. In fact, Gab is the maximal abelian profinite
homomorphic image of G. If K/Qp is a finite extension, then the commutator subgroup
[GK , GK ] is actually a closed subgroup of GK (see exercises), but we will not need this fact
below. If Kab is the maximal abelian subextension of K/K, then Gab

K = Gal(Kab/K).

Proposition 10.2. There is an isomorphism Hom(Gab
K ,Q/Z)

∼→ Hom(K×,Q/Z) of abelian
groups, where in both cases we consider continuous homomorphisms.

Proof. By the previous lemma, every f ∈ Hom(K×,Q/Z) has finite image and thus ker f has
finite index in K×. In particular, (K×)n ⊆ ker f , where n = [K× : ker f ], so that f factors
through K×/(K×)n. Thus we have

Hom(K×,Q/Z) = lim−→Hom(K×/(K×)n,Q/Z) ' lim−→Hom(H1(GK , µn),Q/Z), (25)

where the final isomorphism was obtained in Proposition 8.20 (“Kummer theory”) and is

induced by the boundary map δ0 : H0(GK ,K
×

)→ H1(GK , µn) arising from the short exact

sequence 0→ µn → K
× n→ K

× → 0 of GK-modules.
Recall from Example 9.9 that (µn)∗ = 1

nZ/Z, with trivial GK-action. Thus the perfect
pairing of Theorem 9.16, in the case i = 1, tells us exactly that

Hom(H1(GK , µn),Q/Z) = H1(GK , µn)∨ = H1(GK ,
1

n
Z/Z). (26)

ButH1(GK ,
1
nZ/Z) = Hom(GK ,

1
nZ/Z) since theGK-action is trivial, so, putting together (25)

and (26), we have

Hom(K×,Q/Z) ' lim−→Hom(GK ,
1

n
Z/Z) = Hom(GK ,Q/Z) = Hom(Gab

K ,Q/Z),

where the final equality holds since any homomorphism from GK to the abelian group Q/Z
must factor through Gab

K , as its kernel is closed and contains the commutator subgroup
[GK , GK ]. �

Consider the group

K̂× = lim←−
n

K×/(K×)n.

Theorem 10.3. There is an isomorphism rK : K̂× → Gab
K .

Proof. We apply the functor Hom(−,Q/Z) to the isomorphism of Proposition 10.2. By Propo-
sition 9.12, whose hypotheses are satisfied in the case of A = K× by Proposition 8.25 and

Lemma 10.1, we have that Hom(K×,Q/Z)∨ = ((K×)∨)∨ ' K̂×. Since Gab
K is profinite, we

know that Hom(Gab
K ,Q/Z)∨ ' Gab

K canonically by Proposition 9.13. �
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The isomorphism rK is called the Artin reciprocity map. Its definition may be restated
pictorially as follows.

Corollary 10.4. There exists a unique injection rK : K∗ → Gab
K with dense image such that

the following diagram commutes for all n ∈ N:

Hom(K×,Z/nZ)×K×/(K×)n
eval
- Z/nZ

H1(GK ,Z/nZ)

6

×H1(GK , µn)

∼
6

〈 , 〉K- Q/Z.

× 1
n

?

Here the top horizontal map is the evaluation map, and the bottom horizontal map is local
duality, which makes sense by Example 9.9. The middle vertical map is the inverse of the
isomorphism d : K×/(K×)n

∼→ H1(GK , µn) of Kummer theory (Proposition 8.20), and the
leftmost vertical map is the homomorphism

H1(GK ,Z/nZ)=Hom(GK ,Z/nZ)=Hom(Gab
K ,Z/nZ)

ϕ 7→ ϕ ◦ rK- Hom(K×,Z/nZ).

Proposition 10.5. Let L/K be a finite extension. Then the following diagram commutes,

L×
rL - Gab

L

K×

NL/K

?
rK - Gab

K

?

where NL/K : L× → K× is the norm map and Gab
L ↪→ Gab

K is the natural embedding.

Proof. It suffices to check for all b ∈ L∗ and all continuous homomorphisms χ : Gab
K → Q/Z

that χ(rK(NL/K(b))) = χ(rL(b)) holds. Indeed, if σ, τ ∈ Gab
K are distinct elements, then

there exists a finite abelian extension K ′/K such that the projections of σ and τ in the
finite abelian group Gal(K ′/K) remain distinct. But we have already seen that there exists a
homomorphism χ′ : Gal(K ′/K) → Q/Z sending σ and τ to distinct images, as will the map
χ : Gab

K → Q/Z obtained from χ′ by inflation.

Since Gab
K is profinite and hence compact, the image of any χ as above is finite and thus con-

tained in 1
nZ/Z for some n ∈ N, which we identify with Z/nZ by means of the “multiplication

by n” map.
If a ∈ K∗ and χ ∈ Hom(Gab

K ,Z/nZ) = H1(GK ,Z/nZ), then the diagram of Corollary 10.4

says precisely that 1
nχ(rK(a)) = 〈χ, da〉K . Now 〈χ, da〉K = InvK(χ ∪ da) by the definition of

the local duality pairing,

Consider the corestriction map cor : L× = H0(GL, resGKGLK
×

) → H0(GK ,K
×

) = K×.

Given b ∈ L×, by Definition 4.3 we have cor b =
∑

σGL∈GK/GL σ(b) = NL/K(b). The

Kummer theory isomorphism d : K×/(K×)n
∼→ H1(GK , µn) arises from a boundary map

H0(GK ,K
×

) → H1(GK , µn) and thus commutes with corestriction. We will also write

d : L×/(L×)n
∼→ H1(GL, µn).
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Putting all this together, and taking a = NL/K(b) ∈ K× two paragraphs above, we have

1

n
χ(rK(NL/K(b))) = InvK(χ ∪ d(cor b)) = InvK(χ ∪ cor db) = InvK(cor(resχ ∪ db)) =

InvL(resχ ∪ db) =
1

n
χ(rL(b)),

where the third equality comes from Lemma 9.6 (and the anti-commutativity of Proposi-
tion 9.7), the fourth one holds as InvL = InvK ◦ cor by Proposition 9.20, and the last equality
uses Corollary 10.4 again. �

Proposition 10.6. Let L/K be a finite abelian extension. Then rK induces an isomorphism
between K×/NL/K(L×) and Gal(L/K).

Proof. Consider the following diagram:

0 - L×
NL/K- K× - K×/NL/K(L×) - 0

0 - Gab
L

rL

?
- Gab

K

rK

?
- Gal(L/K)

r

?
- 0

The top row is obviously exact, and the bottom one is exact since L/K is abelian and thus
a Galois subextension of Kab/K. The maps rL and rK are injective and have dense images,
and the square on the left commutes by the previous proposition, thus inducing the vertical
map r on the right. We need to show that r is an isomorphism.

Observe that, since the rK here is a restriction to K× of the map rK : K̂× → Gab
K obtained

in Theorem 10.3, the relevant topology on K× is the subspace topology induced from the

profinite group K̂× = lim←−K
×/(K×)n.

To show that r is injective, suppose that x ∈ ker r ⊂ K×/NL/K(L×) and let y ∈ K× be a

lift of x. A very simple diagram chase shows that rK(y) must lie in Gab
L ⊂ Gab

K . Since the

image of rL is dense in Gab
L , there exists a sequence {yn} of elements of L× such that {rL(yn)}

converges to rK(y).4 By the injectivity of rL and rK we find that {NL/K(yn)} converges to

y. If we knew that NL/K(L×) were closed in K×, we could conclude that y ∈ NL/K(L×) and
hence x = 0.

It remains to show that NL/K(L×) ⊂ K× is closed in the topology induced from K̂×.

So let {bn} be a sequence of elements of L× such that {NL/K(bn)} converges to a ∈ K×

in the relevant topology. We need to show that a ∈ NL/K(L×). For any b ∈ L×, recall

4This is true because Gab
L is a first countable topological space, i.e. every point has a countable base of

open neighborhoods. It suffices to show that the identity has a countable base of open neighborhoods, since
translates of these will give a base of open neighborhoods for any other point. A base of open neighborhoods
of the identity is given by the subgroups Gal(Lab/L′), where L′/L is a finite abelian extension. Since L has
finitely many extensions of any fixed finite degree, there are countably many of these.

Here is a sketch of a proof that L has finitely many extensions of any fixed degree. Since L has a unique
unramified extension of any degree, it suffices to show that there are finitely many totally ramified extensions
of L of degree n. The minimal polynomial of a uniformizer in any such extension L′ is an Eisenstein polynomial
xn+an−1x

n−1 + · · ·+a1x+a0 ∈ OL[x], where ai ∈ mL for all i and a0 6∈ m2
L. By Krasner’s Lemma, perturbing

each coefficient ai within some open set will give rise to the same extension L′. By compactness of OL we
conclude that there are only finitely many possibilities for L′.
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that vK(NL/K(b)) = fL/KvL(b), where fL/K = [` : k] is the inertia degree. Indeed, all
the conjugates of b have the same valuation, so that vL(NL/K(b)) = [L : K]vL(b). But
(vL)|K× = eL/KvK . Since the sequence {vK(NL/K(bn))} converges to vK(a), we have that

vK(a) ∈ fL/KZ. Now choose c ∈ L× such that vL(c) = vK(a)/fL/K . Then NL/K(bn/c) →
a/NL/K(c) ∈ O×K . Clearly a lies in the image of NL/K if and only if a/NL/K(c) does, so we

may replace a with a/NL/K(c) and assume without loss of generality that a ∈ O×K .

Now, note that K× ' 〈πK〉 × O×K naturally, where πK ∈ OK is a uniformizer. Thus

K×/(K×)n ' 〈πK〉/〈πnK〉×O
×
K/(O

×
K)n. Taking projective limits, we get K̂× ' 〈̂πK〉×O×K '

Ẑ × O×K . Indeed, we showed at the end of the proof of Proposition 8.25 that the groups

O×K/(O
×
K)n are all finite, and hence that O×K is their projective limit. The point of this is

that a base of open neighborhoods of the identity of K× in the K̂×-topology is provided by
sets of the form 〈πN 〉 × U , where N ≥ 0 and U ⊂ O×K is open in the usual profinite topology

of O×K .
Since the sequence of integers {vL(bn)} must stabilize at 0, it follows that for all open

neighborhoods e ∈ U ⊂ O×K we have NL/K(bn) ∈ Ua for all sufficiently large n. In other

words, NL/K(bn)→ a in the usual topology of O×K . But O×L , in its usual topology, is compact,
and thus the sequence {bn} has a limit point b; again, throwing away finitely many bn’s we
may assume that all the bn’s lie in O×L . We must have NL/K(b) = a, so that a ∈ NL/K(L×).
We may finally conclude that the map r is injective.

To prove surjectivity of r, observe that K×/NL/K(L×) is compact. Indeed, it is clear that

π
[L:K]
K = NL/K(πK) ∈ NL/K(L×). Thus K×/NL/K(L×) is a quotient of K×/〈π[L:K]

K 〉, and this

in turn is a disjoint union K×/〈π[L:K]
K 〉 =

∐[L:K]−1
i=0 πiKO

×
K of finitely many compact sets and

hence is compact.
Now let x ∈ Gal(L/K) and lift it to z ∈ Gab

K . By the density of the image of rK , there is a
sequence {yn} of elements of K× such that {rK(yn)} converges to z. By the compactness we
just proved, the sequence of images of the yn in K×/NL/K(L×) has a convergent subsequence.

Let y ∈ K×/NL/K(L×) be the limit. By the commutativity of the square on the right, we
must have r(y) = x. Hence r is surjective. �

Lemma 10.7. Let L/K be a finite extension. There exists a continuous homomorphism
V : GK → GL with the following property: for any n ∈ N and any χ ∈ Hom(GL,Z/nZ) =
H1(GL,Z/nZ), we have corχ = χ ◦ V ∈ H1(GK ,Z/nZ).

Proof. This is a special case of a general construction; see the exercises. �

Corollary 10.8. Let L/K be a finite extension, Consider the natural inclusion ι : K× ↪→ L×.
Then the diagram

K×
rK - Gab

K

L×

ι

?
rL - Gab

L

V

?

commutes, where V : Gab
K → Gab

L is the map from Lemma 10.7.
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Proof. Since rK has dense image and rL ◦ ι is injective, observe that a map Gab
K → Gab

L
completing the diagram is unique if it exists.

As in the proof of Proposition 10.5, it suffices to show that χ(V (rK(a))) = χ(rL(ι(a))) for
all a ∈ K× and χ ∈ Hom(Gab

L ,Z/nZ) = Hom(GL,Z/nZ) = H1(GL,Z/nZ) for any n ∈ N. To
simplify the notation, we drop ι and view K× as a subgroup of L×. Then, as in the proof of
Proposition 10.5, we have

χ(rL(a)) = n InvL(χ ∪ da) = n InvK(cor(χ ∪ da)) = n InvK((corχ) ∪ da) =

n InvK((χ ◦ V ) ∪ da) = χ(V (rK(a))),

where the first and last equalities come from Corollary 10.4, the second is from Proposi-
tion 9.20, the third is from Lemma 9.6, and the fourth holds by Lemma 10.7, which we just
proved. �

Lemma 10.9. Consider the short exact sequence 0 → Z → Q → Q/Z → 0 of GK-modules,
all with the trivial action, where K/Qp is a finite extension as usual. This gives rise to a
boundary map δ1 : H1(GK ,Q/Z)→ H2(GK ,Z).

Now let χ ∈ Hom(GK ,Q/Z) = H1(GK ,Q/Z) and a ∈ K× = H0(GK ,K
×

). Consider the

element a ∪ δ1(χ) ∈ H2(GK ,K
× ⊗ Z) = H2(GK ,K

×
). Then we have

χ(rK(a)) = −InvK(a ∪ δ1(χ)) ∈ Q/Z.

Proof. Let n be such that the image of χ is contained in 1
nZ/Z. We have

χ(rK(a)) = InvK(χ ∪ da) = −InvK(da ∪ χ) = −InvK(∂1(a ∪ χ)),

where the first equality is Corollary 10.4 and the second is Proposition 9.7. In the rightmost

term, ∂1 denotes the connecting map ∂1 : H1(GK ,K
× ⊗ Z) → H1(GK , µn ⊗ Z). For the

third equality, we would like to use Lemma 9.4, and we may do so. Indeed, the short exact

sequence 0→ µn → K
× → K

× → 0, as well as any other short exact sequence, clearly remains
exact after tensoring with Z. This is because Z is torsion-free, and so flat, as a Z-module.
Finally, a simple computation involving the formulas of Lemma 4.7 and Proposition 9.3(2),
which specify what connecting maps and the cup product do to cocycles, concludes that

∂1(a ∪ χ) = a ∪ δ1(χ) ∈ H2(GK ,K
× ⊗ Z). The claim follows. �

Let k be a finite field of order q, and let Gk = Gal(k/k) be its absolute Galois group. We
denote the inverse of the element (x 7→ xq) ∈ Gk by Frobk; this is the so-called geometric

Frobenius. Recall that the cyclic subgroup of Gk ' Ẑ generated by Frobk is dense.
The reader should beware that about half of the literature uses the notation Frobk for the

arithmetic Frobenius (x 7→ xq) ∈ Gk.

Proposition 10.10. Let K/Qp be a finite extension, let vK : K× � Z be the normalized
valuation, and let k be the residue field of K. Then the diagram

K×
rK - Gab

K

Z

vK

?
- Gk

ω

?
' Gal(Knr/K)
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of continuous group homomorphisms commutes. Here the vertical map on the right is induced
from the projection GK � Gk, which factors through Gab

K since Gk is abelian. The horizontal

map at the bottom is n 7→ (Frob−1
k )n.

Proof. The claim follows from the previous lemma and the definition of the Hasse invariant

map InvK : H2(GK ,K
×

), so we should recall the latter. Indeed, InvK was obtained, in the
discussion preceding Proposition 7.11, as a composition of four isomorphisms:

H2(GK ,K
×

) ' H2(Gk, (K
nr)×)

v∗K→ H2(Gk,Z)
(δ1)−1

→ H1(Gk,Q/Z)
ψ 7→ψ(Frob−1

k )
→ Q/Z.

Here H2(GK ,K
×

) ' H2(Gk, (K
nr)×) arises from realizing H2(GK ,K

×
) as the Brauer group

Br(K) and observing that every central simple K-algebra splits over an unramified extension
of K, whereas δ1 : H1(Gk,Q/Z) → H2(Gk,Z) is the connecting map arising from the short
exact sequence 0→ Z→ Q→ Q/Z→ 0 of Gk-modules with trivial action.

Now let a ∈ K×. We need to show that Frob
vK(a)
k = ω(rK(a)). As in several previous

arguments, it suffices to show that χ(Frob
vK(a)
k ) = χ(ω(rK(a))) for all χ ∈ Hom(Gk,Q/Z) =

H1(Gk,Q/Z). By Lemma 10.9 we have

χ(ω(rK(a))) = −InvK(a ∪ δ1(χ ◦ ω)) = −InvK(a ∪ δ1(χ),

where we use the same notation for the connecting map δ1 : H1(GK ,Q/Z) → H2(GK ,Z) in
the middle of the previous formula and for δ1 : H1(Gk,Q/Z)→ H2(Gk,Z) on the right-hand
side. From now on in this proof, only δ1 : H1(Gk,Q/Z) → H2(Gk,Z) will appear. Also in

the above formula, a ∈ K× is viewed as an element of H0(GK ,K
×

) in the middle and of
H0(Gk, (K

nr)×) on the right.
By the (de)construction of InvK , we see that

−InvK(a ∪ δ1χ) = −δ−1
1 (v∗K(a ∪ δ1χ))(Frob−1

k ).

The map v∗K : H2(Gk, (K
nr)×⊗Z) = H2(Gk, (K

nr)×)→ H2(Gk,Z) sends a∪δ1χ to vK(a)δ1χ.
Thus we end up with

χ(ω(rK(a))) = −δ−1
1 (vK(a)δ1χ)(Frob−1

k ) = −vK(a)δ−1
1 (δ1χ)(Frob−1

k ) = χ(Frob
vK(a)
k )

as claimed. �

Corollary 10.11. Let π ∈ K be a uniformizer. Then rK(π) ∈ Gab
K is a lift of the geometric

Frobenius element Frobk ∈ Gk.

Proof. This is immediate from the previous proposition, since vK(π) = 1. �

Remark 10.12. We could just as well have taken the isomorphism H1(Gk,Q/Z) ' Q/Z given
by ψ 7→ ψ(Frobk) in the definition of the Hasse invariant map InvK . Had we done that, we
would end up with the opposite normalization of the Artin reciprocity map that would send
uniformizers to lifts of the arithmetic Frobenius.

Definition 10.13. Let K/Qp be a finite extension. Recall the short exact sequence

0→ IK → GK = Gal(K/K)
$→ Gk = Gal(k/k)→ 0.

The Weil group WK is the pre-image WK = $−1(〈Frobk〉).
We endow WK with a topology by insisting that IK ⊂ WK be an open embedding. In

other words, a base of open neighborhoods of the identity in WK is given by a base of open
neighborhoods of the identity in usual topology of IK as a subset of GK . Observe that this
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topology of WK is not the subspace topology, since IK has infinite index in GK and thus is
not open in GK .

Theorem 10.14. The Artin reciprocity map of Theorem 10.3 induces a topological isomor-
phism rK : K× →W ab

K .

Proof. There is an obvious injection W ab
K → Gab

K , and it is clear from Proposition 10.10 that

the image of rK : K× ↪→ Gab
K is contained in W ab

K . We thus obtain a diagram

0 - O×K - K× - Z - 0

0 - IKab/K

?
- W ab

K

rK

?
- 〈Frobk〉

1 7→ Frobk

?
- 0,

where the rows are exact (in particular, this defines IKab/K), all three vertical maps are
injective, and the rightmost one is obviously an isomorphism. It remains only to show that
the map O×K → IKab/K is surjective, since then we will conclude from the Five Lemma that

the middle vertical map rK : K× →W ab
K is an isomorphism.

For every finite abelian extension L/K, we know by Proposition 10.6 that rK induces
an isomorphism K×/NL/K(L×) → Gal(L/K). Let IL/K denote the kernel of the surjection
Gal(L/K) → Gal(`/k). From the proof of Proposition 10.6, it follows that rK induces a
surjection of O×K onto IL/K . But IKab/K = lim←− IL/K , where L/K runs over finite abelian

extensions. It follows that the image of O×K → IKab/K is dense. But it is also compact and

hence closed, since O×K is. Thus the image is all of IKab/K . �

Exercises

(1) Suppose that we are given an isomorphism sK : K×
∼→W ab

K for every finite extension
K/Qp. Suppose that this collection of maps has the following properties:
• If a ∈ K× and vK(a) = m, then the image of sK(a) in Gk is FrobmK .
• If L/K is a finite extension, then sK(NL/K(b)) = sL(b) for all b ∈ L×.
• If L/K is a finite abelian extension, then sK induces an isomorphism sK :

K×/NL/K(L×)
∼→ Gal(L/K).

We have proved in this section that the collection of Artin reciprocity maps rK satisfies
these three properties. In this exercise we will prove that sK = rK for all K; in other
words, these three properties determine the Artin reciprocity maps.
(a) Prove that it suffices to show that the induced maps sK : O×K → Gal(L/K) and

rK : O×K → Gal(L/K) coincide whenever L/K is a finite abelian totally ramified
extension.
Hint: Gal(Lnr/K) ' Gal(L/K)×Gal(Knr/K).

(b) Let L/K be finite, abelian, and totally ramified. Given σ ∈ Gal(L/K), let Lσ ⊂
Lnr be the fixed field of (σ,FrobK) ∈ Gal(L/K)×Gal(Knr/K) ' Gal(Lnr/K).
Show that the fields Lσ and Lτ are distinct for distinct elements σ, τ ∈ Gal(L/K),
and show that [Lσ : K] = [L : K] for all σ ∈ Gal(L/K).

(c) Let πL ∈ OL be a uniformizer, and let a ∈ O×K . Show that the subgroup

NLsK (a)/K(L×sK(a)) ⊂ K× is generated by NL/K(O×L ) and aNL/K(πL). Conclude
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from this that the maps sK , rK : O×K → Gal(L/K) coincide, which is enough by
the first part of this question.

(2) Let G be a profinite group and let H ⊂ G be an open subgroup. Let s : H\G → G
be a continuous section of the natural projection G� H\G; recall that this exists by
Proposition 1.15.
(a) Let M be a G-module, with the discrete topology. Fix ϕ ∈ Z1(H,M), and define

a map Φ : G→M by

Φ(g) =
∑

Hx∈H\G

s(x)−1 · ϕ(s(x)gs(xg)−1).

Prove that Φ ∈ Z1(G,M) and that [Φ] = corGH [ϕ] ∈ H1(G,M).
(b) Prove that

V (g) =
∏

xH∈H\G

s(x)gs(xg)−1

induces a homomorphism V : Gab → Hab satisfying ϕ ◦ V = corϕ for all ϕ ∈
Hom(H,Q/Z) = H1(H,Q/Z). Here, of course, the action of G on Q/Z is trivial.
The map V is called the transfer map (“Verschiebung” in German, hence the
notation).


