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Before starting, we’ll say a few words of motivation. We wish to understand the infinite
Galois group G = Gal(Q/Q), which is very important in number theory. In particular, we wish
to understand G-modules, namely modules over some ring that are endowed with an action
of G. Such objects tend to be complicated. Recall that in algebraic topology, we define the
homology and cohomology of simplicial complexes. These are collections of invariants that can
be used, for instance, to prove that two simplicial complexes are not homeomorphic. One loses
information when passing from a complex to its cohomology — two different complexes can
have the same cohomology groups in every dimension — but retains enough to do some useful
things. On the other hand, the cohomology groups have the advantage of sometimes being
computable; for simple complexes they can be computed directly, and for more complicated
ones they can often be deduced with tools such as the long exact cohomology sequence, the
Mayer-Vietoris sequence, etc. The aim of this course is to develop an analogous theory in the
setting of G-modules.

1. PROFINITE GROUPS

Definition 1.1. Let I be a directed partially ordered set. This means that every pair of
elements has a common upper bound: if 7,7 € I then there exists k € I such that ¢+ < k
and j < k. A projective system of groups indexed by I consists of a collection of groups
{G; : i € I}, and, for each pair i > j of elements of I, a group homomorphism ¢;; : G; = G,
such that p;; is always the identity. Moreover, we demand that these maps be compatible, in
the sense that if 1 > j > k then o, = ;i 0 pij.

Definition 1.2. Let {G;}icr be a projective system. Its projective limit im G is the sub-
group of [[,.; G consisting of “compatible” tuples (a;);cr, namely those satisfying ¢;;(a;) =
a; for all 7 > j.

If the G; are topological groups and the homomorphisms ;; are continuous maps, then
we can define the projective limit topology on I.&HI G; as the weakest topology such that the
maps

T - %%HGZ - G;

aj)j = a
are continuous for all 7 € I.

Proposition 1.3. The projective limit topology on imI G coincides with the subspace topol-
ogy induced from the product topology on [[;c; Gi.
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Proof. A base of open subsets of the projective limit topology is given by
{77 (U;) :i € I,U; C G open}.

Observe that 7, *(U;) = (1&1[ Gi) N (Ui x [I;ep iy Gj) is open in the subspace topology.
Conversely, a base of the subspace topology is given, by definition, by sets of the form
U= (1'm1 Gi) N e Ui x HiGI\S Gi, where S C I is finite and U; C G; is open. Clearly

U=ics 7,1 (U;), which is open in the projective limit topology. 0

For our purposes, the G; will usually be finite groups endowed with the discrete topology.

As an example, let I be the set of all finite Galois extensions of QQ, ordered by inclusion.
Then {Gal(K/Q)}ker is a projective system, with the obvious homomorphisms. We ob-
serve that Gal(Q/Q) ~ lim Gal(K/Q). Indeed, define a homomorphism f : Gal(Q/Q) —
Jim, Gal(K/Q) by f(0) = (0)x)Ker- Since every element of Q lies in some finite Galois ex-
tension of Q, we see that f is injective. Moreover, given an element (ox)x of the projective
limit, define o € Gal(Q/Q) by o(a) = o (), where o € Q and K is a finite Galois extension
of Q containing «. The compatibility condition of the projective limit exactly ensures that
the ox glue and o is well-defined.

Since we are interested in representations of Gal(Q/Q), it is natural to study projective
limits of finite groups. It will be convenient to have an alternative characterization of such
groups.

Definition 1.4. A topological space X is called totally disconnected if its only non-empty
connected subsets are single points. It is called totally separated if for any pair of distinct
points x,y € X there exist open sets U,V C X suchthat x e U, y € V, UNV = &, and
vuVv =X.

Remark 1.5. Some books define “totally disconnected” to be what we have called “totally
separated,” so one must exercise caution when using the literature. These two notions are not,
in general, equivalent. Indeed, a totally separated space is obviously both totally disconnected
and Hausdorff. By contrast, a totally disconnected space need not be totally separated or
even Hausdorff; see the exercises for examples.

However, a compact Hausdorff space is totally disconnected if and only if it is totally
separated; see the exercises for a guided proof.

Definition 1.6. A topological group is called profinite if it is compact and totally separated.

Remark 1.7. Profinite groups are most commonly defined in the literature to be compact,
Hausdorff, and totally disconnected. In view of Remark 1.5, this definition is equivalent to
the one above.

The following basic results will be used frequently throughout the course.

Proposition 1.8. Let G be a compact group. Any subgroup H C G is open if and only if it
1s closed and has finite index in G.

Proof. Suppose that H is open. The cosets of H are open, disjoint, and cover G. Since G is
compact, there are only finitely many of them. Moreover, the complement of H is a union of
cosets and hence open; thus H is closed.

Conversely, if H is closed and of finite index, then its complement is a finite union of closed
cosets, thus closed. Hence H is open. O
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Proposition 1.9. Let G be a topological group and H < G a subgroup. Then H 1is open if
and only if it contains an open mneighborhood of the identity.

Proof. One direction is obvious. If H contains an open set e € U, then H = |J, o5 hU is
open.

Theorem 1.10. A topological group G is profinite if and only if G ~ yﬂll G, where {G;}icr
is a projective system of (discrete) finite groups.

Proof. Suppose that G = l'&nl G, and consider the natural inclusion f : G — [[,c; Gi. By
Proposition 1.3, the map f is a topological isomorphism onto its image. We claim that f(G) is
closed; since each Gj is finite and thus compact, and hence [[;.; G; is compact by Tychonoff’s
theorem, this will imply the compactness of G. Now, for each pair ¢ > j, let

Xij = {(ar)k € [[ Gr : @ijlai) = a;}.
k

Observe that X;; is the preimage of the diagonal under the continuous map (recall that the
(;j are continuous)

16 = G xa;
k

(ap) = (aj,pi(a:)).

Therefore Xj; is closed; here we have finally used the discreteness of G;. Thus G =)
is closed and hence compact.

The G; are discrete and hence totally separated, and a product of totally separated spaces is
clearly totally separated. (Indeed, let a = (a;); and b = (b;); be distinct elements of [[,.; X;.
Let j be such that a; # b;, and let U;,V; C X; be open sets such that a; € U;, b; € V},
UjuV; =X;,UinV;=a. Set U =U; x[[;,; Xi and V =V x [, ,; X;.) But a subspace
of a totally separated space is clearly totally separated. Thus G is profinite.

Conversely, suppose that G is a profinite group, and let {H,},cq be the family of its open
normal subgroups, ordered by inclusion: ¢ > ¢’ if H; C Hy. Note that the quotient subgroups
G/H, are all finite (by Proposition 1.8) and form a projective system of groups. We have a
natural homomorphism of groups

i>j Xij

[:G = lmG/H,
Q

g — (g9Hy)q

We claim that f is a topological isomorphism. The pre-image under the quotient map
G — G/H, of any subset of G/H, is a union of cosets of the open subgroup H, and hence is
open. From this it follows that f is continuous. Any closed subset of the compact group G is
compact, hence its image under f is compact and hence closed, since l&n G/H, is Hausdorff
by the first half of this proof. Thus, it suffices to show that f is an isomorphism of abstract
groups.

To show that f is surjective, let (g,Hq)q € yLnQ G/Hg. We claim that () cq 94Hq # ©.
If this is true, then (g,Hy)q = f(g) for any g in the above intersection. Assume, by way of
contradiction, that the intersection is empty. This means that (J .o (G \ 94Hy) = G. Since G
is compact and each g,H, is closed, there is a finite subcover G = |J;_,(G \ g4, Hg,). Hence
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Ni—1 99 Hq, = @. The subgroup Hy, N---N Hy is open and normal, so it is H, for some
q € Q. Clearly gq € i_; 9q,Hg,, contradicting the emptiness of this intersection.

It remains to show that f is injective, and this will follow immediately from the following
claim. g

Proposition 1.11. Let G be a profinite group, and let {Hgy}tqeq be the family of all open
normal subgroups of G (note that G is in the family, so it is non-empty). Then ﬂqu H, =
{e}.

Proof. Let © € G be a non-trivial element. We need to construct an open normal subgroup
H < G such that x ¢ H. By total separatedness of G, there exist open and closed sets U
and V that separate e and x. Suppose that e € U. Then x ¢ U. We will construct an open
normal subgroup H that is contained in U and hence does not contain z.

It suffices to show that there exists an open subgroup K of G such that K C U. Indeed,
K has finite index by Proposition 1.8. Then H = ﬂgeggKg_l = ﬂgiKeg/KgiKngI is an open
(since the second intersection is finite) normal subgroup of G and H C U.

For any subset A C GG, we denote by A™ the set of all products of n elements of A and by
A~ the set of all inverses of elements of A. Thus A is a subgroup if and only if A> C A and
A1 c A. Note that U? is the image of the compact set U x U (closed subset of compact
G x G) under the continuous multiplication map p : G x G — G. Hence U? is compact, and
thus closed, since G is Hausdorff. By an easy induction, U" is compact for all n € N.

Set W = (G'\ U)NU?; then W consists of all elements of U? that do not lie in U. This
is a closed subset of G, hence compact. Note that U C G \ W. We claim that for any
u € U, there exist open neighborhoods u € X, and e € Y,, contained in U, such that
XY, C (G\W)NU? C U (the last inclusion holds since the middle set consists of all
elements of U? that do lie in U). Indeed, u € G\ W. Thus = }(G\ W) C G x G is open and
contains (u,e). In particular, it contains an open box of the form X x Y, where u € X,
and e € Y, are open. Setting X,, = X/, NU and Y,, = Y, NU (recall that e € U), we get the
desired neighborhoods.

Now { X, }uer is an open cover of U, and since U is compact there exists a finite subcover
{Xuy,-- Xy, }. Set Y =Y, N---NY,,. This is an open set containing e. Set Z =Y NY L.
This is still an open set containing e, since the inversion map is continuous. Moreover, we
have Z CY CU.

Observe that UZ = U,_,X,,Z C U, since Z C Y, for each i. By induction, UZ" C U
for all n > 1. Since e € U, this implies 2" C U for all n > 1. Moreover, Z is closed under
inversion by construction, and it follows easily that so is each Z". Set K = (Y) = J;~, Z™.
Then K is a subgroup of GG that is contained in U. Since K contains the open set Z, it is open.
We have now completed the proof of our claim and consequently that of Theorem 1.10. [

Corollary 1.12. Let G be a profinite group. Any open neighborhood of e contains an open
normal subgroup.

Proof. Let U be an open neighborhood of e. Observe that if U is open and closed, then the
claim follows from the proof of the previous proposition.
Let {Hy}qeq be the family of open normal subgroups of G. From the previous proposition
it follows that (J,cq(G \ Hy) = G\ {e}, hence U U, (G \ Hy) = G. By compactness of G,
there is a finite subcover G = UU(G\ Hy, )U- - -U(G\ Hy,). Hence (G\U)NHy N---NH,, = @.
Set H = Hy N---N Hy,,. This is an open normal subgroup of G, and H C U. O
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Corollary 1.13. Let G be a profinite group and H C G a subgroup. Then H is closed
(normal) if and only if it is an intersection of open (normal) subgroups.

Proof. Since open subgroups are closed, one direction is trivial. Conversely, let H be a closed
subgroup. Let {K}4cq be the family of open normal subgroups of G. Observe that for every
q€Q,

HKy={hk:he H, ke K},

since the K, are normal, and that H K, is normal if H is normal as well. We claim that

(HE,=H | [ K,

q€eqQ q€Q

for any closed H. Since the right-hand side is equal to H by Proposition 1.11, this implies
our claim. It is obvious that the right-hand side is contained in the left-hand side for any
subgroup H. To prove the opposite containment, let g € ﬂqu HK,;. We want to show that

g is contained in the right-hand side, or, equivalently, that Hg N (ﬂqu Kq> #* O,

Indeed, if this intersection were empty, then, by the argument that is by now standard for
us, (G\ Hg)UU,cq(G\ Ky) would be an open cover of G, hence would have a finite subcover,
hence HgN(Ky N---NK,y ) = 2. But K = K¢ N---NK,, is itself an open normal subgroup,
hence by assumption g € HK. Thus we have arrived at a contradiction. ([l

Proposition 1.14. Let G be a profinite group and H C G a closed subgroup. Then H s
profinite. Moreover, if H is normal, then G/H (with the quotient topology) is profinite.

Proof. Easy to see that H and G/H are compact and totally separated. Alternatively, if
G ~ l'&n] G; and H; = m;(H) C G for each i € I, then one can show that H ~ @1] H; and

Proposition 1.15. Suppose that G is profinite and K C H C G are closed subgroups. There
exists a continuous section s : G/H — G/K of the natural surjection G/K — G/H.

Proof. First consider the case [H : K| < co. Then K is open in H, so there exists an open
set V C G such that K = VN H. Let U <G be an open normal subgroup contained in V'
(this exists by Corollary 1.12), hence that HNU C K.

Decompose G into double cosets G' = Ui_, U g;H; there are only finitely many double cosets
because U has finite index in G. On each piece, define s : Ug;H/H — Ug;H/K by s(ug;hH) =
ug; K. This is well-defined, since if ug;h = /g;#’, then h(h')™' = g;'u=/g; e UNH C K,
since U is normal in G. Thus ug; K = u'g; K, so s is indeed well-defined. It is obvious that s
is continuous.

We treat the general case by a Zorn’s Lemma argument. Consider the set S of pairs (7', s),
where H O T O K is a closed subgroup of G and s is a continuous section of the surjection
G/T — G/H. We define an order on S by setting (T, s) > (7",¢") if T'C T” and the obvious

diagram commutes:
G/H

G/T . G/T'
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If (Th,s1) < (Tp,s2) < --- is a chain, we can set Too = (), T; (this is a closed subgroup
containing K). It is easy to see that G/T» = @G /T;, and by the universal property of the
projective limit (which we haven’t stated — can also just say that the s; glue) we get a section

0 : G/H — G /Ty that is compatible with all the other data. Thus the chain has an upper
bound, and by Zorn’s Lemma the set S contains a maximal element (7, s).

We need to prove that T'= K. Since K is the intersection of all open subgroups containing
K by Corollary 1.13, it suffices to show that T' C U for any open subgroup U D K. However,
for any such U, we have that V = T NU is a closed subgroup such that 7' 2 V O K and
[T:V] < 0.

By the first case we treated in this proof, there is a continuous section G/T° — G/V.
Composing it with s gives a continuous section G/H — G/V. By maximality of (T, s), this
implies that V =T and hence T' C U. O

1.1. Profinite completion. Let G be an “abstract group.” By this we mean that G is a
set with a binary operation satisfying the group axioms, as defined in the first lecture of your
group theory course, without any topology or any other further structure. We associate a
canonical profinite group to G.

Definition 1.16. Let G be a group. Let {N;};cs be the collection of normal subgroups of G
of finite index, partially ordered by reverse inclusion. If j <4, i.e. NV; € Nj, then there is a
natural surjection of finite groups ¢;; : G/N; — G/N;. The profinite completion of G is the

profinite group G = l'&nl G/N;.

There is a natural homomorphism 7 : G — G given by n(g) = (gN;);- Observe that n
is not necessarily injective: its kernel is [);c; N;. A group is called residually finite if the
intersection of all its normal subgroups of finite index is trivial. Thus 7 is an embedding
precisely when G is residually finite. We conclude this section with two essential properties
of profinite completion.

Proposition 1.17. Let G be an abstract group, and let G be its profinite completion. The
image n(Q) is dense in G.

Proof. Let U C G be an open subset. We need to show that U Nn(G) # &. For every normal
subgroup N < G of finite index, let N C G be the kernel of the map my : G — G/N. By

the definition of the profinite topology, we have gN C U for some g € G and N < G of finite
index. Let « € G be such that aN = ny(g). Clearly my(n(z)) = aN =7y (g), so g and n(z)
lie in the same coset of N = ker fy. Hence n(x) € gN C U. O

Proposition 1.18. Let G be an abstract group and let H be a profinite group. Let f : G — H
be a homomorphzsm of abstract groups. Then there exists a unique continuous homomorphism
f G—>Hsuchthatfoq7 f.

Proof. Let H = I'&HK Hj, for a projective system {Hj }rex of finite groups. For every k € K,
let fi be the composition G i> H — Hj. Then ker fi <G is a normal subgroup of finite index,
so ker fr = Ny for some i(k) € I. This induces a homomorphlsm G /Njy — Hp, which we

continue to call fi, and hence a continuous homomorphism fk G- H H, where H}, of course
has the discrete topology, given by fi((¢;Vi)i) = fk(gz(k (k)) The fk are compatible with
the transition maps of the projective system { Hj }1, so we obtain a continuous homomorphism
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f: G- H by the universal property of projective limits. It is clear from the construction
that fon = f. Since f is continuous and is determined by f on the dense (by the previous
proposition) subset n(G) C G, it is unique. O

EXERCISES

(1) Let X = NU{z,y}, where x and y are distinct elements not contained in N. Declare
a subset U C X to be open if and only if either U C N or U contains all but finitely
many elements of N. Prove that this gives a topology on X, and that X is compact
and totally disconnected but not Hausdorff.

(2) Let X be a compact Hausdorff topological space. Let x € X, let C' be the connected
component of x, and let ) be the intersection of all neighborhoods of x that are both
closed and open (“clopen”); this @ is called the quasi-component of x. The aim of
this exercise is to prove that C' = Q.

(a) Show that C' C @. Thus it remains to show that @) is connected.

(b) Suppose that @ is not connected. Show that there exist disjoint open subsets U
and V of X such that Q@ = (QNU)U(QNV) and that QNU and @QNV are both
non-empty.

(c) Prove that there exist finitely many clopen neighborhoods Uy, ..., U, of = such
that (X \ (OUV)nUnNn---NU,) =a.

(d) Let U' = Uy n---NU,. Then U’ is a clopen neighborhood of z, but also U’ =
(U'NU)U(U'NV). Derive a contradiction.

(3) Let X be a compact Hausdorff topological space. Prove that X is totally disconnected
if and only if it is totally separated.

2. G-MODULES

Definition 2.1. Let G be a topological group. A G-module is a topological abelian group
M endowed with a continuous action G x M — M such that every g € G acts by group
homomorphisms. In other words, we require:

e gi(gam) = (g1g2)m for all g1,g92 € G and m € M.
e em =m for all m e M.
e g(mi +mgy) = gmy + gmy for all g € G and my,mg € M.

Unless otherwise stated, we will assume from now on that G is profinite and M has the
discrete topology. The continuity of the action of G is then equivalent to the following
condition: for every m € M the stabilizer stabg(m) = {g € G : gm = m} is an open
subgroup of G.

Remark 2.2. If G is profinite and M is discrete (as is now our running assumption), then
clearly M = Uy MV, where U runs over open subgroups of G, and MY = {m e M :Vu €
U,um = m} is the space of U-invariants.

Example 2.3. Let K be a number field and G = Gal(K/K). Then G acts on K in the
obvious way. Moreover, for any a € K, the field K(a) has finite degree over K, so that
stabg(a) = Gal(K/K(«)) is open in G. (If K(a)/K is Galois, then Gal(K/K(«)) is the
kernel of the continuous map G — Gal(K («)/K) and hence open. Otherwise, it contains the
absolute Galois group of the Galois closure of K (), which is open.) Thus K is a G-module.
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Example 2.4. Let G = {e}. (Note that finite groups, which we always assume to have
the discrete topology, are profinite). A G-module is just an abelian group, with no extra
structure.

We write Modg for the category of (discrete) G-modules. The morphisms are, of course,
group homomorphisms f : M — N that respect the G-action, i.e. such that f(gm) = gf(m)
for all g € G and m € M. Such maps are often called G-equivariant. One checks that Modg
is an abelian category.

Definition 2.5. Let G be a profinite group, H C G a closed subgroup, and M an H-module.
The induced module Ind%M is the space of functions f : G — M such that

(1) For all h € H and g € G, we have f(hg) = hf(g).

(2) f is continuous, i.e. locally constant (recall that M has the discrete topology).
The group G acts on this space by right translation: (¢f)(xz) = f(zg) for any z,g € G and
any f € Ind%M .

Proposition 2.6. The G-action defined above gives Ind%M the structure of a G-module.

Proof. Let f € Ind%M . Then for every g € G there exists an open set g € V; such that f is
constant on Vj. Since a base of the topology on G is given by the cosets of open subgroups,
there exists an open subgroup U, such that g € gU, C V,. Then G = UgeG gUy, and by
compactness of G there is a finite subcover G = g1U,, U --- U g,U,, such that f is constant
on each g;Uy,. Let U = Uy, N---NU,,.. This is an open subgroup of G that is contained in
stabg(f). Indeed, for any v € U and = € G, if x € ¢;Uy,, then zu € ¢;Ug, as well, and thus

(uf)(z) = f(au) = f(z). O
Proposition 2.7. Let G be a profinite group and H C G a closed subgroup.

(1) Ind% : Mody — Modg is a functor.

(2) If K C H C G are closed subgroups, then Ind% ~ Indglndg.

(3) The functor Ind$; is exact. In other words, if 0 = M — N — P — 0 is an ezact
sequence of H-modules, then 0 — Ind%M — IndGN — Ind$ P — 0 is also exact.

Proposition 2.8 (Frobenius Reciprocity). Let G be a profinite group and H C G a closed
subgroup. Let M € Modg and N € Modg. Then

Homg (M, Ind$N) ~ Homp (M, N).
Proof. We can write down an explicit bijection. Indeed, if ¢ € Homg(M, Ind%N ), define
A(p) € Hompg (M, N) by A(¢)(m) = (p(m))(e) € N for any m € M.
In the other direction, if ¢ € Hompy(M,N), we define B(¢)) € Homg(M,Ind4N) by

(B(v)(m))(g) = ©¥(gm). To check that B(v) is G-equivariant, observe for any g,z € G and
m € M that

(B()(xm))(g) = (grm) = (B(¢)(m))(gz) = (2(B(¢)(m)))(9)-

and hence (B(v))(xzm) = 2(B(1)(m)). It is simple to check that B(A(y)) = ¢ and A(B(v¢))) =
1. For instance, for all m € M and g € G and ¢ € Homg(M,Ind% N), we have

B(A(p))(m)(g) = A(p)(gm) = p(gm)(e) = g(p(m))(e) = ¢(m)(g)-
Similarly, A(B(x))(m) = (B()(m))(e) = (em) = y(m). O
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Definition 2.9. A G-module [ is called injective if for any G-module morphism f: M — T
and any injective g : M — N, there exists f : N — I that completes the diagram:

m—I
p 5
N

Proposition 2.10. An abelian group is an injective {e}-module if and only if it is divisible.
In particular, Q and Q/Z are injective {e}-modules.

Proof. Recall that a group G, written additively, is called divisible if for any « € G and any
n € N there exists y € G such that ny = x.

Let G be a divisible abelian group, and f and g as in Definition 2.9 above. View M as a
submodule of N via g, and consider the set of all pairs (M’, h), where M C M’ C N and h
extends f. Define a partial order on this set by extension: (M',h') < (M" h") it M' ¢ M"
and hﬁ\/[, = I'. Any ascending chain glues, so has an upper bound, so by Zorn’s Lemma there
exists a maximal pair (M’ h). We need to show that M’ = N. Suppose not. Then there
exists n € N\ M'. Let s be the order of n in N/M’. Then the map h : M’ 4+ (n) — G given
by

/ . —
ﬁ(m’—l—an):{h(m> I
h(m')+at :s< o0
extends h, contradicting the maximality of (M’,h). Here a € Z is arbitrary and ¢ € G is an
element satisfying st = h(sn).

Now we prove the converse direction, which will not be used later. Suppose that G is an
injective {e}-module and let z € G. Consider the map f : Z — G given by f(m) = mxz for all
m € Z. Given n € N; consider the injection g : Z — Z given by g(m) = mn. By injectivity of
G there exists f : Z — G such that f = fog. Let y = f(1). Then z = f(1) = f(n) = ny, so
G is divisible. I

Corollary 2.11. Let G be a profinite group and H C G a closed subgroup. If I is an injective
H-module, then Indgl is an injective G-module.

Proof. Suppose we have f: M — Ind%[ and € : M — N is an embedding of G-modules. By
Frobenius reciprocity, f € Homg(M, Indfll ) corresponds to an H-module morphism A(f) €
Homp (M, I). By injectivity of I, we get an H-module map f : N — I satisfying foe = A(f),
hence, by a second application of Frobenius reciprocity, a map B( f) : N — Ind%[ of G-
modules.

We claim that B(f) is the map we are looking for, namely that it satisfies B(f) o e = f.
Indeed, for any m € M and any g € G, since ¢ is a map of G-modules we have

(B(f)oe)m)(g) = flge(m)) = [(e(gm)) = A(f)(gm) = f(gm)(e) =
g- (f(m))(e) = f(m)(eg) = f(m)(9g).
Thus (B(f) oe)(m) = f(m) € Ind$ T for each m € M, which proves our claim. O

Corollary 2.12. If G is a profinite group and M is any G-module, there exists a G-module
I into which M embeds (i.e. the category Modg has enough injectives).
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Proof. The claim is true for {e}-modules, i.e. abelian groups. Indeed, let M be any abelian
group and m € M a non-trivial element. If (m) is a torsion group, then it embeds in
I, = Q/Z, and otherwise it embeds in I,, = Q. Since (m) C M, we can extend this
embedding to a map f,, : M — I, satisfying f,,(m) # 0. We can collect all of these into
amap M — [[,,car Im which clearly has trivial kernel. (Observe that a direct product of
injective modules is injective.)

Now let M be any G-module, and let I be an injective group such that there exists an em-
bedding ¥ : M — I of abelian groups. By Frobenius reciprocity, it corresponds to a G-module
map B(¢Y): M — Ind{Ge}I. Note that Ind?e}l is an injective G-module by Corollary 2.11, so it
remains only to show that B(v)) is injective. But for any m € M, we have that B()(m) is the
map g — 1(gm). Since v is an embedding, this can be the zero map only when m =0. O

EXERCISES

(1) Let G be a torsion abelian group with the discrete topology and let H C G be a
subgroup. Let g € G be such that g ¢ H. Prove that there exists a homomorphism
f: G — Q/Z such that H C ker f but g & ker f.

(2) This exercise is a variant of the previous one. Suppose now that G is a profinite
abelian group and H C G is a closed subgroup. Let g € G\ H as above, and show
that there is a continuous homomorphism f : G — Q/Z such that H C ker f and
g & ker f.

(3) Let I be a directed partially ordered set. For every i € I, let A; be a topological
(unital) ring. One can define a projective system analogously to Definition 1.1, where
now ;; : A; — Aj is a continuous ring homomorphism whenever ¢ > j. One obtains
a topological ring yﬁll A; analogously to Definition 1.2.

(a) We define a topological ring A to be profinite if it is compact and totally sepa-
rated. Prove that A is profinite if and only if A ~ ]meI A; for some projective
system {A4;};cr of finite rings with the discrete topology.

(b) Let A be a topological ring. Consider the group AY = Hom (A, Q/Z) of continuous
group homomorphisms, where we consider A as an abelian group under addition.
Endow AY with the compact-open topology; this is the coarsest topology such
that the sets B(K,U) = {f € AV : f(K) C U} are open for all compact K C A
and all open U C Q/Z. The topology on Q/Z is taken to be the subspace topology
arising from the embedding ¢ : Q/Z < C given by ¢(z) = ™. Prove that A" is
discrete if A is compact and that A" is a profinite group if A is a discrete torsion
group.

(c) A topological abelian group M is said to be an A-module if it is endowed with
an A-module structure such that the scalar multiplication map A x M — M
is continuous. Show that AY is an A-module if we set (af)(b) = f(ba) for all
feAY and a,b € A.

(d) Let A be a topological ring. Suppose that A is compact and Hausdorff, and let
C C A be the connected component of 0. Prove that af = 0 for any a € C and
f € AY. Deduce that C' = {0}.

(e) Show that a topological ring A is profinite if and only if it is compact and Haus-
dorff.

(4) Give an example showing that a compact Hausdorff group is not necessarily profinite.
Why does your solution to the previous exercise fail for groups?
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(5) Prove Proposition 2.7.
(6) Let G be a profinite group, and let H C G be an open subgroup. Let M € Modg and
N € Modp. Prove the following version of Frobenius reciprocity:

Homg (Ind$ N, M) ~ Homp (N, M).

The maps, in notation corresponding to that of Proposition 2.8, are A(y)(n) = ¢(fn)
and B(Y)(f) = X pgemc g "(f(g)), where f, € Ind§N is the function f, : G — N
satisfying f,(h) = hn for h € H and f,(g) for g & H.
(7) Let G be a profinite group and let M be a G-module.
(a) Let m € M, and let U = stabg(m). Let 1y be the trivial U-module; more
precisely, 1y is an infinite cyclic group with the action ua = a for all v € U and
a € 1y. Show that there is a G-module homomorphism f : IndglU — M such
that the image of f is the submodule of M generated by m.
(b) Let N C M be a monogenic submodule, i.e. N is generated by a single element.
Prove that N is isomorphic to a quotient of IndglU for some open subgroup
Uca.
(8) Show that I € Modg is injective if and only if Homg(—, ) is an exact contravariant
functor.
(9) Let I be an injective G module, and let H C G be an open subgroup. Prove that I,
with the natural H-action obtained by restriction, is an injective H-module.
(10) Let H <G be a closed normal subgroup, and let I be an injective G-module. Prove
that I = {i € I : hi = ifor allh € H} is an injective G/ H-module.

3. COHOMOLOGY OF GG-MODULES

3.1. Definition of cohomology. For any profinite group G, there is a left exact functor
Modg — Ab sending a G-module M to the space of invariants M® = {m € M : Vg €
G,gm = m}. The cohomology of M will be defined as the right derived functors of this
functor. To make the exposition more elegant, we will define some notions (first introduced
by Grothendieck in the famous Tohoku paper) that axiomatize the properties of derived
functors.

Definition 3.1. A (cohomological) §-functor Modg — Ab (the same definition can be made
for any two abelian categories) consists of the following data:

e A series of covariant functors H* : Modg — Ab, for i € Ny.
e For each exact sequence of G-modules 0 - M — N — P — 0 and each ¢ > 0, a
G-module homomorphism §° : H!(P) — HT!'(M) with the following properties:
(1) For 0 - M — N — P — 0 exact as above, there is a long exact sequence of
cohomology groups

0 — HO(M) — HO(N) — H(P) &S HY (M) — HY(N) — H'(P) 5 H2(M) = -

(2) Given a morphism of short exact sequences
0 - M - N - P - 0
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(where the diagram is commutative with exact rows), for each i > 0 the corre-
sponding diagram commutes:
i

i) —Le ()

HZ(P/) HZ+1 (M/)
Proposition 3.2. Let G be a profinite group. There exists a unique S-functor (H (G, —), §%)
from Modg to Ab satisfying the following two properties:
(1) For every M € Modg, we have HO(G, M) = M.
(2) If I € Modg 1is injective, then H'(G,I) =0 for every i > 0.

Proof. Suppose that such a J-functor exists. What can we say about it? Any M € Modg
embeds into an injective G-module I°; let N be the cokernel, so that we have a short exact
sequence 0 - M 5 I 5 N — 0. By (2) and the long exact sequence, we would have an
exact sequence

0= MG S (196 ™S NG = HY(G, M) — HYG,I%) — -,
whence H'(G, M) = coker 7% and we must have H*'(M) ~ H*(N) for all i > 1. Since we
know that H*(G, M) = M G for any M € Modg, the observations above provide a recursive
algorithm for computing H*(G, M).
We can streamline this process by fixing an injective resolution of M, namely an exact
sequence

0->M-—-1"8138 2%
This is possible because the category Modg has enough injectives by Corollary 2.12. Indeed,
M embeds in an injective module I° as above. The quotient I°/M = N embeds into an
injective module I', and this lifts to a map ag : I — I'. Then I'/ag(I°) embeds into I?,
and this lifts to a map «; : I' — I2. Continue forever.
Now apply the G-invariants functor to the injective resolution above, to obtain a complex

0— MC% — (I % (1He & (12)¢ & ... (1)

This complex need not be exact, since the G-invariants functor is only left exact. However,
it obviously inherits the property that d;11 o d; = 0 for all ¢ > 0, and hence imd;_; C kerd;
for all + > 1.

We claim that H'(G, M) ~ coker 7% ~ (kerd;)/(imdp). Indeed, since ag : I° — I' is the
composition of 7 with an embedding € : N < I', we see that imdy = e(im7%). On the
other hand, oy : I' — I? is the composition I' — I'/ay(I°) = I'/e(N) — I?, hence we
see that ker a; = ¢(N) and kerdy = e(N). Thus, the embedding ¢ induces an isomorphism
(kerd;)/(imdp) ~ N /(im %) = coker 7€.

Observe that 0 — N — I' — I? — ... is an injective resolution of N. Thus, by the ar-
gument of the previous paragraph, H?(G, M) ~ H'(G, N) ~ (kerdy)/(imd;). By induction,
for all 4 > 1, we get

HY(G, M) = (kerd;)/(imd;_1).
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So far we have shown that if a §-functor with the desired properties exists, then it is unique.
In fact, this construction works, so the d-functor does exist. However, it is not at all obvious
that the H'(G, —) are well-defined functors and that there exist maps ¢° that turn all this
data into a é-functor. We will soon sketch a proof of these facts, but for the time being we
will assume them. g

The construction of the cohomology groups H'(G, M) that we just gave does not, in prac-
tice, provide a useful way of computing them. Indeed, the injective modules constructed in
Corollaries 2.11 and 2.12 are huge and unwieldy. Moreover, the definition of the maps «;
involves extending maps into injective modules, and this ultimately relies on the argument
with Zorn’s Lemma in the proof of Proposition 2.10 and thus is completely non-constructive.
Hence an injective resolution as in the proof of Proposition 3.2 cannot usually be constructed
explicitly. Thus, our first priority is to find a more explicit way to compute cohomology.

Definition 3.3. A G-module J is called acyclic if H'(G,J) = 0 for all i > 0.

Clearly, all injective G-modules are acyclic. Note that in the construction of the previous
proof, all we used about injective modules was their acyclicity and the existence of injective
resolutions. The injectivity will be used more intensively in the proof that the above con-
struction actually gives a d-functor. In the meantime, we can conclude the following, which
is useful for computing cohomology in practice.

Proposition 3.4. Let M be a G-module, and consider an acyclic resolution
0O=-M—=>J" s J 5 J2 =
namely an exact sequence where the J* are acyclic for all i > 0. Taking G-invariants gives
rise to a complex
0— MS = (JOG B (JHE 4 (j2)C ...
Then for all i > 0 we have H'(G, M) ~ (kerd;)/(imd;_1).
Definition 3.5. Let G be a profinite group and M a G-module. For each i > 0, define

C(G, M) to be the space of continuous (i.e. locally constant) functions ¢ : G**! — M. Let
G act on this space by

(90)(90, -, 91) = 9~ (©(909: - - - 9i9))
for o € C'(G, M) and g, go, ..., 9; € G.

We have an obvious injective map f : M — C°(G, M) that sends each m € M to the
constant function ¢, : G — M satisfying ¢,,(g9) = m for all ¢ € G. Observe that f is
G-equivariant, since (x¢n,)(9) = xom(gr) = xm = @m(g) for all z,g € G.

Moreover, for all i > 0 we have a map f; : C'(G, M) — C**1(G, M) given by

i+1
(fi@)(g(b s 7gi+1) = Z(—l)j(p(go, o agj’ s 7gi+1)7 (2)

=0
where g; denotes omission of the variable g;, so that each summand on the right-hand side
provides ¢ + 1 arguments for the function ¢. It is clear that f; is G-equivariant.

Lemma 3.6. The complex
0 ML a8 e,y Boexe o B (3)

18 exact.
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Proof. It is easy to check that this is indeed a complex, namely that the composition of
any two consecutive arrows is the zero map. Observe that f is obviously injective. For any
¢ € CO%(G, M) we have (foe)(g0,91) = ¢(g91) — ©(g0). Hence, if ¢ € ker fo then ¢ is a constant
function and thus contained in the image of f.
Now let i > 0. Suppose that ¢ € C*(G, M) lies in the kernel of f;, and define a locally
constant map ¢ : G* - M by ¥(g1,...,9;) = —p(e,g1,...,9i). Then one checks that
it1 ‘
(fier(@))(g1, - - - giv1) = S 1T g G i) =
j=1
i+l '
Z(_l)J<P(67917 s 7gj7 o 7gi+1) =
j=1
(fi(go))(e’glv v )gi-i-l) + 90(917 e )gi-i-l) = 30(91, oo agi-i-l)a

where the last equality follows from ¢ € ker f;. Thus ¢ = fi—1(¥). This gives exactness at
C'(G,M). O

3.2. Universal §-functors and Shapiro’s Lemma. If we knew that the complex (3) were
an acyclic resolution of M, we would be able to apply Proposition 3.4 to compute cohomology.
To prove the acyclicity of C*(G, M) we will need a few more tools at our disposal.

Definition 3.7. A functor F : Modg — Ab is called effaceable’ if for any M € Modg there
exists an injection ¢ : M — N such that F(¢) : F(M) — F(N) is the zero map.

Definition 3.8. A §-functor (H?,§°) is called universal if, for any d-functor (G%,¢;) and any
natural transformation fo : H 0 GY, there exists a unique sequence of natural transforma-
tions f; : H* — G" that commutes with the §* maps.

(Recall that a natural transformation of functors f : F — G provides, for each M € Ob(F),
a map fy @ F(M) — G(M), such that for any arrow M — N the obvious square below
commutes.)

In

F(N) G(N).

Lemma 3.9 (Grothendieck). If (H',6%) is a §-functor such that the functors H' are effaceable
for all i >0, then (H*,0") is a universal §-functor.

Proof. Let (G%,€%) be another J-functor, and let fo : H — G° be a natural transformation.
The first step is to construct the unique natural transformations f; : H* — G* for all i > 0.
Assume, by induction, that f; has been constructed and shown to be unique for all j < .
Let M € Modg and let ¢ : M — J be an embedding, where J is a G-module such that

l«Effaceable” is a French word taken directly from Grothendieck’s Tohoku paper. S. Lang argues forcefully
that authors writing in English should employ its English translation “erasable.” Nevertheless, here we follow
the standard usage.
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Hi(1) : H{(M) — H(J) is the zero map; this exists because (H?, ") is effaceable. Let C be
the cokernel. Then the short exact sequence 0 — M = J — C' — 0 gives rise to the diagram

H00) — 5710 — 1) S mion 2L i)

fi—1,c

i—1 M
G M) — G () — GTHC) S GI(M) —— Gi(J).
The dotted arrow f; s is constructed by a simple diagram chase. Indeed, let ¢ € H (M),
Since 4! is surjective, there exists b € H*~1(C) such that 6°"!(c). Then we define f; p(c) =
e fi_1.0(b). It is easy to check that this is independent of the choice of b. It remains to
show that f; s : HY(M) — G*(M) is independent of the choice of « and that f; is a natural
transformation. We will omit these details here. O

Corollary 3.10. For any profinite group G, the 6-functor (H'(G, —), ") constructed in Propo-
sition 3.2 is universal.

Proof. Since every G-module M injects into an injective module, the functors H(G, —) are
effaceable for all ¢ > 0. g

Proposition 3.11 (Shapiro’s Lemma). Let G be a profinite group, H C G a closed subgroup,
and M an H-module. Then there is a natural isomorphism H'(H, M) ~ Hi(G,Ind%M) for
all 1> 0.

By “natural” we mean that these isomorphisms arise from a natural transformation of
functors H'(H, —) — H(G, —) o Ind,.

Proof. The strategy of the proof is to show that both functors are universal d-functors extend-
ing the same H. Indeed, observe that HO(G,Ind% M) = (Ind%M)C consists of (continuous)
functions f : G — M such that f(hg) = h- f(g) for all h € H,g € G and f(gx) = f(g)
for all g, € G. The second condition forces f to be a constant function f,, : g — m for
some m € M, while the first condition imposes hm = m for all h € H, in other words that
m e M. Thus we have M¥ 5 (Ind% M)E for all M € Mody, and this is clearly a natural
isomorphism of functors.

We already know by Corollary 3.10 that (H!(H,—),d") is a universal d-functor. Since
(H'(G,—),0") is a d-functor and Ind$ is exact, it is not hard to see that (H* (G, Ind$—)) is a
d-functor. For any H-module M, let ¢ : M — I be an embedding of M into an injective H-
module. The induced map H*(G, IndeM) — HY(G, Indgf) = 0 is the zero map when ¢ > 0,
since Ind% [ is an injective G-module by Corollary 2.11. Thus the functors H*(G, Ind%—) are
effaceable for 7 > 0, and universality follows from Lemma 3.9. (]

Lemma 3.12. All {e}-modules are acyclic. If G is any profinite group and M any {e}-

module, then Indgz}M is an acyclic G-module.

Proof. Since the functor taking {e}-invariants is just the identity functor, the complex (1) is
exact for any {e}-module M. Thus M is acyclic. The second part of the claim now follows
from Shapiro’s Lemma. O

Before returning to our explicit computation of the cohomology H*(G, M), we point out a
simple consequence of Lemma 3.12.
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Corollary 3.13. Let L/K be a finite Galois extension of fields. Then H (Gal(L/K),L) =0
for all i > 0.

Proof. Here G = Gal(L/K) acts on L in the obvious way. Since any finite separable extension
is simple, there exists an element o € L such that L = K(«). By the Normal Basis Theorem,
a may be chosen so that {o(a) : 0 € G} is a K-basis of L. Thus any 5 € L can be written
in the form 8 =) . B,0(a), where 3, € K.

We can obtain a G-module isomorphism L — Ind?e}K by sending 8 € L to the function
fp: G — K given by fg(o) = B,-1. Indeed, for any 7 € G we have 7(8) = > o Bo7o(a) =
> wcc Br-150(a). On the other hand, we have

(718)(0) = fs(07) = Bra15-1 = fr(5)(0)

for all 0,7 € G. The claim now follows from Lemma 3.12. O

3.3. Explicit computation of cohomology. We are now ready to return to the G-modules
C'(G, M) that were defined earlier.

Lemma 3.14. For every i > 0, let LCY(G, M) be the abelian group of locally constant func-
tions f : GZ — M, viewed as a {e}-module. There is a G-module isomorphism 0 : C*(G, M) =
Ind{, £C*(G, M).

Proof. Given ¢ € CY(G, M), define 6, € Ind?G}ECi(G, M) by

080(9)(.917 B 7gl) = g@(gaglga o 7glg)
Clearly 6 is a group homomorphism. We note that 6 is G-equivariant. Indeed, if x € G, then

O2p(9)(91,- -1 9i) = 9(x0) (9, 919, - - -, 9i9) = gxo(92, 9197, . . ., gigxr) = O,(92) (g1, - - -, Gi)-

Thus 6,,(9) = 0,(9x) = (28,)(g) for all g € G.

Note that if 6,,(g) is the zero element of LC*(G, M) for all g € G, then (g, 919, - - -, gig) =0
for all g,g1,...,9; € G, whence ¢ = 0. Thus @ is injective. Moreover, given ¢ € LC'(G, M)
we can define n € CH(G, M) by n(go,...,9) = go_lw(go)(glgo_l, . ,giggl). It is easy to see
that ¢ = 0,), so that 6 is also surjective. O

Corollary 3.15. Let G be a profinite group and M a G-module. The G-modules C(G, M)
are acyclic for all v > 0.

Proof. This is immediate from Lemma 3.14 and Lemma 3.12. g

Therefore, the complex (3) is an acyclic resolution of M, and by Proposition 3.4 it may be
used to compute the cohomology of M. We will now do this and observe some consequences.

First of all, it will be useful to find a convenient parametrization of the spaces C*(G, M)“
of G-invariants. Recall that these spaces consist of locally constant functions ¢ : Gt — M
such that g - ¢(gog, -, 9i9) = ¥(go, ..., 9:) for all g,g0,...,9; € G. _

If i > 0, let C*(G, M) be the space of locally constant functions v : G* — M, with
no G-module structure. There is a group homomorphism C(G, M) — C/(G, M)® sending
Y € C*(G, M) to the map

@905, 91) = 95 (9097 L 195 s+ -5 Gi19; ).
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We wish to show that this is an isomorphism of groups by constructing an inverse map. Given
¢ € CY(G, M), we want to find v, € C*(G, M) such that g5 " ¥, (9097 ' 9195 - -+ Gim19; *) =
(90, ---9i) = 95 " ple, 195 -+ gigy ). The map

Yo(1,...,25) = (e, :L"fl, (:1:1:62)_1, coey (g - - xi)_l) (4)

works. Note that all of this holds for i = 0 as well, where C(G, M) is the space of constant
functions. The next step is to determine the map d; : C'(G, M) — C**1(G, M) induced by
fi. Given ¢ € C*(G, M), a straightforward computation shows that

(fipw)(gos - 9i01) = 97 W(grga - 9i95340) +
i
> (=g blgogr s gi-195 - 9ig) +
j=1
(=195 "(g0gr -+ gim1g; -
It follows that d;¢) = 4y,(,,,) is given by the following formula:

dl(¢)($1, ey {L‘i+1) = .Tl’gD(CCQ, e 733i+1) — @D(:clazg, T3yeeny $i+1) + (5)
w(xla X2X3, T4y - 7xi+1) + -+ (—1)21/}<.Tl, Ty 7xixi+l) +
(—1>Z+1¢(1‘1, N ,i[}i).

Finally, note that if ¢ € CO(G, M), then ¢(g1) = gp(g1g) for all g, g1 € G. Taking g; = e,
we see that m = gp(g) is independent of g. Moreover, ¥4, () (9) = fop(e, g H =g —ple).
Thus im djy consists of functions 1) : G — M of the form 1 (g) = gm — m for a fixed m € M.

For each i > 0, let Z(G, M) = kerd; and B'(G, M) = imd,;_; denote the cocycles and
coboundaries, respectively. The Proposition 3.4 tells us that:

Proposition 3.16. Let G be a profinite group and M a G-module. Then for all i > 0, we
have H' (G, M) ~ Z*(G,M)/B* (G, M).

Remark 3.17. In particular, if 1 € C1(G, M), then d1(¢)(g1, 92) = g19(g2) — ¥ (g192) +¢(g1).
Thus the 1-cocycles are maps ¢ : G — M satisfying ¥ (g192) = ¥(g1) + ¢1¥(g2). These are
called crossed homomorphisms. Similar, B'(G, M) consists of maps v : G — M of the form
¥(g) = gm —m for a fixed m € M.

Example 3.18. If G is a finite cyclic group and M is a G-module, then Z!(G, M) is isomor-
phic to the abelian group N(M) ={m € M : 3 ., gm = 0}.

Proof. Let o be a generator of G and let ¢ € Z1(G, M). Observe that p(e) = p(e) + ep(e),
whence ¢(e) = 0. Similarly, for all j > 1 we have p(07) = (o) + a(p(c?71)). Tt follows by
induction that ¢(07) = Zk 00 (¢(0)) for all j > 1. Taking j = |G|, we get

j—1
0=p(e) = p(o7) = > oF(p(0) = 3 (o).
k=0 T€G

Thus ¢(o) € N(M), and ¢ — ¢(0) is our candidate for an isomorphism between Z(G, M)
and N(M). Clearly it is injective, since ¢ is determined by (o) by the recursive for-
mula above. To show surjectivity, let m € N(M) and define ¢, : G = M by ¢p(0?) =

Zk _o0"(m). It is easy to check that this is indeed a 1-cocycle, and clearly ¢, (0) =m. O
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The following important result is a generalization, by Emmy Noether, of Theorem 90 in
Hilbert’s Zahlbericht, which itself originated with Kummer.

Theorem 3.19 (Hilbert 90). If L/K is a finite Galois extension, then H'(Gal(L/K),L*) =
0.

Proof. We write the abelian group L* multiplicatively and denote G = Gal(L/K). Let
o € ZY(G, L*). For every a € L* consider the “Poincaré series”

b(a) = p(o)o(a) € L.
oceG
By Dedekind’s Lemma the automorphisms ¢ are linearly independent over L, so there must
exist some a € L* such that b = b(a) # 0. This means that for all 0,7 € G we have
o(o71) = p(0)o(p(T)). Now for every o € G we have

a(b) =Y alp(m)or(a) = Y plom)e(o) 'or(a) = (p(0) ™" Y plom)or(a) = (p(0)) .

TeG TeG TG
This means that ¢(c) = o(b~!) -b = o(m)m~!, where m = b~!. Thus ¢ € BY(G,L*). O

We now derive the original Hilbert 90 as a corollary.

Corollary 3.20. Let L/K be a cyclic Galois extension and let o be a generator of G =
Gal(L/K). Let a € L be an element with N, r (o) = 1. Then there exists B € L* such that

a=0a(8)s".

Proof. In the notation of Example 3.18, we have that N(L*) = {y € L* : Ny g (y) = 1}.
By that example, there exists ¢ € Z'(G, LX) such that ¢(0) = a. By Hilbert 90, we see
that Z1(G, L*) = BY(G, L*), hence there exists 3 € L* such that ¢(r) = 7(3)5~! for all
T€eG. O

3.4. Some homological algebra. At this point we finally go back to the construction in
Proposition 3.2 and show why it indeed gives a well-defined §-functor. Recall that a complex
C consists of the data

o0 ot 2
c"LcetLe?rs e

where 0"l o 81": 0 for all i > 0. The cohomology of the complex is given by H*(C) =
(ker 9*+1) /(im &%) for all i > 0.

Definition 3.21. Let C and D be two complexes. A cochain map ¢ : C — D is a collection
of morphisms ¢* : C* — D" that commute with the coboundary maps of the complexes. In
other words, the diagram

ai—l ‘Ci ai ;Ci-&-l ai—H

SOH_I

81‘—1 Di az Di+1 ai+1

commutes for each 1.
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Observe that a cochain map ¢ : C — D induces maps H'(¢) : H(C) — H*(D) in a natural
way. We will sometimes write 86 and 9%, to distinguish the coboundary maps coming from
our two complexes. The main tool for proving that two complexes have the same cohomology
is the notion of homotopy.

Definition 3.22. Let C and D be two complexes, and let ¢, ¢ : C — D be two cochain maps.
A homotopy ¥ : ¢ — ¢ is a family of morphisms X' : C* — D=1 such that 1) — p = 0¥ + 20,
ie. Y — ¢l =0 1oXl + X 09 for all i.

Lemma 3.23. Let C and D be two complezes, and let o, : C — D be two cochain maps.
Suppose that there exists a homotopy ¥ : ¢ — . Then H'(p) = H'(¢) for all i.

Proof. Suppose that z € C' lies in the kernel of 9. We need to show that the two elements
¢'(z) and ' (x) of D, which clearly lie in the kernel of 9", differ by an element of the image
of "~!. However,

P () = ¢'(2) = 81T () + BTH(O(2)) = 0" (E (w))
by the definition of homotopy, and this is exactly what we need. O

We say that ¢ and i are homotopic if there exists a homotopy X : ¢ — ¢ and leave it to
the reader to verify that this is an equivalence relation on the set of cochain maps.

Proposition 3.24. Let C and D be two complexes. Suppose that C is acyclic, i.e. that
H(C) =0 for all i > 1, whereas D is injective, namely that all the D* are injective objects.
Let n: H°(C) — H%(D) be a homomorphism. Then there exists a cochain map ¢ : C — D
iducing 1. Moreover, any two cochain maps inducing 1 are homotopic.

Proof. Observe that HY(C) = kerd2 C C°, and similarly H(D) C DY. Thus 7 gives
a homomorphism H°(C) — D°, which extends to a homomorphism ¢° : C° — DO by
injectivity of D°. Now assume by induction that ¢! has been constructed. Observe that
¢! maps ker 95 ! to ker 95!, Indeed, if i = 1 and z € ker 8% = H(C), then ¢°(z) = n(2) €
H'(D) = kerd%. If i > 1 and z € ker 8&71, then z € im 8272 by the acyclicity of C. Since
010057 = 95% 0 o2, this implies that ¢*~!(z) € im 92 C ker 9! as claimed.

Ify € im 9% !, then choose € C*~! such that 95 ' (z) = y and define ¢*(y) = GiD_l(gpi_l(:p)).
This is well-defined; indeed, if z and 2’ are two preimages of z, then z = 2’ — x € ker agl
and thus ' ~1(z) € ker 8};1. Hence we get a map ¢' : im 88_1 — D'. Tt extends to a homo-
morphism ¢’ : C* — D? by the injectivity of D?, and our definition ensures that the following
square commutes:

i—1
Ci*l 810 Cz
S07;—1 SOZ
i—1
Di—l 8ZD Dl

Now let ¢ and 1 be two cochain maps inducing H°(¢); we will construct a homotopy %
between them. If y € im 0%, then define ¥!(y) = ¢°(x) — ¢"(z), where 8°(x) = y; observe
that this is well-defined. We can extend this to a homomorphism X' : C' — DY by injectivity
of DV.
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Suppose now that ¢ has been constructed. If y € im 9, then define X+ (y) = () —
@' (x) — 051 (Z(x)), where z € C' satisfies 0% (z) = y. If this is well-defined, it will extend
to a homomorphism X! : "1 — D? by the injectivity of D?. It is indeed well-defined,
because if 2’ is another pre-image of y, then z = 2/ — x € ker 86 =im 8’51 by acyclicity of C.
Let w € O~ satisty 0, ' (w) = z. Then

W' =)z = (¥ =) (w) =
O (W = ") (w) = 05N (05 S w4+ BP0 Tw) = 0 'S (2).

Corollary 3.25. Let G be a profinite group and M a G-module. The cohomology groups
H'(G,M), as constructed in the proof of Proposition 3.2, do not depend on the choice of
injective resolution. Moreover, H'(G,—) : Modg — Ab is a functor for all i > 0.

0 1 0 1
Proof. Let 0 — M — I° 84 It 84 wand 0 - M — J° 84 J1 84 -+ be two injective
resolutions of M. Note that H°(I) = H°(J) = M. By the previous proposition, the identity
maps in either direction extend to cochain maps ¢ : I — J and ¢ : J — I. Moreover, the
cochain map ¢ o ¢ : I — T induces the identity on H°(I) and is thus homologous to the
identity cochain map 1y : I — I. Let ¥ : 11 — v o ¢ be a homotopy.

Now apply the G-invariants functor to everything in sight. The resulting complexes I¢ and
J& are no longer necessarily acyclic or injective, so we can’t apply the previous proposition
directly. However, the relation ¢)fop’ —1 = 8}'71 oY+ X109t clearly survives the application
of the G-invariants functor. Since 1j¢ obviously induces the identity on cohomology, we find

that the composition H*(I%) M) i (J9) g H(19) is the identity by Lemma 3.23. Hence
we get isomorphic results when we compute H*(G, M) via the injective resolutions I and J.

Finally if f : M — N is any map of G-modules, then we can choose injective resolutions
0= M —Tand 0 - N — J. Then H°(I) ~ M and H®(J) ~ N, so the homomorphism
f: H°(I) — H°(J) is induced by a cochain map ¢. By the previous proposition, all possible
choices of ¢ are homologous and thus induce the same maps on cohomology. Applying the
G-invariants functor as above, we find that H'(f) : HY(G, M) — H*(G,N) is well-defined
and functorial. O

It remains to show that the functors H'(G, —) may be supplemented with boundary maps
0™ to obtain a d-functor. This is a consequence of the Snake Lemma.

Lemma 3.26 (Snake Lemma). Suppose we have a commutative diagram of G-modules

At g9 ¢ - 0
a B 0
0 N S

in which the horizontal rows are exact. There exists a canonical exact sequence

f g ' 7
ker v » ker 3 » ker ~y » coker @« —— coker  —— coker ~y,

in which f and § are the restrictions of f and g, respectively, whereas " and § are induced
from f' and g'. Moreover, f is injective if f is, and §' is surjective if g’ is.



GROUP COHOMOLOGY 21

Proof. There is only one natural way to obtain a map § : kery — cokera. Let x € ker~.
Since g is surjective, there exists y € B such that g(y) = x. Moreover, B(y) € ker g’ = im f’
by commutativity of the right square and exactness at B’. Since f’ is injective, there is a
unique z € A’ satisfying f'(z) = B(y), and we set §(z) = z + im a.

If y € B satisfies g(y') = x and 2’ € A’ satisfies f'(2’) = B(v'), then ¢y —y € kerg = im f,
so ¥y —y = f(w) for some w € A. But then a(w) = 2z’ — z, whence § is well-defined. This
argument is presented, among other sources, in the opening scene of the 1980 film It’s My
Turn. It remains to prove the exactness of the claimed sequence. This diagram chase is left
as an exercise for the reader. g

To apply the Snake Lemma, we will need to find injective resolutions I’, I, and I” of M,
N, and P, respectively, and chain maps ¢ and ¥ extending ¢ and 7, respectively, such that

0 I & [P Y [ 5 0 s a short exact sequence for every i > 0. This is a stronger claim
than we can get from Proposition 3.24 directly.

Lemma 3.27. Suppose that 0 - M — N — P — 0 is a short exact sequence of G-modules.
Suppose that we are given embeddings € : M < I' and €’ : P < I", where I' and I" are
injective objects. Then we can complete this picture to a commutative diagram

where I is injective, € : N — I is an embedding, and the bottom row is a split short exact
sequence.

Proof. Let I = I' & I"; clearly this is an injective object. The maps on the bottom row will
be the standard embedding and projection. It remains to define €. By injectivity of I’ there
exists a map ¢ : N — I’ such that ¢ o+ = &’. The diagram above already includes a map
from N to I”, and we take these to be the components of ¢ = (¢,&” o w). This works. O

Corollary 3.28. Suppose that 0 — M — N — P — 0 is a short exact sequence and
0 M — 1T and 0 — P — 1" are injective resolutions. These data can be extended to a
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commutative diagram

0 - M - N ~ P > 0
4 5 g’
\J V \{
[ T - ([0)’ ................ P AU - ([0)// ................. -0
\] V \{
() ceereerenennees - ([1)/ ................ O - ([1)// ................. -0
\] V \{

where the columns are injective resolutions and the rows are short exact sequences. Moreover,
all the rows, except for possibly the top one, are split.

Proof. We are given embeddings ¢’ : M < (I’) and ¢” : P < (I°)" of M and P into injective
objects. By the previous lemma we can fill in the second row of the diagram. Recalling that
the map ¢ factors through the inclusion (I°) — I°, we check that the cokernels naturally lie
in a short exact sequence

0 — cokere’ — cokere — cokere” — 0.

The injective resolutions we have been given provide for embeddings of coker e’ and coker &”
into injective objects (I') and (I')”, respectively. We apply the previous subclaim again and
continue forever. g

Remark 3.29. The proofs of Lemma 3.27 and Corollary 3.28 work in any abelian category
with enough injectives.

Proposition 3.30. Let 0 —» M —L> N 1) P — 0 be a short exact sequence of G-modules. For
every i > 0 there exists a map §' : H(G, P) — HY(G, M) satisfying the properties of a
cohomological &-functor.

Proof. Fix injective resolutions 0 — M — I and 0 — P — K. Note that M = H°(I) and
P = H°(K). By Corollary 3.28 there is an injective resolution 0 — N — J and cochain maps

©:I—Jand ¢ :J — K extending ¢ and 7, respectively, such that 0 — I 2y Ji 2> Ki—0
is a short exact sequence for every i > 0. Moreover, by the construction in the proof of
Lemma 3.27 we can take this sequence to be split. Since left exact functors preserve split

short exact sequences (prove this!), the sequence 0 — (I*)¢ L (JHE v (KHE — 0 is still
split for all 7 > 0.
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For each X € {I,J, K}, let d : (X))¢ — (X**1)% be as in (1). Now we apply the Snake
Lemma to the diagram
i i
coker dlfl #, coker d?l i» coker d};l — 0

O 05 O (6)

i+1 i+1
0—kerdit! 2 rerditt U kerdit!

where 83( is induced from de. The exactness of the rows can be verified as an easy exercise,
or, alternatively, by applying the Snake Lemma to the diagram

0 (170 2 (g0 L iy

d & di.

j+1 +1
0 (p’+1)G i, (Jj+1)G f./fiu, (Kj+1)G 0
for j € {i —1,i+1}. Note that ker 9% = H'(G, M) and coker 8% = H'"1(G, M), and similarly
for the other two columns of (6). Applying the Snake Lemma to (6) thus gives an exact
sequence

HI(G, M) — H(G,N) — H'(G, P) % H*Y (G, M) - HTY G, N) = H*Y(G, P),

where the unlabeled arrows arise from ¢ and 7 by the functoriality of H {(G,—)and HTY(G, ).
It remains to show that §" is itself functorial in the sense of the second part of Definition 3.1.
Given a morphism of short exact sequences

0 - M - N - P -0

0 M - N’ - P 0
we obtain the diagram

, A ot A A
. —— HY(G,N) — HY(G,P) — H"YG, M) — H™Y(G,N) —— --.

. ) &)? . .
- — HY(G,N") — H'(G, P @) HY G, M) — HTYG N') —— -
in which all the unlabeled maps arise from the functors H(G, —) and H**1(G, —). In partic-
ular,, the squares on the left and right commute. We need to show that the central square
commutes. This is proved by following the definition of the connecting map J in the proof of
the Snake Lemma and is left as an exercise. O
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Remark 3.31. A careful inspection of our arguments shows that the only property of the
G-invariants functor that figures in the proof that H*(G, —) indeed gives a J-functor is that
M — MC is left exact. Thus we can make the same construction for any left exact functor
F : A — B, where A and B are abelian categories and A has enough injectives. Indeed, if M
is an object of A, we can find a resolution by injective objects:

0 1
0=M-1"5 1% 2.
Applying F, we get a complex in B that need no longer be exact:

0 1
718 Y8 Fa2y
Note that ker F(9°) = F(M). By the arguments above, the cohomology of this complex is
independent of the choice of injective resolution. We obtain the series of right derived functors
of F, given by
R'F(M) = (ker F(8"))/(im F (8" 1)).

Observe that ROF = F. The connecting maps to make this a é-functor are obtained by a
Snake Lemma argument as above.

EXERCISES

(1) Prove that the G-invariants functor is left exact. In other words, given a short exact
sequence 0 = M — N — P — 0 of G-modules, show that 0 — M — N¢ — PC is
an exact sequence.

Prove that the functor is not exact, i.e. that 0 = MY — N — P — 0 need not
be an exact sequence.

(2) Let G be a profinite group, and let k be a field. Let Rep,(G) be the category of all
k-vector spaces V such that V, viewed as an abelian group, is endowed with a G-
module structure that respects the k-linear structure: in other words, for every g € G
the map v — gv is a k-linear automorphism of V. The morphisms in this category are,
of course, k-linear G-equivariant maps. Let Vecy be the category of k-vector spaces.

(a) Verify that the left exact functor (=) : Rep,(G) — Vecy gives rise to right
derived functors Hi (G, —).

(b) Let V' € Rep,(G) be a two-dimensional representation of G. For any g € G, let
p(g) € Autg (V) denote the map v — gv. Suppose that V is reducible, i.e. it has
a G-invariant non-trivial proper subspace. Show that there exists a k-basis of V'
with respect to which

olg) = ( Xlég) c(9) >

x2(9)

for all g € G, where x1,x2 : G — k* are group homomorphisms and ¢ : G — k
is a function. Show that (g c(g)x3 ' (9)) € ZL(G, x1x3 ") Here x1x5 " denotes
a one-dimensional k-vector space with the G-action gv = x1(9)x5 Y(g)v. Let
cy € H ,%(G, X1Xo 1) be the corresponding cohomology class.

(c) Show that V' determines ¢y up to multiplication by a non-zero scalar in k. Con-
versely, show that every one-dimensional subspace of H ,i(G, X1Xo 1) gives rise to
a two-dimensional representation V' € Rep,(G) admitting a short exact sequence
0—=>x1—=>V = x2—0.
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(3) Prove that Z2(G, M) consists of locally constant functions v : G? — M satisfying

P(g1,92) + ¥(9192,93) = ¥(91, 9293) + 919 (g2, 93)

for all g1, g2,93 € G. Show that ¢ € B?(G, M) if and only if there exists a function
¢ : G — M such that ¥(g1,92) = ¢(g91) — p(9192) + g19(g2) for all g1, 92 € G.
(4) Let G be a profinite group and let A be a finite abelian group. An extension of G
by A is a short exact sequence 0 - A = E 5 G — 0 of profinite groups, where
the maps are continuous group homomorphisms. (Beware that some authors call this
an extension of A by G). By abuse of notation, we will call the extension E. Let
u: G — E be a continuous section of m, namely a continuous map (not necessarily a
homomorphism) such that 7 o u is the identity on G; this exists by Proposition 1.15.
(a) For g € G and a € A, define ga = u(g)au(g)~!. Show that this action is
independent of the choice of u and endows A with a G-module structure.
(b) Let E be an extension as above. For all g1,92 € G, show that there exists
¥(g1,92) € A such that ¢y (g1,92) = u(g1)u(g2)u(giga) . Show that the map
Yy : G x G — Ais a 2-cocycle, namely that it lies in Z2(G, A).
(c) Show that if we choose a different section v’ : G — E, then the 2-cocycles v,
and 1), give rise to the same class in H2(G, A).
(d) Two extensions E; and Es are called congruent if there exists a continuous ho-
momorphism f : Fy — FEs such that the diagram

0 - A - F G 0
= f =
0 - A - Iy - G ~ 0

commutes. Prove that f is necessarily an isomorphism and that congruence of
extensions is an equivalence relation.
(e) Prove that congruent extensions F; and Ej give rise to the same class in H?(G, A).
(f) Now, let A be a finite abelian group with a G-module structure, and let ¢ €
Z%(G,A). Consider the set E = A x G with the product topology and the
multiplication

(a1, 91)(a2,92) = (a1 + gra2 + ¥ (91, 92), 9192)-

Show that this construction naturally produces an extension of G by A that
depends, up to congruence, only on the class [¢)] € H(G, A).

(g) Prove that the above gives a bijection between H?(G, A) and the set £(G, A) of
congruence classes of extensions of G by A. In particular, this endows (G, A)
with the structure of an abelian group. Show that its identity element corresponds
to the trivial extension 0 - A -5 A x G 5 G — 0 with «(a) = (a,eq) and

W(aag) =g

4. RESTRICTION, CORESTRICTION, AND INFLATION

Let G be a profinite group and H C G a closed subgroup. The “restriction of scalars”
functor Res% : Modg — Mody is clearly an exact functor, and hence (H*(H,Res%—),d") is
a d-functor.
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Definition 4.1. For any G-module M we have an embedding M¢ < M. This gives
a natural transformation of functors H(G,—) — H°(H,Res%—). By the universality of
(H'(G,—-)), we get natural transformations res : H (G, —) — H'(H,Res%—) for all i > 0 as
well. This is called restriction.

Lemma 4.2. Let H C G be an open subgroup. For each i > 0, the functor H'(H, Resg—) 18
effaceable.

Proof. Let M be a G-module. As we saw in the proof of Corollary 2.12, as an abelian group
M injects into a divisible group I. We concluded, using Frobenius reciprocity, that M injects,
as a G-module, into the injective G-module Ind?e}l . To establish our claim, it suffices to
show that Resfllnd?e}f is an injective H-module. In the exercises for Section 2 we showed
that any restriction of an injective module is injective. Here we give a more direct proof.

Observe that Resglndfe}l =& GHEG/H ®, 5, where ®,p is the abelian group of locally
constant functions gH — I; note that each @,y is stable under the H-action on Resglnd{Ge}I .
For each g € G, there is an H-module isomorphism

o — Indfl, 1
o= (b f(gh)).

Since Indﬁ}l is an injective H-module by Corollary 2.11, and a direct sum of injective H-
modules is injective, we are done. O

Definition 4.3. Let H C G be an open subgroup and M a G-module. If m € M and
g € G, then gm depends only on the left coset gH. Therefore, since H has finite index in G,
we have a map

M" = MC
m Z qgm.
gHeG/H

It is simple to check that the right-hand side is indeed G-invariant. This is a natural
transformation trgy : HO(H, Res$—) — H%(G,—). Since (H'(H,Res%—),d") is a uni-
versal -functor by Lemma 3.9 and the previous lemma, we obtain a natural transformation
cor : H'(H,Res%—) — H'(G,—) for all i > 0. This is called corestriction.

Lemma 4.4. Let H C G be an open subgroup and M a G-module. For any i > 0, the
composition cor ores : H'(G, M) — H*(G, M) is multiplication by the index |G : H].

Proof. If m € M, then tra/r(m) =X gneq/m 9m = D gnec/um = [G : Hm, so the claim
is true if ¢ = 0. It follows for ¢ > 0 by universality. g

For any open subgroup H C G and any G-module M, consider the G-module map i :
M — Ind$% M given by i(m) = (g — gm); note that i(m) is locally constant because M is
a discrete G-module. Similarly, consider the trace map tr : Ind%M — M given by tr(f) =
> HgeH\G g1 f(g); one quickly checks that this is well-defined.
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Lemma 4.5. Let H C G be an open subgroup and M a G-module. Then for each i > 0 there
is a commutative diagram

H(G, M) —~ HI(G, nd§ M)

(.J
res tr

HY(H,M) —— H (G, M)

cor

where the diagonal isomorphism comes from Shapiro’s Lemma.

Proof. Since all the cohomology functors here are universal, it suffices to show that in the
case ¢ = 0 our maps arise from a commutative diagram of natural transformations. This
is easily checked using the definitions above and the proof of Shapiro’s Lemma. The only
point that is not completely obvious is the bottom triangle: here one uses the observation
that if {g1,...,gr} is a system of coset representatives of G/H, then {gfl, ..., g7 '} are coset
representatives of H\G. O

The construction of the restriction map can be generalized. Let f : G’ — G be a continuous
group homomorphism, and let M be a G-module. Then M can be given the structure of a
G’-module by ¢’ -m = f(g') - m for all ¢ € G’ and m € M. We denote this G’-module (why
is it discrete?) by f*M. Observe that if H C G is a subgroup and f : H — G is the inclusion
map, then f*M = Reng . Note that M — f*M is an exact functor, and clearly M¢ C
(f*M)%", so by universality this inclusion gives rise to functors H'(G, M) — H'(G', f*M) for
all i > 0. Moreover, if h : f*M — M’ is a G’-module homomorphism, then we can consider
the composition

(f,h)* : H(G,M) — H\(G', f*M) — H(G', M").

Definition 4.6. Let GG be a profinite group and H < G a closed normal subgroup. Consider
the natural projection f : G — G/H, which is continuous by definition of the quotient
topology. Let M be a G-module. Then M is a G-submodule (since for any g € G, h € H,
and m € M we have h(gm) = g(g~'hg)m = gm). It has an obvious G/ H-module structure.
The inclusion h : f*M*" — M is G-equivariant, and the map (f,h)* is called inflation:

inf : HY(G/H, M) — H (G, M).

It is often very helpful to be able to compute explicitly with cocyles. Given a cocyle
v € Z'(G, M), we denote its cohomology class by [¢)]. The following explicit description of
the action of the boundary map is useful.

Lemma 4.7. Let 0 — M 4 N ij P — 0 be a short exact sequence of G-modules. Let
Y € Z*(G, P). The connecting map &' : H'(G, P) — H™(G, M) sends [1)] to the cohomology
class of n € ZTY (G, M), where n: Gt — M s given by

—_— —_ P

(g1, git1) = av(92,--.,gi+1) — ¥(9192, 93, - - - gi+1) + ¥ (91,9293, a5 - - - Git1) + - +
(=1 (g1, 92, - - 9igit1) + (=) (g1, .., gi)-

Here, for any p € P, we denote by p an arbitrary lift of p to N.
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Proof. This essentially follows from (5) and the proof of Proposition 3.30. However, some
care must be taken, since the resolutions

0— M —C%G, M) —CYG, M) — C*(G,M) — -

that we are using to compute cohomology need not be injective. Thus the machinery of
Section 3.4 does not immediately apply. We observe directly that the sequences

0 — C'(G, M) - CY(G,N) = CY(G, P) -0,
where the maps are given by pre-composition with ¢ and 7, are exact, although not necessarily
split. Moreover, after applying the G-invariants functor we are left with an exact sequence

0 — CYG, M) - CY(G,N) = C'(G, P) — 0.
Now we may continue as in the proof of Proposition 3.30 and compute the connecting maps
0" by applying the Snake Lemma to the diagrams

0 C'(G,M) — C'(G,N) — C'(G, P)

d; d; d;

0 cia, M) — G, N) — Y@, P) — 0. O
It will also be useful to know how restriction and inflation act on cochains.

Lemma 4.8. Let G be a profinite group, and let H C G be a closed subgroup. Let M be a
G-module.
(1) Let ) € ZH(G, M). Then res%([v)]) = [Vmi]-
(2) Suppose that H is normal. Let ¢ € ZY(G/H, M™). Then inf([)]) = [], where
¥ : G* — M is the composition G* — (G/H)’ %M.
Proof. The claim holds trivially for ¢ = 0. Since the formulas in our claim are compatible with

the boundary maps by Lemma 4.7, we obtain the claim in general by the universal property
used to define the restriction and inflation maps. O

Definition 4.9. Let G be a profinite group and let {G;};c; be a projective system of finite
groups, with connecting homomorphisms ¢;; : G; — G; for i > j, such that G = lim Gj.
Suppose that for each ¢ € I we have a G;-module M;. Moreover, suppose that whenever
i > j, we have a Gj-module homomorphism h;; : @ijj — M;. Then we can define a G-
module structure on the direct limit M = lim M;: if g = (9;) € G and m = (m;) € M, we
define gm = (g;m;) € M. (Why is this a discrete G-module?)

Proposition 4.10. Let G = yLnGi be a profinite group, and let {M;} be a system of G-
modules as above. Then

HM(G, M) = lig H*(Gi, M;)
for all k > 0. The connecting homomorphisms on the right-hand side are the maps (pij, hij)*.

Proof. If m; : G — @, are the natural projections, then the maps (m; : M; — M)* :
H*(Gi, M;) — H*(G,M) are clearly compatible with the (;;, hij)*, so by the universal
property of direct limits we get a map lim H*(G;, M;) — H¥(G,M). We claim that it is
an isomorphism. This can be established by checking on cocycles: it is easy to show that
CH(G, M) = lim C*(Gi, My). O
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Remark 4.11. The previous proposition does not assume that the G; are finite groups. Indeed,
it G; = G for all ¢, and all the homomorphisms ¢;; are identities, then we clearly have
G= 1£1 G; and the proposition states that cohomology commutes with direct limits:

H*(G, lig M;) = lim H* (G, M;).

Corollary 4.12. Let K be a field, and let its absolute Galois group Gx = Gal(K/K) act on
K™ in the natural way. Then H (Gg, K ) = 0.

Proof. This is immediate from Proposition 4.10 and Hilbert 90. (|

Corollary 4.13. Let G be a profinite group, and let M be a Q-vector space with a G-module
structure. Then H*'(G,M) =0 for all i > 0.

Proof. Let {H;};cs be the family of open normal subgroups of G, ordered by reverse in-
clusion. Since M = UjeJ MHi it is easy to see that M = liglMHj, where the con-
necting homomorphisms are the inclusions M7 < MH"x for j < k, i.e. H, C Hj;. Thus
H{(G,M) = hﬂ HY(G/Hj, M) by Proposition 4.10. Since the M are all Q-vector spaces,
it suffices to prove our claim in the case where G is a finite group.

So let G be finite. In this case, {e} C G is an open subgroup, so by Lemma 4.4 the
composition

HY(G, M) ™3 H'({e},Res{}y M) & H'(G, M)

is multiplication by |G|. On the other hand, this composition is the zero map, since we have
Hi({e},Res%’;}M) = 0 for i > 0 by Lemma 3.12. Since H'(G, M) is naturally a Q-vector
space (the spaces of cochains are, and the boundary maps commute with the Q-vector space
structure), it follows that H*(G, M) = 0. O

Definition 4.14. A G-module M is said to be a torsion module if every element of m is
annihilated by some integer.

Lemma 4.15. Let G be a profinite group. Suppose there exists i > 1 such that H(G,M) =0
for all G-modules M of finite cardinality. Then H? (G, M) = 0 for all j > i and for all torsion
G-modules M.

Proof. First we prove the claim in the case j = 4. Observe that every element m of a
torsion G-module M is contained in a finite G-module. Indeed, since stabg(m) has finite
index in G, the G-orbit of m has only finitely many elements, say m1,...,m,. The subgroup
(mq,...,my) of the abelian group M is thus finite, and it is clearly stable under the G-
action. Now let { My }rex be the family of finite G-submodules of M, ordered by inclusion
and with the natural inclusions as the connecting homomorphisms. By the considerations
above we have M = thk By Proposition 4.10 (note the remark following it) we have
H{(G,M) = ligH"(G,Mk) =0.

Now suppose that the claim is known for j — 1. We will prove it for j by a “dimension
shifting” argument. For brevity, we will write Ind{Ge}M for Ind?e}Res?e}M . Observe that this
is a torsion G-module. Indeed, every element is a locally constant function f : G — M. Since
G is compact, the function f only takes on finitely many values, so there is an integer that
annihilates all of them. There is a natural injection € : M — Ind{Ge}M , where e(m) is the
function g — gm. Let @ be the cokernel; it is a quotient of a torsion module and thus is a
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torsion module itself. The short exact sequence 0 — M — Ind{Ge}M — @ — 0 gives rise to
the following bit of the long exact sequence:

- = HI7NG, Ind{, M) — H/7Y(G, Q) — HI(G, M) — HY(G,Ind{,, M) = - --

Since H/~1(G, Q) = 0 by the inductive hypothesis and Hj(G,Ind?e}M) = 0 by Shapiro’s
Lemma, we conclude that H’(G, M) = 0. O

Our next goal is to prove the “inflation-restriction exact sequence”: if G is a profinite
group, H < G is a normal subgroup, and M is a G-module, then the following sequence is
exact:

0— HYG/H, M"Y ™ g4 (G, M) S H (H,ResG M)C/H = H2(G/H, M"Y ™ H2(G, M),
Here the action of G on H'(H, Reng ) is the one arising naturally from the G-action on
cocycles, and the unlabelled map has yet to be defined. The desired result could be proven by
direct computations on cocycles; while long and unpleasant, such a proof would still be shorter
than the one we will give. However, we will take the opportunity to develop the machinery of
spectral sequences in the next section. This is a tool for computing cohomology that turns out
to be ubiquitous in number theory and algebraic geometry. The inflation-restriction sequence
will turn out to be a special case of a very general phenomenon.

EXERCISES

(1) A triple (z,y, ) € Z3 is called a Pythagorean triple if x>+ y? = 22. It has been known
since ancient times that (z,y, z) is a Pythagorean triple if and only if it is proportional
to (m? —n?, 2mn, m? + n?) for some integers m, n. It was observed by N. Elkies that
this fact can be deduced straightforwardly from Hilbert 90. Do it.

Hint: Let (x,y, z) be a Pythagorean triple such that z # 0. Consider the element
/=L ¢ Q(v=T).

(2) Generalize your solution to the preceding exercise to obtain a parametrization of all
solutions (z,y, ) to the Diophantine equation x? + axy +by? = 22, where a,b € Z are
such that a? — 4b is not a perfect square.

(3) Let K be a field of characteristic prime to n > 1. Let pu, C K™ be the subgroup of
n-th roots of unity; clearly it is preserved by the action of the absolute Galois group
Gr. Prove that H' (G, pn) ~ K> /(K*)".

(4) Let G be a finite group and let M be a G-module. Show that, for any ¢ > 0 and any
c € H (G, M), the equality |G|c = 0 holds.

(5) Let G be a finite group and let M be a G-module which is finitely generated as an
abelian group. Prove that H'(G, M) is finite.

5. SPECTRAL SEQUENCES

5.1. Basic definitions. The goal of this section is to understand the Hochschild-Serre spec-
tral sequence, which is an important tool for computing cohomology. We start off with a
general treatment of spectral sequences. The underlying theory is not complicated, once one
sees past all the cluttered diagrams. Let R be a ring.

Definition 5.1. (1) A bigraded R-module E is a family of R-modules {EP? : p,q € Z}.
(2) A differential d : E — E of degree (r,s) is a family of R-module homomorphisms
d: EP1 — EPT4TS guch that dod = 0.
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Definition 5.2. A spectral sequence is a sequence {E;},>;, for some integer ¢, of bigraded
R-modules E, = (EP?) equipped with differentials d,. : E,. — E, of degree (r,1—r) such that,
for every p,q € Z and every integer r > rg, the following holds:

EP4, ~Xer(d, : EP? — EPTOHY) fim(d, : BP0l o BPO), (7)

The spectral sequence is called positive if EF'? = 0 whenever p < 0 or ¢ < 0. Most of the
interesting applications of spectral sequences happen in the case t = 2, and we will assume
this from now on, except in Example 5.6 below.

From now on, all our spectral sequences will be assumed to be positive. The bigraded
modules E, are called sheets of the spectral sequence. For a fixed r, think of the modules
EP? as lattice points on the plane. Then the differential maps are slanted arrows that form
complexes which run in slanted lines across the plane. The (co)homology of these complexes
computes the modules Effl of the following sheet.

The terms of the form EP? and EY? are called base terms and fiber terms, respectively.

Lemma 5.3. Let {E,} be a positive spectral sequence. Fiz p,q € N, and let ro = max{p,q+
1} + 1. Then EP? ~ ER? for all v > ry.

Proof. If r > rg, then E5+T’q_r+1 and E? 74471 both vanish. The claim is then immediate
from (7). O
Definition 5.4. A filtered R-module is an R-module A together with a family of submodules
A=F°ADF'ADF?AD...
We will assume throughout that Nico F ‘A = 0. The graded pieces are the quotients gr'A =
FIA/FHLA,
Definition 5.5. Let {E??} be a spectral sequence.
(1) For any p,q € N, we define E&? = EF? in the notation of Lemma 5.3.
(2) We say that the spectral sequence {EX?} converges to or abuts to the family {A"},en
of filtered modules if E5! ~ gr? AP*4 for all p, ¢ € N. In this case, one writes EF? = A"
or EbY = A"

Example 5.6. As our simplest example of a spectral sequence, let C° B—O> Ct 6—1> -+ be
a cochain complex. Define E"? = CP whenever p and ¢ are both non-negative, and set
dy : EP9 — EPTY9 t0 be 9P. Then (7) forces EY? = HP(C). The only natural choice for the
differential is the zero map. Thus we get EX! = ED'? = HP(C) for all p,q. If for all n we
define " = @2, H'(C), with the grading FVH" = @;2,; H'(C), then clearly E{"! = H".
While this example is silly, it already suggests that spectral sequences could be useful for
computing cohomology.

5.2. The five-term exact sequence. In this section we derive a general five-term exact
sequence associated to any positive spectral sequence. The inflation-restriction sequence will
be the special case of this result for the Hochschild-Serre spectral sequence.

Lemma 5.7. Let {EF?} = A" be a spectral sequence. For each n > 1 there is a natural
injection ep : E%Y < A" and a natural surjection ep : A™ —» E%". Moreover, in the case
n =1 the sequence
ELY B ALK EO!
oo o0
18 exact.



32 MICHAEL M. SCHEIN

Proof. Observe by the definition of abutment that if m > n, then gr™A™ ~ EJ"™™ = 0,
since our spectral sequences are positive. Since [, F' PA™ = 0, this implies that F"H1 A" = 0,
and hence that gr" A™ = F"A™ is a submodule of A™. Since E%0 ~ gr’ A", this provides our
injection.

Similarly, E%" ~ gr? A" = A" /F' A", Since this is a quotient of A", we obtain the desired
surjection. It follows from the above that kerep = F'A” for all n, whereas imep = F" A",
and hence we get exactness when n = 1. O

Lemma 5.8. Let { EF'?} be a spectral sequence. Then for alln > 1 there is a natural surjection
EPY - E%Y and injection B < ES™.

Proof. This is immediate from (7). Indeed, for every r > 2 we have Ef™"" T = 0 by
positivity, whence Effl = EM /im(d, : B} = E°) is a quotient of Ei*°. By induction,
every E™M is thus naturally a quotient of Ey 0,

Similarly, ngl = ker(d, : EO" — E;’n_”l) C EY" for every r > 1, and hence EO" C Eg’”
for every r > 2. O
Definition 5.9. The compositions of the maps from Lemmas 5.7 and 5.8 provide maps
Ey 0 5 A" and A" — Eg’", which we abusively call ep and ef, respectively. Note that these
maps are not necessarily injective or surjective.

Definition 5.10. Let n > 1. The spectral sequence { EX'?} is said to satisfy condition (x),, if
EP? =0 for all pairs p, ¢ such that 1 <¢g<n—1and p+q € {n—1,n,n+ 1}. Observe that
the condition (x); is vacuous and thus is satisfied by all spectral sequences.

Remark 5.11. Observe that if condition (x),, holds, then for all 2 < r < n we have E;’TL*TH =

0, and hence EF" "t =0 by (7). This implies that the inclusions E" Cc EOmC...C Eg’"

n+1
of Lemma 5.8 are isomorphisms. Similarly, we have Eénﬂ)_m_l =0 for all 2 <r <n, and

thus the projections Ej 0 — Ey O, E,’;”Ll 0 are also all isomorphisms. This means
that, for all n > 1, we may consider the composition

0, mO0n 4ol md1,0 ) ntl,0
E2 - En+1 J En+1 - E2 ’
which is called the transgression map and will be denoted dy, 1.

We finally have all the necessary ingredients to establish the “five-term exact sequences”
associated to the spectral sequence {EY'7}.

Proposition 5.12. Let {EP'? = A"} be a spectral sequence satisfying condition (), for some
n > 1. Then there is an exact sequence

0 — BP0 S8 An 5 pOn dngl pntl0 er gntl

Proof. We successively verify exactness at each node.

Ezactness at Ey’: We need to show that ep : Ej° — A" is injective. Since ngl =

EX0 5 Am s injective by Lemma 5.8, it suffices to show that the maps EM 11 are
injective, hence isomorphisms, for all 2 < r < n. Now by (7) we have ker(Er°’ — Effl) =
im(d, : ErTL Ef?’o) =0 for each 2 < r < n, since EX """t =0 by condition (x)y,.

Ezactness at A™: In view of the injectivity of ep and the end of the proof of Lemma 5.7, we
find that imep = F™ A", whereas ker ep = F1A". However, these are equal, since condition
(%)™ implies that for all 1 <i <n — 1 we have gr'A” = E3J'" = 0.
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Ezactness at Ey™: Observe by Lemma 5.3 that EX" = 21?2 and A" — E%" is surjective.

Thus imep = im(ELTy < Ey)) = ker(dpy1 = Eply — ErtY), which implies exactness by
the definition of the transgression map.

Ezactness at E;H’O: Again by Lemma 5.3, we see that EZ]:;’O = B0 injects into A",
and hence that kerep = ker(EZI%’O —» EZI%O) = im(dpy1 : Eg’fl — EZLLO), which is what
we need by the definition of the transgression map. O

Corollary 5.13. Let EP'? = A™ be any positive spectral sequence. Then there is an ezact
sequence

0— B30 8 AV K gt B p20c8 42
Proof. As noted above, the condition (x); is vacuous. 0

5.3. Double complexes. So far the only example we have seen of a spectral sequence is the
trivial one in Example 5.6. In this section we will study a general construction that produces
many useful examples of spectral sequences.

Definition 5.14. A filtered complex is a complex C° 8—0> Ct 6—1> .-+ of filtered modules whose
filtrations are compatible with the boundary maps. In other words, for every i, j, we have
OW(FICY) C FiCH!,

A filtration of a complex induces a filtration on its cohomology. Indeed, for every i,j > 0
we may define F/H!(C) = im (H(F/C) — H'(C)), where the maps whose image we are
considering is the one induced by the natural inclusion of complexes F/C — C. The family
of filtered modules { H*(C)} will be denoted H(C).

For every r € Z, we set ZI'! = {x € FPCPT4 : 9pT4(x) € FPH"CPTa+l}  Similarly, set
B = 8p+q_1Zf:IH’q+T72 = gpra-lpp—r+lopta—l 0 fPOPHA the second equality following
immediately from the definition. Observe that BY'Y C ZPY, since the composition of two
boundary maps is zero. Similarly, note that foll 4=l C zP4 Now set

P = 700 [(BP + 270, (8)

Proposition 5.15. Let C be a filtered complex as above.
(1) There exists a spectral sequence, with EX? defined as in (8) and differentials induced
by the boundary maps of C.
(2) If the filtration of each C* is bounded, so that there exists some j such that FIC* = 0
(we allow j to depend on i), then EX'? = H(C).

Proof. The definitions of Z¥'? and EF? are exactly the ones needed to make this claim work.
Since grragPhd C zprra-rtl by definition, the boundary map 9P%¢ clearly induces a map
dy : EP? — EPTTHand the composition of two such maps is zero.

Again by definition, im(gPte—1 . ZP~ a1y zpa) — B, . Observing that BP? C B2,
we conclude that

. — — 5 +17 -1 y +1’ -1
im (dy : PO — B = (BY + 20T /(BRY+ 2770,

Furthermore, for 2 € ZP?, we have 9PT4(z) € ZP™H477 if and only if 8P19(z) €
FPrHloptatl which is equivalent to z € Z27,. Also, BEtramrtl — 3p+q(ij11’q71). Thus,
oPta(z) € BETT implies @ € ZPT 7! 4 ker 9P

Hence, ker(d, : EP'? — BP0 = (Z23 + ZPthay j(BR 4 zpt e,
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Therefore, ker(d, : EP? — BP0 fim (d, « P71 o BP9Y ~ BPY | as claimed.

To prove the second part of the proposition, let p, ¢ be fixed. For sufficiently large r, we have
that FPT"CPHa+tl = ) and hence Z/! = {x € FPCPH9 : 9PT4(z) = 0}. But for sufficiently
large r we have FP~"T1OP+a—1 — CP+a=1 and hence BE? = gpra—1orta—InFrCrta, It follows

that B is exactly im (HP+9(FPC) — HP(C)) /im (HPT(FPH1C) — HP(C)). O

Definition 5.16. A double complex is a family K = { K77} of R-modules, where the indices
p and ¢ run over the natural numbers, equipped with horizontal and vertical differential maps

9 - KP4 _y [KPtla
9" KP4 5 KPatl
such that & 0 =0, 09" =0, and & 03" + 3" 0 0’ = 0.

Observe that a double complex is not a commutative diagram, since the squares

/
KP4 9 R Kp+1,q

a// a//

/
KPpatl Kptlatl
anti-commute. Moreover, it is conventional to refer to the maps @ and 9" as horizontal and
vertical, respectively, so one visualizes KP4 as lying in the g-th row and p-th column of the
double complex. Given a double complex as in Definition 5.16, we define a (usual) cochain
complex C as follows: for each ¢ > 0 set

C'= P K (9)
p+g=1i
and define the boundary maps 9° : C* — C** by 9" = & + 9”. It is simple to check that
01 09" = 0 for all i > 0; this is the reason for the condition & 0 8" + 9" 0 @ = 0 in the
definition of double complexes. The complex C is called the total complex of K and is often
denoted Tot K in the literature.
We give C the structure of a filtered complex in two different ways. Define two filtrations

'"Figt — @ KPP
pHg=i
p2j

"EICE — @ KP4

ptq=i
q=>j

Both filtrations are compatible with the boundary maps and are obviously bounded. By
Proposition 5.15 we get two spectral sequences, {'EX*?} and {"EP?}, that both abut to the
family H(C), although with different filtrations on H(C).

We now investigate the terms of these sequences. For any element x € A of a filtered module
A with bounded filtration, let deg(z) = max{p : # € FPA}. Considering the filtrations 'F7C*,
observe that if x € C*, then deg(d'(x)) = deg(z) + 1, whereas deg(9”(z)) = deg(x). It follows
that

7P = ker(9 : KP1 — KPOtY) g PO
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whereas 'BP4 = §/FPCPHa-1 0/FpOpte = o/ Fppta-l. Now 'Z0HH471 = /ppriorta by
definition, and &'('FPCPTI=1) c 'FPHLOPHe, 50

'BP o ZB TN — i (9 KPOTL  KP9) @ FPELOPT,
We conclude that
"EPY =ker(9" : KM — KPItY) /im (9"« kP9~ — KP9),

Thus the spectral sequence {E¥?} computes the cohomology of the columns of the double

complex {KP4}. Precisely, 'EP? = HI(KP*), where KP* is the cochain complex KP: g

Kpl a_/; KP2 5 ...
Similarly, by definition we have

"7P7 = ker(0' : K — K1T1P) g priorta,
By an analogous argument to the one just above, we conclude that
"EP? = ker(9' : K9P — K9TbP) /im (9 : K977 — K%P) = HI(K*P) (10)

computes the cohomology of the rows of the original double complex.

Such a setup is very useful, since often one can arrange a double complex for which one of
these two spectral sequences is of independent interest, whereas the other one is less interesting
but has a readily computable limit. The prime example of such a situation is described in
the following section.

5.4. Grothendieck’s theorem. Recall, from Remark 3.31, the right derived functors R'F
of a left exact functor F : A — B, where A and B are abelian categories and .4 has enough
injectives.

Definition 5.17. Let G : B — C be a left exact functor between two abelian categories,
where B has enough injectives. An object B € Ob(B) is said to be G-acyclic if R'G(B) =0
for all ¢ > 0.

Theorem 5.18 (Grothendieck). Let A, B, and C be abelian categories, and suppose that A
and B have enough injectives. Let F : A — B and G : B — C be additive left exact functors,
and suppose that F takes injective objects of A to G-acyclic objects of B. Then for each object
A € Ob(A) there exists a spectral sequence

Ef! = (R'G o R1F)(A) = R'(G o F)(A).

Proof. Let A be an object of A, and let A — I® — I' — I? — ... be a resolution of A by
injective objects. This exists because A has enough injectives. We denote it by I. Suppose
we can construct a “resolution of the resolution F(I),” namely a commutative diagram of
objects of B as follows, in which each row is a cochain complex (i.e. the composition of two
consecutive maps is zero) and for each p > 0, the p-th column is an injective resolution of
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F(IP):

F(I°) —— F(I") —— F(I?)
n n N
v v y

JO’O _ Jl,O _ J270 .
Y 4 Y

JO,l N Jl,l o J271 .
4 4

70,2 . Jh2 . 22 o
4 4

A minor annoyance is that this diagram is not a double complex, since the squares are
commutative rather than anti-commutative. We remedy this by changing the sign of the ver-
tical arrows in every other column, i.e. by replacing d’ : J»4 — JP9t1 with (—1)Pd’. Clearly
the columns remain injective resolutions. Now apply G to this diagram, to produce a double
complex of objects of C. We write KP? for G(JP'9). Since the F(IP) are G-acyclic by assump-
tion, the columns of the double complex { KP*?} remain exact. In particular, considering the
two spectral sequences associated to this double complex, we find that 'EY*? = HI(KP*) =0
whenever ¢ > 0, whereas 'EP" = G(F(I?)). Thus the differential maps d; : /EP? — /' EPHH4
induce

Ippa _ RP(GoF)(A) :q=0
2 0 :q > 0.

Since the differentials of ' E5 connect objects in different rows of the sheet, it is clear that they
are all zero maps. Hence 'ER! ='EY? for all p,q. Thus, for every p > 0 we see that H?(C)
has only one non-zero graded piece, where C is the filtered complex defined as in (9) from
the double complex { KP?}. We conclude for all p that

HP(C) = RP(Go F)(A). (11)

To compute the left-hand side of this equation in a different way, we will use the second
spectral sequence associated to the double complex K. It is determined by the cohomology
of the rows of K, over which we don’t have much control in the generality in which we have
worked so far in this proof. We will need to construct the diagram of resolutions {JP?} in
a rather specific way. Thereby we will also prove that such diagrams exist; recall that their
existence was only assumed above.
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We started with an injective resolution 0 — A — I of A € Ob(A) and applied the functor
F to it to obtain a complex
0y 42 1y 4
0= FA)—=FI") = FI")—---
Defining B’ = imd"~! and Z¢ = ker d' for each i > 0, we refine this sequence to a sequence
7% F(I°) - B — Z' — F(I') - B* — Z% — F(I%)---

which, by construction, is exact at each F(I*). We wish to construct a commutative diagram
of the form

70— F(I° - Bl c - 71 c - F(IY) ——> -
n n N n n
Y Y Y Y Y

L0,0 5 JO’O I Nl,O - _ Ll,U - _ Jl,O o

whose columns are injective resolutions and whose rows are exact at each J”%. Note that
the rows will not in general be complexes, i.e. the composition of two consecutive horizontal
arrows need not be zero. Choosing arbitrary injective resolutions of Z° = F(A) and of B!,
which exist since B has enough injectives, we obtain the first three columns by applying
Corollary 3.28 to the short exact sequence 0 — Z° — F(I°) — B! — 0. Choose an arbitrary
injective resolution of Z!'/B! and apply Corollary 3.28 to the sequence 0 — B! — Z! —
Z'/B' — 0 to get a resolution L1* of Z'; observe that the maps N4 — L9 are injective as
desired. Choose an arbitrary injective resolution of B? and apply Corollary 3.28 to the short
exact sequence 0 — Z! — F(I') — B? — 0 to finish the next three columns of our diagram,
with exactness at each J%9. Continue forever. By construction, the horizontal segments
0 — LP9 — JP4 — NP4 — () are split short exact sequences for every pair (p, q).

Remark 5.19. A consequence of our construction is the following. For each p > 0, we applied
Corollary 3.28 to 0 — BP — ZP — ZP/BP — 0. At that point, the injective resolution
0 — BP — NP* had already been chosen, and we chose an arbitrary injective resolution
0 — ZP/BP — MP* and obtained an injective resolution 0 — ZP — LP-* such that the rows
0 — NP4 — P9 — MP? — ( are split short exact sequences. In particular, MP4 ~ [P /NP4
and thus
ZP/BP « [PO/NPO 5 [PL/NPL _ [P2 /NP2 ...

is an injective resolution. Observe also that ZP/BP = RPF(A) by the construction of
right derived functors. Thus the ¢-th cohomology of the complex G(L?*/NP:*) computes
RIG(RPF(A)).
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Consider the commutative diagram {JP9} obtained from the previous construction by
deleting two out of every three columns. We apply G to it and flip the sign of the vertical
maps in the odd-numbered columns as above to obtain a double complex

G(F(I°) — G(F(I") — G(F(I?)) —— -+

N N n

K00 KVLO . KV270 R
Y Y Y

K01 K1 . K21 R
Y Y Y

where KP4 = G(JP). The analysis of 'E5'? given above applies to this double complex. Now
we consider the second associated spectral sequence " EXY.
Since all the NP-? are injective, it is possible to complete each triangle

vaq ( > Lp’q

id
"

NP
The triangles are preserved after applying G. It follows that the maps G(NP?) — G(LP)
are all injections, and similarly for the maps G(LP9) — G(JP?) = KP9. By construction, we
have JP4 = LP4 @ NP4, so the maps JP? — NPH14 have sections, and thus the maps KP4 —
G(NP*L4) are surjective. Finally, applying the left exact functor G to the short exact sequence
0 — LP9 — JP4 — NPTLA4 5 0 we find that ker( KP4 — G(NPTL9)) = im (G(LP) — KP).

In particular, the kernel of the horizontal map & : K% — K9tLP is G(L9P), and its

image is G(N9t1P). The second spectral sequence of the double complex K computes the
cohomology of the rows. It follows from (10) that

//Ef7q — g(Lq,P)/g(NQ»P) — g(Lq,p/Nq7p)7

where the second equality follows from G preserving split short exact sequences and N9 = 0.
The differential dy : "EP? — "EPT17 is induced by the vertical map L% — L%*+! Thus it
follows from Remark 5.19 that

"EY? = RPG(27/B%) = RPG(RYF(A)).

We know that ”"E5! = FPHP4(Tot K), for a suitable filtration of HPT4(Tot K). We deter-
mined in (11) that HP4(Tot K) = RPT9(Go F)(A). Hence RPG(RIF(A)) = RP9(Go F)(A),
as claimed. O
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5.5. The Hochschild-Serre spectral sequence. Having developed the tools we need from
the theory of spectral sequences, we can finally specialize them to the study of G-modules.

Let G be a profinite group and H < G a normal subgroup. We apply Grothendieck’s
Theorem 5.18 to the following situation. Let F : Modg — Modg, g be the functor sending
a G-module M to the submodule MH , with the obvious G/H-module structure. Let G :
Modg, i — Ab be the functor M +— M G/H  Both of these functors are left exact, and the
corresponding right derived functors are RPF = HP(H,Res$—) and RIG = H(G/H, ).
Both Modg and Modg i have enough injectives.

Thus, to verify the hypotheses of Theorem 5.18 it remains to show that, for every injective
G-module I, the G/H-module I is G-acyclic. We claim that if I is, in fact, an injective
G/H-module. Indeed, if we are given a diagram

Mc—— N

TH
of G/H-modules, we can consider it as a diagram of G-modules via the natural projection
m:G— G/H:

™M ——— 1N

»
cl

By injectivity of I, we can fill in the dotted G-module map N — I. Since H acts trivially
on N, the image of this map is contained in .

IH

Definition 5.20. Let G be a profinite group and H < G a normal subgroup. In view of
the preceding discussion, for every G-module M Theorem 5.18 provides us with an explicit
spectral sequence

HP(G/H, HY(H,Res$;M)) = HPTI(G, M).

Thus is called the (Lyndon)-Hochschild-Serre spectral sequence.
Theorem 5.21. Let G be a profinite group, let H I G be a normal subgroup, and let M be
a G-module. The following sequence is exact:

0— HYG/H,M™T) ™ gY(G, M) ™S H'(H,ResG M)C/H - H2(G/H, MT) ™ H2(G, M),
Proof. We apply Corollary 5.13 to the Hochschild-Serre spectral sequence. It remains to check
that the maps induced by the spectral sequence are indeed inflation and restriction. ]
Corollary 5.22. Let G be a profinite group, let H JG be a normal subgroup, and let M be a
G-module. Suppose that H'(H,Res$% M) = 0 for all i > 0. Then H'(G/H, M") ~ H\(G, M)
for all i > 0.

Proof. If ¢ = 1 this is immediate from the inflation-restriction sequence. Otherwise, our

hypothesis implies that the Hochschild-Serre spectral sequence for M satisfies condition (),
for all n > 1. O
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EXERCISES

(1) Prove Theorem 5.21 (the inflation-restriction sequence) directly, without using spec-
tral sequences.

(2) Let X be a topological space. Recall that a presheaf F on X consists of the following
data:

e For every open set U C X, a set F(U), called the set of sections;

e For every inclusion V' C U of open sets, a restriction map resi v FU)—=FV)
such that res{i v F(U) = F(U) is the identity and res{/:’ W © resJUi v = res{]:’ w for
wcvcU.

Often F(U) is the collection of functions with suitable properties defined on U. If
s € F(U), we write sy for resﬁ v (s) by analogy with restriction of functions. A
presheaf F is called a sheaf if it satisfies two additional properties:

e (Locality) If U = |J;c; Ui is an open cover and s,t € F(U) satisty sy, = t|y, for
all 1 € I, then s =t;

e (Gluing) Let U = |J,c; U; be an open cover as above. Suppose we are given
s; € F(U;) for all i € I such that (si)jy,nv; = (8j)jy,ny; for all 4,j € I. Then
there exists a section s € F(U) such that sy, = s; for all i € I.

We will assume that the sets of sections F(U) are abelian groups and that the

restriction maps are group homomorphisms. A morphism of presheaves f : F — G is
a family of group homomorphism f(U) : F(U) — G(U) for every open U C X that
are compatible with the restriction maps, i.e. the square

) L9 g
resy,v resy,v
oy LY gy

commutes for every V' C U. Thus we may speak of the category Shx of sheaves on
X. Define the kernel of f to be the presheaf (ker f)(U) = ker f(U) C F(U); the
restriction maps are restrictions of those of F.

(a) Prove that ker f is indeed a presheaf, and that it is a sheaf if 7 and G are sheaves.

(b) Now we want to define the image of f. This is a bit trickier. First define a
presheaf preim f by (preim f)(U) = im f(U) C G(U), where the restriction maps
are induced by those of G. Prove that this is indeed a presheaf. Thus, in the
category Preshx of presheaves on X, we may take preim f as the image of f. In
particular, we can define exact sequences of objects of Preshy.

(c) Show that preim f need not be a sheaf even if F and G are both sheaves. Observe
that the locality property always holds if G is a sheaf, but that gluing may fail.
Hint: let X = S' be the unit circle in C, with the usual topology, and for every
U C X let C(U) be the (additive) abelian group of continuous functions U — C.
Show that this is indeed a sheaf. Let C*(U) be the (multiplicative) abelian group
of non-vanishing continuous functions on U. Show that C* is also a sheaf and
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that

exp:C — C*
o(z) — e# ()

is a morphism. Prove that preim exp is not a sheaf.

(d) Let f : F — G be a morphism of sheaves. We are led to define im f as the
smallest subsheaf of G that contains preim f. Prove that this is indeed a well-
defined object.

(e) Let f : F — G be a morphism of sheaves. Show that it is an epimorphism
(i.e. that im f = G) if and only if for every open U C X and every section
s € G(U) there exists an open cover U = | J;c; U; such that sy, € im f(U;) for all
1€l

(3) Let X be a topological space. A sheaf F on X is said to be a sheaf of rings if the
abelian group F(U), for every open U C X, is endowed with a multiplication that
gives it the structure of a unital ring, and if all the restriction maps resyy are ring

homomorphisms. A ringed space (X,Ox) consists of a topological space X and a

sheaf of rings Ox on X.

Given a ringed space (X, Ox ), an Ox-module is a sheaf M on X such that M(U) is
endowed with an Ox (U)-module structure for every open U C X, and the restriction
maps of M are compatible with those of Ox. More precisely, if V' C U, then for every
a € Ox(U) and s € M(U) we require that

res/[}flv(as) = res(gf‘(/(a) . resﬁf‘v(s).

(a) Let R be a unital ring. Show that there exists a constant sheaf of rings R on X
such that R(U) = R for all open U C X, and all the restriction maps are identity
maps.

(b) Show that a Z-module on X is the same thing as a sheaf.

(c) Generalize all the notions developed in the previous exercise to Ox-modules on
a ringed space. In particular, define the category Ox — Mod of Ox-modules and
the notion of a short exact sequence 0 - M — N — P — 0 of Ox-modules.

(d) Show that M — M(X) gives a left exact functor from Ox —Mod to the category
Modp, (x) of left modules over the ring Ox(X). We denote this functor by T'.
Since the category Ox — Mod has enough injectives? we may define the right
derived functors H'(X, —) : Ox —Mod — Modp (x) of I.

(4) The definition of sheaf cohomology in the previous exercise, as right derived functors
of the global sections functor, doesn’t give us a way to compute it. In this exercise we
will provide a way and will finally obtain another application of spectral sequences.

6. THE BRAUER GROUP

If L/K is a finite Galois extension with Galois group G = Gal(L/K), then H°(G,L*) =
K*, whereas H'(G, L*) = 0 by Hilbert 90. Our next aim is to understand H?(G, L*), which
turns out to be most conveniently done in terms of the theory of central simple algebras.

2Insert exercise proving this
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6.1. Non-abelian cohomology. Let G be a profinite group, and let M be a group, not
necessarily abelian. We write the operation of M multiplicatively. For the purposes of this
section, M will be called a (discrete) G-module if it is equipped with a G-action such that
g(mima) = (gmq)(gme) for all g € G and my, ma € M, and if stabg(m) is an open subgroup
of G for every m € M.

Example 6.1. Let L/K be a finite Galois extension. For every n > 1, the Galois group
G = Gal(L/K) acts on GL,,(L) by acting on the matrix elements. Since matrix multiplication
is given by polynomials in the matrix elements, it is respected by the action of G. Thus, the
group M = GL,, (L), which is of course non-abelian if n > 1, is naturally a G-module.

We would like to have a cohomology theory in this situation. We still have a G-invariants
functor M — ME from the category of G-modules to the category of groups. Unfortunately,
the category of groups is not abelian, so most of the standard constructions of homological
algebra don’t work. For instance, the image of an injective group homomorphism ¢: H — G
need not be a normal subgroup of GG, and thus it is not possible in general to extend the exact
sequence 0 — H — G. However, for small i we can try to mimic the definition of H*(G, M)
“by hand” and see what we get.

Definition 6.2. Let GG be a profinite group and M a G-module.

(1) Set H(G, M) = MC.

(2) Let Z1(G, M) be the set of functions v : G — M satisfying ¥(g192) = ¥(g1) -
(91(¢(g2))). Note that there is no natural group structure on this set, but it does
have a distinguished element, namely the trivial function given by ¥ (g) = ejs for all
g €GqG.

(3) Given ¥, € Z'(G, M), say that ¢ ~ 7 if there exists an element m € M such that
¥(g) = m~n(g) - gm for all g € G. This is clearly an equivalence relation, and we
define H'(G, M) to be the set of equivalence classes Z'(G, M)/ ~. Again, H'(G, M)
is a pointed set, namely a set with a distinguished element.

Observe that if M is abelian, then these definitions coincide (as pointed sets) with the
cohomology groups we have defined already. Moreover, if PtSet denotes the category of
pointed sets, where the morphisms are set maps A — B sending the distinguished element
of A to that of B, then H'(G, —) is a naturally a functor from the category of G-modules to
PtSet; the proof is left to the reader.

If f: A— B is a morphism of pointed sets, then its image is a pointed subset of B. If we
set the kernel of f to be the preimage of the distinguished element of B, then clearly ker f is
a pointed subset of A. Thus, we have a notion of exact sequences of pointed sets.

Proposition 6.3. Let G be a profinite group, and let 0 - M = N 5 P — 0 be an ezact
sequence of G-modules. Then there is an exact sequence of pointed sets

0 — H(G, M) — H°(G,N) — H(G, P) & H'\(G, M) = HY(G,N) — H\(G, P),

where, for p € PE, we set 0°(p) to be the equivalence class of the 1-cocycle m — p~1 - gp.

Here p is an arbitrary lift of p to N.
Furthermore, suppose that €(M) lies in the center of N. In this case M is abelian, so

H?(G, M) is defined. Then the exact sequence above can be extended by the map H'(G, P) Lt
H2(G, M), where, for 1 € Z1(G, P), we set

—~

5 ([]) = [(g1, 92) = ¥(g1) - g19b(g2) - ¥ (g1g2) 1]
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Proof. Explicit computation. O

Proposition 6.4. Let L/K be a finite Galois extension with Galois group G = Gal(L/K),
and let V' be a finite-dimensional L-vector space endowed with a semi-linear G-action: for
every 0 € G, a € L, and v € V we have o(av) = o(a) - o(v). Then dimg VE = dimy V and
the natural map

VoL LV
vR®a = av
is an isomorphism of L-vector spaces.

Proof. First we will show that ~ is surjective. Suppose not, and let v € V be an element
that is not contained in im~y. Then there exists a subspace W C V such that im~ C W and
V ~ W & Lu, and projection onto the second component provides a non-zero linear functional
A:V — L such that A(im+y) = 0. For any a € L and v € V, the element w = ) . o(av)
lies in V¢. Thus w = v(w ® 1), and hence

0=Xw) =Y Ao(av)) =0a(a) Y_ Ac(v)).
celG ceG
In particular, for all a € L we have ) .~ A(o(v)) - o(a) = 0. By Dedekind’s Lemma this
means that A(o(v)) =0 for all o € G and all v € V, contradicting A # 0.

Hence + is surjective. In view of this, to establish the remaining parts of our claim it
suffices to show that dimg V¢ < dimy, V. Note that V< need not be an L-vector subspace of
V, but it is a K-vector subspace. Let {e1,...,e,} be a K-basis of V&. We claim that these
vectors are linearly independent over L. Set

B = {(bl,...,br) ELTZZbiei:O}.
=1

Clearly B is an L-linear subspace of L". We know that BN K" = {0}, since the e; are linearly

independent over K. Also, since the e; are G-invariants, we observe that if b = (by,...,b,) € B
and o € G, then (o(by),...,0(b.)) € B. Thus, for all a € L and all b € B, we have
(Trp/ic(ab), ..., Trp ie(aby)) = Y (o(ab),...,o(abs)) € BN K" = {0}. (12)
oceG

We claim that the trace map Try,/x is not identically zero. (In fact, it is true that a finite
extension L/K is separable if and only if the trace map Try, sk + L — K is not identically
zero). Since we are assuming that L/K is Galois, we can give a quick proof. Indeed, if
char K = 0, then Try /(1) = [L : K] # 0. In general, since L/K is finite and separable, it
is primitive, so that L = K(«) for some o € L. We may assume that a # 0, since otherwise
L = K and the claim is trivial. Let a = aq,...,a, be the roots of the minimal polynomial
fa(z) € Klz] of «; since L/K is Galois, these are all distinct and contained in K. Moreover,
af’,...,a" are the conjugates of o for any m € Z. Let f!, € K[z] be the formal derivative
of fa; observe that f/ («) # 0. Thus, in the power series ring L[[z]], we have

n

ﬁé =2 1a - i Zn:af(mﬂ)wn =~ i Tryysc(a ™),
o - Gy m=0

i=1 m=0 i=1

where the first equality is immediate from the Leibniz rule. Since the left-hand side is non-
zero, the right-hand side is also non-zero. Thus Try,, x(a™™+L) £ 0 for some m > 0.
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Now, by (12) we have that Tryx(ab;) = 0 for all a € L and all 1 <4 < 7. Thus we must
have b; = 0 for all 1 < i <r. Hence B = {0}, and so {ey,..., e} is linearly independent over
L. We conclude that dimg V& < dimy, V', and the claim follows. O

We now deduce a corollary, which may be viewed as a non-abelian version of Hilbert 90.

Corollary 6.5. Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then HY(G,GL, (L)) has one element for all n > 1.

Proof. Let ¥ € Z'(G,GL,(L)). Observe that V = L™ carries a semilinear G-action by
ve = (0(a1),...,0(ay)), where 0 € G and v = (ay,...,a,) € V. We consider a modified
G-action, setting o(v) = ¥(0) - vy. This is clearly semilinear, and it is an action because

(10)(v) = P(70) - vrg = P(7) - T((0)) - (Vo)r = (1) - (Y(0) - v5)7r = T(0(v)),

where the second equality holds because ) is a 1-cocycle.

By Proposition 6.4, V has an L-basis {ej,...,e,} consisting of G-invariants. Let A €
GL, (L) be the matrix whose columns are ej,...,e,. Since ¥(o)(e;), = €; for all 0 € G
and 1 < ¢ < n, and since the columns of the matrix o(A) are the (e;),, we find that
A Y(0)o(A) = A=Y A = I, for all 0 € G, where I, is the identity matrix. Thus v is equiva-
lent to the constant function o — I,, and lies in the distinguished class of H!(G, GL,(L)). O

For every a € L*, let e(a) € GL,(L) denote the scalar matrix al,. Then the image of
e : L* — GLy(L) is the center of GL, (L), and the cokernel is, by definition, the projective
linear group PGL,,(L).

Lemma 6.6. Let L/K be a finite Galois extension with Galois group G, let n = [L : K|, and
consider the short exact sequence 0 — L* = GL, (L) — PGL,(L) — 0 of G-modules. The
map

st HY(G,PGL,(L)) — H*(G,L*)

defined in Proposition 6.3 is a surjection of pointed sets.

Proof. Let V' = L|G] be an n-dimensional L-vector space spanned by {e, : 0 € G}. Fixing
an enumeration of the elements of G, identify Aut;V with GL,(L). If A € GL, (L), denote
by A its image in PGL,(L).

Let ¢ € Z?(G,L*). For each ¢ € G, define ¢(c) € AutrV ~ GL,(L) by ¢(0)e, =
(0, T)eqr for all T € G. For every n € G we have by definition that ¢(o7)e, = ¥(oT,n)egm,
whereas

(p(o) - op(T))en = (o) (o (¥(7,n))er) = o(¥(7,n))Y(0, T)eory = (o, 7)Y (0T, n)eory,
where the last equality holds because it follows from (5) that

a((1,m)) - Y(or,n) " (o, m)(0,7) 7 =0 (13)
for all o, 7,7 € G. Hence, although the map ¢ : G — GL,,(L) need not be a 1-cocycle, the

map @ : G — PGL, (L) given by ¥(0) = (o) is a 1-cocycle.
Finally, it follows from (13) that ¢(0) - op(7) - p(oT) e, = (0,07 1) - op(r,7 o7 1n) -

Y(or, 7" to7n)e, = (0, 7)e,. Hence

31 ([@]) = [(o.7) = 9(0) - oo(7) - p(o7) "] = [¢]

and §! is surjective. O
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Remark 6.7. It follows from Corollary 6.5 and the exact sequence of Proposition 6.3 that §!
has trivial kernel for all n > 1. However, since ! is only a morphism of pointed sets and not of
groups, this does not imply that it is injective. Nevertheless, we will manage in Theorem 6.36
below to get some substantial mileage out of this observation.

We state the following result, which follows immediately from the Skolem-Noether Theo-
rem. The precise statement and proof of Skolem-Noether (Theorem 6.28 below) will have to
wait until we have developed the theory of central simple algebras.

Lemma 6.8 (Skolem-Noether). Let L be a field, let m > 1, and let f,g : My (L) — Mp (L)
be two L-algebra homomorphisms. Then there exists an invertible matriz b € M, (L) such

that g(a) =b- f(a)-b~! for all a € A.

Using the previous lemma, we may describe the pointed sets H(G, PGL,,(L)) in terms of
central simple algebras; see Definition 6.10 below.

Lemma 6.9. Let L/K be a finite Galois extension with Galois group G = Gal(L/K), and
for every m > 1 let A(L/K, m) denote the set of K-isomorphism classes of central simple
K-algebras A such that A @y L ~ My,(L). Then A(L/K,m) ~ H'(G,PGL,,(L)) as pointed
sets, where the distinguished element of A(L/K,m) is (the isomorphism class of ) My, (K).

Proof. Let A be a K-algebra such that A ®x L ~ M,,(L). Fix such an isomorphism of
L-algebras, and let 0 € G. On the one hand, o acts on matrices ¢ € M,,(L) by acting on
each matrix element; we denote the image by o(c¢). On the other hand, o acts on A @ L by
sending ¢ = »%_; a; @ b; to (1®o)e =% a;j ® o(bj), where a; € A and b; € L. We view
this as an action on M,,(L) by transport of structure via the isomorphism we fixed.

The maps ¢ — o(c) and ¢ — (1 ® o)c are semilinear, not linear, over L. However, the
map f : My, (L) — M, (L) given by f(c) = c7}((1 ® 0)(c)) is L-linear. We can apply
Lemma 6.8, taking g to be the identity map, to obtain an invertible matrix b € GL,,(L) such
that c =b-o0 (1 ®0)c-b~! for all ¢ € M,,(L). Hence (1 ® o)c = ¥(0)o(c)¥ (o)~ !, where
V(o) = o(b1). Observe that such b is well-defined up to left multiplication by an element of
the center of M,,(L). Thus V(o) depends on the choice of b, but ¥(o) € PGL,,(L) depends
only on o.

We claim that (o — ¥(0)) € Z'(G,PGL,,(L)). Indeed,

(1®or)c=(1®0)((1@7)c) = ¥(o)o(U(r)T(c)¥(r) )T (o)~ .
However, the previous construction depended on the choice of an isomorphism ¢ : A @ L =
M,,(L). Any automorphism of M,,(L) is inner (i.e. conjugation by some 3 € M,,(L)) by
Lemma 6.8, and any isomorphism A @ L — M,,(L) is the composition of ¢ with such an
automorphism of M,,(L). This amounts to replacing the map 1 ® o defined as above using ¢
with the map ¢ — - (1®0)(8 teB) - B71. We know that B~ 1cf =b-07(1®0)(f 1cB) bt
by the defining property of b. Hence

c= b (57 o (B (L o) (87 eB) - 7)o (BB

Thus b is replaced with Sbo~!(871), up to scalar multiple, and the cocycle (o — ¥(0))

is replaced with the cocycle (o + - ¥(0) - 0(5_1)), which clearly is equivalent to it un-
der the equivalence relation of Definition 6.2. In all, we have obtained a well-defined map
A(L/K,m) — HY(G,PGL,,(L)).

Conversely, given a cocycle (o — ¥(0)), we can define an action of G on M,,(L) by
(1®ca)e = ¥(o)o(c)¥(o)~L. The set of elements ¢ € M,,(L) that are invariant under every
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1 ® o is a central simple K-algebra A, which satisfies A ® g L ~ M,,(L) by Proposition 6.4.
One checks that this gives a well-defined map H'(G, PGL,,(L)) — A(L/K,m): indeed, any
1-cocycle that is cohomologous to (o — ¥(o)) will give rise to a K-algebra of G-invariants
that is conjugate to, and hence isomorphic to, A. It is obvious from the construction that
this map is inverse to the map A(L/K,m) — H'(G,PGL,,(L)) that was defined above.
Finally, if A = M,,(K), then the two actions ¢ + o(c) and ¢ — (1 ® 0)(c) coincide, and
thus we may take ¥(o) to be the identity matrix for every o € G. Thus our maps preserve
distinguished elements. (Il

6.2. Central simple algebras. Before we can proceed, we’ll need a crash course in the
theory of central simple algebras. We’ll now do a bit of beautiful pure ring theory, although
for our purposes in this course it is a tool for computing cohomology. As Rowen writes
about central simple algebras (Ring Theory, Volume II, p.187): “There is some question
among experts as to whether this theory belongs more properly to ring theory, field theory,
cohomology theory, or algebraic K-theory.”

Let F be a field.

Definition 6.10. (1) An F-algebra is a ring A, not necessarily commutative, equipped
with a ring homomorphism F' — Z(A). Here Z(A) denotes the center of A. This
homomorphism is necessarily injective, so we view F' as a subring of A.

(2) An F-algebra A is called simple if has no non-zero proper two-sided ideals. It is called
central simple if F' ~ Z(A).

(3) An F-algebra A is called a division algebra if A\ {0} is a group under multiplication.

(4) Given an F-algebra A, we let A°P be the algebra with the same underlying abelian
group as A, but with a multiplication operation * given by a x b = ba. Observe that
A°P is simple if and only if A is.

Lemma 6.11 (Schur). Let A be an F-algebra, and let M and N be simple A-modules (i.e. they
have no non-trivial A-submodules). If f € Homa(M,N), then either f = 0 or f is an
isomorphism. In particular, if M is a simple A-module, then End (M) is a division algebra.

Proof. If f € Hom (M, N), then ker f is a submodule of M and im f is a submodule of N.
This implies the first claim. Taking M = N, we find that any non-zero element of End 4(M)
is an isomorphism, so it has a multiplicative inverse. O

Proposition 6.12. Let D be a division ring, and let M be a left D-module. Then M is free.
Moreover, any D-linearly independent subset of M may be extended to a bastis.

Proof. This claim is proved in every linear algebra course in the case where D is a commutative
division ring, i.e. a field. It is usually not pointed out that the commutativity isn’t necessary.
By a standard Zorn’s Lemma argument, there exists a D-linearly independent subset S C M
that is maximal under inclusion. We claim that S spans M. Indeed, suppose that v &
spanp(S). Then S U {v} is linearly dependent by the maximality of S, so there exists a
non-trivial linear relation dv+ 3 g dss = 0, where only finitely many of the d, are non-zero.
Since d # 0 by the linear independence of S, we find that —v = } __sd,s, contradicting
v & spanp(S). Thus M is free as a D-module. In fact, we have shown that any maximal
linearly independent subset of M is a basis; this implies the second claim. ]

In the sequel we shall only have cause to work with algebras that have finite dimension
over F'. In order to avoid writing this condition over and over, we shall make it a running
hypothesis: from now on, all F-algebras are assumed to be finite-dimensional.
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Theorem 6.13 (Jacobson Density Theorem). Let A be a finite-dimensional F'-algebra, and
let M be a simple A-module such that dimp(M) < oco. Let D = Enda(M). Suppose that
mi,...,m. € M are linearly independent over D, and let ni,...,n,. € M. Then there exists
an element a € A such that am; =n; for all 1 <i <r.

Proof. By Proposition 6.12 the set {m, ..., m,} extends to a D-basis of M. Thus there exists
a D-submodule N C M such that M = Dm; ® Dmo @ --- ® Dm, & N. In particular, the
map ¢ € Endp(M) sending (dymy,...,d,my,n) to (dini,...,dyn,,0) with respect to this
decomposition satisfies ¢(m;) = n; for all 1 < i <r.

Consider the element m = (my,...,m,) € M". Since M" is a semisimple A-module, being
a direct sum of simple modules, any submodule is a direct summand. Thus there exists an
A-submodule P C M" such that M" = Am & P. Let m € Enda(M") = M, (D) be projection
onto the component Am.

Since ¢ is D-linear, the map ¢" : M" — M" given by ¢"(z1,...,2,) = (@(x1),...,0(x;))
is a map of M, (D)-modules, and thus

(n1,...,np) =" (m1,...,my) =@ "w(my,...,my) =mp" (my,...,my) =7m(n1,...,ny).
Hence (ni,...,n,) € Am, which is exactly our claim. O

Corollary 6.14. Suppose that A is a central simple F-algebra. Then A @ A°P ~ M, (F),
where n = dimp(A).

Proof. We wish to prove that A ®p A°? ~ Endp(A). Let {ai,...,a,} be an F-basis of A.
Since A @ A°P acts on A by (z ® y)a = zay, for a,z € A and y € A°P, we get an F-linear
map f : A®p AP — Endp(A). Since the two algebras are both of dimension n? over F, it
suffices to show that f is surjective.

Observe that End4(A) ~ A°P via the map 6 — 6(1). Thus any element ¢ € End g, 400 (A)
is of the form 1(a) = ab for some b € A. In order for this to be compatible with the A°P-action
as well, by analogous considerations we must have ¥(a) = ca for all a € A and some fixed
c e A. It follows that b = ¢ € Z(A) ~ F. Thus D = Endag, 00 (A) >~ F, so that ai,...,ay,
are linearly independent over D.

Note that A is a simple A ®p A°P-module, since any submodule would be a two-sided ideal.
Let ¢ € Endp(A). By the Jacobson density theorem, there exists an element ¢ € A @ p A°P
such that ca; = p(a;) for all 1 < i < n. Then f(c) = ¢, so f is indeed surjective. O

Corollary 6.15. Let A be a central simple F-algebra and B any simple F-algebra. Then
A®p B is a simple F-algebra.

Proof. As in the proof of Corollary 6.14, let {a1,...,a,} be an F-basis of A. By that corollary,
for each 1 < ¢ < n there exists an element ¢; € A Q@ A°P such that

1 i=y
Ci(aj)zéij:{o Li g

Suppose that I C A ®pr B is a two-sided ideal and thus is preserved by left and right
multiplication by elements of A®pF. Let 330 a;j®b; € I. Then 377, ci(a;)@b; = 1®b; € 1,
for all 1 <7 < n, since [ is a two-sided ideal. However, 1 ® b; € F' Qp B.

Since J = IN(F & B) is a two-sided ideal of F @ B ~ B, we have either J =0 or J = B.
In the first case, b; = 0 for all 4, and hence I = 0. In the second case, 1 ® b € I for every
b€ B, soclearly I = A®r B. O
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Corollary 6.16. If A and B are central simple F-algebras, then so is A Qr B.

Proof. By the previous corollary, it suffices to verify that Z(A ®@p B) ~ F. As before, let
{a1,...,a,} be an F-basis of A, and suppose that 37 a; ® bj € Z(A®F B). Then 1®b
commutes with this element for all b € B, so that 37 a; ® (bjb — bb;) = 0 for every b € B.
Since the a; are F-linearly independent, it follows that b;b —bb; = 0 for all b € B, hence that
bj € Z(B) = F. Hence ¢ = a® 1 for some a € A. Since ¢ commutes with a ® 1 for every
a € A, we find that o € Z(A) = F, hence c € F. O

Let R be a unital ring. Recall that an element e € R such that e? = e is called an
idempotent. If e € R is an idempotent, then eRe = {eae : a € R} is easily seen to be a ring.
A left (respectively, right) ideal I C R is called minimal if I # (0) and there does not exist
any left (respectively, right) ideal J C R such that J is strictly contained in I; in other words,
I is a minimal element of the set of non-zero left (respectively, right) ideals of R, partially
ordered by inclusion.

Lemma 6.17 (Brauer). Let R be a ring, and let I C R be a minimal left ideal such that
I? £ 0. Then there exists an idempotent e € I such that I = Re and eRe is a division ring.

Proof. Since I? # 0, there exist z,y € I such that yz # 0. Let Iz = {ax : a € I}. Clearly Iz
is a left ideal of R, and (0) # Ix C Rz C I, where the last inclusion follows from x € I. By
minimality of I we conclude Ix = I. In particular, there exists an element e € I such that
ex = x. Then ez = e(ex) = ex = x, 50 (e? —e)z = 0. Therefore €2 — e € I N Anng(x), where
Anng(x) = {a € R : ax = 0} is the annihilator obtained by viewing R as a left module over
itself.

Now I N Anng(x) is a left ideal of R contained in I. Moreover, the containment is strict,
since ex = x and hence e ¢ Anng(x). Thus I N Anng(xz) = (0) by minimality of I. Hence
e?—e = 0 and e is an idempotent. Furthermore, (0) # Re C I, so I = Re, again by minimality
of I.

It remains to show that eRe is a division ring. Observe that the multiplicative identity of
eRe is e. Let 0 # a € eRe. Then a = ebe for some b € R. Since eRe = el C I, we have
(0) # Ra C I and hence Ra = I by minimality of I. Since e € I, there exists r € R such that
ra = e. Now 7 need not be contained in eRe, but ere certainly is. Moreover,

(ere)a = (ere)(ebe) = ere’be = erebe = era = €2 = e.

It remains to show that a(ere) = e; then ere € eRe is a two-sided inverse of a, and we will
conclude that eRe is a division ring. But we have just shown that every non-zero element
of eRe has a left inverse. Since ere # 0, there exists © € eRe such that z(ere) = e. Then
a =ea = x(ere)a = re = x. Hence a = x and a(ere) = e as desired. O

Now we are ready to prove Wedderburn’s structure theorem; see the exercises for a different
proof using the Jacobson density theorem. Recall that a simple ring is one with no non-zero
proper two-sided ideals.

Theorem 6.18. Let R be a simple ring. Suppose that R has a minimal left ideal. Then there
exists a division ring D and a natural number n € N such that R ~ M, (D).

Proof. Let I C R be a minimal left ideal. For any two subsets S,T C R, we write ST for
the collection of finite sums of products st, with s € S and ¢t € T. This “multiplication” of
sets is clearly associative. Moreover, RI = I since I is a left ideal. On the other hand, IR
is easily seen to be a two-sided ideal of R. Since (0) # I C IR, we have IR = R by the
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simplicity of R. Therefore, R = RR = IRIR = I?R. In particular, I? # (0) and we may
apply Brauer’s Lemma 6.17. Thus there exists an idempotent e € I such that I = Re and
D = eRe is a division ring. Clearly D C Re = I. Since [ is closed under right multiplication
by elements of I, it naturally has the structure of a right D-module. Let Endp(I) be the ring
of right D-module homomorphisms « : I — I whose multiplication is given by right-to-left
composition, so that (af)(a) = a(B(a)) for o, 5 € Endp(I) and a € I.

We claim that the rings R and Endp([) are isomorphic. Indeed, for every r € R define
ar 1 I — I by ay(a) = ra for all @ € I. Clearly «a, respects the D-module structure of I,
so we obtain a map f : R — Endp(I) by f(r) = a,. It is easy to check that f is a ring
homomorphism. Recall that IR = R. If r € ker f, then 71 = (0) and hence R = rIR = (0),
so necessarily r = 0. Thus f is injective.

Finally, since 1 € R = IR = ReR, we may express 1 = > " rjes; for some m € N and
ri,Si € R. Let a € Endp(I). Then for any r € R we have

a(re) = a(lre) = « (Z riesire> =« (Z rie - esire> = Z a(rie) - es;re,

i=1 i=1 i=1

where the last equality holds since es;re € eRe = D and « is a homomorphism of right
D-modules. We conclude that

a(re) = (Z oz(rie)esi> re = ay(re),

i=1

where z = >, a(rie)es; € R. Thus a = f(z), so f is surjective and we have shown that
R~ Endp(I).
In particular, we now know that Endp(/) is a simple ring. It is easy to check that

J={a € Endp(]): () is a finitely generated D-module}

is a two-sided ideal. We claim J # (0). Indeed, since I # (0) and [ is a free D-module by
Proposition 6.12, we may express I as a direct sum I = I'@® ", where I’ is a D-module of rank
one. The projection onto the first component is a non-zero element of J. Hence J = Endp(I)
and I = id(]) is a finitely-generated D-module. Thus I is a free D-module of finite rank
n € Nand R ~ Endp(I) ~ M, (D), completing the proof. O

The following special case is the form in which the theorem was originally proved by
Wedderburn.

Corollary 6.19. Let F be a field, and let A be a simple finite-dimensional F-algebra. Then
there exist a division algebra D and a natural number r € N such that A ~ M, (D).

Proof. Since any left ideal I C A is closed under multiplication with b -1 for any b € F, we
see that I is an F-subspace of A. Since A is finite-dimensional, there must exist minimal left
ideals. Hence the previous theorem applies. Moreover, its proof shows that D = eRe, which
is naturally an F-algebra. ([l

Lemma 6.20. Let D be a division ring and r € N. Any non-zero simple M,(D)-module
is isomorphic to D", with the natural action of M,(D). In particular, if A is a simple
finite-dimensional F-algebra, then there is only one isomorphism class of non-zero simple
A-modules.
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Proof. The second claim is immediate from the first one by Corollary 6.19. To prove the
first claim, let M be a simple M, (D)-module, and let 0 # m € M. There exists a matrix
¢ € M, (D) with only one non-zero column such that em # 0, since every element of M, (D)
is the sum of sum matrices. Suppose that the j-th column of c is not all zeroes, and define a
map ¢ : D" — M by

0 al 0

0 -+ as - 0
90(((117-'-¢a7‘)T) = : . . m,

0 -+ a, - 0

where all the elements of the matrix are zero apart from those in the j-th column. We claim
that ¢ is M, (D)-linear. Indeed, this follows from the definition of ¢ and the observation that
if c € M,(D) and (ay,...,a,)" € D" and we set (by,...,b.)" =c(a1,...,a,)T, then

0 -+ b - 0 0 -+ a -~ 0
0 -+« by - 0 0 -+ ayg -+ 0
. . . = . . .
0 -+ b - 0 0 -+ a - 0

Since M is simple and ¢ has non-zero image, it must be surjective. Since D" is clearly a
simple M, (D)-module and ¢ is non-zero, it must be injective. Thus ¢ is an isomorphism of
M, (D)-modules. O

Lemma 6.21. Let D be a division algebra, and let r > 1. Consider D" as a left M,(D)-
module in the natural way. Then Endyy, (p)(D") >~ DP.

Proof. We write elements of D" as columns. Let f € Endyy, (p)(D"), and let ¢ = (1,0, ... ,0)T €
Dr". Since the M, (D)-orbit of € is all of D", we see that f is determined by f(¢). It C € M, (D)
is any matrix whose first column consists entirely of zeroes, then Ce = (0,...,0)” and hence
Cf(e) = (0,...,0)T. It follows that f(¢) = (d,0,...,0)” for some d € D. Thus, for any
di,...,d. € D, we must have

d di 0 - 0\ (1 d 0 -0\ [d dyd
ds d 0 -~ 0 |fo0 d 0 -~ 0|0 dod
f . :f . . . . - : . . . - .
d, d 0 -0/ \o d 0 -0/ \o dyd

On the other hand, any f as above is indeed a M, (D)-endomorphism of D", since M, (D) acts
by left multiplication on the components of elements of D", and this commutes with right
multiplication by d. Identifying the element f as above with d € D, we clearly obtain an
isomorphism Endy, (p)(D") = D°P. O

A consequence of the previous lemma is that the division ring D and the natural number
n in the statement of Wedderburn’s theorem are unique.

Corollary 6.22. Let D and D' be division algebras, and let m,n € N. If M, (D) ~ M,,(D’)
as rings, then D ~ D' and n = m.

Proof. Let R = M,(D). Combining Lemmas 6.20 and 6.21, we may recover the division
algebra D from D ~ Endgr(M), where M is any non-zero simple R-module. It can be
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proved just as for vector spaces that any two bases of a D-module have the same cardinality;
this is called its rank. Viewing D C R as a the subring of scalar matrices, we obtain a
D-module structure on M and recover n as the rank of M. g

Definition 6.23. Let A and B be two central simple F-algebras. We say that they are
equivalent if there exists a division algebra D such that A ~ M, (D) and B ~ M,(D). Let
Br(F) be the set of equivalence classes of central simple F-algebras.

Lemma 6.24. The set Br(F) is an abelian group under the operation [A][B] = [A ®F B.

Proof. The only bit of the proof that is non-trivial at this point is to verify that the operation
is well-defined. This follows from the fact that M, (D) @ Ms(D') ~ M,s(D @ D'). If we
view F' as an algebra over itself, then the class [F] € Br(F') is an identity element. Since
[AJ[A°P] = [A ®@F AP] = [Mgim,.(4)(F)] = [F], every element of Br(F) has an inverse. O

Definition 6.25. Let L/K be an extension of fields. There is a natural homomorphism of
groups
Br(K) — Br(L)
[A] — [A®xk L]
We write Br(L/K) for the kernel.
Proposition 6.26 (Double Centralizer Theorem). Suppose that A is a central simple F-

algebra, and let B C A be a simple subalgebra. Write C4(B) for the centralizer of B, namely
the set of all a € A such that ab = ba for every b € B. Then C4(B) is a simple F-algebra.

Moreover, dimp C4(B) = gﬁi&g% and C4(Ca(B)) = B.

Proof. Since B @ A°P is simple by Corollary 6.15, we have B @ p A°? ~ M, (D) for some
division algebra D and some r > 1 by Wedderburn’s theorem. The algebra A is a B ®p
A°P-module in the obvious way; thus it is semisimple. Since any simple M, (D)-module is
isomorphic to D" by Wedderburn’s theorem, we have A ~ (D")® as a M,(D)-module, for
some integer s.

Now observe that any f € Endpg,a0r(A) is determined by f(1). Moreover, if f(1) = ¢,
then for any a € A and b € B we have the equality bca = (b®a)f(1) = f((b®a)l) = f(ba) =
f(1®ba)l) = (1 ®ba)f(l) = cba, which forces ¢ € Cp(A). This gives an isomorphism
Ca(B) ~ Endpgpaor(A). But Endpgpace(A) ~ Endyy, (p)((D")*) =~ Ms(Endyy, (py(D")) ~
M (D°P), where the last isomorphism comes from Lemma 6.21. Hence C4(B) is simple.

It follows from the previous paragraph that

r?dimp D = dimp M, (D) = dimp(B ®p A°) = (dimp A)(dimp B).

On the other hand, A ~ (D")®, so dimp A = rsdimp D. This in turn implies that dimp B = £.
We have also shown that C4(B) ~ M(D), hence dimp C4s(B) = s*dimp D, and the
claimed relation of dimensions follows immediately.

Finally, since C'4(B) is simple, the second part of the claim implies that dimp C4(Ca(B)) =
#gﬁm = dimp(B). Clearly B C C4(C4(B)). Since these two F-algebras have the same
dimension, they are equal. ([l

The following statement was essentially established in the proof of the Double Centralizer
Theorem, but it is not traditionally stated as part of that theorem.
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Corollary 6.27. Let A be a central simple F-algebra and B C A a simple subalgebra. Let
n =dimp B. Then A®p BP? ~ M, (Ca(B)).

Proof. We saw in the proof of Proposition 6.26 that B®p A°P ~ M, (D) for a suitable division
algebra D. Hence A ®p BP? ~ (B ®p A°P)°P ~ (M, (D))°? ~ M,(D°P). It was shown later in
the same proof that C4(B) ~ M(D°P). Thus A®@p B ~ M, ;,(Ca(B)). But dimp B = £,
which establishes our claim. O

Theorem 6.28 (Skolem-Noether). Let F' be a field, and let A and B be two simple F'-algebras.
Suppose that Z(B) = F and that B has finite dimension over F. Let f,g: A — B be two
F-algebra homomorphisms. Then there exists a unit b € B such that g(a) =b- f(a)-b~' for
alla € A.

Proof. First we treat the special case B = M, (F) = Endp(F™). In this case, we can view
the maps f and g as specifying two A-actions on the vector space F™. Let V; and V; be the
corresponding A-modules. Since there is only one simple A-module up to isomorphism, every
finite-dimensional A-module is a direct sum of simple A-modules, and dimp V; = dimg V;; =
n, we see that Vy and V; must be isomorphic as A-modules. Let b: Vy — V; be an A-module
isomorphism. Forgetting the A-module structure, we have that b : F™ — F™ is a linear
transformation and hence b € M,,(F') = B. Since B respects the A-module structure, for all
a € A we have bf(a) = g(a)b as claimed.

Now consider the general case. Since B is central simple, we know that B@p B ~ M, (F)
by Corollary 6.14, where n = dimp(B). Moreover, A @ B°P is a simple F-algebra by
Corollary 6.15. We obtain a map

f®1:A®r B — B®p B ~ M,(F)
a®c — fla)®ec,

for all a € A and ¢ € B°P. We define g ® 1 similarly. By the case that we have proved already,
there exists an element 5 € B @ B°P such that

(gol)(ewe)=8-(fel)(axe)- 7 (14)
for all a € A and ¢ € B°. Taking a = 1, we find that 8(1 ® ¢)3~! = 1 ® ¢, namely that
B € Cpgppor(F @p B?) = B®p F. To establish the last equality, note that B @ F is
obviously contained in the centralizer, and it has the same dimension as the centralizer by
the Double Centralizer Theorem. Hence = b® 1 for some b € B, and taking ¢ = 1 in (14),
we see that b has the property we want. ]

Note that the matrix algebras M,, (F') are central simple F-algebras, and Lemma 6.8, which
was already used above, is just the previous theorem in the case A = B = M,,(F'). Having
repaid our Skolem-Noether debt, we deduce some further corollaries of the Double Centralizer
Theorem.

Corollary 6.29. Let D be a central division F-algebra. Then dimp D is a square, and any
mazimal subfield L of D has degree [L : F| = /dimp D over F. Moreover, D @p L =~

M.y (L).

Proof. Observe that D does have subfields, since F' is one. Let L be a maximal subfield
of D. Since L is commutative, we have L C Cp(L). This inclusion is in fact an equality;
otherwise, we could take x € Cp(L) \ L, and the subalgebra L(x) would be a commutative
division algebra, hence a field, contradicting the maximality of L. Hence L = Cp(L). Then
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the Double Centralizer Theorem tells us that dimp L = iﬁi ]2 , whence dimp D = [L : F]%.

Since L = L°P, the final claim follows from Corollary 6.27. (|

Definition 6.30. Let A be a simple F-algebra. Let L/F be a field extension. If A ®@p L ~
M, (L) for some n € N, we say that L is a splitting field of A, or that A splits over L.

It is an exercise to show that if L is a splitting field of A, then so is any field containing L.

Lemma 6.31. Let A be a central simple F-algebra, and let A ~ M, (D) for a division algebra
D and r € N. Then A splits over an extension L/F if and only if D splits over L.

Proof. If D®pL ~ M, (L) for some n € N, then clearly AQpL ~ M, (D)®pL ~ M,(DQpL) ~
M, (M, (L)) =~ Mp(L).

Conversely, suppose that A ®@p L ~ M, (L). We know that D ®p L is a simple F-algebra
by Corollary 6.15, hence D @ p L ~ M,,,(D’) by Wedderburn, for some division F-algebra D’
and some m € N. Thus M, (L) ~ A®p L ~ M,(D ®p L) ~ M,,,(D’). By the uniqueness of
Corollary 6.22 we must have D’ ~ L, and thus D splits over L. U

Corollary 6.32. Let A be a central simple F-algebra, and let A ~ M, (D). If L is a mazimal
subfield of D, then A®p L ~ M, (L) for some n € N. In particular, A € Br(L/F).

Proof. Embedding D C A as a the subalgebra of scalar matrices, we see that Z(D) = Z(A) ~
F. Thus D is a central division F-algebra. The claim now follows from Corollary 6.29 and
Lemma 6.31. O

Thus we have shown that for every central simple F-algebra A, there is a finite extension
L/F splitting A. We will need a bit more, namely that the extension L/F may be taken to
be separable. If I’ has characteristic zero or is a perfect field of positive characteristic, then
any finite extension of F' is separable and this is automatic, but a bit of work is needed to
obtain this claim in general.

Proposition 6.33. Let D be a central division F-algebra, and let L C D be a subfield such
that L/ F is a separable extension. Then there exists a maximal subfield of D that contains L
and is separable over F.

Proof. We start with two reduction steps. First, it clearly suffices to prove our claim in the
case where L is maximal among subfields of D that are separable over F. In this case, the
claim is that L is itself a maximal subfield of D. We will now assume that we are in this
case. Secondly, any subfield K C D that contains L must be contained in the centralizer
Cp(L). If K/L is separable, then K/F is also separable since L/F is separable. By the
Double Centralizer theorem, we know that Z(Cp(L)) C Cp(Cp(L)) = L and hence Cp(L)
is a central division L-algebra.® Thus, replacing D by Cr (D), we may assume without loss of
generality that L = F' and that there is no non-trivial separable extension of F' contained in
D.

Let p = char F'; as noted above, we may assume that p > 0. Let n = y/dimp D. We
will now prove that D = F'; by Corollary 6.29 this is equivalent to the claim that F' is a
maximal subfield of D. Indeed, suppose that n > 1 and let « € D\ F. Then F(a)/F is a
purely inseparable field extension, so the minimal polynomial of a has the form 2P — ¢ for
some ¢ € F and t € N. Moreover, the degree p' is bounded by n, which is the degree of a
maximal subfield of D. Thus there exists ¢ € N such that a? € F = Z(D) for all a € D; for

3Explain why division algebra.
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instance, we may take ¢ = [log,n|. Hence all a,b € D satisfy the identity a?'b — ba?" = 0.
This identity continues to hold after extending scalars, in the ring D ® p K ~ M, (K), where
K is a maximal subfield of D; indeed, the identity clearly holds for pure tensors, and it is
easily checked to hold for mixed tensors since char F' = p. This gives rise to a contradiction,
however, since n > 1 and the element a = diag(1,0,...,0) € M, (K) is an idempotent that
does not lie in the center; thus a suitable b € M,,(K) will violate the identity. g

Corollary 6.34. Let A be a central simple F-algebra. There exists a finite separable extension
L/F that splits A.

Proof. This is immediate from Lemma 6.31 and Proposition 6.33. U

Using the tools we have developed, we can finally understand the structure of the coho-
mology group H?(Gal(L/K),L*). Observe that if m|q are two natural numbers, then the
diagonal embedding A : GLy,(L) — GL4(L) sending A € GLy,(L) to the block-diagonal
matrix diag(A4, A,..., A) maps scalar matrices, and only scalar matrices, to scalar matri-
ces in GLgy(L). Thus it induces an embedding PGL,,(L) — PGL4(L) and hence a map
A : HY(G,PGLy, (L)) — HY(G,PGLy(L)). Recall that A(L/K,m) denotes the set of K-
isomorphism classes of central simple K-algebras A such that A ® x L ~ M,,(L). We want
to understand the map A(L/K,m) — A(L/K,q) that corresponds to A under the bijection
of Lemma 6.9.

Let (0 + V¥(0)) € Z1(G,PGL,,(L)) be a 1-cocycle. Recall that in Lemma 6.9 we defined
an action of G on M,,(L) as follows: an element ¢ € G sends ¢ € M,,(L) to the matrix
(1®o0)(c) = U(o)o(c)¥ (o)L, where o(c) denotes the action of G on matrix elements as in
Example 6.1. Then the element of A(L/K,m) associated to our cocycle is (the isomorphism
class of ) the algebra A of G-invariants under this new action.

It is easy to check that the algebra associated to the cocyle (o +— diag(V(0),...,¥(0))) €
ZY(G,PGL4(L)) consists of all matrices of the form

i1 Ci2 - Cid
€21 C2 -+ Cad

CcC = y
Cd1 Cd2 .- Cdd

where d = - and each ¢;; € My, (L) is contained in A. Thus, if a class ¢ € H'(G,PGLy,(L))
corresponds to an algebra isomorphic to M, (D) for some division algebra D and some r > 1,
then A(¢) € HY(G,PGLy(L)) corresponds to M,4(D). We have thus proved the following.

Lemma 6.35. The bijections of Lemma 6.9 induce a bijection of pointed sets
lim H' (G, PGLy, (L)) — Br(L/K). (15)

Proof. The content of the claim is that the direct limit ligA(L/ K, m) induced by the maps

of Lemma 6.9 is exactly Br(L/K), as a set. This is immediate from the calculation we just
did. O

Since Br(L/K) is a group under the operation [A][B] = [A ®k L], it follows that the
injective limit on the left-hand side of (15) has a natural group structure even though the sets
H'(G,PGL,(L)) do not. Moreover, recalling the maps 6! : H(G, PGL,(L)) — H*(G, L*)
from Lemma 6.6, the universal property of the injective limit and the previous lemma produce
amap Br(L/K) — H?(G, L*), which we continue to label §'.
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Theorem 6.36. The map 6' : Br(L/K) — H?(G,L*) is an isomorphism of abelian groups.

Proof. It is enough to show that §' is a group homomorphism. Indeed, 6! is surjective by
Lemma 6.6, and by Corollary 6.5 it has trivial kernel, which for group homomorphisms implies
injectivity.

So let A and B be two central simple K-algebras such that [A],[B] € Br(L/K). Let
A€ A(L/K,m) and B € A(L/K,m'). If A and B correspond to the cocycles (o — ¥(0))
and (0 — ®(0)) in H'(G,PGL,,(L)) and H'(G,PGL,, (L)), respectively, then it is easy to
see that A ® g B corresponds to (o — E(0)), where Z(0) € M, (L) corresponds to the
endomorphism of L™ = L™ @5, L™ satisfying

(E(0))(v@ ') = (¥(0))v @ (o)’
for all v € L™ and v/ € L. By the definition of ', we have
E(g1) 0 1E(g2) 0 E(g192) " = 6" ([A @ BI) Ly

as automorphisms of L™ @y, L™, for any gi,g2 € G. Applying both sides to a vector of the
form v ® v/, we find that §1([A @ L]) = 6*([A])01([B]), as claimed. O

Corollary 6.37. Let K be a field, let K denote a separable closure, and let G = Gal(K /K)
be the absolute Galois group of K. Then Br(K) ~ H*(Gg,K ).

Proof. On one hand, H*(Gx, K ") = hAqHQ(GaI(L/K), L*) by Proposition 4.10, where L/ K
runs over finite Galois extensions. On the other hand, by Corollary 6.34, every central simple
K-algebra is split by some finite Galois extension L/K, so that Br(K) is the union of the
Br(L/K). Thus Br(K) = ligBr(L/K), where the connecting maps are inclusions. Finally,

one checks that the maps 6! : Br(L/K) = H?(Gal(L/K),L*) are compatible with the
injective systems. ]

Corollary 6.38. Let L/K be a finite Galois extension of degree n = [L : K|. Then Br(L/K)
s a torsion group with exponent dividing n.

Proof. Let G = Gal(L/K). Then {e} is an open subgroup of G, and as in the proof of
Corollary 4.13, we observe that the composition

H?(G,L*) = H*({e},Res{,, L) =¥ H*(G, L)
is zero since the middle group is trivial. On the other hand, this composition is multiplication

by [G : {e}] = n by Lemma 4.4. Thus all elements of H?(G,L*) ~ Br(L/K) are killed by
multiplication by n. O

EXERCISES

(1) Let G be a profinite group, and let Mg be the category of groups M, not necessarily
abelian, with a G-module structure as in Section 6.1. The morphisms are, of course, G-
equivariant group homomorphisms. Show that H(G, —) : Mg — PtSet is a covariant
functor.

(2) Let A be a central simple F-algebra and let B C A be a subfield containing F'. Prove
that the following statements are equivalent:

(a) B is maximal as a commutative subring of A;
(b) Ca(B) = B:
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7. EXAMPLES OF BRAUER GROUPS AND THE INVARIANT MAP

7.1. Trivial Brauer groups. So far we have not explicitly computed a single Brauer group.
We will now remedy this situation, developing useful techniques along the way. Some of the
arguments we give are much more complicated than is necessary to compute the relevant
Brauer groups, but the idea is to introduce tools that will serve us well later in the course,
and in later life.

Proposition 7.1. If K is an algebraically closed field, then Br(K) is trivial.

Proof. Let A be a central simple K-algebra. By Corollary 6.32 we see that [A] € Br(L/K)
for some finite extension L/K. Since K has no nontrivial finite extensions, it follows that
[A] € Br(K/K) = 0. O

Lemma 7.2 (Wedderburn’s little theorem). Let D be a finite division ring. Then D is a
field.

Proof. Let K = Z(D) be the center of D. Clearly this is a field, and D is a central division
K-algebra. Suppose, by way of contradiction, that D is not a field, so that n = /dimg D > 1.
Any element z € D is contained in the subfield K (z) C D and hence in some maximal subfield
of D. By Corollary 6.29, all maximal subfields of D have degree n over K and thus have
cardinality |K|".

Let L and L' be two maximal subfields of D. Since they have the same finite cardinality,
there exists an isomorphism ¢ : L — L', which may be taken to be K-linear. Now we apply
Skolem-Noether to the two maps f,g : L — D, where f is the natural inclusion of L in D,
and ¢ is the composition of ¢ with the natural inclusion of L’ in D. We find that L and
L' are conjugate in D, and hence that the group D* is the union of the conjugates of the
subgroup L*. Moreover, since D is not a field and hence D # L, we have that L™ is a proper
subgroup of D*. We have arrived at a contradiction, since a finite group cannot be a union
of conjugates of a proper subgroup.

Indeed, if G is a finite group and H is a subgroup, then the number of conjugates of H
is [G : Ng(H)]. Since all the conjugates contain the identity element of G, we find that the
cardinality of the union of the subgroups conjugate to H is at most [G : Ng(H)|(|H|—1)+1 <
G : H|(|H| — 1)+ 1, and this is strictly smaller than |G| if H is proper. O

Proposition 7.3. If K is a finite field, then Br(K) is trivial.

Proof. Let A be a central simple K-algebra. Then, by Wedderburn’s big theorem (Corol-
lary 6.19), we have A ~ M, (D), where D is a division ring that is central as a K-algebra.
Since D is finite-dimensional over K, it is finite. Thus D is a field by Wedderburn’s little
theorem (Lemma 7.2), so that D = Z(D) = K. O

7.2. Brauer groups of local fields. We now begin to consider one of the most interesting
cases, namely that of local fields. The study of their Brauer groups will lead to a deeper
understanding of their Galois cohomology. From this point onwards in the course, we will
rely on standard theorems from algebraic number theory.

Proposition 7.4. Let K/Q), be a finite extension and let D be a division K-algebra. There
exists an unramified finite extension L/K such that D splits over L.

Proof. Let k be the residue field of K, and let n = /dimg (D). Let |- |k denote the (mul-
tiplicative) valuation of K. We claim that one can construct a non-Archimedean valuation
| -|p : D — Rxq such that
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e For any = € D, we have |z|p = 0 if and only if z = 0.
e For any z,y € D, we have |zy|p = |z|p|y|p-
e For any z,y € D, we have |z + y|p < max{|z|p,|y|p}-

Indeed, for every x € D, we define |z|p = |det A;|k, where A, is a matrix, with entries in
K, representing the K-linear map

D — D

Yy = oy

with respect to some K-basis of D. It is clear that |- |p, thus defined, satisfies the first two of

the three desired properties, and that |x|p = |m|?<lmK(D) whenever z € K. Note that the third
property is equivalent to the claim that |1+ z|p < 1 whenever z € D is such that |z|p < 1.
As in the previous proof, K (z) is a subfield of D. Judiciously choosing a K-basis of D of the
form «;53;, where {o;} is a K(z)-basis of D and {f;} is a K-basis of K(z), we see that, if
t € K(z), then A, is a block-diagonal matrix and that

p = [ det Atlxc = Niciey e (B)3 . (16)
We know from algebraic number theory that the right-hand side of (16) defines a multiplicative
valuation of K (z). Considering t = z and t = 1 + z, we obtain the third property as well.

As in the commutative case, we define Op = {x € D : |z|p < 1}. By our three properties,
this is a ring, and mp = {z € D : |z|p < 1} is a two-sided ideal. It is a maximal ideal
since all elements of Op \ mp have inverses in Op, and hence the quotient A = Op/mp is
a division ring. For every subfield K € L C D we have Op N L = O, by (16), and thus
Op consists precisely of the elements of D that are integral over K. The same argument
as in the commutative case shows that (the underlying abelian group of) Op is a finitely
generated Og-module. Since Op is torsion-free and Ok is a principal ideal domain, Op is a
free O-module, and its rank must be dimg D = n?, since Op ®ox K = D. Since myg C mp,
we find that A is naturally a finite-dimensional vector space over k. Hence A is finite, and
thus it is a field by Lemma 7.2. Set f = dimy A.

Since all extensions of finite fields are finite and separable and hence simple, there exists
an element § € A such that A = k(3). Let § € Op be a lift of 5. Then K (§) is a subfield of D
with residue field A. Thus f < [K(d) : K] < n, where the second inequality is Corollary 6.29.

Since Op is discretely valued, we can prove exactly as for commutative discretely valued
rings that any two-sided ideal of Op is principal, generated by an element of maximal val-
uation, and hence is either zero or of the form m’, for some r > 0. Thus we can define the
ramification index of D/k, as in the commutative case, to be the natural number e satisfying
mgOp = mY,. Finally, if 7p and 7 are uniformizers (i.e. elements of maximal valuation) in
Op and Ok, respectively, then (16) implies that

[K(rp):K]

dimg (r ) (D) W K(rp)/E) (Mg () (D)
1mDlD = Nk @py/x(TD)e P " =me " g P

where e(K(mp)/K) is the ramification index of the field extension K(wp)/K. Hence e =
e(K(rp)/K) < [K(mp) : K] <n. Now ef = rankp, Op = n?; one can check that the proof
for the commutative case given in, say, Proposition 11.6.8 of Neukirch’s Algebraic Number
Theory transfers verbatim to our case. However, we have already shown that f < n and
e < n. Hence e = f = n. In particular, we must have [K(J) : K] = f = [A : k], so that
K (0)/K is an unramified extension. However, [K(d) : K] = n, so D @ K (9) splits over K(J)
by Corollaries 6.29 and 6.32. O

1
_ |7.‘_K’le)(K(WD)/K)7
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For the rest of this section, K will always denote a local field. Let k denote the residue
field Ok /mg, and let K™ be the maximal unramified extension of K this is the compositum
of all the unramified extensions of K inside some fixed algebraic closure. Recall that K™ /K
is an infinite Galois extension, and that Gal(K™ /K) is isomorphic in a standard way to the
absolute Galois group Gj = Gal(k/k) of the residue field k. The kernel of the projection
Gk — Gy is Ix = Gal(K/K™), which is called the inertia subgroup of G. Furthermore,
G}, has a dense cyclic subgroup generated by the arithmetic Frobenius element ®, : k — k,
where ®(z) = 27 for all x € k and ¢ is the cardinality of k. We write Froby, for the
geometric Frobenius, namely the inverse of ®;. Of course, Frob, and ®j generate the same
cyclic subgroup of Gi. Be aware that some books use the notation Froby for the arithmetic
Frobenius.

Corollary 7.5. Let K/Q, be a finite extension. Then Br(K) = Br(K™/K) ~ H*(Gy, (K™)*).

Proof. The first equality is the content of Proposition 7.4. The isomorphism of Br(K™/K)
with H?(Gy, (K™)*) is proved in exactly the same way as Corollary 6.37. O

Before proceeding, we make a brief study of the cohomology of the group 7 = HZ/ ni.

The transitions maps are the surjections Z/mZ — Z/nZ for n|m. It is easy to see that Z is
indeed the profinite completion of Z.

Proposition 7.6. If k is any finite field, then G), = Gal(k/k) ~ 7.

Proof. This follows from the fact that k£ has a unique extension of any degree n > 1 inside a
fixed algebraic closure k. Moreover, this extension is Galois with a cyclic Galois group. [

Lemma 7.7. Let M be a finite Z-module. Then HQ(ZM) =0.

Proof. Let E be an extension of Z by M, namely a short exact sequence 0 — M = F 5 Z—0
of profinite groups, where the maps are continuous group homomorphisms. Let F' € Z be
a topological generator, and let © € E be a preimage of F. The map Z — FE given by
n — x™ extends to a continuous homomorphism ¢ : 7 - E by Proposition 1.18. Since mo e
is continuous and is equal to the identity on the dense subgroup (F) C Z it must be the
identity. Hence 7w has a section, and we conclude that F ~ Zx M is a split extension. Since
the group H? (2, M) classifies extensions up to congruence by an exercise in Section 3, it must
be trivial.

An alternative proof of this lemma, relying on Tate cohomology rather than the properties
of profinite completion, will be given at the end of this section. ([l

Corollary 7.8. Let M be a torsion Z-module. Then HZ(Z7 M) =0 for alli > 2.
Proof. This is immediate from the previous lemma by Lemma 4.15. g

The next result often provides a handy way to verify that cohomology groups of a G-module
M vanish, if we can find a filtration of M with tractable graded pieces. In principle we could
have proved it much earlier, but we had no need for it until now.

Lemma 7.9. Let G be a finite group and let M be a G-module. Suppose that we have a
descending filtration of M by open submodules:

M =My2 My 2 My 2 M2 ---
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such that ﬂjoio M; = 0. Suppose that M is complete for the topology defined by the filtration
{MJ} (cosets of the submodules M; form a base of open sets). Let i > 0 and suppose that
H'(G,M;/M;j41) =0 for all j > 0. Then H'(G, M) = 0.

Proof. Let vy : G* — M be an i-cocycle; our aim is to show that it is also a cobound-
ary. Composing 1y with the natural projection M = My — My/M;, we get a cocy-
cle 1o € Z'(G, My/My). Since H'(G, My/M;) = 0 by assumption, there exists a cochain
P1 € CHG, My/My) such that d;_1(p1) = ¥o. Let 1 : G~1 — My be any lift of P7; since
G is finite, ¢1 is automatically continuous and thus a cochain. Now define 1)1 = o —d;—1(¢1).
Then d;)1 = 0 and the image of 11 lies in M1, so ¥1 € Z(G, My).

We can now play the same game with ¢;. Continuing this process, we obtain a sequence
of cocycles ¢; € Z'(G, M;) and of cochains ¢; € Z*(G, M;_1) such that for each j > 0 we
have 1 = di—1(@j+1) +¥j+1. Now define ¢ = Z;’il ¢;. By our assumptions on M the series
converges. The difference 1y — d;—1¢ is congruent to zero modulo every M;, hence it is zero.
We have proved that ¢y is a coboundary, as claimed. O

Our next goal is to obtain an explicit description of the Brauer group Br(K) of a finite
extension K/Q,. To this end, we prepare some final tools. First of all, let vg : K* — Z be
the normalized additive valuation of K: if z € K* and m € Z, then vk (x) = m if and only
if # = ur}, where u € Oj. We continue to denote the unique extension of vg to (K™)*
by vk. Since g is still a uniformizer in K™, we have that vi ((K™)*) = Z. Since the
action of Gy, on (K™) preserves the ideals of Ognr and hence preserves valuation, we see that
vg : (K™)* — Z is a Gx-module map, where Gy, acts on Z trivially. This induces a natural
map on cohomology:

v : Br(K) ~ H*(Gy, (K™)*) — H*(Gy, 7).

Next consider the short exact sequence 0 — Z — Q — Q/Z — 0 of abelian groups. We
view all three groups as Gp-modules, with a trivial action of G. Looking at the following bit
of the long exact cohomology sequence:

o= HY(Gy, Q) — H' (G, Q/Z) — H*(Gy, Z) — H*(G),, Q) — -

and observing that the leftmost and rightmost groups vanish by Corollary 4.13, we conclude
that H%(Gy,Z) ~ HY(Gy, Q/Z).

Finally we have a map v : HY(Gy, Q/Z) — Q/Z given by ~([¢]) = ¢ (Frob, ') for every
Y € ZY(Gy,Q/Z). This is well-defined: since Gy acts trivially on Q/Z, there are no non-
zero 1-coboundaries, and so every cohomology class in H'(G},Q/Z) contains only one 1-
cocycle. Furthermore, again because Gy, acts trivially on Q/Z, the 1-cocycles are nothing more
than continuous group homomorphisms Gy — Q/Z. This implies that 7 is an isomorphism.
Indeed, 7 is injective because a continuous homomorphism Gy — Q/Z is determined by its
restriction to the dense cyclic subgroup (Froby). It is surjective because any homomorphism
(Froby) — Q/Z can be extended to Gy, by the injectivity of Q/Z. (Why can we always extend
to a continuous homomorphism?)

Putting all this together, we define the Hasse invariant Invg : Br(K) — Q/Z as a compo-
sition of four maps:

Br(K) ~ H?*(Gy, (K™)) ™S H*(Gy, Z) ~ H (G, Q/Z) 2 Q/Z.

Remark 7.10. To visualize the Hasse invariant map, observe that any non-trivial element of
Q/Z contains a unique representative § € Q such that 0 < a < b and (a,b) = 1. Let K;/K
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be the unique unramified extension of K of degree b. Define a vector space
D:Kb'1@Kb7rEBKb7T2@"‘@Kbﬂ'bil

and endow it with a K-algebra structure as follows. Of course, 7 is the i-th power of 7 € D
forall 0 <i <b—1. Let By,...,0-1 € K be such that vg(8y) = 1 and vk (S;) > 1 for all
1<i<b-—1. Set 7’ = By + 1w+ -+ + By_17w’~L. This defines all powers of 7. Finally, if
a € Ky, then set ma = Frob, “(a)m. Recall that Gal(K;/K) ~ Gal(ky/k), where the residue
field k;, of K} is the extension of degree b of the finite field &, and that Froby, € Gal(K;/K)
corresponds to the inverse of the map (z — 2P) € Gal(ky/k).

We leave it as an exercise for the reader to show that D is a central simple K-algebra and
that IHVK<D) = %.

Proposition 7.11. Let K/Q, be a finite extension. The map Invg : Br(K) — Q/Z is an
isomorphism of abelian groups.

Proof. We defined Invg as a composition of four maps, and we already know that three of
them are isomorphisms. So it suffices to show that vk : H?(Gy, (K™)*) — H?*(Gy,Z) is
an isomorphism. The short exact sequence 0 — O, — (K™)* 7 0 of G'r.-modules
produces the fragment

te H2(Gka O;((nr) — HQ(Gkv (KHI”)X) vj H2(Gk)Z) — H3(Gk’0;<{m) —

of the long exact cohomology sequence, and thus it suffices to prove that H*(Gy, Ofu) =0
for i € {2,3}. Proposition 4.10 tells us that

H (G, Ojur) = lim H' (Cal(0/k), O ),

where L/K runs over all finite unramified Galois extensions and /¢ is the residue field of L;
since L/K is unramified, note that Gal(¢/k) ~ Gal(L/K). Therefore it suffices to show that
HY(Gal(¢/k), 0}) = 0 for any finite unramified Galois L/K and i € {2,3}.

So let L/K be a finite unramified extension and consider the following filtration of O} by
Gal(¢/k)-submodules:

Of>l+myDl+miDl+m) D

where my, is the maximal ideal of Op,. Since OF /(14my) =~ % and (1+m})/(14+m}") =~ ¢ for
all j > 1, by Lemma 7.9 it suffices to show that H*(Gal(¢/k),¢) = 0 and H (Gal(¢/k),¢*) =0
for i € {2,3}.

We know that H!(Gal(¢/k),£) = 0 for all i > 1 by Corollary 3.13, and furthermore we
know that H?(Gal(¢/k),¢*) = Br(¢/k) = 0, where the first equality is Theorem 6.36 and the
second is immediate from Proposition 7.3. It remains only to prove that H3(Gal(¢/k),£*) = 0;
however, our proof of this will also establish the other three vanishings.

Indeed, consider the Hochschild-Serre spectral sequence of Definition 5.20, with G =
Gal(k/k), H = Gal(k/f), and M = £*. We obtain a spectral sequence

EST = HY(Gal((/k), H(Ge, k) = HY (G, K).

Since Gy ~ Z and k* =" is a union of unit groups of finite fields and thus torsion, we have
H(Gy,0*) = 0 for all ¢ > 2 by Corollary 7.8. In addition, H (G, ?") = 0 by Hilbert 90.
Thus the Es-sheet of our spectral sequence has only one non-zero row, and we conclude that
HP(Gal(¢/k),0*) = EP? = ERY = FPHP(G, k™) = 0 for all p > 1, where the last equality
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holds since HP(G;C,EX) = 0 for all p > 1, again by Corollary 7.8 for p > 2 and Hilbert 90 for

Remark 7.12. Tt is possible to give shorter and more direct proofs of the isomorphism Br(K') ~
Q/Z. In particular, the isomorphism may be viewed purely as a statement about central
simple K-algebras, and it may be proved within that theory. We have chosen a proof that
allows us to practice cohomological techniques that are useful in a wide variety of situations.

7.3. Tate cohomology. Let G be a finite group and let M be a G-module. In this case, M
is equipped with a norm map N : M — M given by

N(m) = Z gm (17)
geG

for all m € M. We now define a slightly modified version of cohomology as follows:
Definition 7.13. Let G be a finite group and M a G-module. Then we set

Ai(G, M) = M' /N (M) z 0

H'(G,M) :i>0.

Proposition 7.14. Let G be a finite group, and let 0 - A — B — C' — 0 be a short exact
sequence of G modules. There is a long exact sequence

(G, A) = 0@, B) — B°(G,C) & Y@, A) - AY(G,B) — HY(G,C) — H2(G,A) — ---
where, if ¢ € CY belongs to the class [c] € HY(G,C), then §°([c]) = [g — g¢ — &, where ¢ is
an arbitrary lift of c to B.

Proof. We only have to check exactness at the first four groups, since from then onwards this
is the usual long exact cohomology sequence. The checking is straightforward. ([l

Remark 7.15. Tate also defined H i(G, M) for i < 0. These groups see the homology of the G-
module M and allow the exact sequence of the previous proposition to be continued infinitely
to the left, accounting for the failure of the map ]:IO(G, A) — }:TO(G, B) to be injective. Since
we have not introduced homology in this course, we do not consider Tate cohomology in
negative degree — but see the exercises!

Now let G be a finite cyclic group of order n, and let 0 € G be a generator. Let M be a
G-module and define a map D : M — M by D(m) = o(m) —m for all m € M. We define a
complex IC(M) as follows:

e Y e AN AR VERNG VR
where M is a copy of M for each i € Z, and the maps 8 : M* — M**! are given by
9i(m) = D(m) :meven
N(m) :modd.
for all m € M. Note that this is indeed a complex, since for any m € M we have
N(D(m)) = D(N(m)) = (¢ = 1)1+ 0 +0° +--- + 0" )m = (" — 1)m = 0.

Here we implicitly treat M as a module over the group ring Z[G]. Let H'(K(M)) =
(ker")/(im @*~') denote the cohomology of this complex. It is manifestly clear that the
abelian groups H'((M)) depend only on the parity of i.
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Proposition 7.16. Let G be a finite cyclic group and M a G-module. Given a generator
o€ G, let K(M) be the complex defined as above. Then H'(K(M)) ~ H'(G, M) for alli > 0.
In particular, H'(G, M) ~ H'T2(G, M) for all i > 1.
Proof. Since G is cyclic, we have ME = {m € M : o(m) = m}. It follows immediately that
HO(K(M)) = MG /N(M) = H°(G, M). Similarly, we have already observed in Example 3.18
that there is an isomorphism

ZYN G, M) = kerN

v o= (o).

Under this isomorphism, B(G, M) corresponds to the set of elements of M of the form
o(m) —m, namely to imD. Thus H'(G, M) = H (G, M) ~ H'(K(M)).

It is easy to see that H'(K(—)) : Modg — Ab is a functor for every i > 0. Moreover, if
00— M — N — P — 0 is a short exact sequence of G-modules, then we clearly get a short
exact sequence of complexes 0 — K(M) — K(N) — K(P), and by the Zigzag Lemma this
produces a long exact cohomology sequence. Thus {H*(K(—))} is a -functor. We claim that
it is universal; this implies our proposition.

As usual, we prove universality by means of Lemma 3.9, so we need to show that the
functors H*(C(—)) are effaceable for all i > 1. In the course of proving Corollary 2.12, we
showed that any G-module M embeds in a module of the form Ind%’;}l , where I is an injective
abelian group. Let f € (Ind {e }I Y@, This means that f is a constant function sending every

g € G to some fixed element ¢ € I. Define h, € Ind%*;}f by

o= {4 0

Then it is clear that N(f,) = f. Hence H°(G, Ind{ ) = HO(IC(Ind{ 4I)) = 0, which in turn
implies that Hi(IC(Ind{e} )) = 0 for any even i.
Similarly, suppose that f € Ind{Ge}I lies in the kernel of N. This means that >~ f(7) =0

Thus the element h € Tnd{,, I given by h(0?) = 03— f(c*) for all j > 0 is well-defined. One
checks that f(7) = h(ro) — h(7) for all 7 € G and hence that f € imD. It follows that
HY(K(Ind% {c31)) = 0 for all odd i, and we have obtained the required effaceability. O

We now deduce two corollaries of the previous proposition. The first gives an alternative
argument, avoiding the Hochschild-Serre spectral sequence, for the last step of the proof of
Proposition 7.11 (the isomorphism Br(K) ~ Q/Z for any finite extension K/Q,).

Corollary 7.17. Let {/k be an extension of finite fields. Then H*(Gal(¢/k),£*) =0 for any
odd 1> 1.

Proof. If i > 1 is odd, then H*(Gal(¢/k),£*) ~ H'(Gal(¢/k),¢*) by Proposition 7.16. Now
HY(Gal(¢/k),¢*) = 0 by Hilbert 90. O

We can also now give the promised alternative proof of Lemma 7.7:
Corollary 7.18. Let M be a finite Z-module. Then HZ(Z M) =0 for any even i > 2.

Proof. By Proposition 7.16 it suffices to show that H O(Z M) = 0. It is an exercise to
show that every open subgroup of Z is of the form nZ for n € N. Thus H O(Z M) =
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MZ/N(M) = lim M"?/N(M"%). The modules M"?/N(M"?) need not be trivial. How-
ever, unraveling the definitions of Section 4 shows that the transition maps, when n|m, are
the maps hgleZ/N(MmZ) — M”Z/N(M"Z) induced by multiplication by ™ in M. In

particular, this is the zero map whenever ™* = | M|, which implies our claim. O
EXERCISES

(1) Let £/k be an extension of finite fields. Show that the norm map Ny, : £ — k is
surjective and use this to obtain another proof of Proposition 7.3.

(2) Prove, using direct computations with cocycles, that H?(Gal(C/R),C*) ~ Z/2Z.

(3) Prove that any central simple R-algebra is isomorphic either to R itself or to Hamil-
ton’s quaternion algebra H. Prove directly that Br(R) ~ Z/27Z.

(4) Prove the claims of Remark 7.10.

(5) Let G be a profinite group, and let M be a G-module. Let M’ C M be the submodule
generated by all elements of the form gm — m, for ¢ € G and m € M. Define the
G-coinvariants of M to be Mg = M/M'. Prove that the functor M +— Mg is a right
exact functor Modg — Ab.

(6) A G-module P is called projective if, given a surjection g : M — N of G-modules and
amap f: P — N, there exists f : P — M completing the triangle:

P

»
M—9 N

This is dual to the notion of an injective G-module from Definition 2.9. Prove that
every G-module M has a projective resolution, namely an exact sequence

= P> P —>FPy—> M —0.

(7) Let M be a G-module. Choose a projective resolution as above and apply the G-
coinvariants functor to get a complex

— (PQ)G — (PI)G — (P())G.

The homology of this complex is called the homology of M and denoted H;(G, M).
Prove that it is independent of the choice of projective resolution.

(8) Let G be a finite group and let M be a G-module. Observe that the map N : M — M
of (17) above vanishes on M’ and thus defines a map N : Mg — MY, Define Tate
cohomology in negative degrees by

.y ker N C Mg = -—1
H' (G, M) = -

Given an exact sequence 0 = M — N — C — 0 of G-modules, show that there is
long exact sequence that extends infinitely in both directions:
“2(G,C)—-HYG,M) - HYG,N)—= HYG,C) - H (G, M) —
H°(G,N) - H°(G,C) - H(G,M) —
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(9) If G is finite cyclic and M is a G-module, prove that H*(G, M) ~ H"2(G, M) for
any ¢ € Z.

8. COHOMOLOGICAL DIMENSION

Our next big aim in this course is to understand the cohomology of local fields, namely
to obtain an explicit description of H(G, M), where K/Q, is a finite extension and G,
as usual, is the absolute Galois group of K. It turns out that essentially nothing of interest
happens when ¢ > 2. In this section we will prove this result and fit it into the more general
framework of the theory of cohomological dimension.

8.1. Basic properties. If GG is any abelian group and n > 1, then we denote the n-torsion
of G by G[n| = {g € G : ng = 0}. Of course, G[n| is a subgroup of G. The following fact is
basic but essential.

Lemma 8.1. Let G be a profinite group and M a torsion G-module. Then HZ(G, M) is a
torsion group for any i > 0. If M[n| = M for some n € N, then H'(G,M)[n| = H"(G, M).

Proof. This is obvious for H(G, M) = MY, so we assume i > 1. Clearly it suffices to show
that Z(G, M) is a torsion group. Since G* is compact, any continuous map ¢ : G* — M has
finite image. Let {m1,...,m,} be the image of ¢. Since M is torsion, there exist integers
ni,...,n, such that n;m; =0 for all 1 <7 <r. Let N =lem(ni,...,n,). Then Ny = 0.

In particular, if all the n; divide some n, then so does N. This implies the final statement
of the claim. O

Definition 8.2. Let G be a profinite group and p a prime. The cohomological dimension of G

at p, denoted cd,(G), is defined to be the largest ¢ such that there exists a torsion G-module

M satisfying H'(G, M)[p] # 0. We say that cd,(G) = o if the set of such i is unbounded.
The cohomological dimension of G is then defined to be

cd(G) = Sl;p cdy(G).

Since H'(G, M) is a torsion group whenever M is torsion, by Lemma 8.1, we observe
that cd(G) is, equivalently, the largest degree i for which there exists a torsion G-module M
satisfying H'(G, M) # 0.

Example 8.3. It is immediate from Lemma 3.12 that cd({e}) = 0.

Example 8.4. We have cd(G}) = 1 for any finite field k. Indeed, in the language of cohomo-
logical dimension Corollary 7.8 states precisely that cd(G) < 1. In the discussion preceding
the definition of the Hasse invariant map Invy, we saw that H'(Gy,Q/Z) ~ Q/Z, which
implies c¢d(Gj) > 1.

Definition 8.5. Let K/Q, be a finite extension. For any n > 1, we set j,, C K™ to be the
subgroup of n-th roots of unity. This is naturally a discrete G-module, where G is any closed
subgroup of G.

Example 8.6. Let K/Q), be a finite extension. Then cd/(Gg) > 2 for all primes ¢. Indeed,
for any n > 1 we may consider the short exact sequence

0= pp = K " K >0 (18)
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of Gx-modules. This gives rise to the following short exact sequence of cohomology groups:
H' Gk, K™) = H* (G, pin) = H*(Gr, K) — H* (G, K ).

The leftmost group is trivial by Hilbert 90. Thus H2(Gg, f1,) is the kernel of H2(Gg, K ) —

H(G K K~ ). This map is just multiplication by n. Hence it follows from Corollary 6.37 and
Proposition 7.11 that H?(Gxg, fin) ~ %Z/Z. Clearly p, is a torsion module, and if ¢|n then

H*(GK, pn)[€] # 0.

The reader may well wonder whether the cohomological dimension of a profinite group G
tells us anything at all about the cohomology of non-torsion modules. It turns out that it
tells us quite a lot.

Definition 8.7. Let GG be a profinite group and p a prime. The strict cohomological dimension
of G at p, denoted scd,(G), is defined to be the largest 7 such that there exists a G-module
M satisfying H'(G, M)[p] # 0. As usual, we say that c¢d,(G) = oo if the set of such i is
unbounded. Similarly, we define scd(G) = sup, scd,(G).

Proposition 8.8. Let G be a profinite group. Then cdy(G) < scdp(G) < c¢dp(G) + 1 for any
prime p.

Proof. The first inequality is obvious, so we only prove the second. Moreover, there is nothing
to prove if cd,(G) = oo, so we assume that n = cd,(G) is finite. We need to show that
H1(G, M)[p] = 0 for all G-modules M whenever ¢ > n+1. Consider the short exact sequence
0 — M[p] = M 5 pM — 0 arising from multiplication by p. Since M[p] is a torsion module,
we have HY(G, M[p]) = HI(G, M[p])[p] = 0, and thus HY(G, M) 5 H(G,pM) is injective.
On the other hand, consider the short exact sequence 0 — pM = M — M /pM — 0.
Again M/pM is a p-torsion module, hence H? (G, M/pM) = HIY(G,M/pM)[p] = 0,
so that HY(G,pM) < HY(G, M) is injective. Clearly the composition e o7 : M — M is
just multiplication by p, and the same is true of the induced maps on cohomology. But if
multiplication by p is injective on H4(G, M), then HY(G, M)[p] = 0. O

Proposition 8.9. Let G be a profinite group, and let H C G be a closed normal subgroup.
Then ¢d(G) < cd(H) + cd(G/H).

Proof. Let M be a torsion G-module and let ¢ > cd(H) + cd(G/H). If p,q € N are integers
such that p + ¢ = i, then either p > cd(H), in which case H?(H,Res% M) = 0 and hence

HY(G/H,HP(H,Res$&M)) = 0, (19)

or else ¢ > cd(G/H), in which case (19) still holds because HP(H,Res% M) is a torsion
module by Lemma 8.1. Thus we have shown that the Hochschild-Serre spectral sequence
of Definition 5.20 associated to the triple (G, H, M) satisfies F5'? = 0 for all p,q such that
p+q =i. Since EPY is a subquotient of EP? for any r > 2, it follows that E5! = 0 for all
p, q such that p,q = i. By the abutment of the Hochschild-Serre spectral sequence, we have
FPHY(G,M) =0 for all 0 < p < i, and hence H (G, M) = 0. O

8.2. The cohomological dimension of inertia. Let K/Q, be a finite extension. We can
now state precisely the claim to which we alluded at the beginning of this chapter. We would
like to prove that cd(Gg) = 2. We already know by Example 8.6 that cd(Gx) > 2. Moveover,
we know by Example 8.4 that cd(Gy) = 1. Since Gk /I ~ G, by Proposition 8.9 it suffices
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to show that cd(Ix) = 1. The beginning of this section introduces notions and lemmas that
could have been proved much earlier in the course, but we did not then have need for them.

Definition 8.10. Let p be a prime. A pro-p group is a profinite group whose finite quotients
are all p-groups.

It follows from the proof of Theorem 1.10 that a profinite group G is pro-p if and only
if G ~ 1'£11 G, where the G; are all finite p-groups. The following fun fact is foundational
in mod p representation theory and accounts for much of its difference from representation
theory over fields of characteristic zero.

Lemma 8.11. Let G be a pro-p group and let M be a G-module. Suppose that M has the
structure of an F,-vector space, or that M is finite and that its cardinality is a power of p.
Then MS # {0}.

Proof. If M is an Fp-vector space and m € M is a non-zero element, then, since stabg(m)
has finite index in G, the G-orbit of m spans a finite-dimensional subspace. Thus we may
assume without loss of generality that M is finite of p-power cardinality. In this case, U =
(near Stabg(m) is an open subgroup of G, hence of finite index. Moreover U is normal, since
all the conjugates of stabg(m) are stabilizers of translates of m. Thus the action of G on M
factors through G /U, and we may assume without loss of generality that G is a finite p-group.

The finite group M decomposes into a disjoint union of G-orbits, whose cardinalities all
divide |G| and so are powers of p. Since |M| is divisible by p, it follows that |M |, which is just
the number of G-orbits of cardinality 1, must be divisible by p. In particular, |M%| > 1. O

Corollary 8.12. Let G be a profinite group, let H < G be a pro-p normal subgroup, and let
M be a G-module which has either an IF,,-vector space structure or finite p-power cardinality.
Suppose that M is a simple G-module, in the sense that it has no proper non-trivial G-
submodules. Then H acts trivially on M.

Proof. Observe that M is a G-submodule of M. Indeed, for any g € G, h € H, and m € MY
we have hgm = g(g~*hg)m = gm and hence gm € M. By the previous lemma, M # {0}.
Therefore MH = M. O

Definition 8.13. Let G be a profinite group and let p be prime. A pro-p-Sylow subgroup of
G is a maximal closed pro-p subgroup.

Remark 8.14. Suppose that G ~ @I G, where {G; }ier is a projective system of finite groups.
Let H C G be a pro-p-Sylow subgroup. It is a pleasant exercise to show that there exist p-
Sylow subgroups H; C G; for every i € I that are compatible, in the sense that ¢;;(H;) C H;
whenever i,j € I satisfy ¢ > j, and that H ~ @1] H;. Tt then follows from the usual Sylow
theorems for finite groups that any two pro-p-Sylow subgroups of G are conjugate.

Lemma 8.15. Let G be a profinite group, let p be prime, and let M be a G-module of finite
p-power cardinality. Let H C G be a pro-p-Sylow subgroup. Then for any i > 0 the restriction
map res : HY(G, M) — H'(H, M) is injective.

Proof. As in the proof of Corollary 4.13 we can reduce to the case where G is finite. Indeed,
we saw in that proof that H (G, M) =~ liﬂHi(G/Uj, MUYi), where {U;} is the family of open
normal subgroups of G. If H; is the image of H under the natural projection G — G/Uj,
then H; C G/Uj is a p-Sylow subgroup. Moreover, H ~ l&n Hj, and the restriction map res :

H{(G,M) — H'(H, M) arises from the maps H*(G/U;, MYi) =% H'(H;, MY5) — H'(H, M).
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So let G be a finite group. Then any p-Sylow subgroup H C G is open. Since Z/(G, M)
is a finite group of exponent |M]|, it has p-power order, and hence so does H(G,M). By
Lemma 4.4, the composition H (G, M) =5 H'(H, M) % H'(G, M) is multiplication by the
index [G : H]. This is an isomorphism of H'(G, M), since [G : H] is prime to p and hence
to the order of H(G,M). Thus the restriction map is injective, and the corestriction is
surjective. ]

Lemma 8.16. Let K be a finite extension of Q, and n > 1. Then H?(If, ) = 0.

Proof. Since Iy = Gal(K/K™), we have H2(Ix, K ") ~ Br(K™). Now, let A be a central
simple K™-algebra. Choose a K™ -basis b1,...,b,. of A, and let cfj € K" be the structure
constants satisfying bib; = > ;_, cfjbg. Let L/K be the finite extension generated by the con-
stants cfj, and let A’ be the L-algebra spanned by the basis by, - - - , by and with multiplication
defined as above. Clearly A’ @, K™ ~ A, and A’ is simple: if I C A’ were a two-sided ideal,
then I®@ K™ C A would also be one. Finally, the center of A" is Z(A)NL = L. Then A’ is split
by an unramified finite extension L'/L by Proposition 7.4. Thus A ~ A'® K™ ~ M ;(K™),
and so Br(K™) = 0.

Furthermore, HI(IK,FX) = 0 by Hilbert 90 and Proposition 4.10. Considering the long
exact cohomology sequence arising from the short exact sequence (18), whose terms are now
viewed as Ix-modules, we see that H2(If, ju,) embeds in H2(Ig, K ™) = 0. This establishes
the claim. O

Corollary 8.17. Let K/Q), be a finite extension, and let M be a torsion Ix-module. Then
Hi(Ig, M) =0 for any i > 2.

Proof. By Lemma 4.15 it suffices to show that H?(Ix, M) for any Ix-module M of finite
cardinality. Since the abelian group M decomposes into a direct sum of groups of prime
power order, since each of these direct summands is clearly preserved by the action of I,
and since cohomology commutes with direct sums, we may assume without loss of generality
that M has prime power order. So let |[M| = ¢", where / is a prime number.

If H C Ik is a pro-¢-Sylow subgroup, then by Lemma 8.15 it suffices to prove that
H?(H,M) = 0. We show this by induction on 7. If r = 1, then M has prime order and
is thus a simple H-module. It follows from Corollary 8.12 that there is only one possible
H-action on M, namely the trivial one. Thus H2(H, M) = H?(H, ).

Let F C K be the fixed field of H. If L/K is a finite extension, then [Ix : Iy] =
[Gal(K/K™) : Gal(K : L™)] = [L™ : K™] = efk, where ek is the ramification index
of L/K. In particular, if £{ ey /x then we must have H C Iy, since otherwise the image of H
under the natural projection Ix — I /I, would be a non-trivial subgroup of ¢-power order.
Thus

HC N I (20)
L/K finite, fer /i

On the other hand, suppose that x € F. Then /¢ { eg(,)/k, hence F is contained in the
compositum of the fields L™, where L runs over all finite extensions of K satisfying £ { e, /f-
This implies the inverse inclusion to (20). If we order these fields by inclusion, then the groups
11, naturally from a projective system whose connecting homomorphisms are inclusions. Then
H = lim I, so that H?(H, ) = liﬂHQ(IL,,ug). Hence H%(H, j1y) = 0 by Lemma 8.16.
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Now suppose the claim is known for |M| < ¢"~!. Let |M| = ¢". Let N C M be a simple
H-submodule; this exists by the finiteness of M. By Lemma 8.11, the action of H on N is
trivial, so that any subgroup of N is an H-submodule. Since any finite -group has a subgroup
of order /¢, it follows that |[N| = ¢. Now the short exact sequence 0 - N — M — M/N — 0
of H-modules gives rise to the exact sequence

H*(H,N) — H*(H,M) — H*(H,M/N),

where the two outer groups are trivial by induction. Therefore H?(H, M) = 0 and we are
done.

Note that this induction would fail if we tried to work with I directly rather than with a
pro-¢-Sylow subgroup, since then there could be simple G-modules of order ¢ for r > 1. 0O

8.3. Finite G-modules. We are now in a position to compute the cohomological dimension
of Gk and to make an observation about the cohomology of G g-modules that will lay the
groundwork for local duality, which will be developed in the next section.

Proposition 8.18. Let K/Q, be a finite extension. Then cd(Gx) = 2.

Proof. As noted above, Example 8.6 shows that ¢cd(Gx) > 2, so it suffices to prove that
cd(Gg) < 2. Consider the closed normal subgroup Ix C Gg. We have cd(Ix) < 1 by
Corollary 8.17. Since Gi /Ix ~ Gj, and cd(Gy) = 1 by Example 8.4, we have cd(Gx) < 2 by
Proposition 8.9. O

Corollary 8.19. Let K/Q, be a finite extension, and let M be a Gi-module of finite cardi-
nality. Then H(G, M) is a finite group for all i > 0.

Proof. Observe that (1, ., stabg(m) is a finite intersection of open subgroups of G, hence
open. Similarly, there exists an open subgroup of G that acts trivially on pps. Recall that
{GLr}, where L/K runs over all finite Galois extensions, is a base of open neighborhoods of
the identity of G. Therefore we can find a finite Galois extension L/K such that Gy, is
contained in the intersection of these two open subgroups and so acts trivially both on M and
on /i), and thus also on pu,, for any n|[M|. By the structure theorem of abelian groups, we
have M =~ pi,, @ - -+ & py, as abelian groups for some integers n; such that ning---n, = [M|.
This is also an isomorphism of G-modules, since G, acts trivially on both sides.

We claim that H (G, M) ~ @;lei(GL, fin;) is finite for all i > 0. Of course it is enough
to show that H* (G, i) is finite for all 4 > 0 and all n > 1. If i > 3, then H*(Gp, uu,) = 0 by
Proposition 8.18. Note also that H°(Gp, i) = ,uSL = iy, is finite, and that H?(Gp, ptn) ~
%Z/Z by Example 8.6 (recall that this used all the machinery of the Brauer group), so in
particular H2(G'p, i) is finite. Finally, viewing the short exact sequence (18) as a sequence
of Gp-modules, we obtain the following bit of the long exact cohomology sequence:

HYGL,K") = H*GL,K") = H'(GL, pn) » H (G, K ).

The rightmost group vanishes by Hilbert 90, and the leftmost map is raising to the power
n. Hence HY(Gp,pn) ~ L*/(L*)", and this will be shown to be finite in Proposition 8.25
below.

Thus H(Gp, M) is indeed finite for all @ > 0. Consider the Hochschild-Serre spectral
sequence

EY? = HP(Gal(L/K), HY(GL, ResGX M)) = HP™9(G, M).
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Observe that each E5? is finite: since Gal(L/K) and HP(G/, Resng) are both finite, there
are only finite many possible p-cocycles. Of course, this p clashes with the p of K/Q,, but
it would be bizarre to index the modules E¥? by other parameters. Thus each E&? is also
finite, since it is isomorphic to a subquotient of E5?. Since the filtration of each H*(G, M)

produces only finitely many graded pieces, each of which is isomorphic to E5% for some
0 < g <1, we see that H*(Gg, M) is finite for any i > 0, as claimed. O

One of the statements reached in the course of the proof of Corollary 8.19 is important in
its own right; it encapsulates the results of Kummer theory. We state it as a proposition of
its own.

Proposition 8.20. Let n > 1, and let K be a field whose characteristic is prime to n. Then
HY (G, pin) = K /(KXY

Proof. This was established in the proof of Corollary 8.19, where K was called L. While
the setup there assumes that K is a p-adic field and that G acts trivially on pu,, i.e. that
tn C K, none of this figures in the proof of our statement. We only require that K (u,) be
separable over K, in order to obtain a GGx-action on u,, and this is ensured by our condition
on the characteristic of K. The diligent reader will notice that this statement appeared as an
exercise a few chapters ago. O

Remark 8.21. While Proposition 8.20 is a very general statement, the proof of Corollary 8.19
made use of all of our work on the Brauer group of a finite extension K/Q),, and is thus specific
to the p-adic setting. Indeed, Corollary 8.19 may fail for other fields. For instance, let K = Q,
and let M = 7Z/2Z, where the Gg-action on M is trivial. Then the non-trivial elements of
H'(Gg, M) = Hom(Gal(Q/Q), Z/27Z) correspond to quadratic extensions of Q, and there are
infinitely many of these.

8.4. Finiteness of K*/(K*)". Before moving on to the next section, we prove an important
statement about local fields that has already been used in the proof of Corollary 8.19 and
will appear several more times in our development of local class field theory. If K/Q, is a
finite extension, write Ok for its valuation ring, m <O for the maximal ideal, and m € m for
a choice of uniformizer. As usual, k& denotes the residue field; let ¢ be its cardinality, and let
| - | denote the normalized multiplicative valuation on K. For ¢ € N, denote Uy = 1 + m’.

Lemma 8.22. Let n € N be coprime to p, and let « € Uy = 1 +m. There exists § € Ok
such that 8" = «.

Proof. This is immediate from (the usual formulation of) Hensel’s Lemma. Consider the
polynomial f(z) = 2" — a € Oklx]. Its reduction f(x) = 2™ — 1 € k[x] factors as f(x) =
(z — 1)g(x), where g(z) € k[z] is coprime to  — 1; indeed, 1 is not a root of f = na""1, so
it is not a multiple root of f. Lifting this factorization of f to O produces an n-th root of
o. U

We need an analogue of the previous lemma when n is divisible by p. One way to achieve
this is by using the following variant of Hensel’s Lemma.

Proposition 8.23 (The Hensel-Rychlik lemma). Let O be a complete discrete valuation ring,
and let f(x) € O[x]. Suppose that v € O satisfies |f(v)| < |f'(7)|>. Then there exists a unique

B € O such that f(8) =0 and |8 —~| < |f'(7v)|. In fact, one has | — | = |‘]J:/((77))‘|'
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Proof. This can be proved using a variant of the iterative argument in the usual proof of
Hensel’s Lemma, that will be very reminiscent of Newton’s method for finding roots of poly-
nomials over the reals. Indeed, the claim is sometimes called the Hensel-Newton method in the

literature. The idea is to define a recursive sequence by setting ag = v and ap11 = a, — }c,((z’;)).

One proves by induction that each a,, is well-defined (i.e. that f’(a,—1) # 0) and that a,, € O
for every n > 0. Moreover, the sequence {a,} converges (quite rapidly, in fact) to the S we
want. g

Corollary 8.24. Let K/Q, be a finite extension, and let n € N. Suppose that n = p*n/,
where n’ is coprime to p, and let r > 0. If a € Ussyry1, then there exists B € Ok satisfying

b = a.

Proof. Consider the polynomial f(z) = 2" — a € Ogklz], and take v = 1. Then |f(1)| =
11— a| < ¢ @+ whereas |f/(1)| = |n| = ¢°. Thus the hypotheses of Proposition 8.23
are satisfied, and there exists § € O such that 8% = « and |3 — 1| < ¢~ Ts+1) 5o that
B € Urisya- O

Proposition 8.25. Let K/Q), be a finite extension, and let n € N. Then K*/(K*)" and
O /(O™ are finite groups.

Proof. Observe that K* decomposes as an internal direct product K* =~ (m) x O, where
O = yLn(OK /mf)* is profinite and hence compact. We have shown that the endomorphism
¢ K* — K* given by ¢(z) = 2" is an open mapping. Indeed, any open set U C K*
contains a coset of U,4sy9 for a sufficiently large r. Thus ¢(U) contains a coset of ¢(Urts+2),
but we have just shown that the open subgroup Ussy,1 is contained in ¢(Uy4s42).

Now (K*)" = @o(K*) = (") x ¢(OF), so that K*/(K*)" ~ Z/nZ x O /¢(O)). Since
©(Of) = (OF)™ is open, it has finite index in the compact group O, and we are done. [

EXERCISES

(1) Let G be a profinite group. Prove that cd(G) = 0 if and only if G = {e}.
(2) This exercise outlines an alternative approach to Corollary 8.24. Recall the classical
Taylor series

(14 2)° :i (c;)xi:ia(a1)-'%!(ai+1)xi'

=0 1=0

Let K/Q, be a finite extension with uniformizer 7 € Ok, and let o = 1+ Ny e Uy.
Let n € N, and substitute into the Taylor series with a = 1/n to obtain a series

> i E Loy e )
=0

(a) Show that if N is sufficiently large, then the series converges for all y € Ok-.
(b) For a fixed g, let 8 be the sum. Prove that 8" = a =1 + 7Vy.
(¢) What can you say about the valuation of 5 — 17

9. THE CUP PRODUCT AND LOCAL DUALITY

One can define a cup product in the context of group cohomology, analogous to that
appearing in algebraic topology. This will turn out to be a very useful tool.
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9.1. The cup product. Let G be a profinite group, and let M and N be two G-modules.
Viewing their underlying abelian groups as Z-modules, we form the tensor product M ®z N;
hereafter we will omit Z from the notation. Then M ® N carries a G-action determined by
gm ®@mn) = gm @ gn for any g € G, m € M, and n € N. It is easy to see that the action
is discrete, so that M ® N is a G-module. There is a natural map M% x N9 — (M @ N)¢
given by (m,n) — m ® n. The cup product will generalize this to a map
HY(G,M) x H(G,N) — H™(G,M® N)
(., ¥) = pUY.
Recall the spaces C!(G, M) of Definition 3.5. These are spaces of continuous functions
G — M, with a G-action as defined there. Consider the map
C{(G, M) x C¥(G,N) 5 C"*I(G,M & N) (21)
sending the pair (i, 1)) to the function ¢ U € C*H/(G, M ® N) given by

(UY)(g0,---»9its) = ©(90,- -+ 9i) @U(Gir- - Jivs)-

Our first task is to check that the map of (21) does induce induce a map on cohomology.
One verifies immediately that this map is G-equivariant, where G acts diagonally on the left-
hand side. Thus G-invariants are preserved, and by the correspondence (4) we get an induced

map C*(G, M) x CI(G,N) = C*™i(G, M ® N) of cochains.

Lemma 9.1. Let M and N be G-modules, and suppose i,j > 0. Let ¢ € CY (G, M) and
Y € CI(G,N) be cochains. Then

dirj(p UY) = dip U+ (=1)'p U dj.
Proof. Recall the maps f; : C/(G, M) — C**1(G, M) defined by (2); these correspond to the
boundary maps d;. It is straightforward to check that, for any ¢ € C*(G, M) and ¢ € C7(G, N)
and any go,...,gi+j+1 € G, we have
(firi(@UP))(g0s -, girj+1) = (fie)(go,- -, git1) @ Y(git1, .- - Givj1) +
(=1)"@(g0;s-- -5 9:) @ (f¥) (s> - - - Gitjr1)-
In other words, fit;(@Uv) = fipU+ (—=1)% U f;2. Since the correspondence (4) is linear,
the claim follows immediately. O

Corollary 9.2. Let M and N be G-modules. For any i,j > 0, the map of (21) induces a
cup product map on cohomology:

HY(G, M) x H(G,N) = HY(G,M ® N).

Proof. Tt is immediate from Lemma 9.1 that if ¢ € Z'(G,M) and ¢ € Z/(G,N), then
diti(pU1) =0, so that p Uy € Z"M(G, M ® N). Moreover, if ¢ € B'(G, M), then there
exists n € C*" (G, M) such that ¢ = d;_11. The lemma then implies that

pUY =dinUy =dioinUe+ (=1)"" " Udje = digj 1 (nUY) € BH(G, M@ N).
An analogous observation holds if ¥ is a j-coboundary and ¢ is any i-cocyle. Hence the cup

product induces a map on cohomology. O

We now observe several basic properties of the cup product. Most of them can be estab-
lished by simple manipulation of cocycles.
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Proposition 9.3. Let M and N be G-modules.

(1) The cup product HY(G, M) x H°(G,N) = H°(G,M ® N) is just the natural map
MC x NG = (M @ N) given by (m,n) — m @ n.

(2) If ¢ € CH(G, M) and ¢ € CI(G,N), then the inhomogeneous cochain ¢ U ) €
C'™H(G,M ® N) is given explicitly as

(CUY)(g1,--»9its) = @91, -1 ) @ 9192 - - gi¥(Git1s - -+ s Gis)-

(3) If m € MY = HY(G, M) and ) € ZI(G,N), then mU[)] = [m®4] € HI (G, M®N),
where m @ ¢ € ZI(G,M ® N) is the cocycle (g1,...,9;) = mY(g1,...,7;)-

(4) If p € ZY(G, M) and ¢ € Z*(G, N), then [p] U[] = [n], where n € Z*(G,M @ N) is
the cocycle n(g1, g2) = ¢(91) ® g1¥(g2)- .

(5) The cup product is associative: if P is a third G-module, then for any ¢ € H'(G, M),
Y € HI(G,N), and n € H*(G, P) we have (p Uv) Un = U (Y Un) as elements of
HHI+E(G M @ N @ P).

(6) Let H C G be a closed subgroup. If ¢ € H'(G, M) and ¢ € H?(G, N), then

res%p U res$ep = res% (o U ).
If, in addition, H is normal and ¢ € H'(G/H, M) and ¢ € H(G/H,Nt), then
inf p Uinf 1y = inf (p U ).

Proof. The first claim is obvious from the definition of the cup product. The second follows
from an easy computation using (4). The third and fourth claims are special cases of the
second. The fifth and sixth claims follow from the second and the explicit descriptions of the
restriction and inflation maps from Lemma 4.8. g

Lemma 9.4. Let 0 — M' — M — M" — 0 be a short exact sequence of G-modules.
Observe that the corresponding long exact sequence of cohomology groups produces a map
5 HY(G,M") — H*(G, M) for each i > 0. Let N be a G-module such that the sequence
0 M®N - M®@N — M"® N — 0 is also short exact. As above, we obtain maps
8 H(G,M" @ N) — H™VY(G,M"). Let " € H(G,M") and yp € H'(G,N) for some
1,7 > 0. Then

(0" Up = 6" (" U ).

Proof. This is obtained from a computation on cocycles using Proposition 9.3(2) and the
explicit description of the connecting maps in Lemma 4.7. O

Analogously we obtain the following statement.

Lemma 9.5. Let 0 - N' — N — N” — 0 be a short exact sequence of G-modules. Let M
be a G-module, and suppose that the sequence 0 - M @ N' - M @ N — M ® N" — 0 is also
short exact. Let p € H' (G, M) and ¢)" € H?(G,N") for some i,j > 0. Then

p U (y") = (1) (puy”),
where the §° are connecting maps arising from the appropriate long exact sequences.

Lemma 9.6. Let M and N be G-modules, and let H C G be an open subgroup. Suppose that
p € H'(H,M) and ¢ € H’(G,N). Then (cor p) U = cor(p Uresy)) € HI(G,M @ N).
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Proof. 1f (i,5) = (0,0), we can prove this directly using the explicit description of the core-
striction map in Definition 4.3. Indeed,

(corp)up=1| D goluv= > (gpU)= > (gpUgy)=

gHeG/H gHeG/H gHeG/H

> 9lpUd) = cor(p Uresy),

gHeG/H

by the bilinearity of the cup product and since the restriction map res : H*(G, N) — H°(H, N)
is just the natural inclusion N¢ < N,

Now we can use a dimension shifting argument. Suppose that 7 > 1 and the claim is known
for the pair (i — 1, ). Consider the short exact sequence

0— M = Ind,,Resf, M — Q — 0 (22)

that appeared in the proof of Lemma 4.15. Since Ind?e}Resga}M is acyclic by Lemma 3.12,
the boundary map Sl H-Y(G,Q) — HY(G, M) is surjective. Let n € H~'(G, Q) be such
that 6°~1(n) = ¢. Since corestriction commutes with boundary maps by construction, we
would like to conclude

cor p Ut = 8 (corn) Ue = 6" (corn Uep) = 67 (cor(n U resth)) =
cor(0" 7 (nUresth)) = cor(6° "ty Ures ) = cor(p Ures ),

where the third equality holds by our claim for (i—1, j) and we would like to apply Lemma 9.4
to establish the second and fifth equalities. For this to be legitimate, we need to verify that the
hypotheses of Lemma 9.4 hold, namely that 0 - M QN — (Ind?e}Res{Ge}M)QQN — QRN — 0
is a short exact sequence for an arbitrary G-module N. Since the functor — ® N is always
right exact (see, for instance, Proposition XVI.2.6 in Lang’s Algebra, 3rd ed. or, better yet,
prove it yourself), it suffices to show that the map e®1: M @ N — (Ind{Ge}Res{Ge}M )® N is
injective. It is an exercise to check that the following map is an isomorphism of G-modules:

(Ind,,Resf, M) @ N = Ind{,Res{, (M ® N)
fen — (g f(g) ®gn).

Recalling the definition of ¢, it is easy to see that € ® 1 sends the pure tensor m ® n to the
map (g — gm ® gn), and thus (e ® 1)(v)(e) = v for any v € M ® N. Hence £ ® 1 is injective.

Thus the claim holds for (i, 7) if it holds for (i — 1,5). Similarly, suppose that the claim
holds for (i,7 —1). By an argument analogous to the one above, using a short exact sequence
0+ NS Ind{Ge}Res?e}N — Q" — 0 and applying Lemma 9.5, we prove it for (¢,7). This
two-dimensional induction allows us to prove the claim for all pairs (i, j). U

Dimension-shifting arguments as in the previous proof and, in a somewhat simpler version,
in the proof of Lemma 4.15, are a very useful tool for working with cohomology. We now
use a similar idea to show that the cup product is commutative up to sign. This property is
called anti-commutativity.

Proposition 9.7. Let M and N be G-modules. If ¢ € HY{(G,M) and ¢ € H (G, N), then
U = (=1)Y(pUy) as elements of H (G, M @ N), where we identify M @ N with N @ M
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by means of the isomorphism
M®N S5 NoM
m@n = nQm.

Proof. 1f (i, j) = (0,0), then p Ut = ¢ ®1p € (M ® N)Y, so the claim is obvious. We now
use a dimension-shifting argument as in the proof of Lemma 9.6 to prove the proposition
by induction on the pair (i,j). As in that proof, suppose that the claim is known for the
pair (i — 1,7) and arbitrary G-modules, consider the short exact sequence (22), and choose
n € H=Y(G, Q) such that ¢ = §1(n). Then
pUP =01 U =0""yuy) = (~)EIEHT(pUr) =
(D) (1Y (s () = (D7 (D U ).

Here the second equality is Lemma 9.4, the third comes from the inductive hypothesis, and the
fourth is Lemma 9.5; we checked in the course of the proof of Lemma 9.6 that the hypotheses
of Lemmas 9.4 and 9.5 hold. Hence we obtain the claim for (¢, 7). Similarly, if the claim is
known for (i,j — 1), then it is obtained for (i,7) by an analogous argument that exchanges

the roles of M and N. Since we already know the claim for (0,0), these two results imply it
for arbitrary pairs (i, 5). O

9.2. Statement of local duality. The cup product enables us to state local duality, which
is an analogue of the Poincaré duality arising in algebraic geometry, in the cohomology of a
complex curve. We will see later that this theorem has wide-ranging implications.

Definition 9.8. Let K/Q, be a finite extension.

(1) Define oo = U,;>1 ttn C K™ to be the Gx-submodule consisting of all roots of unity.
Note that e ~ Q/Z as a group.

(2) Let M be a Gg-module. Its dual module is M* = Hom(M, ji~) with the G g-action
defined by (o f)(m) = o(f(c™'m)) for all 0 € G, f € M*, and m € M.

(3) Let A be a finite abelian group. Its Pontryagin dual is AY = Hom(A, Q/Z).

Example 9.9. Let M = p,. Since we view p, as embedded in jiso, any element f € M* has
the form f(¢) = ¢* for all ( € u, and some i € Z/nZ. Moreover, since any o € G acts on
fin by 7(C) = €* for some a € (Z/nZ)*, we find that (0/)(C) = o(f(o () = o((C%)) =
o(¢?) = ¢4 = (' = £(() for all ¢ € py,, where ab = 1modn. Thus M* = Z/nZ, with trivial
G k-action.

Lemma 9.10. If A is a finite abelian group, then AV ~ A. Moreover, the evaluation map
gives a canonical isomorphism (AY)Y ~ A.
If M is a finite Gi-module, then M ~ (M*)* canonically as Gx-modules.

Proof. The first claim is immediate from the fact that any finite abelian group A is a direct
product of finite cyclic groups. Now let M be a finite Gxg-module. The evaluation map
provides a homomorphism

M — (M)
m = (fr f(m)),
where m € M and f € M*. It follows from the definition of the G'g-action on dual modules

that this map is Gg-equivariant. Since M is a direct product of finite cyclic groups, for
any distinct elements m,m’ € M it is easy to construct f € M* such that f(m) # f(m/).
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Thus the map above is injective. But M ~ M* ~ (M*)* as abelian groups, so it must also be
surjective. The same argument, ignoring the Gx-module structure, shows that the evaluation
map provides an isomorphism of A with (AY)Y if A is a finite abelian group. O

Definition 9.11. Let A be any topological abelian group. Write A for the group of continu-
ous homomorphisms Hom(A, Q/Z), where Q/Z has the discrete topology. We endow A" with
the compact-open topology; this is the coarsest topology such that {f € AY : f(K) C U} is
open for all compact K C A and all open (i.e. all) U C Q/Z. Observe that this is consistent
with our previous definition of AV in the case of finite A.

Proposition 9.12. Let A be a topological abelian group such that the quotients A/nA are
finite for all n € N and any continuous homomorphism f : A — Q/Z factors through A/nA
for some n € N. Then (AY)V ~ @A/HA as topological abelian groups.

Proof. We have AV = Hom(A, Q/Z) = liAlHom(A/nA, Q/Z) by assumption. Thus
(4¥)" = Hom(lim Hom(4/n4, Q/Z), Q/Z) =
lim Hom(Hom(A/n A, Q/Z), Q/Z) = lm((A/nA)")" = lim A/nA,
where the last equality uses the finiteness of the A/nA and Lemma 9.10. We leave it as an
exercise to check that this is a homeomorphism. ]

Proposition 9.13. If A is a profinite abelian group, then the evaluation map gives an iso-
morphism A = (AY)V.
Proof. If the quotients A/nA are finite, then this follows easily from the previous proposition.
This is the case, for instance, when A = Z,, or, more generally, when A is the additive group
Ok or the multiplicative group O for any finite extension K/Qy; recall Proposition 8.25.
More generally, it is an exercise to show that if A = @Ai, then AY = hﬂAz/ and,
conversely, if A = ligAi, then A = m AY, with the obvious transition maps. Applying both
of these observations, we see that if A is a profinite group realized as A = yLnAz- with finite
A;, then (AY)Y = lim((4;)")Y. The evaluation map induces an isomorphism on each A; by
Lemma 9.10, and the claim follows. ]

Proposition 9.14. Let TorModg, be the category of torsion G -modules. Then M — M*
is an exact contravariant functor from TorModg to itself.

Proof. The only non-obvious part of the statement is the exactness. This is an exercise; note
that it uses the fact that s, ~ Q/Z is injective as an abelian group. U

For any Gg-module M, the evaluation map M x M* — us given by (m, f) — f(m) is
clearly bilinear over Z, and thus it factors through a map o : M ® M* — p. Moreover, o
is Gg-equivariant. Indeed, for all o € G we have

alo(m® f)) = alom @ af) = (of)(om) = o(f(o~ om)) = o(f(m)) = o(a(m @ [)).
Thus « induces a map o* : H'(Gg, M ® M*) - H'(Gg, pioo) on cohomology for all i > 0.
Definition 9.15. Let K/Q, be a finite extension and let M be a Gx-module. For each i €
{0,1,2} we define the pairing (,)x : H' (G, M) x H> " (Gg, M*) — Q/Z as the composition
H'(Gg, M) x H* (G, M*) % HXGr, M ® M*) % HX(Gr o) 5 Q/Z.
The image under this pairing of a pair (¢,v) € H (Gx, M) x H*7H(Gg, M*) is denoted
(P, V) k-
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Now suppose that M is a finite Gx-module. Clearly M™* is also finite, and the groups
Hi(Gg, M) and H?>"*(Gg, M*) are finite by Corollary 8.19. The pairing defined above gives
rise to maps

A:H* (G, M*) — H(Gg,M)" B: H(Gg,M) — H* (G, M*)"
= (0= (0 Y)K) = (Y= (p, V)K)-
The pairing (, ) is called a perfect pairing if the maps A and B are isomorphisms for each
i€{0,1,2}.

The rest of this section is devoted to proving the following theorem, which is the local
duality advertised above.

Theorem 9.16. Let K/Q, be a finite extension and let M be a finite G -module. Then (, )k
is a perfect pairing for every i € {0,1,2}.

9.3. Reduction to i = 2. Although Theorem 9.16 consists a priori of three entirely separate
statements, for the three possible values of 7, we shall see that the case i = 2 implies the other
two without much difficulty. Throughout this section, K/Q), is a finite extension, and M is a
finite G g-module.

The following statement makes sense by Lemma 9.10.

Lemma 9.17. The pairing {,)x : H (G, M) x H* (G, M*) — Q/Z of Definition 9.15
satisfies
b 11€40,2
<b,a>K _ <a7 >K ZG{ ) }
—(a,byg :i=1,

for alla € H(Gg,M) and b € H>7H(Gg, M*).

Proof. This follows from Proposition 9.7, which gives the analogous commutativity properties
for the cup product. Note that (—1)*2~9 is equal to 1 if i € {0,2} and to —1 if i = 1. O

Corollary 9.18. If Theorem 9.16 holds for i = 2, then it holds for i = 0.
Proof. This follows from the first part of Lemma 9.17, with M™* in the role of M. g
Proposition 9.19. If Theorem 9.16 holds for i = 2, then it holds for i = 1.

Proof. Let M be a finite G g-module. As an abelian group, M is a direct sum of finitely many,
say r, finite cyclic groups, so it embeds into the divisible abelian group I = (Q/Z)". As in
the proof of Corollary 2.12, by Frobenius reciprocity we obtain an embedding of Gx-modules

M — Ind?;}{ I. We identify M with a submodule of Ind?e’}{ I by means of this embedding.

Since [ is a torsion group, and any f € Ind?ef}( 1 is locally constant and thus takes only finitely

many values since G is compact, we conclude that Ind?e’}‘ 1 is a torsion G g-module; see the

proofs of Lemma 4.15 and Lemma 8.1 for similar arguments. Moreover, since every element
of a torsion module is contained in a finite submodule (again, more details in the proof of
Lemma 4.15), we see that Ind?@l}fl ~ liﬂNa, where the IV, are finite G g-modules such that
M C Ng.

By Proposition 4.10 we have lim H'(G, Na) = Hi(GK,Ind@f}q) = 0 for every i > 0,
where the last equality is because Ind?el}‘l is an injective G g-module by Corollary 2.11. For

every i > 0, since H (G g, M) is finite by Corollary 8.19, it follows that there exists a finite
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submodule M C N; such that H (G, M) — Hi(GK,Ni) is the zero map; indeed, every
element ¢ € H*(Gk, M) has zero image in some H'(Gg, Ny, ), and since there are finitely
many elements we can take N; to be an upper bound of all the N,,,. Take a finite submodule

M CN C Ind?;]fl that is an upper bound of N7 and Na. Since H (G, N) = 0 for all i > 3
by Proposition 8.18, we conclude that H*(Gx, M) — H'(Gg, N) is the zero map for all i > 1.
The short exact sequence 0 — M — N — @ — 0 of Gx-modules, where Q = N/M, gives
rise to a long exact sequence of cohomology groups containing the segment H°(Gg, N) —
HY(Gg,Q) — HY (G, M).
The sequence 0 — Q* — N* — M* — 0 of duals is also an exact sequence of G-
modules by Proposition 9.14. Hence we get an exact sequence H'(Gg, M*) — H*(Gf,Q*) —

H?(Gg,N*). Taking Pontryagin duals, we get a diagram

0
HO(GKaN) - HO(GK7Q) - Hl(GKvM) - Hl(GKvN)

H*(Gg,N*)Y — H*(Gg,Q")Y — HY(Gg,M*),

where the rows are exact. This diagram is commutative, as one sees by studying the effect
of the maps on cochains. Since Theorem 9.16 holds for ¢ = 2 by hypothesis and hence the
leftmost and central vertical maps are isomorphisms by Corollary 9.18, we verify by a diagram
chase that the rightmost vertical map is an injection.

By the same argument with M* instead of M, we find that A : H* (G, M*) — H (Gg, M)¥
is injective. If f : I' — A is an injective homomorphism of abelian groups, the corre-
sponding map f¥ : AV — TV is surjective by the injectivity of Q/Z. Hence B = A :
HY(Gg,M) — HY Gk, M*) is surjective, since H' (G, M) is finite by Corollary 8.19 and
hence (H'(Gg, M)V)V ~ HY Gk, M) by Lemma 9.10. We conclude that B is an isomor-
phism. Similarly, A is an isomorphism, and thus the local pairing is perfect in the case
i=1. O

9.4. Reduction to a finite Galois extension. By the results of the previous section, it
suffices to prove Theorem 9.16 in the case ¢ = 2. In this section, we will show that it suffices
to prove the theorem after replacing K by any finite Galois extension L/K. We will then
choose L wisely in the next section to complete the proof.

We will need to understand the behavior of the Hasse invariant map, which figures in the
definition of local duality, with regards to field extensions.

Proposition 9.20. Let K be a finite extension of Qp, and let L/K be a finite extension.
Both squares in the diagram below commute:

Invg

Br(K) ~H*Gg,K") Q/Z
cor| |res id| |[L: K]
Br(L) ~HXGp,K) 2L . gz
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Proof. The proof is just a matter of unpacking the definition of the Hasse invariant map.
First, denoting the residue fields of L and K by ¢ and k, respectively, we will show that the
following diagrams commute:

H (G, K7) == H(Gr, (K™))
inf
cor| |res er/Kcor| |res (23)

HX(G,K) wa H2(Gy, (L™)X).

Recall that the horizontal inflation maps are known to be isomorphisms by Corollary 7.5.
Our claim can be checked by a direct computation on cocycles using the formulas of Section 4.
Alternatively, since all the maps in this diagram can be defined using the universality of
group cohomology as a d-functor, it suffices to verify the commutativity of the corresponding
diagrams for HO:

KX = (?X)GK £ ((Knr)X)Gk - KX

trL/K id eL/KtI'g/k id

LX = (FX)GL & ((Lnr)X)Gg S
Here try/; : L* — K™ denotes the map tryx(z) = >_,¢,eq,/q, o(¢). and this is obvious.
By a similar universality argument, and the compatibility of d-functors with the connecting
maps arising in long exact cohomology sequences, we get the commutation of the diagrams

UK (G Z) — HY(GrQ)2)

H* (G, (K™)%)

er/Kcor| |res cor| |er gres  cor| |er gres

H2(Gy, (L)) 2 H2(Gy, ) —> HY(G1,Q/2).

Finally, noting that Froby = FrobeL/ ¥ we find that the following commutes:

H'(Gr,Q/2Z) Q/Z
cor| |er/kres B eL/KfL/K =[L: K]
H' (G, Q/2Z) Q/Z.

Since the composition of the two vertical maps on the right must be multiplication by
er/k|Gr + Ge] = [L : K] by Lemma 4.4, the map j is forced to be the identity. Con-
catenating all these diagrams and taking the perimeter, we obtain the commutative diagrams
of the claim. O

Lemma 9.21. Let M be a finite Gx-module, and let L/K be a finite extension. The core-
striction map cor : H*(Gp, M) — H?*(Gx, M) is surjective.
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Proof. Consider the map tr : Indngesng — M given by tr(f) = ZgGLEGK/GL af(g™h).
It is easy to see that this is well-defined, and it is G x-equivariant since for all x € G and
all f e Indgf Resg’; M we have

trzf)= Y, g-zflgTh)=

9GLeGK/GL

S =2 S el (@) | = al(h)).

gGLEGK/G'L gGLEGK/G'L

Finally, tr is surjective: if m € M, let f,, € Indgf Resgf M be the function defined by
fm(g) = gm if g € G and f;,(g) = 0 otherwise; note that f,, is locally constant. Then
tr(fm) = m. Now consider the exact sequence

0 — N — IndZ¥ResG M =5 M — 0, (24)

where N is the appropriate kernel.
The induced map tr* : H?(G, IndngengM) — H%*(Gg, M) is surjective, as we see by
observing the bit

H*(Gx, IndSxResGx M) % H? (G, M) — H(Gg, N)

of the long exact sequence and noting that H3(G, N) = 0 because cd(Gx) = 2 and N is a
torsion module since Indgf Resgf M is.
The corestriction map in the statement of the lemma is just the composition

H*(Gr,ResS M) ~ H*(G, IndG¥ ResSi M) % HY (G, M),

where the isomorphism comes from Shapiro’s Lemma. Thus the corestriction is a composition
of two surjective maps, so it is surjective. O

Lemma 9.22. Let M be a finite Gx-module, and let L/K be a finite Galois extension. If

Theorem 9.16 holds for the G -module Resng when i = 2, then it holds for the G i -module
M when i = 2.

Proof. The diagram
A

H®(G, M*) = Homg, (M, i) H*(Gg,M)"
cor"
HY(Gy1.(ResGX M)*) = H M AHQGRGKMV
( L?( eSGL ))_ OmGL( a/‘oo)" ( L, eSGL )

where the left vertical map is the natural inclusion, commutes as a consequence of Proposi-
tion 9.20. Since the right vertical map is injective by the previous lemma, we see that the
top horizontal map is also injective. Since M carries an action of G, the two groups in the
bottom row carry a natural action of Gx /G = Gal(L/K). The map A in the bottom row
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commutes with this action (this needs to be justified). Thus we get a diagram

Homg, (M, fiso) H*(Gy,M)"

A
HOII]GK(M, MOO)Gal(L/K) L (HQ(GK,M)V)Gal(L/K).

But now the left vertical map is an isomorphism (in fact, an equality). The bottom horizontal
map is assumed to be an isomorphism, so the composition cor¥ o A is an isomorphism, and
this forces the top horizontal map to be an isomorphism. ]

Now we finally complete the proof of Theorem 9.16.

9.5. Properties of the pairing. We now prove several properties of the perfect pairing.
These are all consequences of the definitions and of the functoriality of the Hasse invariant
map.

Lemma 9.23. Let L/K be a finite extension and i € {0,1,2}. Let M be a finite Gk -module.
Let o € H(Gg, M) and ¢ € H>“Y(Gp, M*). Then {p,cor ) = (res o, V).

Proof. Recall the definition of the local duality pairing as the composition
()i H (Gre, M) x H(Gie, M*) = HX(Gie, M ® M) = H*(Grc, pios) "5 Q/Z.

We know that Invy, = Invg o cor by Proposition 9.20. Thus (p, cor ) x = Invg (p Ucory) =
Invg (cor(res U ) = Invy(resp, ) = (resy, ), where we have used Lemma 9.6 and
Proposition 9.7. g

Lemma 9.24. Let L/K be a finite extension and i € {0,1,2}. Let M be a finite Gk -module.
Let o € H(Gg, M) and ¢ € H>"(Gg, M*). Then (resp,res) = [L: K|{p, V) k.

Proof. We showed that Invy, ores = [L : K]Invg in Proposition 9.20. Thus (res ¢, resy)r =
Invy(resp Uresty) = Invy(res(p Uv)) = [L : K|Invg(p U) = [L : K] (p, )k, where the
second equality is Proposition 9.3(5). O

EXERCISES

(1) Let G be a topological group. The usual definition of the Pontryagin dual of G is
GY = Hom(G,R/Z), where R/Z is the circle group with its usual topology, and G
is endowed with the compact-open topology.

(a) Show that a subgroup H C R/Z is closed if and only if H = R/Z or H is finite.
(b) Prove that GV is discrete if G is compact, and that G is compact if G is discrete.
(c) Show that if G is profinite, then Hom(G,R/Z) = Hom(G, Q/Z).

10. THE ARTIN RECIPROCITY MAP

We are now in a position to prove the main results of local class field theory. Let K/Q,
be a finite extension as in the previous sections. The unit group K> has a profinite, hence
compact, subgroup O = T&ln(OK Jm% )%, where mg < Ok is the maximal ideal. Consider
the topology on K*, where a base of open neighborhoods of the identity is that from the
topology of Ojc. This makes K* into a locally compact group.
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Lemma 10.1. Let f : K* — Q/Z be a continuous group homomorphism, where Q/Z is
endowed with the discrete topology. Then f has finite image.

Proof. The restriction of f to the compact subgroup O has finite image; since Q/Z is
discrete, the fibers of f are open, and finitely many of them must cover Ox. If 7 € Ok is
a uniformizer, then K is generated by O and (). This f(K*) is generated by the finite
subgroup f(Oj) and the finite-order element f(7) € Q/Z, so it is finite. d

If G is a profinite group, its commutator subgroup [G, G] need not in general be closed.
We define the abelianization of G' to be G = G/[G, G], where [G, G] is the closure of [G, G].
Then G2 is profinite by Proposition 1.14. In fact, G®" is the maximal abelian profinite
homomorphic image of G. If K/Q, is a finite extension, then the commutator subgroup
[Gk,GK| is actually a closed subgroup of Gk (see exercises), but we will not need this fact
below. If K" is the maximal abelian subextension of K /K, then G3 = Gal(K?®"/K).

Proposition 10.2. There is an isomorphism Hom(G%, Q/Z) = Hom(K*,Q/Z) of abelian
groups, where in both cases we consider continuous homomorphisms.

Proof. By the previous lemma, every f € Hom(K*,Q/Z) has finite image and thus ker f has
finite index in K*. In particular, (K*)™ C ker f, where n = [K* : ker f], so that f factors
through K*/(K*)™. Thus we have

Hom(K™*,Q/Z) = lingom(KX/(KX)", Q/Z) ~ ligHom(Hl(GK7 tn), Q/Z), (25)
where the final isomorphism was obtained in Proposition 8.20 (“Kummer theory”) and is

induced by the boundary map §° : H%(G K,FX) — HY(Gg, pin) arising from the short exact

sequence 0 — p, — K 3 K—0of G -modules.
Recall from Example 9.9 that (u,)* = 17Z/Z, with trivial Gx-action. Thus the perfect
pairing of Theorem 9.16, in the case ¢ = 1, tells us exactly that

Hom(H (G, pn), Q/Z) = HY (G, pin)" = H (Gx, %Z/Z). (26)

But H (G, 1Z/Z) = Hom(Gx, 1 Z/Z) since the G g-action is trivial, so, putting together (25)
and (26), we have

Hom(K*, Q/Z) =~ lim Hom(G, %Z/Z) = Hom(Gg,Q/Z) = Hom(G32,Q/Z),

where the final equality holds since any homomorphism from G to the abelian group Q/Z
must factor through G*}P, as its kernel is closed and contains the commutator subgroup
Gk,Gk]. O

Consider the group
KX = lim K% /(K"
iy

Theorem 10.3. There is an isomorphism rg : KX — G‘}L}).

Proof. We apply the functor Hom(—, Q/Z) to the isomorphism of Proposition 10.2. By Propo-
sition 9.12, whose hypotheses are satisfied in the case of A =K X by Proposition 8.25 and
Lemma 10.1, we have that Hom(K*,Q/Z)" = ((K*)V)¥ ~ K*. Since G% is profinite, we
know that Hom(G32, Q/Z)" ~ G2 canonically by Proposition 9.13. O
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The isomorphism 7 is called the Artin reciprocity map. Its definition may be restated
pictorially as follows.

Corollary 10.4. There exists a unique injection rix : K* — G%}D with dense image such that
the following diagram commutes for all n € N:

eval

Hom (K>, Z/nZ)x K*/(K*)" 7/nZ.

HY(Gx,Z/nZ) x H (G, i) Lox, Q/Z.

Here the top horizontal map is the evaluation map, and the bottom horizontal map is local
duality, which makes sense by Example 9.9. The middle vertical map is the inverse of the
isomorphism d : K*/(K*)* 5 HY(Gg, pin) of Kummer theory (Proposition 8.20), and the
leftmost vertical map is the homomorphism

H
) L2 OTE Hom(KX,Z/nZ).

HY(Gg,Z/nZ)=Hom(G g, Z/nZ)=Hom(G, Z./nZ
Proposition 10.5. Let L/K be a finite extension. Then the following diagram commutes,

rL

Lx Gab
Np/k
KX — g

where N, g+ L* — K> is the norm map and Gib — G‘}L}) is the natural embedding.

Proof. 1t suffices to check for all b € L* and all continuous homomorphisms y : G%? — Q/Z
that x(rx(Np/k(b))) = x(rp(b)) holds. Indeed, if 0,7 € G4° are distinct elements, then
there exists a finite abelian extension K’/K such that the projections of ¢ and 7 in the
finite abelian group Gal(K’/K) remain distinct. But we have already seen that there exists a
homomorphism Y’ : Gal(K'/K) — Q/Z sending ¢ and 7 to distinct images, as will the map
X G‘}}’ — Q/Z obtained from X’ by inflation.

Since G%’ is profinite and hence compact, the image of any x as above is finite and thus con-
tained in %Z /Z for some n € N, which we identify with Z/nZ by means of the “multiplication
by n” map.

If a € K* and x € Hom(G%,Z/nZ) = H (G, Z/n7Z), then the diagram of Corollary 10.4
says precisely that L x(rg(a)) = (x,da)x. Now (x,da)x = Invi(x Uda) by the definition of
the local duality pairing,

Consider the corestriction map cor : L* = HO(GL,resgffx) — HY(Gg,K*) = K*.
Given b € L*, by Definition 4.3 we have corb = 3, cq./q, ©(0) = Npjk(b). The
Kummer theory isomorphism d : K*/(K*)" = HY(Gg,un) arises from a boundary map
H(Gg,K™) — HY(Gk,pn) and thus commutes with corestriction. We will also write
d:L*/(L*)" 5 HYGL, pin).
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Putting all this together, and taking a = Ny /k(b) € K* two paragraphs above, we have
1
EX(TK(NL/K(b))) = Invg(x Ud(corbd)) = Invi (x U cor db) = Invg (cor(res x U db)) =

1
Invy (res x Udb) = HX(TL(b))’

where the third equality comes from Lemma 9.6 (and the anti-commutativity of Proposi-
tion 9.7), the fourth one holds as Invy, = Invg o cor by Proposition 9.20, and the last equality
uses Corollary 10.4 again. O

Proposition 10.6. Let L/K be a finite abelian extension. Then ri induces an isomorphism
between K> /N i (L) and Gal(L/K).

Proof. Consider the following diagram:

N

0 s R KNG (L) 0
rr K T

0 Gab Gab Gal(L/K) 0

The top row is obviously exact, and the bottom one is exact since L/K is abelian and thus
a Galois subextension of K* /K. The maps 71 and rx are injective and have dense images,
and the square on the left commutes by the previous proposition, thus inducing the vertical
map 7 on the right. We need to show that r is an isomorphism. -

Observe that, since the rk here is a restriction to K* of the map rg : KX — Gi}}’ obtained
in Theorem IO.E\the relevant topology on K* is the subspace topology induced from the
profinite group K> = @KX/(KX)”

To show that r is injective, suppose that x € kerr C K* /Ny /i (L*) and let y € K* be a
lift of x. A very simple diagram chase shows that rx(y) must lie in G3* C G%. Since the
image of r7, is dense in G2, there exists a sequence {y,} of elements of L* such that {ry(y,)}
converges to rx (y).* By the injectivity of r7 and rx we find that {Nr/k(yn)} converges to
y. If we knew that Ny /i (L*) were closed in K*, we could conclude that y € Ny /i (L*) and
hence z = 0. -

It remains to show that N, (L*) C K* is closed in the topology induced from K*.
So let {b,} be a sequence of elements of L* such that {Np gk (b,)} converges to a € K*
in the relevant topology. We need to show that a € Ny ,x(L*). For any b € L*, recall

4This is true because G3P is a first countable topological space, i.e. every point has a countable base of
open neighborhoods. It suffices to show that the identity has a countable base of open neighborhoods, since
translates of these will give a base of open neighborhoods for any other point. A base of open neighborhoods
of the identity is given by the subgroups Gal(L*"/L’), where L'/L is a finite abelian extension. Since L has
finitely many extensions of any fixed finite degree, there are countably many of these.

Here is a sketch of a proof that L has finitely many extensions of any fixed degree. Since L has a unique
unramified extension of any degree, it suffices to show that there are finitely many totally ramified extensions
of L of degree n. The minimal polynomial of a uniformizer in any such extension L’ is an Eisenstein polynomial
2+ an_12" 1+ -+arz+tao € Op [x], where a; € my, for all ¢ and ao & mQL. By Krasner’s Lemma, perturbing
each coefficient a; within some open set will give rise to the same extension L’. By compactness of Oy, we
conclude that there are only finitely many possibilities for L’.
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that vi (N k(b)) = fr/rvr(b), where fr i = [¢ : k] is the inertia degree. Indeed, all
the conjugates of b have the same valuation, so that vr(Np k(b)) = [L : K]ur(b). But
(vL)|kx = e rvK. Since the sequence {vk(Np /k(bn))} converges to vk (a), we have that
vk (a) € fr/kZ. Now choose ¢ € L* such that vi(c) = vk(a)/fr k. Then N, r(bn/c) —
a/Npk(c) € Ok. Clearly a lies in the image of Ny x if and only if a/Np K (c) does, so we
may replace a with a/Np(c) and assume without loss of generality that a € Oj.

Now, note that K* ~ (mx) x Oy naturally, where 7x € Ok is a uniformizer. Thus

KX /(K*)" ~ (mg)/(n}) x O /(Of)". Taking projective limits, we get KX o~ @ X O o~
Z x O. Indeed, we showed at the end of the proof of Proposition 8.25 that the groups
Ok /(Ox)™ are all finite, and hence that O is their projective limit. The point of this is

that a base of open neighborhoods of the identity of K in the KX -topology is provided by
sets of the form <7TN ) x U, where N > 0 and U C O is open in the usual profinite topology
of Op.

Since the sequence of integers {vr(b,)} must stabilize at 0, it follows that for all open
neighborhoods e € U C O we have Np i (by) € Ua for all sufficiently large n. In other
words, N,/ (bn) — a in the usual topology of Op.. But OF, in its usual topology, is compact,
and thus the sequence {b,} has a limit point b; again, throwing away finitely many b,’s we
may assume that all the b,’s lie in OF . We must have Ny (b) = a, so that a € Ny /i (L*).
We may finally conclude that the map r is injective.

To prove surjectivity of r, observe that K> /Ny, (L>) is compact. Indeed, it is clear that

™ = Np (i) € Npji(L¥). Thus K* /Ny (L) is a quotient of K* /(xi™)), and this

%:K}> = ]_[Eié( -1 mt-OF of finitely many compact sets and

in turn is a disjoint union K*/(m
hence is compact.

Now let z € Gal(L/K) and lift it to 2 € G3. By the density of the image of rx, there is a
sequence {y,} of elements of K* such that {rx(y,)} converges to z. By the compactness we
just proved, the sequence of images of the y,, in K* /N, / x(L*) has a convergent subsequence.
Let y € K*/Np/k(L*) be the limit. By the commutativity of the square on the right, we

must have r(y) = z. Hence r is surjective. O

Lemma 10.7. Let L/K be a finite extension. There erists a continuous homomorphism
V . Gxg — G, with the following property: for any n € N and any x € Hom(Gp,Z/nZ) =
HY(GL,7/nZ), we have cory = x oV € HY(Gg,Z/nZ).

Proof. This is a special case of a general construction; see the exercises. ([l

Corollary 10.8. Let L/ K be a finite extension, Consider the natural inclusion v : K* — L*.
Then the diagram

Kx K, Gab
L \%4
L X L Gz[x/b

commutes, where V : G*}P — G%b is the map from Lemma 10.7.



GROUP COHOMOLOGY 85

Proof. Since rx has dense image and rp o ¢ is injective, observe that a map G‘}‘? — G‘zb
completing the diagram is unique if it exists.

As in the proof of Proposition 10.5, it suffices to show that x(V(rx(a))) = x(rr(c(a))) for
all a € K* and x € Hom(G%,Z/nZ) = Hom(Gp,Z/nZ) = H (G, Z/nZ) for any n € N. To
simplify the notation, we drop ¢ and view K* as a subgroup of L*. Then, as in the proof of
Proposition 10.5, we have

Xx(rr(a)) =nlnvy(x Uda) = nInvg(cor(x Uda)) = nlnvg((cor x) Uda) =
nInvg((x o V)Uda) = x(V(ri(a))),

where the first and last equalities come from Corollary 10.4, the second is from Proposi-
tion 9.20, the third is from Lemma 9.6, and the fourth holds by Lemma 10.7, which we just
proved. (]

Lemma 10.9. Consider the short exact sequence 0 — Z — Q — Q/Z — 0 of G g-modules,
all with the trivial action, where K/Q, is a finite extension as usual. This gives rise to a
boundary map 6' : H'(Gk,Q/Z) — H*(Gk,7Z).

Now let x € Hom(Gg,Q/Z) = H (Gg,Q/Z) and a € K* = HY(Gg,K”). Consider the
element a U8 (x) € H2(Gg, K @ Z) = H2(Gg, K ). Then we have

x(ri(a)) = —Invg (aUd'(x)) € Q/Z.
Proof. Let n be such that the image of y is contained in %Z /Z. We have

x(rx(a)) = Invg(x Uda) = —Invg (da U x) = —Invg (0 (a U x)),

where the first equality is Corollary 10.4 and the second is Proposition 9.7. In the rightmost
term, O' denotes the connecting map 9! : Hl(GK,FX ®7Z) - HY Gy, pn ® Z). For the
third equality, we would like to use Lemma 9.4, and we may do so. Indeed, the short exact
sequence 0 — p, — K' 5K - 0, as well as any other short exact sequence, clearly remains
exact after tensoring with Z. This is because Z is torsion-free, and so flat, as a Z-module.
Finally, a simple computation involving the formulas of Lemma 4.7 and Proposition 9.3(2),
which specify what connecting maps and the cup product do to cocycles, concludes that
O aUx) =aUd (x) € HX(Gk, K~ ®7Z). The claim follows. O

Let k be a finite field of order ¢, and let Gy = Gal(k/k) be its absolute Galois group. We
denote the inverse of the element (x — x%) € Gj by Froby; this is the so-called geometric

~

Frobenius. Recall that the cyclic subgroup of Gy ~ Z generated by Froby, is dense.
The reader should beware that about half of the literature uses the notation Froby for the
arithmetic Frobenius (z — 27) € Gj.

Proposition 10.10. Let K/Q, be a finite extension, let v : K* — 7 be the normalized
valuation, and let k be the residue field of K. Then the diagram

K K, gab
VK w
7 Gy = Gal(K™/K)
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of continuous group homomorphisms commutes. Here the vertical map on the right is induced
from the projection G — Gy, which factors through GE}P since Gy, is abelian. The horizontal
map at the bottom is n — (Frob, ).

Proof. The claim follows from the previous lemma and the definition of the Hasse invariant
map Invg : H*(G K,?X), so we should recall the latter. Indeed, Invy was obtained, in the
discussion preceding Proposition 7.11, as a composition of four isomorphisms:

— v -1 rob 1
H2(Gr, B) ~ H2(G, (K™)) S H2(Gy,,2) % HY(Gyy0/2) V75 ) gz,

Here H2(Gg, K ™) ~ H2(Gy, (K™)*) arises from realizing H2(G, K ) as the Brauer group
Br(K) and observing that every central simple K-algebra splits over an unramified extension
of K, whereas 6! : H'(Gy, Q/Z) — H?*(Gy,7Z) is the connecting map arising from the short
exact sequence 0 - Z — Q — Q/Z — 0 of Gx-modules with trivial action.

Now let a € K*. We need to show that Frob,* (@ = w(rg(a)). As in several previous
arguments, it suffices to show that X(FrobZK(a)) = x(w(rk(a))) for all x € Hom(Gy,Q/Z) =
H'(G{,Q/Z). By Lemma 10.9 we have

x(w(rg(a))) = —Invg(a U s (x ow)) = —Invg (a U s (x),

where we use the same notation for the connecting map 6! : HY(Gg,Q/Z) — H*(Gk,Z) in
the middle of the previous formula and for §' : H'(Gy, Q/Z) — H?*(Gy,Z) on the right-hand
side. From now on in this proof, only §' : H' (G}, Q/Z) — H?*(Gy,Z) will appear. Also in

the above formula, a € K* is viewed as an element of H(Gg, K ") in the middle and of
HO(Gy, (K™)*) on the right.
By the (de)construction of Invy, we see that
~Invi(aUdty) = =07 1 (vj(aU 6 x)) (Frob, b).
The map v} : H2(Gy, (K™)*®Z) = H*(Gg, (K™)*) — H%(G},Z) sends aUd'x to v (a)dlx.
Thus we end up with
x(w(rie(@)) = =07 (vke(a)d" ) (Froby 1) = —vic (@)} () (Froby 1) = x(Froby )

as claimed. 0

Corollary 10.11. Let m € K be a uniformizer. Then ri(mw) € G%’ s a lift of the geometric
Frobenius element Froby, € G,.

Proof. This is immediate from the previous proposition, since vg (7) = 1. O

Remark 10.12. We could just as well have taken the isomorphism H' (G, Q/Z) ~ Q/7Z given
by 1 — 1(Froby) in the definition of the Hasse invariant map Invg. Had we done that, we
would end up with the opposite normalization of the Artin reciprocity map that would send
uniformizers to lifts of the arithmetic Frobenius.

Definition 10.13. Let K/Q, be a finite extension. Recall the short exact sequence
0— Ix — Gg = Gal(K/K) 2 G, = Gal(k/k) — 0.

The Weil group Wi is the pre-image Wy = w1 ((Froby)).

We endow W with a topology by insisting that Ixr C Wx be an open embedding. In
other words, a base of open neighborhoods of the identity in Wi is given by a base of open
neighborhoods of the identity in usual topology of Ix as a subset of Gx. Observe that this
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topology of Wi is not the subspace topology, since Ix has infinite index in G and thus is
not open in Gg.

Theorem 10.14. The Artin reciprocity map of Theorem 10.8 induces a topological isomor-
phism rg : K* — W?(b.

Proof. There is an obvious injection W2 — G2, and it is clear from Proposition 10.10 that
the image of rg : K* — GE}P is contained in Wf(b. We thus obtain a diagram

0 - 0% - KX -7 -~ 0
K 1— Fl"Obk
00— Tgan /g - Wb » (Froby) —— 0,

where the rows are exact (in particular, this defines Ixab i), all three vertical maps are
injective, and the rightmost one is obviously an isomorphism. It remains only to show that
the map Oy — Iab /K 1s surjective, since then we will conclude from the Five Lemma that

the middle vertical map rx : K* — Wf{b is an isomorphism.

For every finite abelian extension L/K, we know by Proposition 10.6 that rx induces
an isomorphism K* /Ny i (L*) — Gal(L/K). Let Iy i denote the kernel of the surjection
Gal(L/K) — Gal(¢/k). From the proof of Proposition 10.6, it follows that rx induces a
surjection of O onto Ik But Igan g = @IL/K, where L/K runs over finite abelian

extensions. It follows that the image of O — Iab /K is dense. But it is also compact and
hence closed, since O is. Thus the image is all of Iyean /- O

EXERCISES

(1) Suppose that we are given an isomorphism sx : K* = W2P for every finite extension

K/Q,. Suppose that this collection of maps has the following properties:

o If a € K* and vk (a) = m, then the image of sk (a) in Gj is Frob%.

e If L/K is a finite extension, then sy (Np k(b)) = s(b) for all b € L.

e If L/K is a finite abelian extension, then sx induces an isomorphism sg :

K> /Np (L*) = Gal(L/K).

We have proved in this section that the collection of Artin reciprocity maps rx satisfies
these three properties. In this exercise we will prove that sx = rg for all K; in other
words, these three properties determine the Artin reciprocity maps.

(a) Prove that it suffices to show that the induced maps s : O — Gal(L/K) and
rk : O — Gal(L/K) coincide whenever L/K is a finite abelian totally ramified
extension.

Hint: Gal(L™/K) ~ Gal(L/K) x Gal(K™/K).

(b) Let L/K be finite, abelian, and totally ramified. Given o € Gal(L/K), let L, C
L™ be the fixed field of (o, Froby) € Gal(L/K) x Gal(K™/K) ~ Gal(L™/K).
Show that the fields L, and L, are distinct for distinct elements o, 7 € Gal(L/K),
and show that [L, : K| = [L: K] for all o € Gal(L/K).

(c) Let m, € O be a uniformizer, and let a € Oj. Show that the subgroup
NLSK(a)/K(LsXK(a)) C K* is generated by Ny /x(OF) and aNp /i (7r). Conclude
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from this that the maps sx, 7k : O — Gal(L/K) coincide, which is enough by
the first part of this question.

(2) Let G be a profinite group and let H C G be an open subgroup. Let s : H\G — G
be a continuous section of the natural projection G — H\G; recall that this exists by
Proposition 1.15.

(a) Let M be a G-module, with the discrete topology. Fix ¢ € Z1(H, M), and define
amap ¢ : G — M by

g)= > s@) - p(s(a)gs(zg) ).
HzeH\G
Prove that ® € Z!(G, M) and that [®] = cor%[p] € HY(G, M).
(b) Prove that
Vig)= [ s(=)gs(zg)™
xHeH\G
induces a homomorphism V : G — H?P satisfying ¢ o V = corg for all ¢ €
Hom(H,Q/Z) = H'(H,Q/Z). Here, of course, the action of G on Q/Z is trivial.
The map V is called the transfer map (“Verschiebung” in German, hence the
notation).



