ON THE STRUCTURE OF MODULAR PRINCIPAL SERIES
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ABSTRACT. The submodule structure of mod p principal series representations of
GL2(k), for k a finite field of characteristic p, was described by Bardoe and Sin and has
played an important role in subsequent work on the mod p local Langlands correspon-
dence. The present paper studies the structure of mod p principal series representations
of GL2(O/m™), where O is the ring of integers of a p-adic field F' and m its maximal
ideal. In particular, the multiset of Jordan-Hélder constituents is determined.

In the case n = 2, more precise results are obtained. If F//Q, is totally ramified, the
submodule structure of the principal series is determined completely. Otherwise the
submodule structure is infinite. When F' is ramified but not totally ramified, the socle
and radical filtrations are determined and a specific family of submodules, providing
a filtration of the principal series with irreducible quotients, is studied; this family is
closely related to the image of a functor of Breuil. In the case of unramified F', the
structure of a particular submodule of the principal series is studied; this provides
a more precise description of the structure of a module constructed by Breuil and
Paskunasin the context of their work on diagrams giving rise to supersingular mod p
representations of GLa(F).

1. INTRODUCTION

1.1. Tame principal series. Let k be a finite field and n > 2. Let P < GL,, be a para-
bolic subgroup with Levi subgroup M isomorphic to GL,,_1 x GL1, and let x : P(k) — k
be a character; observe that x necessarily factors through M (k). If y also factors through
projection to the second component of M (k), then, motivated by applications to coding

theory, Bardoe and Sin [2] determined the submodule structure of Indg%]:)(k) X nearly

three decades ago. In particular, they determined the structure of the principal series

representation I(y) = Indg%,:)(k)x, where B < GLs9 is a Borel subgroup. It turns out

that each Jordan-Holder constituent o of I(y) appears with multiplicity one. Thus there
is a unique submodule of I(x) with irreducible cosocle isomorphic to o, and any sub-
module of () is a sum of submodules of this type; hence I(x) has only finitely many
submodules.

The structural results of Bardoe and Sin found a dramatic new application in the work
of Breuil and Paskunas [9] towards an expected mod p local Langlands correspondence
for GLo(F'), where F'/Q, is a finite unramified extension. Recall that when F' = Q, this
correspondence was described in a functorial way in a series of works including [4, 11],
but far less is known when F' # Q,. Let O be the valuation ring of F', and let £ be its
residue field. Let p : Gal(F/F) — GLa(k) be a semisimple mod p Galois representation.
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Breuil and Pasktinas constructed infinite families of diagrams associated to each such p.
Diagrams are objects consisting of a finite-dimensional representation Dg(p) of the finite
group GLo(k) over k, together with some additional structure, such as a representation
D1(p) of the normalizer of the pro-p-Iwahori subgroup (1) of GL2(O). In the diagrams
of [9], one has Dy(p) = Do(p)'™M. By the theory developed earlier in [23], each of these
diagrams gives rise to infinite (see [17]) families of k-representations of GLo(F'), which
are irreducible and supersingular if p is irreducible.

Not all smooth irreducible mod p representations of GLy(F') arise in this way, and
probably not even all whose GLy(O)-socle is compatible with the weight part of Serre’s
modularity conjecture. However, a considerable body of evidence has accumulated over
the past fifteen years suggesting that the mod p local Langlands conjecture is realized
within the Breuil-Paskunas families when F'/Q), is unramified and p is generic in the sense
of [9, Definition 11.7]. Given p, one can fix a totally real field L and a place v|p of L such
that L, ~ F and attempt to find a GLa(L,)-module 7(p) in the completed cohomology of
a tower of Shimura curves over L that realizes the mod p local Langlands correspondence.
It is not yet known in a single case, for F' # Q,, that such a representation 7(p) is
independent of the many global choices made in the course of its construction. However,
a series of papers by various authors, including [5, 15, 18, 20, 21] and culminating in [14],
show that for any collection of global choices, the injection 7(p)!() — 7(p)K(1) is the
same and arises from one of the Breuil-Paskunas diagrams. Here K(1) is the first
congruence subgroup ker(GLy(O) — GLy(k)). In particular, 7(p)X™ ~ Dy(p).

When the extension F'/Q, is ramified, very little is known towards the mod p local
Langlands correspondence. A substantial obstacle is that it is not enough to consider
GLy(k)-modules, and one must work with representations of the larger finite group
GL2(O/m™) for n = 2; here m<t O is the maximal ideal. Observe that even the represen-
tation theory over C of such groups is understood more poorly than that of general linear
groups over finite fields; cf. [1, 26, 27, 12, 13] for examples of recent advances. While
all irreducible mod p representations of GL2(O/m™) factor through GLa(k) (see, for
instance, [3, Lemma 3]), the structure of reducible representations can be very different.

In particular, we would like to understand the structure of the principal series

GL2(O/m™
L(x) = Indig 200y

The present paper begins to fill this lacuna.

1.2. Main results. This section summarizes the main results of the article; in order to
avoid excessive details at this stage, some notations of the introduction differ from those
used in the body of the paper. We view I,,(x) as a representation over an extension field
k € FE; our results will be independent of E. Let the cardinality of the residue field k
be g = p/; assume that p is odd.

1.2.1. Jordan-Hélder constituents. We start by determining the Jordan-Hélder con-
stituents of I,,(x). Definition 2.4 fixes an E-basis B of I,(x). Consider the set S =
{0,1,...,p—1}f endowed with a partial order < defined by (ro, . . . 1) < (S0, --55f-1)
if r; < s; forall 0 < i< f—1. Later it will be useful to consider a monoid structure
on S; this is the monoid I§L defined in §2.1 that is ubiquitous throughout the paper.
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For each a € S we fix (Definition 3.4) a subset B, < B such that B, < Bg if a < 8
and consider the subspace W, of I,(x) spanned by B,. Since W, 1) = In(x),

this construction produces an exhaustive filtration of I,,(x). Note that any character y
of B(O/m™) factors through a character of B(k), and let n : B(k) — k* < E* be the

character 7 : — ad .

a b
0 d

In Corollary 3.2 we find a recursive description of the multisets of Jordan-Holder
constituents of I,,(x), starting with the sets of Jordan-Holder constituents of the tame
principal series I(x) = I1(x), which were determined by Bardoe and Sin. The proof

produces the following more precise result, which is Proposition 3.5.

Theorem 1.1. For each 3 = (Bo,...,B¢-1) € S, the subspace W3 is a GLa(O/m")-
submodule of I(x). Moreover, there is an isomorphism of GLa2(O/m™)-modules

f=1,5 i
Wg/ Z Wa >~ nfl(X‘ 7721':0 Bip )’

a€eS
a<p

where GLo(O/m™) acts on the right-hand side via its natural projection to GLy(O/m" 1),

1.2.2. A family of submodules. The remainder of the paper restricts itself to the case
n = 2 in order to obtain more precise results. Then to every element of the basis B
we associate a type, namely a pair (I,v), where I < Z/fZ and v € S. The set [
is determined by the columns where a carry must be performed when a certain two
elements of S, viewed as f-digit numbers written in base p, are added. Definition 4.7
introduces a partial order <,, depending on the character x, on the set of types, in terms
of generating relations. An equivalent explicit closed-form definition of <, is obtained
in Proposition 4.14 by means of long but completely elementary manipulations involving
the properties of carry sets. For every type (I,7), define V{; ) to be the subspace of
I5(x) spanned by the elements of B whose type is less than or equal to (I,7), with
respect to the partial order <,. The following claim consists of Proposition 4.10 and
Theorem 4.11:

Theorem 1.2. Suppose that the extension F/Q,, is ramified. For every type (I,7), the
subspace V(1) of I2(x) is stable under the action of GL2(O/m?). Moreover, Viry) 18
generated, as a GL2(O/m?)-submodule of I5(x), by any element of B of type (I,7).

The proof consists of explicit calculations that fail when F'/Q), is unramified because
of some complications introduced by summation of Witt vectors, and indeed the claim
is false when F'/Q, is unramified.

1.2.3. Submodule structure in the totally ramified case. An essential feature of the tame
principal series I(x) is that they are multiplicity-free: each Jordan-Holder constituent
appears only once as a quotient of any composition series. As a consequence, I () has
only finitely many GLso(k)-submodules. For any Jordan-Holder constituent o of I(x),
there is a unique submodule with cosocle isomorphic to o, and this submodule can
be specified by writing down its set of Jordan-Hélder constituents. Any submodule of
I(x) is a sum of submodules with irreducible cosocle. A description of the submod-
ule structure of I() of this form is very useful for applications; it provides a method
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for determining when two submodules are equal, or when one is contained in another.
See [8, Proposition 6.2.2] for another statement of this form, in a different setting. When
the extension F'/Q, is totally ramified, the principal series I2(x) is not multiplicity-free
(Propositions 4.25 and 4.26) but still admits a similar complete description of its sub-
module structure. We say that y is odd if xn* does not factor through the determinant
for any i € Z/(q — 1)Z, and that x is even otherwise. The following is Theorem 4.28,
partially restricted to the case of odd x. The statement for even x is very similar but
slightly more complicated, as it must treat an exceptional case, so we suppress it for the
purposes of this introduction.

Theorem 1.3. Suppose F'/Q,, is totally ramified and non-trivial. The principal series
I5(x) has 2p Jordan-Hélder constituents, parametrized by types (I,7), where I < {0}
and v € {0,1,...,p — 1}. Moreover, Is(x) has finitely many submodules.

If x is odd, then the submodules with irreducible cosocle are exactly the submodules
Vit The multiset of Jordan-Hélder constituents of Viy .y is {L(I',7') : (I',7') <x (I,7)},
where L(I,7) is the constituent parametrized by the type (I,7).

A depiction of the partial order <, on the set of types, when x is odd and F/Q, is
totally ramified, may be found in Figure 1.

1.2.4. Partial submodule structure in the general ramified case. If F'/Q, is ramified but
not totally ramified, then I(x) has an infinite lattice of submodules if the base field
E is infinite (Proposition 4.23) and we cannot hope for a complete explicit description
of the submodules of I5(x) as in Theorem 1.3. Most submodules are not sums of the
V(1,4)- However, for the submodules in this family much of Theorem 1.3 still holds. The
following is Lemma 4.16 and Proposition 4.17.

Theorem 1.4. Suppose F'/Qy, is ramified. The Jordan-Hélder constituents of Io(x) are
parametrized by a (possibly proper) subset of the set of pairs (I,~), where I < Z/fZ and
v € S. Moreover, Vi S Vir4 if and only if (I',v") <y (I,7), and the multiset of
Jordan-Hélder constituents of Vi; .y is {L(I',¥") : (I',y) <\ (I,7)}.

Moreover, excluding an exceptional case, the submodule V(; .y has irreducible cosocle

L(1,7).

Although Theorem 1.4 appears to describe only a very small part of the submodule
lattice of I5(x), it describes an important part. Breuil [6] has defined a functor from
the category of mod p representations of GLy(F') to that of (¢, I')-modules over Q,
and subquotients of I2(x) generated by elements of the basis B turn out to be relevant
for the study of the image of 7(p) under Breuil’s functor, with the aim of producing a
description of this image analogous to that of [7, §4].

1.2.5. The unramified case. All these results, except for Theorem 1.1 fail when F/Q,
is unramified. Indeed, we are unaware of a basis of I3(x) with the property that the
GL2(O/m?)-submodule of I5(x) generated by any element of the basis is the linear span
of a subset of the basis. However, we can still obtain interesting partial results. Assume
for simplicity that x does not factor through the determinant, and let o, be the unique
irreducible representation of GLa(k), and hence of GL2(O/m?), with lowest weight char-
acter x. Then I(x) has irreducible socle isomorphic to o,. If F/Q, is unramified,
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then we define a cyclic submodule M (x) S I2(x) that is analogous to V(g (1,1,...1))- The
submodule M () is multiplicity-free, and we can describe its submodule structure com-
pletely by means of explicit calculations that are less pleasant than the ones in the rest
of the paper. In [9, §17], Breuil and Paskunas associated a GL2(O)-module R(c) to
every generic irreducible representation o of GLy(k); these modules played a technical
but essential role in the proof of the main results of [9]. Under the genericity assump-
tion of Definition 5.4 on x, we recover R(oy) as a submodule of I5(x) and describe its
submodule structure completely, thereby strengthening an essential property of R(oy)
established in [9, §18] while simplifying its proof. We note parenthetically that our
study of M (x) may also be developed when x is not generic. An application, which is
the aim of work in progress, is to generalize the definition of Breuil-Pasktinas diagrams
to non-generic cases.

Indeed, let ©, = {(J,1): I,J < Z/fZ, Jn{i—1:i¢e I} = @}. To each § € O,
we associate an explicit irreducible representation g of GLo(k) by means of a recipe
that depends on x. Define a partial order on © by setting (J/,I’) = (J,I) if the two
conditions I’ € I and J' < Ju {i —1:4 € I\I'} hold. The following is Lemma 5.10 and
Theorem 5.12.

Theorem 1.5. Suppose that F'/Q, is unramified and that x is a generic character.
Then M(x) ~ R(oy) as GL2(O)-modules. The module M(x) is multiplicity-free with
Jordan-Hélder constituents {og : 6 € él} For every 0 € ©1, the unique submodule with
cosocle o9 has Jordan-Hélder constituents {og : 0/ € O, 0/ = 0}.

1.3. Overview of the paper. In §2 we set notation, recall the work of Bardoe and
Sin [2] about the structure of the tame principal series (), and establish properties of
the carry sets mentioned in §1.2.2 above. In §3, Theorem 1.1 is proved, and some general
explicit computations are presented. In §4 we specialize to the case n = 2, and soon after
to the case of ramified extensions F'/Q,, and prove the main results of the paper. In §5
the computations are modified to treat the case of unramified F'/Q,, and Theorem 1.5
is proved. The final section §6, which is an appendix to the main body of the paper
and essentially independent of it, contains the combinatorial proof of Proposition 4.14
and thereby provides a closed-form definition of the partial order <, appearing in the
statements of Theorems 1.3 and 1.4.

Acknowledgements. We are grateful to Shalini Bhattacharya, Stefano Morra, and Ariel
Weiss for illuminating discussions during the course of this work and its prehistory.

2. PRELIMINARIES

2.1. Notation. Let F//Q, be a finite extension. Let O be the valuation ring of F, let
k be its residue field, and let ¢ = p/ be the cardinality of k. Fix a uniformizer w € O,
namely a generator of the maximal ideal m. Let e be the ramification index of F'/Qy,
so that pO = m€.

2.1.1. The monoid N. For every n € N we set [n] = {1,2,...,n} and [n]y = [n] U {0}.
The symbol < denotes strict inclusion. Set Ng = N U {0}, and consider the equivalence
relation on Ny defined by a ~ b if the functions = — z% and = — z® from k to itself
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are equal. In other words, a ~ b if and only if either a = b = 0 or if a,b > 0 and
a=bmod ¢ — 1. Observe that N = Ny /~ is a monoid under addition.

For every class a € N there exists a unique f-tuple (a0, ... ap-1) € ([p— 1]0)!
satisfying Zi:ol a;p' € a. Define a partial order < on N as follows: a < B if and only if
a; < B; for all i € [f — 1]p. Equivalently, by Lucas’s theorem, o < /3 if and only if the
Zf:ol Bip’
2{;01 a;pt

We will use two notions of subtraction on N , each of which is only partially defined.
Observe that the subsemigroup N\{0} c N, which is not a submonoid, has the structure
of a group and is naturally identified with Z/(q¢ — 1)Z.

(1) Given a,b € N such that a # 0, define the difference a — b to be the unique
¢ € N\{0} satisfying b+ ¢ = a.
(2) If o, 8 € N satisfy 0 # « < [, then we define § — « to be the unique v < 8
satisfying o + v = .
Thus, for example, we have (¢ —1) — (¢—1) =¢—1but (¢—1) =~ (¢—1) =0.
If I < [f— 1]o, we use the shorthand p! = Y. ;p'. If b € Z/fZ, then, identifying
[f — 1]o with Z/fZ in the natural way, we set I —b = {i —b:ic I}. If « € N, then the
support of « is the set supp(a) = {i € [f — 1]o : a; # 0}.

binomial coefficient ( ) does not vanish in k.

2.1.2. Induced representations. Let G be any group and H < G a subgroup. Let E be a
field, and let p : H — Autg (V') be a representation of H with underlying E-vector space
V. If ge G and v € v, then set gQ v € Indgp to be the function f : G — V supported
on the right coset Hg~! and satisfying f(hg=') = p(h)v for all h € H. Observe that
gh®v =g® p(h)v for all h € H and that (g ® v) = xg ®v for all z € G.

2.1.3. Witt vectors. If x € k, let [x] € O be the Teichmiiller lift of . For a class
A e O/m™ we set Ag, A1, ..., An—1 to be the unique sequence of elements of the residue
field k satisfying 37"/ [\i]w’ € A. Abusing notation, we will write A = 37 [\i]=’.
Similarly, any element A € O can be written uniquely as a series A = Y.~ \[A\;]@".

Let v = £ € O, and note that ug € k*. Consider the polynomial S(z,y) =
xp+yp;(r+y)p c7
Lemma 2.1. Let a,be O. Write a = >,;2 j[ai]@’ and b = Y72 [bi]w’, for a;,b; € k.
Then

[z,y]. The following identity will be crucial to our computations.

e—1
a+b= Z [a; + bi]ﬂ'i + [ae + be + upS(ap, bo)pf_l]we mod 1.

i=0
Proof. Let Fy be the maximal unramified subextension of F'//Q,. Observe that [A] € Fy
for all A € k by Hensel’s lemma. We view elements of the Witt vector ring W (k) = Op,
as sequences of elements of &k as in [25, §I1.6] and use the notation Fr and V for the
Frobenius and Verschiebung operators. Then [A] = (\,0,0,...), as the right-hand side
is easily seen to be a (p — 1)-th root of unity congruent to A modulo p. Similarly,
p[A] = Fr(V([A])) = (0, AP,0,...). Hence,

A+ (] = A+ 2, SO ), 0, ) = [+ ] + p[SOL P Jmod p?
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for all A\, pu € k. Since p = [ug]w®mod w®"!, the claim follows. O

If m < n, then 9], denotes the natural projection O,, — O, of rings, and also the
natural projection G,, — G, of groups that it induces. By 1, we always mean the trivial
representation of the relevant group.

Definition 2.2. We set notation for the following subgroups of Gy :

(5 @ )aen s
'D":{<é 1+

(1) l{):be(’)n};
U= {( 4 1) cc0i)

Let B < GLo be the algebraic subgroup of upper triangular matrices. For n € N,

write O, = O/m" and let G,, = GL2(O,,), and B,, = B(O,,). Let w = ( (1) é > € Gp.

If re Z/(q — 1)Z, then we define x, : B, — k* to be the character

a b -

2.2. Principal series representations. The primary aim of this paper is to investigate
the following representations of Gy,:

Definition 2.3. Let ne N and let r € Z/)(q — 1)Z. We set V,,, = InngXT.

We view V, , as a representation of dimension (g + 1)¢"~! over some sufficiently large
extension field £ € E. For explicit computations below, it is convenient to define an
explicit E-basis of V;, ;.

Definition 2.4. Ifj = (jo,...,jn_1) € N?, set
A1 4 -
1 3 (1 D)o
AeOy,
Ifj = (1, jn_1) € N*L then set
_ _ Al A TT Py 10 T
Jog) = wfoy) = Z 10 ® (—Ao) H 5 (M) + Z o 1 ®H &
AEO;L( i=1 )\EO'n—l =1
Here P; : O} — k is defined by A\~! = Z?;Ol [P;(\)]w?; see Lemma 3.7 below for an

explicit formula. We write M for MNPAJY .. A when this is unlikely to cause confusion.

Note also that r € Z/(q—1)Z = N\{0} by definition, so that the first sum in the previous
displayed formula receives no contribution from A\ € O,, such that Ay = 0 and thus is
actually a sum over O), where the functions P; are defined.

Lemma 2.5. The set B, = {fj|j€ N7} U {flojy |3 € N"=13 is an E-basis of Var-
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Proof. A set of representatives of left cosets of B,, in G,, is given by

(1) aeaof( 1) asem

from which it is clear that {{®1 : £ € Z} is a basis of V}, . Iterating a standard Vander-
monde argument (cf. [22, Lemma 2.10(ii)]) we find that the set {f; : j € N"} is linearly

independent, and that it spans the subspace VAT spanned by { < Al ) ®1: e On}.

(1]

1 0

Since V,, . < span(B,,,), it is evident that span(B,,,) contains the linear span of the
set {eron_l < )\; (1) ) QM :je ﬁ”—l}, which is the same as the linear span of

1
Furthermore, |B,,»| = (¢ + 1)¢"! = dimg Vp, r, s0 By, is indeed a basis of V;, . O

{ ( )\; 0 ) ®R1: e (’)n_l} by the Vandermonde argument. Hence span(B,,,) = Vj,,.

The elements of Definition 2.4 have the advantage of being eigenvectors for the action

of the torus T' = {( [g] [2] ) ta,de kx} and of the center Z(G,,).

Lemma 2.6. The following equalities hold:
(1) If t € T, then

o= g
tfogy = d(ad )T fiog g
(2) If a € O) and z = diag(a, a) € Z(Gy,), then zp = agp for any ¢ € By ;.
Proof. This is a simple calculation. O

2.3. Carry sets. If n = 1, then the principal series representation Vi, = Indgl(f)(k) Xr

was studied by Bardoe and Sin [2]. We will give a mild reformulation of their results,
in terms of the definition below.

Lemma 2.7. Let o, 3 € N. As above, let a;, B; € [p — 1]o be such that ZZJ-:OI apt € o
and Z{;ol Bip' € B. View the indices i as elements of 7/ f7 via the natural identification
of the sets [f — 1o and Z/fZ. There exists a unique subset I(c, B) S Z/fZ satisfying
the conditions:

ai+Bi<p—-2ifi—1el(a,B) and i ¢ I(a, ),
o+ B =zpifi—1¢1(a,B) andie I(a,B),
ai+Bi=zp—1ifi—1el(a,B) and i€ I(a,p),
IHo,8) =2 ifa;+ Bi=p—1 forallie[f—1]o.

Proof. Suppose that there is some index ¢ for which o; + 8; #p—1. f a; + 8; <p — 1,
then the first two conditions imply that if such a set I(«a, ) exists, then necessarily
i ¢ I(a,p). Similarly, if a; + 8; > p — 1 then i € I(«a,3) by the third and fourth
conditions. In either case, the conditions now determine whether or not i + 1 € I(«, f3).
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Continuing in this way, we find that a set satisfying the first four conditions exists and
is unique.

The only unresolved case is when «; + 8; = p— 1 for all 7. In this case, the two sets @
and Z/ fZ satisfy the first four conditions, but the fifth one determines I(«, 5) = @. O

Remark 2.8. Informally, I(«, ) is the set of columns where a carry is performed when
computing the sum of sz;ol a;p' and sz:_ol Bip* in base p. Observe that carries can
only occur when a and § are both non-zero; indeed, I(a,8) = @ if a = 0 or 5 = 0.
Otherwise, since we are working in N\{0} = Z/(q—1)Z, any excess from the p/~! column
is carried to the p° column.

Definition 2.9. Let v € N. We say that a set J < 7/ f7 is y-admissible if there exist
a, B € N such that o + B =~ and I(c, 3) = J.

The y-admissible sets are easy to describe directly. We leave the proof of the following
observation to the reader, noting that I(q —1,q — 1) = Z/fZ.

Proposition 2.10. Let v € N and J Z/f7.
(a) If v €{0,q — 1}, then J is y-admissible if and only if J € {&,Z/f7}.
(b) If v ¢ {0,q—1}, then J is y-admissible if and only if the following two conditions
are satisfied for every i€ Z/f7:
e Ifv,=0andi—1€J, thenie J.
e Ifvy=p—1andieJ, theni—1€ J.

The following lemma and its corollary state a property of carry sets that will be
essential for some of our arguments below. It has surely been well-known for centuries,
but we were unable to find a proof in the literature. The following argument was
suggested by Steven Landsburg in a Math Overflow answer to a related question.

Lemma 2.11. Let o, 3,7 € N. Then Ia,y) ul(a+~,8)=I(a,B)ul(a+B,7). In
particular, I(a+,8) < I(a, B) v I(a + 5,7).

Proof. Consider the natural short exact sequence
(1) 0 — Z/pZ = Z/p" 2. 5 2/p’ 7 — 0,

where we view elements of Z/p™Z as m-digit numbers written in base p and the maps
are given by t(a) = a0---0 and W(afaf,y--alao) = af_1---ajap. Here the a; are
digits. Consider the section 7 of 7 defined by n(af_i---ap) = Oag_1---ap. Then the
class in H?(Z/p?Z,Z/pZ) corresponding to the extension (1) is represented by the 2-
cocycle 1 : Z/pIZ x ZfplZ — ZJpZ given by (a, B) = 1=} (n(e) + n(8) — n(a + B)).
It is clear that (o, 8) = 1if f —1 € I(«, 8) and ¥(c, 5) = 0 otherwise. Here we use
the natural correspondence of sets between Z/ p/Z and N; of course, this correspondence
does not respect the addition on each side. Since the groups in (1) are abelian, the
induced Z/pf Z-module structure on Z/pZ is trivial. Hence the cocycle condition on
amounts to

Pla, B) +dla+B,7) = Pla,y) + (e +7,8).
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Thus f — 1 is contained in the left-hand side of the claimed equality of sets if and only
it is contained in the right-hand side. By permuting the digits, the same statement can
be obtained for all i € Z/ fZ.

Observe finally that if we treat both sides of the claimed equality as multisets, then
equality still holds. O

Now let m > 2 and let €1,...,6, € N. Let T be a full rooted binary tree with m leaf
nodes vy, ..., vy. Let vy be the root of 7. Let VO(T) be the set of leaf nodes and V2(T)
the set of non-leaf nodes. We now associate an element 7, € N to each node v of T and
a subset I, € Z/f7Z to each v e V2(T). If v; € VO(T), then set 7,, = ¢;. If v e V3(T)
is a non-leaf node with children v’ and v”, then we define recursively 7, = 7,/ + 7,» and
Iy = I(1y, Tyr).

Observe that 7,, = >, & is independent of the choice of tree 7. The full binary
trees T correspond to all possible ways of computing this sum by adding two elements of
N at a time. The following corollary states the number of times each column is carried
while computing the sum 7,, does not depend on the way in which it is computed.

Corollary 2.12. Let m = 3 and let T be a full rooted binary tree as above. The multiset
Ir = ]_[,UGVQ(T) I, is independent of the choice of T .

Proof. If m = 3, then the tree T is unique up to permutation of the indices of the leaves,
and our claim is immediate from Lemma 2.11. If m > 3, label each node v of T by the
subset of [m] enumerating the leaves lying below v. If A, B, C'  [m] are disjoint subsets
such that the configuration on the left of the figure below appears as a subgraph of T,

AnBnC AnBnC
/N AN
AnB C A BnC
/\ /\
A B e B C

then by Lemma 2.11 we may replace it by the configuration on the right to obtain a
tree 77 satisfying Z7 = Z7+. The claim follows, since any tree may be reached from any
other by a sequence of such moves. O

2.4. Submodule structure of principal series for GLs(k). Every irreducible k-
representation of GLy(O),) factors through GLa(k) and is defined over k; such a repre-
sentation is called a Serre weight. See, for instance, [16, §3.3] for a survey of the basics
of Serre weights and, in particular, for the following notation. If o € Z/(q¢ — 1)Z and
ag € Z, then by F(a, az) we mean the Serre weight F'(aq, asz), where ay € Z is the unique
integer satisfying a1 € « and 0 < a1 — a2 < q— 1.

Definition 2.13. Letr e Z/(q—1)Z and J < Z/fZ. Define s;(r) = Z{;& syi(r), where
0 g J
SJJ'(T’): r,+1 i—1¢J 1ed
T r—1,0¢e J.
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Let o5(r) be the Serre weight F(r — s;(r),s;(r)).

Remark 2.14. We leave it as a combinatorial exercise for the reader to determine the dig-
its of r—s(r) in base p and thus establish that o ;(r) = det* ") @ ®{;01 (Sym?t+ (M) 2) (@)
where 7() is the twist of the k-representation 7 by the i-th power of the Frobenius au-
tomorphism of k£ and

7 ci—1,0¢ J

ri—1 i—1ledJ ig¢J

p—2—r; i—1¢J ied

p—1—r; 2—1,1¢€J.

tt]ﬂ' (T) =

Recall that our basis By, of V1, = Indgl(“,:)(k)xr consists of the following ¢+ 1 elements:

Al L~
ij = Z( 1 0>®AJO7.706N

Aek
Jo = wo.
This coincides with the basis defined just after [9, Theorem 2.4].

Definition 2.15. For each I < Z/fZ, define Vi < Vi, to be the linear span of {fyx} U
{fjo : Jo € N, I(jo,m — jo) < I}. In particular, Vi < Vy if and only if I < J.

The work of Bardoe and Sin [2] completely describes the submodule structure of

Vip = Indg%]f)(k)XT. Recall that r is defined modulo ¢ — 1, so we view r as an element

of N\{0}. To provide a dictionary between the notions of [2] and those of the present
paper, consider the ring

A=FE[X,)Y]/(X?-X,Y?-Y,(X ! —1)(y9 ! —1)),

and let A[r] be the subgroup of the underlying abelian group of A generated by monomi-
als whose total degree is congruent to  modulo ¢ — 1; note that this is well-defined. Let
GLa(k) act on A[r] by (¢P)(X,Y) = P(aX +cY,bX +dY) for g = ( (CL Z ) € GLa(k)
and P € A[r]. Observing that (1 — X9 1)Y" € A[r] is an eigenvector for the action of
B(k), with character x,, by Frobenius reciprocity we obtain a map ¢ : Vi, — A[r]. It is
easy to check that this map is an isomorphism and is given explicitly by

X" :7=0
Yr 1] =
L(fj) = _xrya-1 Li=q—1

(HXTYT ¢ {0,9 — 1,00}

If a, 8 € N, then X*Y? € A[r] is a basis monomial in the sense of [2]. The type of
X2Y? is defined in [2, §3.1] when 7 = ¢ — 1 and in [2, §9.1] when r # ¢ — 1; this is
an f-tuple (sg,...,5¢-1) € N/. Unwinding the definition, one verifies that s; = 1 if
i—1€e (o, B) and s; = 0 otherwise. We can now translate some results of Bardoe and
Sin into the following theorem. These results are also stated in Theorems 2.4 and 2.7
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of [9], with an alternative proof given in [9, §4]; observe, again by unwinding definitions,
that the subset J € Z/ fZ associated to an irreducible subquotient o of Vi, just after [9,
Lemma 2.2] is the one satisfying o = o5(r).

Theorem 2.16. Suppose that r # q — 1. The following statements hold.

(a) Let jo € N. The GLa(k)-submodule of V1, generated by fj, is Vi

(b) The GLa(k)-submodule of Vi, generated by fo is V.

(c) If I < Z/fZ is r-admissible, then the submodule Vi has irreducible cosocle iso-
morphic to or(r).

(d) If M < Vi, is a submodule with irreducible cosocle, then M = Vi for some
r-admissible I < Z/fZ. In particular, if M < Vi, is any submodule, then
M = ZIgZ/fZ V]

vieM

Jo,r—Jjo)"

Proof. The first two claims follow from [2, Theorem 5.1] and the third and fourth claims
are Corollary 6.1 and Theorem C of [2]. The results of §5-6 of [2] are stated in the case
r =q— 1, but it is observed in [2, §9.2] that the proofs work in general. U

It remains to consider the exceptional case r = ¢ — 1, i.e. x, = 1. Observe that if
jo € N, there are only two possibilities for the carry set I(jo,q—1— jo): this set is Z/fZ
if jo = ¢ — 1 and @ otherwise. The following claim is obtained as above, except that we
apply Theorem A of [2] rather than Theorem C.

Theorem 2.17. The GLy(k)-module Vi 41 = Indg%kz)(k)l s a direct sum of two Serre

weights:

Vig-1~ F(qg—1,0)® F(0,0).
The q-dimensional irrNeducible submodule F(q—1,0) is Vg, namely the linear span of the
set {fo} U {fj, : jo € N\{g —1}}. The one-dimensional submodule F'(0,0) is the span of
fO + foo - fq—l-

3. THE JORDAN-HOLDER CONSTITUENTS OF Var

3.1. Jordan-Holder constituents. Using the work of Bardoe and Sin, it is simple to
produce a recursive expression for the multiset JH(n, x) of Jordan-Hélder characters of
Ind%:x, for a character y : B, — E*; note that x necessarily factors through B(k).
Recall the character n : B(k) — k> of the introduction. For each n > 2, define the
subgroup

(2) B, = W) HB(O, 1)) = {( Z Z ) eGn: ce m"_l/m”} < Gy,

In the following, we view characters of B(k) as characters of B,, and B, for all n by
inflation and omit composition with 7 from the notation.

Lemma 3.1. Let x : B(k) — k™ be a character. The multiset of Jordan-Hélder factors
of InngX is {xn®:ae N}
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Proof. The g-dimensional space Indg:X clearly has a basis consisting of the elements

( [\ ;n_l (1) ) ® 1 for A € k. By the same Vandermonde argument as in the proof of

Lemma 2.5, an alternative basis is given by the elements
1 0
Mo = Z < [A]wnfl 1 ) ®)\a
Aek

for a € N. Moreover, a straightforward computation shows that for g € B, as in (2) and
B € N, we have

1 0
G) gmp = )éc < [ag ' (do + cn—1)]@™ ! 1 > BX(N =

10 16 8
5 (gt 3 ) ©X@ " ar = e
Aek

from which it is evident that the subspaces Ug = span{mg : a < 8} are En—submodules

of Indan. Moreover, we have
By, )

(4) Us/ Y Ua = xn’,
a<pf
since the left-hand side is a one-dimensional space spanned by the image of mg. O

Now we obtain the promised recursive formula for JH(n,x). For the basis of the
recursion, recall that the sets JH(1, x) of Jordan-Hélder constituents of Indg%]j)(k) X are

specified (up to twist) in Theorems 2.16 and 2.17.

Corollary 3.2. Suppose n = 2, and let x : B(k) — k* be a character. Then JH(n, x)
is equal to the disjoint union of multisets

ﬁeﬁl
Proof. Set K,, = ker¢{. Then K, <, is a normal subgroup that acts trivially on
any one-dimensional representation of G,, and K, < B,. By Lemma 3.1, the in-

duced module Ind(B;:X = Indg" (IndﬁZx) has an exhaustive filtration with quotients
G, Gn/Kn nG'n—
Indén i ~ Indén;Kn xn® ~ Ind Bn_ixnﬁ. O

Remark 3.3. A recursive description of Jordan-Hoélder constituents in a similar spirit,
although proved by computations of Brauer characters, is given in [24, Theorem 2.3] for
reductions modulo p of cuspidal representations of GLa(O).

3.2. A filtration. In this section we assume n > 2 and further investigate the filtration
of V,r, indexed by N, that arose in the proof of Corollary 3.2. We also compute the
action of certain elements of G, on the elements fj € V,, of Definition 2.4. These
computations will be crucial later in the paper when we study a much finer filtration of
Vo
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Definition 3.4. Given g € N, define the subspace Wy to be the linear span of
B,B = {f(jo,...,jn_1)7 f(%,jl,...,jn_l) : .j07 e 7.j7l—2 € N?jn—l =< 6} .

Proposition 3.5. Let § € N.

(a) The subspace Wg is a Gp-submodule of Vi, .
(b) There is an isomorphism of G, -modules

Wﬂ/ Z Wa ¢1 Odet )®Vn—1,r—2,37
a<f

where Gy, acts on the right-hand side via the projection ]! _; : Gp — Gp_1.

Proof. Examining the isomorphism IndG" (Indén r) — Indg"xr of G,-modules, it is

easy to see that that W3 is the image of Ind ”Uﬁ, where Ug < Ind% B, Xr are the subspaces
defined in the proof of Lemma 3.1. This 1mphes the first claim, and the second follows
from (4). O

The following claim, which is a corollary of the proof of Proposition 3.5 rather than
of its statement, will be an ingredient in some of the structural results of §4.

Corollary 3.6. If § € N satisfies v — 28 # q — 1, then Wy has a unique mazimal
G, -submodule.

Proof. We saw in the course of proving Proposition 3.5 that Wy ~ Indgn Ug. Let o be

an irreducible G,-module. By Frobenius reciprocity, Homg, (W3, 0) ~ Hom (Ug, o).
The image of any non-zero ¢ € Homy (Ug, o) is a submodule of o, hence is 1nvar1ant

[c ]1w”_1 (1) ) for all ¢,—1 € k. Tt is evident from (3) that
n—1

< [Cn—l]lwn_l (1) )mﬁ —mg =) (=1)°° (g) & meg

a<f

under the action of <

vanishes in any quotient of Ug with this property. By the Vandermonde argument, the
only such non-zero quotient is the one-dimensional cosocle XM?B By assumption, there
is only one irreducible G,,-module o admitting x,n” as a B,,-submodule. Only this o
arises as an irreducible quotient of Wjs. It satisfies dim Homg, (Wp,0) = 1, implying
the claim. 0

3.3. Some computations. Proposition 3.5 can be proved more laboriously by direct
computation, applying elements of a set of generators of G}, to the basis Bg of Wp
and verifying that the image is contained in Wjg. We now state the results of some
computations of this sort, as we will rely on their specializations later in the paper.

Given ¢ € N, let Part () be the set of partitions of ¢, namely non-increasing sequences
m = (m1,...,m,) such that >/, m; = . For a partition m € Part(¢), let |m| = r
denote the length of m. For every j € N, let m(j) = |{i € [r] : m; = j}| be the number
of times j appears as a part of m. We start with two auxiliary lemmas.
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Lemma 3.7. Let the functions Py(\) : O — k be defined by A=t = 307 [ [Po(N)]&’. If
l{ < e, then
)\Z/D’(i)

4
P = 3 (DPspag Y (H 6@,) .
i=1 :

BeParty

Proof. Let E be a field, and let ;2 a;X* € E[[X]]* be an invertible formal series.
Then its inverse is Y.,- , by X", where

¢ B0
(5) b= 3 (~1)Pl|g]1ag PHY (H Zi(z')v)'
i=1 ’

BePart,

Indeed, the sequence {b;} is determined by by = a; I and the recursion Zfzo ag—ib; =0
for all £ € N; it is easy to verify that the sequence of (5) satisfies these conditions. The
claim follows from this and Lemma 2.1. O

By definition, wf(o,,....ju1) = f(wgi,min-1) @ Wheo i, jn-1) = F0j1,dn1)- SO
consider j = (jo,-..,Jn—1) € N” with jo # 0. Observing that A € O, if and only if
Ao # 0, we have

with P;(\) as in Lemma 3.7. Similarly, if d € O,_; then
(7)

(30 )im 3 (00 o= 5 (3 4)eTleon

ke(’)n )\eon
where the Q;(\) are defined by A(1 + dw) = Y1) [Q:(N)]=.
Lemma 3.8. Suppose that A\,b € O, and let the series of functions R; : O — k be defined
by A\ —b=>7"[Ri(\)]w'. Then
(a) Ri(\) = \i —b; for allie [e—1]p.
(b) Ro(A) = Ae — be +ugSONE =08 ).

(c) For all i = e we have R;(\) = A\; — b; + R(\), where R;()\) depends only on
AQy v v vy Ni—e-

Proof. All the claims are immediate consequences of Lemma 2.1. O
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Consider j = (Jo,-.-,jn-1) € N" and observe that

1 b A+b 1 , A1) e .
®  (o1)6= 3 (M 5)er=2 (1 5)ellrow

where the R;()\) are as in Lemma 3.8. Finally, a direct computation shows that if
jeN""1and N =[]} A, then

9) ( (1) 11) >f(oo,j> = > ( A_l(lf A) (1, ) < 3 _Al_l >®>\j+

AeOX
1 0 1+ \b b i
2 (/\(1+>\b)1 1>< 0 (1+)\b)1>®)‘_
Aem/m™
v 1 nl : 1 0 n-l
> ( 1 0 )@(bo—yo)rHPZ-(RO(V),...,RR1(y))9i+ > < o1 )@H Ri(v),
veb+O, i=1 vem/mn i=1

where R;(v) is defined by v(1 —vb)~' = Y7 [Ri(v)]=’ for v € m/m™.
4. PRINCIPAL SERIES FOR GLg(O/m?)

We assume for the remainder of the paper that n = 2. If additionally e > 2, then O,
is isomorphic to Fy[r]/(7%) and we can compute easily. The results also apply in the
case of function fields as O is the power series ring Fq((m)).

4.1. Preliminary computations. In this section we prepare some computational lem-
mas that will be main ingredients in the proofs of our main results. The first indication
that life is particularly simple when n = 2 is that w permutes the elements of our basis,
up to sign.

Lemma 4.1. Let (jo,j1) € (N U {0}) x N. Then
f(eo.r) 1Jjo=0
wWiio) = | foa HJo =0
(=)™ fr—2i—joju)  +Jo ¢ {0,000},

Proof. The first two lines are immediate from the definition of f( j). To obtain the
third line, observe that if A\g # 0, then the identity

([Ao] + Ma]@) ™ = [Ag1] = [Ag* M) mod &

holds in O with no restriction on the ramification of F/Q,. Hence Py(\) = A;' and
Pi(\) = —A\;?\1, in the notation of the proof of Proposition 3.5, and our claim is
immediate from (6). O

Lemma 4.2. Let (jo, j1) € (NU{o0})xN. The Dy-submodule of Va,r generated by f(j, i1
is the linear span of

{f(jm;,jl;ji) B J'l} tjoeN
{f(oo,jl)} v {f(r—?jl—&-ji,jl;ji) (0 #£ 1 < j1} : jo = o0.
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Proof. Observe that if n < e+ 1, then for all A\,d € O we have

n—1 i—1

(1+dw)\ = Z <)\i + Z )\gdi_g_1> @' mod w™;
i=0 =0

indeed, the Witt vector summation of Lemma 2.1 does not appear. In particular, for

all e = 1 we have Qp(\) = A\ and Q1(A) = A\ + Aodp, in the notation of the proof of

Proposition 3.5. It follows from (7) that if jg, j; € N, then in Va,» we have

1 0 Al ; ;
(0 1+ dw >f(j0,j1) = Z < 1 0 >®)‘€)O()‘1+>\0d0)ﬂ,

)\EOQ
and hence if j| < j; then

1)~ 0 J1
(10) Z dy (=141 ( 0 1+ [do]w )f(jD»jl) - <]1)f(J0+J1731 =)

doek
The binomial coefficients are non-zero in F, and by the usual Vandermonde argument

the elements of the form (10) linearly span the Do-module generated by f(j, ;)
The remaining case jo = oo follows from Lemma 2.6, Lemma 4.1 and the observation

10 - 0 l+dw 0 ‘o
0 l+dw )7 =% 0 (1+dw)! 0 1+dw )/

so that (D2 - f(u,4,)) = w{D2 - f0,,))- -

Remark 4.3. The previous two lemmas already show that the analogous computations
become much more involved when n > 3. Indeed, by Lemma 3.7 the expressions Py(\)
appearing in the computation of wfj are sums of monomials indexed by partitions of
f. The clean statement of Lemma 4.1, that w permutes the elements of the basis
Bz, up to sign, arises because all elements of [n — 1]p have only one partition when
n = 2. Of course, this is false for larger n, and we obtain far messier formulas. These
difficulties cannot be resolved by computing with respect to a different basis. Moreover,
the previous observation is independent of the complications arising when e < n and
the computations involve Witt vector polynomials as in Lemma 2.1. The latter features
appear already when n = 2, in the unramified case e = 1; see §5 below.

Lemma 4.4. Let (jo,j1) € N2, The Us-submodule of Vo, generated by f(;, ;) s the
linear span of {f(joﬂji’jl;ji) D < jl}.
Proof. A straightforward computation shows that for all e > 1 we have

1 0 Al i ;
( coo 1 )f(]o,]l) = Z ( 1 0 >®)\{)0()\1 + )\300)31’

)\602

whence the claim follows by the usual Vandermonde argument. (]

The next lemmas study the action of the subgroup Uz < G2 of upper unitriangular
matrices. Here we already see a divergence in behavior depending on whether F'/Q, is
unramified (e = 1) or ramified (e > 2); the analogue of the following statement in the
unramified case appears in Lemma 5.1 below.
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Lemma 4.5. Suppose that e > 2. If (jo,j1) € I§12, then the Us-submodule of Vo,
generated by f(;, ;1) 5 the linear span of

{f(ja,jg) L Jo < Jos J1 < jl} :

Proof. Since we have assumed e > 2, it follows from Lemma 3.8 and (8) that

(11) ( (1, 11) >f(j0,j1) = < i (1) ) ® (Ao — bo)? (A — by)7.

AE 02

If ]6 < jo and ]{ < j1, then

—1D)=(jo=1" —1)=(j1~74" 1 b +b w ]0 ]1
(12) Z b(()q )=(jo Jo)bgq )=(1=351) ( 0 [bo] 1[ 1] >f(jo,j1) :< >< >f(j673'i)'

Y Y
bo,b1€k Jo/ \J1

Elements of the form (12) span (Uz - f(, j,)) by a standard Vandermonde argument. [J

Jo,J1
Lemma 4.6. Suppose that e = 2. Let j; € N. The Us-submodule of Vo, generated by
J(0,j1) 18 the linear span of

Ui} U {Fapany 136 <7 =240, 31 <, (0 = 240,51) # (i 1) € N2}

Proof. Specializing (9) to the case n = 2, we obtain

(13) ( é ll) >f(oc,j1) =

S (15 )@=t -t 3 (] e

IIEOQ l/1€k'

where we observe that 7 — 2j; € N\{0} by definition, and therefore the first sum only
has non-zero contributions from v € b+ OJ as in (9). Now consider weighted sums
analogously to (12). O

4.2. Types and submodules. Consider the set © = (N U {o0}) x N. Recall that a
preorder is a reflexive and transitive relation. We will now define a preorder <, on ©.
Its equivalence classes will correspond to the Jordan-Holder constituents of Va .

Definition 4.7. The preorder <, on the set © is defined to be the preorder generated
by the following relations:

(1) If (jo,71) € I§IQ and m € [f — 1]o satisfies p™ < jo, then (jo ~ p™,j1) <r (Jo,J1)-

(2) If (jo,j1) € N2 and m € [f — 1]o satisfies p™ < j1, then (jo, 51 =~ p™) < (jo,j1)-

(3) If (jo,j1) € N2 and m e [f — 1]o satisfies p™ < j1, then (jo + p™, j1 = p™) <,
(Jo, J1)- N

(4) If jo € {0, 0} and j1 € N, then (r — 2j1 — jo, j1) <r (Jo,J1)-

(5) If j1 € N and m € [f — 1]o satisfies p"™ < j1, then (r — 2j1,j1 ~p"™) <, (90, 71).

(6) If j1 € N and m € [f — 1o satisfies p™ < r — 251, then ((r — 2j1) = p™, j1) <»
(OO,jl).
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(7) For all j; € ﬁ, the elements (0,71) and (00,71) are equivalent, i.e. (0,71) <,
(0, j1) and (o0, j1) <r (0, j1).
We say that (jo, j1), (J§, 71) € © are equivalent if both (jo, j1) <, (j(/)JQ and (jj, 71) <r
(jo,j1)- Then <, induces a partial order, also denoted <,, on the set © of equivalence
classes.

Remark 4.8. We record some implications of the relations, for use below.

(1) Applying the fourth generating relation to (r — 251 — jo, j1), we observe that if
jo ¢ {0, 00}, then (jo,j1) and (r — 251 — jo,Jj1) are equivalent.

(2) Applying the sixth and seventh relations, we observe that if p"™ < r — 2j;, then
(0,71) <» ((r—271) = p™, j1) <r (0,71) <, (0,71), so all of these are equivalent.

(3) If j; € N and p™ < j; for some m € [f — 1]o, then (r — 2j; + p™, j1 = p™)
is equivalent to (p™,j1 — p"™) by the first observation of this remark. Hence
(r —2j1 4+ p™,j1 = p™) < (00,71) by the third and seventh relations.

(4) If p™ < j1, then applying the fourth, second, and fourth relations in sequence

produces (jo+2p™, j1=p™) <, (r—2j1—7jo, j1=p") <r (r—251—Jo0, J1) <, (Jo,Jj1)-

The elements of © will be called types. If (jo,j1) € O, then the equivalence class in
© to which it belongs is denoted by [(jo, j1)]-

Definition 4.9. Let 0 € © be a type. Set Vy to be the subspace of Vo, with basis
{f(jo,jl) : (.jOvjl) € @7 [(]07.71)] <r 9}

Proposition 4.10. Let 0 € o. If e = 2, then the subspace Vy is stable under the action
of Go = GLo(O/m?).

Proof. By the Bruhat decomposition, for every n € N the group G, is generated by B,
and w, whereas B,, is, in turn, generated by the center Z(G,,) and the subgroups T, D,,,
and U, of Definition 2.2. Hence it suffices to verify that Vj is stable under the action of
the subgroups Z(Gs2), T, D2, Us and the element w. Since each of the basis elements in
Definition 4.9 is an eigenvector for the actions of Z(G2) and of T" by Lemma 2.6, it is
clear that these subgroups preserve V. By Lemma 4.1, together with Remark 4.8(1) and
the last generating relation, the action of w sends every basis element f(;, ;) to a scalar
multiple of a basis element of the same type. Similarly, it is immediate from Lemma 4.2,
Remark 4.8(3), and the third generating relation that the subgroup Ds preserves the
subspace Vjp.

It remains to verify that the subgroup Us preserves Vy. If jj € ﬁl, then by Lemma 4.5
and the first two relations, the Us-module generated by f(j, ;) is spanned by basis
elements of type equal to or smaller than [(jo,j1)]. The analogous claim for the Us-
module generated by f(« j,) follows from Lemma 4.6 and the fifth and sixth generating
relations.

While this follows from the above, we can also observe directly from Remark 4.8(4)
that Vj is stable under the action of Us described in Lemma 4.4. O

Theorem 4.11. Let (jo,j1) € ©. If e = 2, then the GLa(O/m?)-submodule of Va,

generated by f(;, i) 8 V|

Jo,J1 (Jo,31)]"
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Proof. Since f(;, i) € Vijo.j,] Py definition, it suffices to prove that Vj;, ;1 <G2-f(j07j1)>.
We argue by induction on the type [(jo, j1)], with respect to the partial order <, on the
set © of types. If j1 = 0, then we are working inside the submodule Wy of Definition 3.4,
which is isomorphic to Indg%k?)(k)xr by Proposition 3.5. In this case our claim was proved
by Bardoe and Sin; see Theorems 2.16 and 2.17.

In general, by induction it suffices to show that if (jj,7}) <, (jo,j1) by one of the
generating relations for the preorder <, on ©, then f(;, i) € (G2 f(jo,jr))- For the first
and second relations, this follows from Lemma 4.5. The claim for the third relation is
implied by Lemma 4.2 and for the fourth and seventh by Lemma 4.1. For the fifth and
sixth covering relations, this is Lemma 4.6. U

4.3. An alternative view of types. The carry sets defined in Lemma 2.7 provide
an alternative way to describe types that is often more convenient to work with than
the equivalence classes in terms of which they were defined. Recall the notion of a -
admissible set J < Z/f7Z of Definition 2.9; an explicit characterization of such sets is
given in Proposition 2.10.

Proposition 4.12. There is a well-defined injection Y : 0 — P(Z)fZ) x N given by
[(jO?jl)] = (I(]Oa r—= 2]1 - j(]))jl)‘
The image of T consists of the pairs (J,j1) such that J is (r — 2j1)-admissible.

Proof. 1t is clear from the generating relations that if (j(, 1) <, (jo,J1), then 51 < ji.
Thus the second component is constant for all elements 6 = (jo,j1) of a type. Observe
from their definition that the submodules Vy are distinct for distinct types 6 € o.
By Theorem 4.11, the elements (jo,j1), (j.71) € © belong to the same type if and
only if f, ) and f(j{),ﬁ) generate the same submodule of V5 ,. In particular they
generate the same submodule of Wj />, j1 We, which is isomorphic to det’! Vi r—2j,
by Proposition 3.5. The structure of V7 ,_o; is described by Theorems 2.16 and 2.17,
from which we conclude that the carry sets I(jo,  —2j1 — jo) and I(jj, r — 241 — j,) must
coincide. Hence the claimed map is well-defined.

To show the map is injective, it suffices to show that V|, ;) is determined by its
image in the quotient Wj, />, ;1 We. Indeed, suppose that Vi, jr)) has the same image.
Then Vi, jy) contains an element of the form f(, j,) + h, where h € >}, ., Wy. Since
‘/[(1673'1)] is the linear span of a subset of By, it must contain f(;, ;) and hence, by
Theorem 4.11, we have V¢, iy S ‘/[(jf)vji)]' Reversing the roles of the two types, we
obtain the opposite inclusion. Hence V|, ;)] = V[%%)] as claimed.

The claim regarding the image of the map YT is immediate from the definition of
(r — 271)-admissibility. O

In light of the previous claim, we will often write types in the form 0 = (I,), where
I € Z/fZ and « € N. Note that the map of Proposition 4.12 is in general not surjective.

Remark 4.13. We collect several observations that follow readily from Proposition 4.12
and its proof.
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(1) If (I,~) and (I’,v) are types with the same second component, then (I’,v) <,
(I,7) if and only if I’ < I.

(2) The types (@,7) and (Z/fZ,~) lie in the image of T for any ~ € N.

(3) If r — 2j1 = Omod g — 1, then Y([(q — 1,51)]) = (Z/fZ,j1) and T([(jo,j1)]) =
(@,1) for jo # g — 1.

We can strengthen the previous remark by producing a closed-form definition of the
partial order on types that is convenient to use in practice. Our proof of the following
statement is completely elementary but long and rather tedious and independent of the
rest of the paper, apart from the definition of carry sets and their properties in §2.3
above. For these reasons we relegate it to §6 below.

Proposition 4.14. Let (I,7) and (I',~') be two types. Then (I',~') <, (I,7) if and
only if the following two conditions are satisfied:

° V<

e 'clul(r—2v.2(y=9)vIly=~,7v=7).
4.4. Extensions of Serre weights as subquotients of principal series. Through-

out this section, and for the remainder of §4, we assume e > 2. As demonstrated in
Proposition 4.23, the principal series V5, may, in general, have infinitely many submod-

ules. However, we can elucidate the structure of the family of submodules {Vj : 6 € (:)}
Recall the Serre weight o ;(r) of Definition 2.13.

Definition 4.15. Given a type (I,7), set L(1,7) = Vit )/ Xr <o) Vi)

Lemma 4.16. Let (I,7) be a type. If e > 2, then the GL2(O2)-module L(I,7) is
irreducible and isomorphic to det” ®oy(r — 27v).

Proof. By definition, L(I,7) is a subquotient of W,/ < Wa, which is isomorphic
to det” ®V1 2y by Proposition 3.5. Moreover, the image of V(; .y in this quotient is
Vi € det” ®Vi,—2y. By Remark 4.13, inside this quotient we can compute L(I,v) =
Vi) Vi IEr—2y # g —1 e N\{0}, then L(I,7) = det” ®o;(r — 2v) by Theo-
rem 2.16. In the exceptional case r — 2y = ¢ — 1, we find Vpz = F(y + g — 1,7) by The-
orem 2.17, whereas V7,47 is the entire space det” ®V1 ,—2y. Thus Vz,r7/Ve ~ F(v,7).
Since 0z/¢7z(r —2v) = F((¢—1) = (¢—1),q—1) = F(¢g— 1,9 — 1) = F(0,0) by Defini-
tion 2.13, the claim holds in this case also. O

Now, assume that the types (I’,v') <, (I,v) are adjacent, i.e. there is no other type
between them. Consider the extension

&=Viuny/ Z Viar 4mys

" A< (1,7)
(1 )1 A1)

so that there is a short exact sequence
(14) 0— L(I''y) - € - L(I,y) > 0
As L(I',4") and L(I,~) are irreducible by Lemma 4.16, the extension £ is of length two.

Proposition 4.17. Suppose e > 2, and consider adjacent types (I',~') <, (I,7). The
corresponding short exact sequence (14) splits if and only if v =~ and r — 2y = q — 1.
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Proof. By assumption, there exist pairs (jj, 1), (Jo,j1) € © representing the classes
(I',%"), (I,~), respectively, such that (jg,71) <r (jo,Jj1) by one of the generating relations
of Definition 4.7. We need not concern ourselves with the fourth, sixth (see Remark 4.8),
or seventh covering relations, as these are equivalences. We consider the remaining
relations in sequence.

If (34,71), (jo,J1) € © by the first generating relation, then ji = j; and € is a sub-
quotient of the tame principal series W, />, i We =~ det! ®Vi,r—2j,- In this case the
sequence (14) splits by Theorem 2.17 when r — 2j; = ¢ — 1 and is non-split otherwise
by [2, Theorem 6.1].

In the case of the second relation, we have (jg, 1) = (jo,j1 — p™) for p < ji. Then
we see from (11) that

—1)=p™m ]. b w .
(15) NG ( 0 [ 11] )f(jo,jl) = (Um/f(yqp) # 0

blek

If (14) were to split, then & would be isomorphic to a direct sum of Serre weights, and
the action of GLa(O/m?) on € would factor through GLa(k). In that case, the left-
hand side of the previous displayed formula would be Zblek bgqfl);p " JGo,ji) = 0. This
contradiction proves that (14) does not split.

The arguments for the third and fifth relations are similar. Observe by (10) and (13),
respectively, that

(g-)=pm (1 0 :
- Z qu 8 < 0 1+ [do]w ) fGogn) = (Jl)mf(jé,ji) #0
doek
r4q —1)=p™ 1 b w .
(1) I Z bgq " ( 0 [ 11] )f(oovjl) = (jl)mf(T*QJ'l,jl*Pm) #0
blek

and again the left-hand side of each expression would vanish if (14) split and the action
of GL2(O/m?) on & factored through GLa(k). O

The following claim is a modification of the previous one, accounting for the fact that
Viz/fz,v) does not have irreducible cosocle if r — 2y = ¢ — 1.

Lemma 4.18. Suppose that e = 2, that v € N satisfies 1 — 2y = q — 1, and that
m € [f — 1]o is such that p™ < v. Let M < Va, be a GLa(O/m?)-submodule with
one-dimensional image in the quotient V2,r/25<7 Wps.

(a) The containment W, -,m < M holds.
(b) Let N =3 ps<yuczysz Viypy. The subquotient & = M /N admits a short ezact

(J,B)#(Z/f2,y=p")

sequence 0 — L(Z/fZ,~y ~p™) — & — L(Z/fZ,~) — 0 that does not split.

Proof. Combining Theorem 2.17 with Proposition 3.5, note that M contains an element
of the form h = fo) + f(e0,y) — f(g—1,7) T %, fOr some z € Zﬂ<’¥ Wjs. Observe by (12)
that

(16) Z bgq v ( 0 [ 11] > h = vm(fg-17=pm) = f07=pm) = 0 =pm)) +2' e M,
blek
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where 2’ € Z,B<v;pm Wp and v, # 0. By Theorem 4.11, the element f(,_1,-,m) gen-
erates Vig—1,y=pm)] = Whepm, whereas v (f(oy=pm) + flooy=pm)) — 2 is contained in
a proper submodule of W, .-,m. Since W,.p,m has a unique maximal submodule by
Corollary 3.6, the right-hand side of (16) generates W, -,m. This proves the first claim.

Now consider the restriction to £ of the projection W,/N — W,/>}5  Wg. The
image is the one-dimensional Serre weight L(Z/fZ,~) by assumption, and the kernel is
(X< Ws)/N ~ L(Z/fZ,~ = p™) by part (a). Hence £ admits a short exact sequence
as claimed. By (16), the extension £ is not semisimple, so it cannot split. U

4.5. Socle and radical filtrations. Let I'(<;) be the graph associated to the partial
order <,: the set of its vertices is the set © of types (identified, as usual, with the
image of T), and there is a directed edge from 6 to 8’ if the types ' <, 6 are adjacent.
Let T', be the graph obtained from I'(<,) by the following procedure: for all v € N
such that r — 2y = ¢ — 1, we remove the edge (Z/fZ,~v) — (&,7) and add the edge
(Z)fZ,~) — (Z)fZ,~ =~ p™) for all m € [f — 1]o such that p/ <.

~

Lemma 4.19. Let § € Y(©). Then I', contains a path from the mazimal vertex
(Z)fZ,q—1) to 6, and a path from 6 to the minimal vertex (2,0).

Proof. If (I”,6) <, (I',0) are vertices of I, and r — 26 # ¢ — 1, then by [2, Corollary 4.1]
(see also Lemma 6.6 below) there is a path

(I/>5) = (1075) - (Ilaé) — (1375) = (I//75)7

where for each i € [s] the set I; is obtained from I;_; by removing exactly one element.

~

Let = (I,7) € T(O). Fix a sequence
O=9 <m < <ypra  =7<-<%p-1=9¢-1

where for each i € [f(p — 1)] there exists j; € Z/f7Z such that 7; ~ v;_1 = p’i. Then
(17)
(QfVO) <r (ga’Yl) Sp e Sy (®77) <r (LV) <r (Z/fZ,’Y) Srt Sy (Z/fZ/Yf(p—l))

is a sequence of vertices of I', by Remark 4.13(2). If § € N satisfies r — 26 = g—1
and p™ < 6, then I', contains an edge (Z/fZ,0) — (Z/fZ,6 — p™) by definition and
an edge (&,0) — (Z/fZ,6 — p™) by Proposition 4.14. By this observation and the first
paragraph of this proof, the sequence (17) may be refined to a path from (Z/fZ,q — 1)
to (@, 0) passing through 6. O

For every vertex 6 of I',., set £1(6) to be the length of the longest path from (Z/fZ,q—1)
to 6, and £;(6) to be the length of the longest path from 6 to (&,0). Let L = £1(2,0) =
0(Z/fZ,q — 1). These definitions make sense by Lemma 4.19. Then the socle and
radical filtrations of V5, can be determined from Proposition 4.17 and Lemma 4.18.
Recall that if 6 = (I,7), then L(#) is the Serre weight det” ®o(r — 27).

To fix definitions, recall that the socle filtration of V5, is defined recursively as follows:
soc_1(Va,) = 0, whereas soc;(Va,) is the pre-image in V5, of soc(Va,/soc;—1(Va,)) for
all ¢ > 0. Similarly, the radical filtration is determined by rad_;(V2,) = Va2, and the
recursion rad;(V2,) = rad(rad;—;(Va,)) for ¢ > 0.
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Corollary 4.20. Suppose e = 2. The socle and radical filtrations of Va, have length L,
and their graded pieces are given by

soci(Va,r)/soci—1(Va,r) = @Zﬂe("'rg()é) L(0),  radi1(Va,)/radi(Va,r) ~ C—DGTET((:)) L(0).

L= e ()=i

Remark 4.21. For the tame principal series Vi, the elements of the radical filtration
are just the elements of the socle filtration in reverse [2, Corollary 7.1]. This is false for
Va,. For instance, suppose that v € N satisfies r — 2y = ¢ — 1. Let ¢/ = (I',~") be any
type with 7/ < 7. Since I(r — 2v,2(y = «')) = Z/fZ, we see by Proposition 4.14 that
0’ <, (&,v). Thus a vertex of T, lies below (&, ) if and only if it lies below (Z/fZ,~).
Hence ¢|(@,v) = £, (Z/fZ,~), and these two Serre weights appear in the same graded
piece of the socle filtration.

This need not be true for the radical filtration. For instance, if r = ¢ — 3, then the
only vertex above (Z/fZ,q —2) is (Z/fZ,q — 1), so {(Z/fZ,q — 2) = 1. By contrast,
(@,q—2) <, (8,¢—1), s0 £1(3,q — 2) = 2. Analogous examples are readily produced
for other values of r.

4.6. Infinite submodule structure. In this section we will show that if £ is an infinite
field, then V5, will, in general, contain infinitely many submodules. An important
exception occurs when F'/Q), is totally ramified; see Theorem 4.28 below. We will make
use of the following classical criterion.

Lemma 4.22. Let E be an infinite field, let R be an E-algebra, and let M be o left
R-module. Then M has finitely many R-submodules if and only if the socle of M /N is
multiplicity-free for every R-submodule N < M.

Proof. Combine [19, Lemma 1.2] with [10, Theorem 1]. O

The genericity hypothesis in the next claim could be removed with a suitable adjust-
ment of the proof that would make it more involved and less transparent.

Proposition 4.23. Suppose that e = 2 and f > 2, i.e. the extension F/Q, is ramified
but not totally ramified. Let r € Z/(q — 1)Z such that 1 < r; < p—2 for allie Z/f7Z. If
E is an infinite field, then Va, has infinitely many GLa(O/m?)-submodules.

Proof. By Lemma 4.22 it suffices to exhibit a quotient of Vs, whose socle fails to be

multiplicity-free. Let @ # J € Z/f7 and set y(J) = Zl 0 yvi()pt € Z/(q—1)Z = N\{0},
where

0 i—1,0¢ J
-1 i—1leJ ig¢J

%i(J) = . .
ri+1 i—1¢J ied
T 1 —1,1€ J.

Under our assumptions on r, a simple calculation and substitution in Definition 2.13
verify that L(J,y(J)) = det”") @ (r — 2v(J)) = F(r,0) = L(2,0), where the first
equality is Lemma 4.16. Consider the singleton sets J = {j} for j € Z/fZ. We find that

YW= ), —1p
ielf~11o\(7}
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Let 7, 5" be distinct elements of Z/fZ, which exist since we assumed f > 2. Then v({j})
and v({j'}) are incomparable with respect to the partial order < on N. Now put

M = Z V(Iw) + Z V(Lv)'
I <-{ity{d}) I <~ {3 {5’}

It is clear from Lemma 4.16 that L({j},v({j} )@ L{j'},v({j'}) ~ F(r,0)®F(r,0) injects
into Vo, /M, and this completes the proof. O

4.7. An example: the totally ramified case. To illustrate our results, in this section
we discuss in detail the submodule structure of V5, when F/Q, is totally ramified.
In contrast to Proposition 4.23, we will find that in this case V5, always has finite
submodule structure, and we will be able to give an explicit description of all submodules
with irreducible cosocle; see Theorem 4.28 below.

For the rest of this section, £ = ), and e > 2. We assume p > 5 to avoid degenerate
cases. In this case the distinct Serre weights are precisely

F(r +s,s) =det® ®Sym7’E2

for s€ Z/(p —1)Z and r € [p — 1]op. We usually drop E? from the notation for brevity.

There is a natural correspondence between elements of N and integers in the interval
[p — 1]o. Write (@) € [p — 1]o for the integer corresponding to o € N. In this case, the
order < on the monoid N is a total linear order: 0 < 1 < --- < p — 1. The filtration of
§3 is therefore a flag of subspaces 0 ¢ Wy < --- < W,_1 = Va,, and its quotients are
the tame principal series W;/W;_1 ~ det! ®Vir—2i. If —2i # g — 1, then this is the
unique non-split extension

0 — det! ®Sym(’ﬂ_2i)E2 — W;/Wi_1 — det™ " (>§Synr1(1”_1_’”’2")E2 — 0.

The short exact sequence above is a special case of Theorem 2.16; the uniqueness
of the extension is [9, Corollary 5.6]. If r — 2 = p—1 € N, then W;/W;_; ~
det’ @ det’ SymP~1 E2.

We conclude that all the pairs (I,7) with I < {0} and v € N lie in the image of
the correspondence of Proposition 4.12. This observation readily identities the Jordan-
Holder constituents of V5, and their multiplicities; in particular, Vs, has exactly 2p
Jordan-Holder constituents. Moreover, the partial order <, is easily made explicit using
the criterion of Proposition 4.14; alternatively, it can readily be worked out directly from
Definition 4.7. Given r € Z/(p — 1)Z = N\{0}, define |5] to be the least element a € N,
with respect to <, satisfying 2a < r but not 2(aw + 1) < r. Note that the parity of r is
well-defined, since p > 2, and that |5] is % if 7 is odd and § — 1 if 7 is even, so this is
a non-standard use of the floor notation. However, it is convenient for our purposes.

Lemma 4.24. Let F'/Q,, be a non-trivial totally ramified extension, and let (I',~) and
(I,7) be two types. Then (I',y") <, (I,7) if and only if v <~ and (at least) one of the
following conditions holds:

o I'C I;

e There exists a € {[%J, |5] + p%l} such that v < o < 7.



26 MICHAEL M. SCHEIN AND RE’EM WAXMAN

Proof. Since I’ has at most one element, it is immediate from Proposition 4.14 that
(I',7") <, (I,~) if and only if v’ < v and one of the following holds:

o I'CI;

o I'cI(r—27,2(y=7)) vIly=77=7).
The second option holds precisely when I(r — 2v,2(y =) u I(y = +',v = +') # @.

Clearly, I(y =+, =) # @ if and only if v/ + % < 7. On the other hand,

we see that I(r — 2v,2(y = 4/)) # @ if and only if (r — 2y) + (2(y =9/)) > p—1 as
integers. Thus I(y = ~',v —9') # & implies I(r — 2v,2(y ~+')) # &, whereas the
condition I(r — 2v,2(y =) # @ is easily seen to be equivalent to the second of the
two alternatives in our claim. O

The structure of V5, is more uniform if r is odd, since the exceptional case r — 2y =
p — 1 does not arise. For this reason, we treat the odd case first.

Proposition 4.25. Let F'/Q, be a non-trivial totally ramified extension, and suppose
that r € Z/(p — 1)Z is odd. Then Va, has 2p Jordan-Hélder constituents. Moreover,

(a) The Serre weight Sym” E? appears with multiplicity three, as L(2,0), as L({0},7),
and as L(&,p—1).

(b) The Serre weight det” @SymP 1" E? appears with multiplicity three, as L({0},0),
as L(&,7), and as L({0},p —1).

(¢) For each of the p—3 elements i € N\{O, r,p—1}, the Serre weight det’ ®Sym(" %) E2
appears with multiplicity two, as L(2,i) and as L({0},r — ).

Proof. This is immediate from Lemma 4.16 and the observation above that the corre-
spondence of Proposition 4.12 is surjective in our case, noting that » — 2¢ # p — 1 for all
1€ N as r is odd. O

The set of types in the case of odd r, together with the partial order <, and the cor-
responding Serre weights L([,~), are illustrated in Figure 1. An arrow has been drawn
from L(I,v) to L(I',+") when (I',~") <, (I,~) are adjacent types; by Proposition 4.17,
a non-split extension of these Serre weights appears as a subquotient of V5 ..

The analogous statement for even r is very similar, but the numerology must be ad-
justed to make allowance for the exceptional case r — 2y = 0, in which case L(&,7) is
always p-dimensional and L({0},~) is one-dimensional. As in the case of odd r above,
Lemma 4.16 implies the following listing of Jordan-Holder constituents and their multi-
plicities.

Proposition 4.26. Let F'/Q, be a non-trivial totally ramified extension, and suppose
that r € Z)(p — 1)Z is even. Then Va, has 2p Jordan-Hélder constituents.
(a) If r #p — 1, then
(i) The Serre weight Sym” appears with multiplicity three, as L(2,0), as L({0},7),
and as L(&,p—1).
(ii) The Serre weight det” @SymP "1 appears with multiplicity three, as L({0},0),
as L(@,r), and as L({0},p — 1).
(iii) There are exactly two elements 7y € N satisfying r — 2y = p — 1. For each
such v, the Serre weight det” ®SymP~! appears with multiplicity one as
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L(@,p—1) =Sym" +—————— det” @Sym?~ =" = L({0},p — 1)

| |

L(2,p —2) = detP 2 @Sym"*2 «—— det" " @Sym? 3" = L({0},p — 2)

| |

L(2, 25" +1) = det ™ L @SymP ! «—— det"s” 2 @Sym® = L({0}, 24" + 1)

| |

L(2,257) = det™>” @SymP~2 ¢ det”> "' @Sym! = L({0}, )

\

L(2, 2 —1) = det™> ' @Sym! +—— det™s ®@Sym?P~2 = L({0}, 2t~ — 1)

l l

L(o, %) — det"s ®SymP~2 ¢ det™ ®Sym! = L({0}, %)
L(,75%) = det™> @Sym' «——— det™ @Sym?? = L({0}, 51)

l l

L(2,753) = det 2 @Sym® +——— det’ ®@Sym?* = L({0}, 52)

| |

L(2,1) = det ®Sym" 2 «+—————— det" ' @SymP 17" = L({0},1)

J |

L(2,0) = Sym" < det” @Sym? 1" = L({0},0)

FIGURE 1. Submodule structure of Vs, for F//Q, totally ramified, r odd
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L(2,7v), and the Serre weight det” = det"™ 7 appears with multiplicity one
a5 L(10},7). )
(iv) For each of the p — 5 elements i € N\{0,r,p — 1} such that r — 2i # p — 1,
the Serre weight det’ ®Sym(’”_2i) appears with multiplicity two, as L(2,1)
and as L({0},r — 7).
(b) If r =p—1, then
(i) The Serre weight SymP~! appears with multiplicity two, as L(2,0) and
L(o,p—1).
(i) The trivial Serre weight 1 appears with multiplicity two, as L({0},0) and
L({0},p— 1),
(iii) The Serre weights etz ®SymP~! and det™s each appear with multiplicity
one, as L(9, p%l) and L({0}, p%l), respectively.

(iv) For each of the p — 3 elements i € ﬁ\ {O,%,p— 1}, the Serre weight
det’ @Sym "= appears with multiplicity two, as L(3,7) and as L({0},r—1).

Lemma 4.27. Let F/Q), be a non-trivial totally ramified extension, suppose we are given
reZ/(p—1)Z, and let o € {[g], |5] + %} Let M € Va, be a GLa(O/m?)-submodule.
Then either M < W, or W, < M.

Proof. First consider the case a = |5] + %. Assume M is not contained in W,. By
the explicit Propositions 4.25 and 4.26, the quotient Vs, /W, is multiplicity free with
the following socle:

L(2,a + 1) ~ det®*! @SymP 2 7 odd
L(,a+ 1)@ L{0},a + 1) ~ det*™ ! @SymP~ ! @ det®™ :  even.

soc (Vo /Wy) = {

The image of M in V3, /W, must contain at least one component of the socle. Suppose
first either that r is odd, or that r is even and that the image of M contains the first
component of the socle. Then there exists w € W, such that z = fi, 2 441) +w € M.
By (15) we have

(18) P ( (1) [bll]w ) z=(a+1)fpoa+weM

bi1elFy,

for some w’ € W,_1. Since p > 3, we see that [(p — 2,a)] = ({0},). Since W, has a
unique maximal submodule by Corollary 3.6 (the hypotheses of the corollary are satisfied
because of our non-standard definition of |5]|) and w’ is contained in it, the element in
the right-hand side of the previous displayed formula generates W, = (G2 - fp—2,a))-
Thus W, < M.

The remaining case is that r is even and the image of M in V5, /W, contains only the
one-dimensional component of the socle. Then the claim follows from Lemma 4.18(a).

Now suppose a = |5]. If M is not contained in Wa+pT_1, then W, < Wa+pT—1 c M by

the previous paragraph. So we may assume M = W Observe that the subquotient

p—1.
+ 2

W, =1 /W, is multiplicity-free and repeat the argument of the previous paragraph. [
2

(67
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We are now able to determine the submodule structure of V5, completely, when F'/Q,,
is totally ramified.

Theorem 4.28. Suppose the extension F/Q, is totally ramified and non-trivial. The
following statements hold for all r € Z/(p — 1)Z:

(a) The GLa(O/m?)-module Vo, has finitely many submodules.

(b) Let M < Vo, be a submodule. Then M has irreducible cosocle if and only if
M = V{; ) for some type (I,7), except that if r — 2y = p — 1 then we consider
the submodule V({o} ,) generated by fo + fooy — fp—1, instead of Vijoy)-

(¢) The multiset of Jordan-Hélder constituents of Vg .y is {L(I',+") : (I';y') <, (I, 'y)}
If r — 2y = p— 1, then the multiset of Jordan- Holder constituents of V{o} 5

{LI'Y) (I 9) < ({0}, MI\{L(2,7)}
Proof. To establish (a), it suffices by Lemma 4.22 to prove that the quotient Va,/M
has multiplicity-free socle for every submodule M < V5 ,. Suppose that M < V5, is a
counterexample, and let M < M’ be such that M’'/M = socVa, /M. Set

2
LV —w

0 1 3
v — 0, vV —w, e Vi = Ve

)

r
2

By Proposition 4.25 for odd r and Proposition 4.26 for even r, the quotients V2 - / V2Z b

are multiplicity-free for all i € [3]. Thus by Lemma 4.27 there exists a € {[ I 5]+ 5= ! }

such that M < W, < M’. As in the proof of Lemma 4.27 there exists w € W, such
that f(,—34+1) +w € M’. Since the quotient M’/M is semisimple, it is invariant under
the action of the first congruence subgroup ker(GLg(O/m?) — GLg(k)). Hence the
expression in (18), which is already known to generate W, is contained in M. However,
this contradicts M < W,, completing the proof of (a).

For every i € [3] and every Jordan-Holder constituent o of V2 /V2T , there is a

)

unique submodule of V2 - / (z !

such that VQ(I Ve mc VQ(;) and M has cosocle 0. These are exactly the submodules
of the statement (b). By Proposition 4.27, they exhaust the submodules of V5, with
irreducible cosocle, and (b) is proved.

Finally, (c) follows from Lemma 4.16 and Proposition 4.17. O

with cosocle o and hence a unique submodule M < V5 ,.

5. THE UNRAMIFIED CASE AND THE REPRESENTATION R(c) OF BREUIL AND
PASKUNAS

In this section we assume that F'/Q, is an unramified extension. In this case, the ana-
logue of Theorem 4.11, the principal result of the previous section, fails. When e = 1
it is not in general true that the submodule of V3, generated by a basis vector f(;, i)
the linear span of a subset of the basis Bs .. However, if we restrict to the submodule of
Va,r generated by f(g14ps...4ps-1), then we can obtain an elegant description of its sub-
module structure. While it is possible to make a self-contained study of this submodule,
roughly along the lines of §4, we will take a shortcut. It turns out that this submodule
is isomorphic to the module R(c) considered by Breuil and Paskunas in [9, §17-18], for
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the Serre weight o = o4(r), and we make use of their results on our way to providing a
complete description of the submodule structure.

5.1. Preliminary computations. The results of the previous section, for the ramified
case e = 2, rely on the explicit computations of §4.1. While Lemmas 4.1 and 4.2 make
no assumption on the ramification of F/Q,, the action of upper unitriangular matrices
on Vs, involves summation of Witt vectors in the unramified case and produces more
complicated formulae than those of Lemma 4.5. In particular, the Us-submodule of
Vo, generated by a basis element f(;) ;) will not, in general, be a linear span of basis
elements. However, the Us-submodule generated by f(;, ;) does have this property in
some special cases.

Lemma 5.1. Suppose that e = 1.

(1) If (jo,j1) € N2, then the Us-submodule of Vo, generated by f;, 5,y is the linear
span of the elements

(19) 2 < i\ (1) ) ® (o — bo) (A + SO, (=) A,

)\EOQ
where by € k and j| < j1.
(2) In particular, let I < [f — 1]o, and let jo € N satisfy supp(jo) n (I — 1) =
Then a basts of the Uz-submodule of Vo, generated by f;, 1) is given by

-1 ciel —1
f LIl InI =2;a;€ [p‘ ] Z,E . .
(Zie(ﬂ—l)usupmo) a;p’,p ) [(Jo)ilo :i € supp(jo)

Proof. In the case e = 1, it is immediate from Lemma 3.8 and (8) that

(20) ( (1) ll) > f(jo,jl) = Z < i\ [1) > ® ()\0 — b[))jO()\l — b + S()\gf717 (_bo)pf—l))jl7

Ae02
and considering weighted sums of the form

v b(q—l)#(jl;a{)( 1 [bo] + [b1]w ) o
1 0 1 (Jo,41)

bi1ek
for by € k and j; < j1 gives the first part of our claim. In general, the expressions of
the form (19), viewed as functions of three variables Ao, A1, by, contain more than one
monomial in which by appears with a given exponent. Thus, taking weighted sums with
respect to by will produce linear combinations of the basis elements f(J'()Ji)

The case (jo,51) = (jo, p’), where supp(jo) and I —1 are disjoint, behaves particularly
agreeably. Observe that ji < p! if and only if j; = p’ for some subset J < I. Then the
elements of (19) have the form

)3 (? g)>®(/\o—bo)j01_[(>\1+S()\gf_1’(—bo)pf1))pi -

AeO2 ieJ

A1 . i—1+f —a)pi—1+f
> <1 0>®(Ao—bo)m]_[<v+2 x”’ T plpmaw *).

e
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Each monomial has a distinct exponent of by, since we have assumed that supp(jo)
and J — 1 are disjoint. Taking weighted sums, with respect to by, of such expressions
produces non-zero scalar multiples of all elements of the form

Al 1 j/+2i€<(,\/),)aipi
g e
AeO2

where jj < jo. Running over all J < I, we obtain the claimed basis of (Uz - f(;, ,))- O

Recall from §3.1 that By = (¢2) "1 (B(k)) < GLy(O/m?) is the image of the standard
Iwahori subgroup of GLa(O) under the projection GL2(0O) — GLo(O/m?). Thus

By = {( “ ! ) eGLQ((’)/mQ):cem/mQ}.

Lemma 5.2. Let I < [f —1]o, and suppose that jo € N satisfies supp(jo) N (I —1) = @.
Given a subset I' < I, define

, . [p—1] :iel' -1
L(jo,I") = a;p' :a; € . . .
Z (o) [(Jo)ilo :1 € supp(Jo)

ie(I'—1)usupp

The By-submodule of Va,r generated by fj, 1y is the linear span of the following basis:
B(jo, I) = {f(”pJ\J,HPJ,\J,/’pJ,,) IJCLI'nd=0, e Lijol), J cJc J} .

In particular, the By -submodule of Va,r generated by fo 14 pt...spi-1y S the linear span
of the basis {f(ngpI\JJerJ\L’pL) LeJcel le ﬁa supp(() n (I — 1) = &}

Proof. Any element & € By may be expressed in the form & = xdu, where p € Us and
k € Us (see Definition 2.2), while § is a diagonal matrix. The claim follows from an
application of Lemma 5.1(2) to account for the action of u, then of Lemmas 2.6 and 4.2
to describe the action of §, and finally of Lemma 4.4 to treat the action of k. (|

5.2. A family of submodules. We now define the analogue, in the setting of unrami-
fied F'/Qy, of (a subset of) the family of submodules {Vj},_g considered in Definition 4.9.
Recall that we identify Z/fZ with [f — 1]o. Given r € Z/(q¢ — 1)Z and J < Z/fZ, recall
the integer s;(r) from Definition 2.13.

Definition 5.3. Let ©, = {(J,1): 1,J S Z/fZ, J n (I —1) = &}.
If 0 = (J,1) € ©1, set fog = fi5, (r—opt)pry, and let My be the GL2(O/m?)-submodule
of Vo, generated by fg. Let og be the Serre weight og = det?’ ®oj(r —2ph).

Define a partial order € on ©y as follows: (J',I') = (J,I) if I' < I and if J' <
Ju ((I\I") —1).

In order to obtain uniform results in this section, we make a genericity assumption
stronger than the one of [9, Definition 11.7].

Definition 5.4. We say thatr € Z/(q—1)Z is generic if 3 < r; < p—3 forallie Z/fZ.
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Lemma 5.5. Ifr € Z/(q—1)Z is generic, then the GLy(O/m?)-submodule W,y .\ ,y—1 ©
Vo is multiplicity-free.

Proof. By genericity, for all I € Z/fZ we have r —2p’ # q— 1. Hence by the filtration of
Proposition 3.5 and by Theorem 2.16, which describes the graded pieces of this filtration,
we see that the multiset of Jordan-Holder constituents of Wy, s is

{detp1®aj(r—2p1) ~ F(r —sy(r—2p") + pl,s;(r — 2p") + p!) : I,JQZ/fZ}.

Hence it suffices to show that the numbers s (r—2p!)+p! (recall Definition 2.13), viewed
as elements of Z/(q — 1)Z, are distinct for all pairs (I,J) € P(Z/fZ)?. By genericity,
given a = o;(r — 2p') + p! we can read off J = {i € Z/fZ : o; > 1}. Knowing .J, we
can then determine I = {i € Z/fZ : o # s;:(r)}. O

Proposition 5.6. Let 0 = (J, 1) € ©1, and suppose that r is generic. The GLa(O/m?2)-
module My has irreducible cosocle isomorphic to the Serre weight og.

Proof. Let Ng © Wy, .. pr—1 be the submodule with cosocle oy; this is well-defined

by Lemma 5.5. Recall from Proposition 3.5 that Wi/ . ; W, =~ det?” RV} gl -
The image of My in this quotient is generated by f, (,_gpr). This is the submodule of
det?” ®V) ,_9pt With cosocle ag, by [9, Theorem 2.7] or Theorem 2.16. Since Ny is the
minimal submodule of Wy, .., s-1 that contains oy as a Jordan-Holder constituent,
the inclusion Ny € My must hold.

The module Ny is cyclic, and by the previous paragraph it has a generator of the
form h = fg+ 2, for z € X, Wp,z. Without loss of generality we may assume that h
is an eigenvector for the action of T'. By genericity of r, this implies that

h = fo+ Z 51’f(SJ(T_QpI)_i_pI\I”pI’),
rel
for scalars e € E. Now by (10) we have

N gl (] 0 _
2. <o 1+ [dw )"

dek
Fsytr—2pyepn prty + Z Erru(N (s (r—apt) +p11” iy € No-
I”CI/
Taking a suitable linear combination of these elements, we find that fy € Ny and hence
that My € Ny, which proves the claim. O

Proposition 5.7. Suppose that r is generic. Let 0,0 € ©1. If 6/ = 0, then My < M,.

Proof. Let 6 = (J,I). The partial order = is generated by the following two covering
relations:
o (J\{j},I) = (J,1) for all j e J;
o (Ju{i—1},1\{i}) = (J,I) for all i e I.
If & = 6 is a cover of the first kind, then by Theorem 2.16 and the proof of Propo-
sition 5.6, the image of My in the quotient Wi/ >, W, admits the Serre weight
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op = det?” ®o N = 2p") as a Jordan-Holder constituent. Hence so does Mpy. This
implies My S My, since it is immediate from Proposition 5.6 that My is the minimal
submodule admitting oy as a Jordan-Holder constituent.

Let # = 6 now be a cover of the second kind, and let i € I. We see directly from
Definition 2.13 that s .1y (r — 2p" +2p%) = s;(r—2p’) + (ric1 + £)p" ' + diesp’, where
d;eg = 1if i€ J and d;cy = 0 otherwise, while

1 i—2¢ J i—1¢1

k=10 1—2€eJ,i—1¢1

~1 :i—2¢Ji—1el.
Observe that s;(r — 2p!) + (ri1 + Kk)p*~' € L(ss(r — 2p’), {i}) by the genericity of r.
Hence if ¢ ¢ J, then fy € <§2 - foy S My by Lemma 5.2, where I’ in the notation of that
lemma is {i}, while J = J' = J” is I\{i}. Thus My < My by Proposition 5.6; in fact,

the containment is proper since My and My have non-isomorphic cosocles.

If i € J, then we observe that f(s J(r—2pT)+pi pT) generates My by the same argument as
in the proof of Proposition 5.6, but with this element in place of fy. Applying Lemma 5.2
0 [, (r—2pt)+pi pt), We find as in the previous case that fo € M. O

5.3. Relation to work of Breuil and Paskuinas. Observe that (&,Z/fZ) is the
unique maximal element of ©;. Hence, by Proposition 5.7, the submodule Mg 7,7 of

Vo generated by f(g14p4...4pf-1) contains the modules My for all 6 € ©1. In order to
completely describe the submodule structure of M(g 7,47y, it remains to show that these
submodules exhaust the submodules of M4 7,/77) with irreducible cosocle and that the
implication of Proposition 5.7 is, in fact, an equivalence. For this we make use of the
results of [9], where the module My 7,57y Was studied in another guise. We start by
elucidating the dictionary between some concepts of [9] and those of the present paper.

Write o, for the Serre weight F(r,0) = 04(r), and recall that it can be modeled as
the subspace of the space A[r] of §2.4 spanned by the monomials X" ~*Y* for i < 7.

Set II = ( g L ) Given a subset J < {i € Z/fZ : r; > 0}, Breuil and Paskunas

0
define Fil’ R(o,) to be the GL2(O)-submodule of the compact induction c—indggé]i)( 0)0r

generated by the element II® X" 7" YP”: note that the notation [g,v] of [9] corresponds
to our g ® v.

Lemma 5.8. Let J < {i € Z/fZ : r; > 0}. There is an isomorphism of GLy(O)-
modules Fil’ R(o,) ~ Wi, where W, is viewed as a GLg(O)-module by inflation via
the surjection GLa(O) — GLg(O/m?).

Proof. Recall the submodules Ug < Indgz xr defined in the proof of Lemma 3.1, for all
GL2(F)
FiGLQ(O)

given by mq — II® (—1)*X""?Y® for all @« < f; indeed, the action of Bs on the
left-hand side is given by (3), while a simple calculation provides the action on the
right-hand side. Now set 3 = p”/; then the image of this map is the By-submodule of

8 € N. For every § < r there is an embedding of gg—modules Ug — c-ind oy
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GLa(F)
FXGLy(0)
surjection of GLy(O/m?)-modules ® : W,,; = Ind%iQ(O/mQ)UpJ — Fil’R(q,).

It remains to prove that ® is injective. We show this directly. Consider the basis of
W, given in Definition 3.4 and compute, for all jo € N and J' < J, that

w )\ g’ . r— g’ g’
W) = BT 1)@ Wy
€

c-ind o, generated by II ® X ’"*pJYpJ, and by Frobenius reciprocity we get a

w )\ r— J’ _ g’ J’ 1 0 7 7 ,_ g
O(Fopr) = 2( 0 1)®A XY +(0 w)@(—l)p xv"yrr”

Aek
The elements on the right-hand side are well-known to be linearly independent in
c—ind?;éfg(o)ar; for instance, cf. [4, §3]. O

Remark 5.9. Lemma 5.8 allows us to recover [9, Lemma 17.1] as a special case of Propo-
sition 3.5.

We are now in a position to reinterpret the module R(o,) of [9, Definition 17.9] in
terms of the notions studied in the present paper.

Lemma 5.10. Suppose that r; > 0 for all i € ) fZ. The GLo(O)-modules R(o,) and
Mz 7,/¢7) are isomorphic.

Proof. Let I < {i € Z/fZ : r; > 0}. A Jordan-Hélder constituent det?’ ®o ;(r — 2p’) of
Wt/ Xper W, is special in the sense of [9, Definition 17.2], where we have implicitly
applied the isomorphism of Proposition 3.5 and the identification of Lemma 5.8, if
tri(r—2ph) e {(r—2p")i,p—2— (r —2p’);} for all i € I. By Remark 2.14 this exactly
means that (I — 1) nJ = @&. Under our hypotheses on r, the subset I can be any
subset of Z/f7Z, and thus det?’ Qo (r — 2p?) is special if and only if (J,I) € ©;. By the
definition of R(oy) and Proposition 5.6, we have R(oy) ~ > .5 M. Since (&,Z/fZ) is
the unique maximal element of (:)1, by Proposition 5.7 the sum on the right-hand side
is just M(QZ/JCZ)' O

5.4. Submodule structure. Before giving a complete description of the submodule
structure of R(o,) ~ M z,7/¢7), we state an auxiliary lemma.

Lemma 5.11. Suppose that r is generic and Mg 7,r7) admits a non-split extension £
of two Serre weights oy and ogr, for 0,60 € (:)1, as a subquotient: 0 — ogr — & — g9 — 0.
Then 6’ = 6.

Proof. If f = 1, then it is simple to work out the submodule structure of Mg 7/s7)
directly. It is a uniserial module of length three:

soc(Mg z/57)) =~ 0g(r)= Sym" E2
~ ~ GL2(]FP)
rad(M g z/52)) =~ Wo =~ Ind ;G ' xr
Mgz /rad(Mg 7/p2)) =~ det®ogu(r — 2) = det ®Sym”2E>.

In particular, the claim holds. So we assume f > 1.
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If Extém(o)(ag,ag/) # 0, then the Serre weights oy and oy must satisfy one of
five conditions specified by [9, Corollary 5.6]. The conditions (i)(a) and (i)(b), in the
labeling of [9], amount to the union of the following possibilities, where I,J < Z/fZ
satisfy J n (I — 1) =

o {0,6"} ={(J, ) (Ju {7}, 1)} for some j ¢ J;

e {0,0'y ={(J,I),(Ju{i—1},1\{i})} for some i € I.
The conditions (ii)(a), (ii)(b), and (ii)(c) amount to the following possibilities:

e {0,0'} ={(J,I),(J, I\{i})} for some i € I;

e 0=20.
The module Mg 7/47) is multiplicity-free, so § = 0’ is impossible; see also [17, Propo-
sition 2.10]. For the other possibilities, either # = 6 or § = ¢'. If § = €', then £ is
a subquotient of My . But Proposition 5.6 implies that My cannot admit a reducible
subquotient containing oy in its socle, giving rise to a contradiction. Therefore, the
relation 6’ = 0 necessarily holds. O

Theorem 5.12. Suppose that r is generic.
(1) The GL2(O/m?)-module M 7/¢7) is multiplicity-free, and the set of its Jordan-
Holder constituents is

JH(M(@,Z/fZ)) = {0’9 :0e€ él}

(2) Let 0 = (J,I) € ©1. Then My is the unique submodule of Mg 7,r7) with cosocle
o9, and its Jordan-Hélder constituents are

JH(M@) = {0'9/ A= él, 0= 0}

Proof. 1f 0 = (J,I) € (:)1, then oy is a constituent of My by Proposition 5.6 and hence of
Mg 7/57) by Proposition 5.7. To prove the first statement, we must show that Mz 7,r7)
has no other Jordan-Hélder constituents. This is the content of [9, Lemma 17.8]; recall
our characterization of special subquotients in the course of the proof of Lemma 5.10.
Now consider the second part of the claim. Again by Proposition 5.7 we know that all
the Serre weights contained in the right-hand side are indeed Jordan-Hé6lder constituents
of Mp. If our claim were false, there would exist ¢, 6" € ©; such that 6" £ ¢’ and yet Mj
admits as a subquotient a non-split extension £ of the form 0 — ogr — & — g9 — 0,
contradicting Lemma 5.11. O

We immediately deduce an analogue of Proposition 4.17.

Corollary 5.13. Suppose that r is generic and ¢’ = 6 are adjacent elements of @1,
with respect to the partial order =. Then a non-split extension of og by oy arises as a
subquotient of Mg 7,¢7)-

Remark 5.14. The “extension lemma” [9, Lemma 18.4] is a crucial ingredient in the
main results of [9]. Corollary 5.13 should be viewed as a strengthening of this lemma,
specifying which of the two non-split extensions occurs in R(o). In fact, the proof, which
is less intricate than the argument in [9], involves only Propositions 5.6 and 5.7 and a
translation of conditions on Serre weights into conditions on elements of él as in the
proof of Lemma 5.11.
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6. PROOF OF PROPOSITION 4.14

In this section we prove a closed-form description of the partial order <, on the set
O of types of the elements of the basis By of V3, for ramified extensions F'/Q,. This
partial order was originally introduced in Definition 4.7 in terms of generating relations.
In this section we refer to any pair (I,7) € P(Z/fZ) x N as a type, and the notion of

r-admissible types will distinguish the pairs arising from equivalence classes in 5) by the
correspondence Y of Proposition 4.12; see Definition 6.4 and Remark 6.5 below.

Definition 6.1. Let (I',7') and (I,7) be two types. We say that (I',~') <, (I,7) if the
following conditions are satisfied:
° =
o I'cTul(r—2v2(y=v)vily=~7v=7).
Lemma 6.2. The relation <, is a partial order.
Proof. Observe that (I',v) <, (I,v) if and only if I’ = I. Tt remains to show that the

relation <, is transitive. Suppose (I”,7") <, (I’,v') <, (I,7). Then clearly v < ~. By
our assumptions,

I"cTul(r—=29,2(y =4") Iy =", 7 =~") 0 I(r=27,2(y=+") v I(y =7, v =7,

so it suffices to prove that

I(r—=29.2(y =) vI(y =+" A =9") v Ilr —2v,2(y =) v I(y =,y =) <
I(r —29,2(y = ") v I(y =", 7 =)
In fact, this is an equality. Set (e1,...,e5) = (r — 27,7 =9,y =+,7 =", 4 = 7").
Then we indeed obtain
I(r=29,2(y' =9") v I(Y =+", 7" =) v I(r=27,2(y =) v I(y =7, 7 =7) =
1(82,83) ] 1(64,65) ) 1(81,82 + 63) ) I(El + &9 +€3,64 + 55) =
I(e9,e4) U I(e3,e5) U I(e2 + 4,63 +e5) U l(e1,62 + €3+ 64+ ¢€5) =
I(ea +eq,e3+es) Ul(er,eatesteates) =1(r—2v,2(y —7") v Iy =", v =7"),
where the second equality is an application of Lemma 2.12 and the third holds because
I(eg,e4) = I(e3,85) = I(y = ',v = 7") = @ since 7" <+ <. O
Our aim now is to show that each of the partial orders <, and <, refines the other.

Lemma 6.3. The partial order <, is a refinement of <,.

Proof. We must show that if (I’,9') <, (I,7) by one of the generating relations of
Definition 4.7, then (I',v") <, (I,7). Note that the relation (I’,~v) <, (I,7) is equivalent,
by definition, to the inclusion V(p ) < V|;,) of submodules of V. As in the proof of
Proposition 4.12, we see using Proposition 3.5 and the results of [2] that this inclusion
of submodules is equivalent to the inclusion I’ € I. Thus we see that (I',7v) <, (I,7)
if and only if I’ € I, and it is evident from the definition of <, that this is equivalent
to (I’,y) <, (I,7). This implies our claim for the first, fourth, sixth, and seventh
generating relations of Definition 4.7.
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The second generating relation states that [(jo, 71 — p™)] <» [(Jo,J1)] if ™ < j1. By
the map Y of Proposition 4.12, this is equivalent to (I(jo,r—2j1 —jo+2p™), j1 = p™) <,
(I(jo,™ — 241 — jo),J1). By Corollary 2.12 we have

I(jo,r —2j1 — jo + 2p™) < I(Jo,m — 2j1 — jo + 2p™) U I(r — 241 — jo,2p™) =
I(jo, ™ — 251 — jo) v I(r — 241,2p™),

and this implies (I(jo,r — 2j1 — jo + 2p™),j1 = p™) <» (L(Jo,™ — 241 — Jo),j1) by the
definition of <,..

The third generating relation is that [(jo + ™, j1 — p™)] < [(Jo,j1)] if p™ < j1, or,
equivalently, that (I(jo+p™,r—2j1 —jo+p™), 51 =p™) <» (L(jo, ™ —2j1 — jo), j1). Now,
by Corollary 2.12 we have

I(jo+p™,r—2j1+p™) S I(jo+p™,r— 251 +p™) v I(jo,p™) v I(r —2j1 — jo,p™) =
I(T - 2]1 - jOajO) Y I(T - 2j1’ 2pm) Y I(pmapm)a
which is equivalent to [(jo + p™, j1 = p™)] <, [(jo, j1)]-
It remains to treat the fifth generating relation. Abusing notation, we write the
correspondence of Proposition 4.12 as an equality. Then it is clear from the definition
of <, that if p™ < 71, then

[(r = 2j1, 51 = p™)] = (L(r — 251, 2p™), 1 = P™) <v (@,71) = [(0,51)] = [(90,j1)],

which is exactly what we need. We have now finished checking the generating relations
of Definition 4.7 and can conclude that <, refines <,. O

The proof of the opposite inclusion of relations, namely that <, refines <., is sub-
stantially more involved than that of Lemma 6.3. The primary reason for this is that
the correspondence T of Proposition 4.12 need not be surjective. The relation <, is
defined in terms of pairs (1,7), but when we work with such pairs, we must take care
to remain inside the image of T, so that we can translate to the equivalence classes of
pairs (jo, j1) € © in terms of which <, is defined.

Definition 6.4. A type (I,7) € P(Z/fZ) x N is called r-admissible if I is (r — 27)-
admissible in the sense of Definition 2.9.

Remark 6.5. Equivalently, a type (I,) is r-admissible if and only if it lies in the image
of the correspondence Y of Proposition 4.12, i.e. if there exists (jo,71) € N2 such that

(Iv’)/) = (I(jﬂvr - 2.]1 _jO)ajl)‘

Denote the set of r-admissible types by H, < P(Z/fZ) x N. The restriction of <,
gives a partial order on H,..

To prove that <, refines <,, we need to show that if (I’,7') <, (I,7) are two r-
admissible types, then they are connected in the poset H, by a path of a specific form
compatible with the generating relations of <,. The next claim is due to Bardoe and
Sin [2, Corollary 4.1]; we reprove it here in our terminology.

Lemma 6.6. Let v € N and let (I',7) < (I,7) be two r-admissible types. Then there
exists j € I\I' such that (I' U {j},7v) € H,.
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Proof. We may assume r — 2y # ¢ — 1, since otherwise the claim is vacuously true.
Observe that I' < I. If j € I\I" and (I’ U {j},7) ¢ H, then it is immediate from
Definition 6.4 that one of the following two options must hold:

e (r—2v)j;1=0and j+1¢ 17,

e (r—2y)j=p—landj—1¢1I.
Since (I,v) € H, by assumption, it follows that if our claim is false, then for all j € I\I’
one of the following two alternatives must hold:

o (r—2v)j4:1=0and j+1e\I';

e (r—2y)j=p—1landj—1el\l
If j € I\I' satisfies the first alternative, then j + 1 € I\I’ necessarily also satisfies the
same condition. Hence (r —2v); = 0 for all j € Z/fZ. If j € I\I’ satisfies the second
alternative, then (r —2v); = p— 1 for all j € Z/fZ by a similar argument. In either
case, this contradicts the hypothesis » — 2y # ¢ — 1. O

Lemma 6.7. Suppose that (I',7') <, (I,7) are two r-admissible types. Then there exist
J € Z/fZ such that v; < ; and a subset I" < Z/fZ such that (I",+' +p’) € H, and

(21) I'A) < (", +77) < (1,7).

Moreover, I" may be taken to be the set I'\I(r—2v'—2p7,2p7), except when (r—27'); = 2
and j —1e€1" and j ¢ I' for all j such that v; < ;. In this exceptional case, we may
take I" = I' U{j,j+1,...,j+L}, where £ > 0 is mazimal such that (r—2v' —2p’);4; = 0
and j+i ¢ I' for all i € [€]o.

Proof. For any j such that ,y; < 7j, observe that (21) amounts to the following three
conditions:

(a) I'c Tul(r—2v,2(y =) vI(y=+,7=9");

(b) I'c I" U I(r — 29" —2p,2p7); ' '

() I"cTul(lr—=2v,2(y=~" =p))ul(y=+ =p,v=+ =p).
By assumption, we have 7/ < v = p?, and hence I(y ~~' = p?,p’) = @. Moreover, since
p > 2, we have I(p?,p’) = @. It follows from Lemma 2.12 that

(22) I(*y;y’;pj,fy;’y';pi)uI('r—2fy,2('y;fy’;pj))uI(r—Qv’—ij,2pj) =
Iy =7y =) uI(r—2v,2(y =7))

and hence that the set I” = I'\I(r — 2 — 2p’, 2p’) satisfies the three conditions above.
We now consider several cases.

Suppose first that I(r—2v'—2p’, 2p’) # . In this case, we have (r—2v'—2p’); > p—2.
Let ¢ € [f — 1]p be maximal such that (r — 2y — 2p’);; = p— 1 for all i € [¢]; recall
that [(] = @ when ¢ = 0. In particular, if r — 27y —2p’ = ¢—1then £ = f — 1. We
then have I(r — 2y —2p?,2p7) = {j +i:i€ [(o}. Set I" = I'\I(r — 2 — 2p’,2p’) and
check that the type (I”,+ + p’) is r-admissible since (I’,~') is. Since we already know
that (I”,~' + p?) satisfies (21), we have established our claim in this case.

Now suppose that I(r — 2y — 2p/,2p’) = @. Then the digits of » — 27’ are the
same as those of 7 — 29/ — 2pJ, except for (r — 2y — 2p7); = (r — 2v'); — 2. If we set
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I" = I'\I(r — 2" — 2p7,2p’) = I, then the r-admissibility of (I’,7) implies that of
(I',y" + p’), except in the case where (r — 2y —2p’); =0 and j ¢ I’ but j — 1€ I'.

So suppose that this problematic situation holds for all j such that 7;- < 7j, and fix
one such j. Let £ > 0 be maximal such that (r — 2y —2p/);4; = 0 and j +i ¢ I’ for
all 7 € [€]o. Note that this condition implies v;,;, = vj+; for all 7 € [£], and also that
Yj—1 = 7j—1 and hence j —1¢ Iy=+ =pl,y=+ =p)). Set I" =T" u{j+i:ie[llo}
and observe that (I”,~4" + p?) is r-admissible. To complete the proof of this lemma, it
remains to show that I” satisfies the condition (c¢) above. By (22) and the condition (a),
it suffices to show that

(23) {j+izie[locTul(r—2v2(y=+ =p)uI(y=y =p,v=+ =p).

If j e I(r —2v,2(y = =), then {j +i : i € [(lo} € I(r —2y,2(y =~ = p))
by Remark 6.5 and the r-admissibility of (I”,7" + p’), and we are done. So suppose
j ¢ I(r—2v,2(y=+"=p’)). Then necessarily (r —27); = (2(y=+'=p’)); = 0. Applying
Remark 6.5 again, we may conclude that j —1 ¢ I(r —2v,2(y =+ =p’)), and we already
know j—1¢ I(y=~"=p/,y=+'=p’). But j—1 € I’ by assumption, which forces j—1¢€ I
by (22) and the condition (a). Since (r — 2v); = 0 we obtain j € I by Remark 6.5. We
have thus established that j is contained in the right-hand side of (23).

Now we iterate this argument. Suppose that i € [¢] and it is known that j + i’ € I for
alld’ € [i —1]o. If j+ie I(r—2v,2(y =~ =p)), then j + me I(r—2v,2(y =~ ~p’))
for all i < m < ¢, and we are done. If not, then necessarily (r — 27v);+; = 0. Hence
j+i € I by the r-admissibility of the type (v, I), and we may apply this argument again
for i + 1. After at most £ iterations, we complete the proof of the remaining case of the
lemma. (]

Corollary 6.8. Let (I',y') <, (I,7v) be two r-admissible types. Then there exists a
finite sequence

(IOa’YO) <r (Ila71> <p o <y (L@,'Ys)
of r-admissible types such that for each i € [s] one of the following statements holds:

(a) vi = vi-1 and I; = I;—y v {j} for some j ¢ I;—1, or A
(b) vi = vi—1 + 07 for some je[f —1]o and I;—1 = I; 0 I(r — 27;,2p7).

Proof. We argue by induction on ~ = 4/, with respect to the partial order < on N. If
~v=~" = 0, then our claims follows easily from Lemma 6.6. So assume that y=~' > 0 and
obtain a sequence (I',Y") <, (I”,7' +p’) <, (I,7) of r-admissible types as in Lemma 6.7.
If we may take I” = I'\I(r — 2y — 2p’,2p?), then the segment (I’,7) <, (I",7 + p’)
satisfies (b), whereas the segment (I”,7 + p’) <, (I,v) may be refined to a sequence
with the desired properties by induction.

In the remaining exceptional case of Lemma 6.7, we have I” = I' U {j,j+1,...,j+ ¢}
for a suitable ¢ > 0. In this case either j + ¢+ 1 € I' or (r — 29')j4041 > 0, so it
is easy to check that (I”,4') is an r-admissible type. Thus we obtain the refinement
(I',y) <, (I",9") < (I",o +p’) < (I,7). Since I(r —2(y' +p’),2p’) = @ in this case,
the second jump in this refinement satisfies (b), whereas the first and third jumps may
be refined to sequences with the desired properties by induction. O
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The next lemma, whose proof is tedious but completely elementary, relates the refine-
ments of Corollary 6.8 with the types of specific basis elements of V5 ,. This will finally
allow us to relate our conclusions to the partial order <.

Lemma 6.9. Let (I',y') <, (I,7) be two r-admissible types such that v < ~y. Let

a,B € N satisfy I = I(a, B). Then there exists j € Z)f7 such that at least one of the
following statements holds:

o ([(a+2p,8),y=p)€Hy and (I',Y) <r (I(a + 29, B),y=p)).

o ([(a+p),B+p),y=p)eH, and (I',Y) <, (I(a +p’,B+P)),y = P).

o (I(a,B+2P),y=p))eH, and (I',7) < (I(a, B+ 2p7), v = 7).
Proof. By Corollary 6.8 there exists j € Z/fZ and an r-admissible type (I”,7 = p/)
such that (I’,v') <, (I",7 = p’) <, (I,7). Observe that the second relation amounts to
I" < Tul(a+j3,2p7). It suffices to show that at least one of the three sets I(a+2p7, ),
I(a+p?, B+ p?), I(a, B + 2p7) is the largest subset I” of I U I(a + 3,2p”) such that
(I",~v = p7) is r-admissible. We consider several cases, which exhaust all possibilities.

Case 1: aj <p—2 orBj <p—2. If aj < p—2, then I(c,2p’) = @. Hence it follows

from Lemma 2.11 that

(24) I(a+2p/,8) = I, B) v I(a + 3,2p).
In particular, (I U I(a+ 3,2p7),y = p’) = (I(a+2p7, B),v = p’) is itself an r-admissible
type. The case 3; < p — 2 is analogous.

Case 2: a; = f3; = p— 2. In this case I(a,p’) = I(8,p’) = @. By Corollary 2.12
we may conclude that I(a,3) U I(a + 3,2p7) = I(a + p?, 8+ p’). Hence (I U I(a +
B,2p7),y =~ p’) = (I(a +p?, B+ p’),y = p’) is an r-admissible type.

Case 3: {aj,B;} = {p—1,p—2} and j — 1 ¢ 1. Observe that I(a + j3,2p) = &,
so (24) implies that I U I(a + 3,2p’) = I. However, since (a + 8+ 2p’); = p — 1, the
type (I, = p’) fails to be admissible if j — 1 ¢ I but j € I. In this case, it is clear that
the largest subset I” < I such that (I”,v = p’) is r-admissible is I” = I\{j +i : i € [{]o},
where ¢ € [f — 1]y is maximal such that (a + 3+ 2p/)j+; =p— 1 and j+i € I for all
i € [£]o. Observe that aj4; = Bj4; = p—1forallie [£]. If aj1e41 = Bjte41 = p—1, then
the maximality of ¢ forces j + ¢+ 1¢ I = I(a, 3), which is absurd. If o441 < p—1,
then I(a,2p’) = {j +i :i € [(]o}. By Lemma 2.11 we have I = I U I(a + 3,2p’) =
I(c,2p7) U I(a +2p7, B). Hence I" < I(a+2p7, 3). But the type (I(a+2p7,8),v = p’)
is manifestly r-admissible, so I” = I(a + 2p?, ) by the maximality of I”. Similarly, if
Bijre+1 <p—1then I” = I(a, B+ 2p7).

Case 4: aj =Bj=p—1or (o, B} ={p—1,p—2} and j—1€1). Let L e [f —1]o
be maximal such that a;,; = p—1 for all i € [¢]. We may also assume that 5;4; = p—1
for all i € [¢]; otherwise, we proceed analogously but switch the roles of a and /3. Note
that I(a,2p’) = {j +i:i€[l]o} and that {j +i:i€ [(]} < I(a+2p7,1).

If aj = p—1, then j € I(a+2p’, B). Hence IUI(a+p3,2p") = I(a,2p’)ul(a+2p’, B) =
I(a + 2p7, B), where the first equality comes from Lemma 2.11.

It remains only to treat the case (aj,8;) = (p —2,p — 1) with j —1 € I. Suppose
first that j — 1 € I(,2p’). Then £ = f —1, hence « = ¢—1—p/ and 8 = ¢ — 1, s0
that I(c,2p’) = I(a +2p7,B) = [(p/,q— 1) = Z/fZ. Now assume j — 1 ¢ I(c,2p’). By
assumption j — 1 € I < I(a,2p’) U I(a + 2p7, B), so necessarily j — 1 € I(a + 2p/, 3).
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This implies that (a + 2p’ + 3); = 0, whence j € I(a + 2p’, B) by Remark 6.5. In either
case, we have again shown that I U I(a + 3,2p7) = I(a + 2p7, B). O

Corollary 6.10. The partial order <, is a refinement of <.

Proof. Suppose that (I',9') <, (I”,7") are r-admissible types. Repeatedly applying
Lemma 6.9, we may refine (I',7) <, (I,7v) to a sequence of steps, in which each step
is of one of four sorts: either it is of the form (I’,v) <, (I,7) for some I’ < I, or there
exist a, 8,7 € N such that a + B = r — 2+ and one of the following three possibilities
holds:

o (I(a+2p7,B),y~ p7) < (I(a, B),7), for p! <;
o (Ifa+p/, ﬂﬂﬂ) v=p) <r (I(a, B),7), for p/ <;
o (I(a,B+2p7),y=p’) < (I(e, B),7), for p! <.
We already showed at the beginning of the proof of Lemma 6.3 that (I’,v) <, (I,7)
is equivalent to (I’,7) <, (I,7).
In the first case of the trichotomy, we have

(I(a+2p,8),y=p) = UBr—2y=B+2P),7=p) =B, =) < [(8B:7)] =
(I(5>T - 2’7 - B)a’y) = (I(avﬁ)vv)
by the second generating relation of Definition 4.7. The third case is the same, with the

roles of o and g switched.
In the remaining second case, we have

I+, B+p"),y 1) = [(a+ 9,7 =p)] < [(@.)] = (I(a, 8),7)
by the third generating relation of <,. Since each step of the refinement of (I’,7") <
(I",~4") is compatible with <,, we conclude that (I',~") <, (I”,~"). O

Together, Lemma 6.3 and Corollary 6.10 imply Proposition 4.14.
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