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Abstract. The submodule structure of mod p principal series representations of
GL2pkq, for k a finite field of characteristic p, was described by Bardoe and Sin and has
played an important role in subsequent work on the mod p local Langlands correspon-
dence. The present paper studies the structure of mod p principal series representations
of GL2pO{mnq, where O is the ring of integers of a p-adic field F and m its maximal
ideal. In particular, the multiset of Jordan-Hölder constituents is determined.

In the case n “ 2, more precise results are obtained. If F {Qp is totally ramified, the
submodule structure of the principal series is determined completely. Otherwise the
submodule structure is infinite. When F is ramified but not totally ramified, the socle
and radical filtrations are determined and a specific family of submodules, providing
a filtration of the principal series with irreducible quotients, is studied; this family is
closely related to the image of a functor of Breuil. In the case of unramified F , the
structure of a particular submodule of the principal series is studied; this provides
a more precise description of the structure of a module constructed by Breuil and
Pas̆kūnasin the context of their work on diagrams giving rise to supersingular mod p
representations of GL2pF q.

1. Introduction

1.1. Tame principal series. Let k be a finite field and n ě 2. Let P ď GLn be a para-
bolic subgroup with Levi subgroup M isomorphic to GLn´1ˆGL1, and let χ : P pkq Ñ k
be a character; observe that χ necessarily factors through Mpkq. If χ also factors through
projection to the second component of Mpkq, then, motivated by applications to coding

theory, Bardoe and Sin [2] determined the submodule structure of Ind
GLnpkq
P pkq χ nearly

three decades ago. In particular, they determined the structure of the principal series

representation Ipχq “ Ind
GL2pkq
Bpkq χ, where B ď GL2 is a Borel subgroup. It turns out

that each Jordan-Hölder constituent σ of Ipχq appears with multiplicity one. Thus there
is a unique submodule of Ipχq with irreducible cosocle isomorphic to σ, and any sub-
module of Ipχq is a sum of submodules of this type; hence Ipχq has only finitely many
submodules.

The structural results of Bardoe and Sin found a dramatic new application in the work
of Breuil and Pas̆kūnas [9] towards an expected mod p local Langlands correspondence
for GL2pF q, where F {Qp is a finite unramified extension. Recall that when F “ Qp this
correspondence was described in a functorial way in a series of works including [4, 11],
but far less is known when F ‰ Qp. Let O be the valuation ring of F , and let k be its

residue field. Let ρ : GalpF {F q Ñ GL2pkq be a semisimple mod p Galois representation.
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Breuil and Pas̆kūnas constructed infinite families of diagrams associated to each such ρ.
Diagrams are objects consisting of a finite-dimensional representation D0pρq of the finite
group GL2pkq over k, together with some additional structure, such as a representation
D1pρq of the normalizer of the pro-p-Iwahori subgroup Ip1q of GL2pOq. In the diagrams

of [9], one has D1pρq “ D0pρq
Ip1q. By the theory developed earlier in [23], each of these

diagrams gives rise to infinite (see [17]) families of k-representations of GL2pF q, which
are irreducible and supersingular if ρ is irreducible.

Not all smooth irreducible mod p representations of GL2pF q arise in this way, and
probably not even all whose GL2pOq-socle is compatible with the weight part of Serre’s
modularity conjecture. However, a considerable body of evidence has accumulated over
the past fifteen years suggesting that the mod p local Langlands conjecture is realized
within the Breuil-Pas̆kūnas families when F {Qp is unramified and ρ is generic in the sense
of [9, Definition 11.7]. Given ρ, one can fix a totally real field L and a place v|p of L such
that Lv » F and attempt to find a GL2pLvq-module πpρq in the completed cohomology of
a tower of Shimura curves over L that realizes the mod p local Langlands correspondence.
It is not yet known in a single case, for F ‰ Qp, that such a representation πpρq is
independent of the many global choices made in the course of its construction. However,
a series of papers by various authors, including [5, 15, 18, 20, 21] and culminating in [14],

show that for any collection of global choices, the injection πpρqIp1q ãÑ πpρqKp1q is the
same and arises from one of the Breuil-Pas̆kūnas diagrams. Here Kp1q is the first

congruence subgroup kerpGL2pOq� GL2pkqq. In particular, πpρqKp1q » D0pρq.
When the extension F {Qp is ramified, very little is known towards the mod p local

Langlands correspondence. A substantial obstacle is that it is not enough to consider
GL2pkq-modules, and one must work with representations of the larger finite group
GL2pO{mnq for n ě 2; here mŸO is the maximal ideal. Observe that even the represen-
tation theory over C of such groups is understood more poorly than that of general linear
groups over finite fields; cf. [1, 26, 27, 12, 13] for examples of recent advances. While
all irreducible mod p representations of GL2pO{mnq factor through GL2pkq (see, for
instance, [3, Lemma 3]), the structure of reducible representations can be very different.

In particular, we would like to understand the structure of the principal series

Inpχq “ Ind
GL2pO{mnq
BpO{mnq χ.

The present paper begins to fill this lacuna.

1.2. Main results. This section summarizes the main results of the article; in order to
avoid excessive details at this stage, some notations of the introduction differ from those
used in the body of the paper. We view Inpχq as a representation over an extension field
k Ď E; our results will be independent of E. Let the cardinality of the residue field k
be q “ pf ; assume that p is odd.

1.2.1. Jordan-Hölder constituents. We start by determining the Jordan-Hölder con-
stituents of Inpχq. Definition 2.4 fixes an E-basis B of Inpχq. Consider the set S “
t0, 1, . . . , p´1uf endowed with a partial order ĺ defined by pr0, . . . , rf´1q ĺ ps0, . . . , sf´1q

if ri ď si for all 0 ď i ď f ´ 1. Later it will be useful to consider a monoid structure

on S; this is the monoid rN, defined in §2.1 that is ubiquitous throughout the paper.
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For each α P S we fix (Definition 3.4) a subset Bα Ď B such that Bα Ď Bβ if α ĺ β
and consider the subspace Wα of Inpχq spanned by Bα. Since Wpp´1,...,p´1q “ Inpχq,
this construction produces an exhaustive filtration of Inpχq. Note that any character χ
of BpO{mnq factors through a character of Bpkq, and let η : Bpkq Ñ kˆ Ď Eˆ be the

character η :

ˆ

a b
0 d

˙

ÞÑ ad´1.

In Corollary 3.2 we find a recursive description of the multisets of Jordan-Hölder
constituents of Inpχq, starting with the sets of Jordan-Hölder constituents of the tame
principal series Ipχq “ I1pχq, which were determined by Bardoe and Sin. The proof
produces the following more precise result, which is Proposition 3.5.

Theorem 1.1. For each β “ pβ0, . . . , βf´1q P S, the subspace Wβ is a GL2pO{mnq-
submodule of Inpχq. Moreover, there is an isomorphism of GL2pO{mnq-modules

Wβ{
ÿ

αPS
αăβ

Wα » In´1pχ ¨ η
řf´1
i“0 βip

i
q,

where GL2pO{mnq acts on the right-hand side via its natural projection to GL2pO{mn´1q.

1.2.2. A family of submodules. The remainder of the paper restricts itself to the case
n “ 2 in order to obtain more precise results. Then to every element of the basis B
we associate a type, namely a pair pI, γq, where I Ď Z{fZ and γ P S. The set I
is determined by the columns where a carry must be performed when a certain two
elements of S, viewed as f -digit numbers written in base p, are added. Definition 4.7
introduces a partial order ďχ, depending on the character χ, on the set of types, in terms
of generating relations. An equivalent explicit closed-form definition of ďχ is obtained
in Proposition 4.14 by means of long but completely elementary manipulations involving
the properties of carry sets. For every type pI, γq, define VpI,γq to be the subspace of
I2pχq spanned by the elements of B whose type is less than or equal to pI, γq, with
respect to the partial order ďχ. The following claim consists of Proposition 4.10 and
Theorem 4.11:

Theorem 1.2. Suppose that the extension F {Qp is ramified. For every type pI, γq, the
subspace VpI,γq of I2pχq is stable under the action of GL2pO{m2q. Moreover, VpI,γq is

generated, as a GL2pO{m2q-submodule of I2pχq, by any element of B of type pI, γq.

The proof consists of explicit calculations that fail when F {Qp is unramified because
of some complications introduced by summation of Witt vectors, and indeed the claim
is false when F {Qp is unramified.

1.2.3. Submodule structure in the totally ramified case. An essential feature of the tame
principal series Ipχq is that they are multiplicity-free: each Jordan-Hölder constituent
appears only once as a quotient of any composition series. As a consequence, Ipχq has
only finitely many GL2pkq-submodules. For any Jordan-Hölder constituent σ of Ipχq,
there is a unique submodule with cosocle isomorphic to σ, and this submodule can
be specified by writing down its set of Jordan-Hölder constituents. Any submodule of
Ipχq is a sum of submodules with irreducible cosocle. A description of the submod-
ule structure of Ipχq of this form is very useful for applications; it provides a method
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for determining when two submodules are equal, or when one is contained in another.
See [8, Proposition 6.2.2] for another statement of this form, in a different setting. When
the extension F {Qp is totally ramified, the principal series I2pχq is not multiplicity-free
(Propositions 4.25 and 4.26) but still admits a similar complete description of its sub-
module structure. We say that χ is odd if χηi does not factor through the determinant
for any i P Z{pq ´ 1qZ, and that χ is even otherwise. The following is Theorem 4.28,
partially restricted to the case of odd χ. The statement for even χ is very similar but
slightly more complicated, as it must treat an exceptional case, so we suppress it for the
purposes of this introduction.

Theorem 1.3. Suppose F {Qp is totally ramified and non-trivial. The principal series
I2pχq has 2p Jordan-Hölder constituents, parametrized by types pI, γq, where I Ď t0u
and γ P t0, 1, . . . , p´ 1u. Moreover, I2pχq has finitely many submodules.

If χ is odd, then the submodules with irreducible cosocle are exactly the submodules
VpI,γq. The multiset of Jordan-Hölder constituents of VpI,γq is tLpI 1, γ1q : pI 1, γ1q ďχ pI, γqu,
where LpI, γq is the constituent parametrized by the type pI, γq.

A depiction of the partial order ďχ on the set of types, when χ is odd and F {Qp is
totally ramified, may be found in Figure 1.

1.2.4. Partial submodule structure in the general ramified case. If F {Qp is ramified but
not totally ramified, then I2pχq has an infinite lattice of submodules if the base field
E is infinite (Proposition 4.23) and we cannot hope for a complete explicit description
of the submodules of I2pχq as in Theorem 1.3. Most submodules are not sums of the
VpI,γq. However, for the submodules in this family much of Theorem 1.3 still holds. The
following is Lemma 4.16 and Proposition 4.17.

Theorem 1.4. Suppose F {Qp is ramified. The Jordan-Hölder constituents of I2pχq are
parametrized by a (possibly proper) subset of the set of pairs pI, γq, where I Ď Z{fZ and
γ P S. Moreover, VpI 1,γ1q Ď VpI,γq if and only if pI 1, γ1q ďχ pI, γq, and the multiset of

Jordan-Hölder constituents of VpI,γq is tLpI 1, γ1q : pI 1, γ1q ďχ pI, γqu.
Moreover, excluding an exceptional case, the submodule VpI,γq has irreducible cosocle

LpI, γq.

Although Theorem 1.4 appears to describe only a very small part of the submodule
lattice of I2pχq, it describes an important part. Breuil [6] has defined a functor from
the category of mod p representations of GL2pF q to that of pϕ,Γq-modules over Qp,
and subquotients of I2pχq generated by elements of the basis B turn out to be relevant
for the study of the image of πpρq under Breuil’s functor, with the aim of producing a
description of this image analogous to that of [7, §4].

1.2.5. The unramified case. All these results, except for Theorem 1.1 fail when F {Qp

is unramified. Indeed, we are unaware of a basis of I2pχq with the property that the
GL2pO{m2q-submodule of I2pχq generated by any element of the basis is the linear span
of a subset of the basis. However, we can still obtain interesting partial results. Assume
for simplicity that χ does not factor through the determinant, and let σχ be the unique
irreducible representation of GL2pkq, and hence of GL2pO{m2q, with lowest weight char-
acter χ. Then I2pχq has irreducible socle isomorphic to σχ. If F {Qp is unramified,
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then we define a cyclic submodule Mpχq Ď I2pχq that is analogous to Vp∅,p1,1,...,1qq. The
submodule Mpχq is multiplicity-free, and we can describe its submodule structure com-
pletely by means of explicit calculations that are less pleasant than the ones in the rest
of the paper. In [9, §17], Breuil and Pas̆kūnas associated a GL2pOq-module Rpσq to
every generic irreducible representation σ of GL2pkq; these modules played a technical
but essential role in the proof of the main results of [9]. Under the genericity assump-
tion of Definition 5.4 on χ, we recover Rpσχq as a submodule of I2pχq and describe its
submodule structure completely, thereby strengthening an essential property of Rpσχq
established in [9, §18] while simplifying its proof. We note parenthetically that our
study of Mpχq may also be developed when χ is not generic. An application, which is
the aim of work in progress, is to generalize the definition of Breuil-Pas̆kūnas diagrams
to non-generic cases.

Indeed, let rΘ1 “ tpJ, Iq : I, J Ď Z{fZ, J X ti ´ 1 : i P Iu “ ∅u. To each θ P rΘ1

we associate an explicit irreducible representation σθ of GL2pkq by means of a recipe

that depends on χ. Define a partial order on rΘ1 by setting pJ 1, I 1q Ď pJ, Iq if the two
conditions I 1 Ď I and J 1 Ď J Y ti´ 1 : i P IzI 1u hold. The following is Lemma 5.10 and
Theorem 5.12.

Theorem 1.5. Suppose that F {Qp is unramified and that χ is a generic character.
Then Mpχq » Rpσχq as GL2pOq-modules. The module Mpχq is multiplicity-free with

Jordan-Hölder constituents tσθ : θ P rΘ1u. For every θ P rΘ1, the unique submodule with

cosocle σθ has Jordan-Hölder constituents tσθ1 : θ1 P rΘ1, θ
1 Ď θu.

1.3. Overview of the paper. In §2 we set notation, recall the work of Bardoe and
Sin [2] about the structure of the tame principal series Ipχq, and establish properties of
the carry sets mentioned in §1.2.2 above. In §3, Theorem 1.1 is proved, and some general
explicit computations are presented. In §4 we specialize to the case n “ 2, and soon after
to the case of ramified extensions F {Qp, and prove the main results of the paper. In §5
the computations are modified to treat the case of unramified F {Qp, and Theorem 1.5
is proved. The final section §6, which is an appendix to the main body of the paper
and essentially independent of it, contains the combinatorial proof of Proposition 4.14
and thereby provides a closed-form definition of the partial order ďχ appearing in the
statements of Theorems 1.3 and 1.4.

Acknowledgements. We are grateful to Shalini Bhattacharya, Stefano Morra, and Ariel
Weiss for illuminating discussions during the course of this work and its prehistory.

2. Preliminaries

2.1. Notation. Let F {Qp be a finite extension. Let O be the valuation ring of F , let

k be its residue field, and let q “ pf be the cardinality of k. Fix a uniformizer $ P O,
namely a generator of the maximal ideal m. Let e be the ramification index of F {Qp,
so that pO “ me.

2.1.1. The monoid rN. For every n P N we set rns “ t1, 2, . . . , nu and rns0 “ rns Y t0u.
The symbol Ă denotes strict inclusion. Set N0 “ NY t0u, and consider the equivalence
relation on N0 defined by a „ b if the functions x ÞÑ xa and x ÞÑ xb from k to itself
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are equal. In other words, a „ b if and only if either a “ b “ 0 or if a, b ą 0 and

a ” bmod q ´ 1. Observe that rN “ N0{„ is a monoid under addition.

For every class α P rN there exists a unique f -tuple pα0, . . . , αf´1q P prp ´ 1s0q
f

satisfying
řf´1
i“0 αip

i P α. Define a partial order ĺ on rN as follows: α ĺ β if and only if
αi ď βi for all i P rf ´ 1s0. Equivalently, by Lucas’s theorem, α ĺ β if and only if the

binomial coefficient
`

řf´1
i“0 βip

i

řf´1
i“0 αip

i

˘

does not vanish in k.

We will use two notions of subtraction on rN, each of which is only partially defined.

Observe that the subsemigroup rNzt0u Ă rN, which is not a submonoid, has the structure
of a group and is naturally identified with Z{pq ´ 1qZ.

(1) Given a, b P rN such that a ‰ 0, define the difference a ´ b to be the unique

c P rNzt0u satisfying b` c “ a.

(2) If α, β P rN satisfy 0 ‰ α ĺ β, then we define β ´ α to be the unique γ ă β
satisfying α` γ “ β.

Thus, for example, we have pq ´ 1q ´ pq ´ 1q “ q ´ 1 but pq ´ 1q´ pq ´ 1q “ 0.
If I Ď rf ´ 1s0, we use the shorthand pI “

ř

iPI p
i. If b P Z{fZ, then, identifying

rf ´ 1s0 with Z{fZ in the natural way, we set I ´ b “ ti´ b : i P Iu. If α P rN, then the
support of α is the set supppαq “ ti P rf ´ 1s0 : αi ‰ 0u.

2.1.2. Induced representations. Let G be any group and H ď G a subgroup. Let E be a
field, and let ρ : H Ñ AutEpV q be a representation of H with underlying E-vector space
V . If g P G and v P v, then set g b v P IndGHρ to be the function f : GÑ V supported
on the right coset Hg´1 and satisfying fphg´1q “ ρphqv for all h P H. Observe that
ghb v “ g b ρphqv for all h P H and that xpg b vq “ xg b v for all x P G.

2.1.3. Witt vectors. If x P k, let rxs P O be the Teichmüller lift of x. For a class
λ P O{mn, we set λ0, λ1, . . . , λn´1 to be the unique sequence of elements of the residue

field k satisfying
řn´1
i“0 rλis$

i P λ. Abusing notation, we will write λ “
řn´1
i“0 rλis$

i.
Similarly, any element λ P O can be written uniquely as a series λ “

ř8
i“0rλis$

i.
Let u “ p

$e P Oˆ, and note that u0 P kˆ. Consider the polynomial Spx, yq “
xp`yp´px`yqp

p P Zrx, ys. The following identity will be crucial to our computations.

Lemma 2.1. Let a, b P O. Write a “
ř8
i“0rais$

i and b “
ř8
i“0rbis$

i, for ai, bi P k.
Then

a` b ”
e´1
ÿ

i“0

rai ` bisπ
i ` rae ` be ` u0Spa0, b0q

pf´1
s$e mod$e`1.

Proof. Let F0 be the maximal unramified subextension of F {Qp. Observe that rλs P F0

for all λ P k by Hensel’s lemma. We view elements of the Witt vector ring W pkq “ OF0

as sequences of elements of k as in [25, §II.6] and use the notation Fr and V for the
Frobenius and Verschiebung operators. Then rλs “ pλ, 0, 0, . . . q, as the right-hand side
is easily seen to be a pp ´ 1q-th root of unity congruent to λ modulo p. Similarly,
prλs “ FrpVprλsqq “ p0, λp, 0, . . . q. Hence,

rλs ` rµs “ pλ` µ, Spλ, µq, 0, . . . q ” rλ` µs ` prSpλ, µqp
f´1
smod p2
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for all λ, µ P k. Since p ” ru0s$
e mod$e`1, the claim follows. �

If m ď n, then ψnm denotes the natural projection On Ñ Om of rings, and also the
natural projection Gn Ñ Gm of groups that it induces. By 1, we always mean the trivial
representation of the relevant group.

Definition 2.2. We set notation for the following subgroups of Gn:

‚ T “

"ˆ

ras 0
0 rds

˙

: a, d P kˆ
*

;

‚ Dn “

"ˆ

1 0
0 1` d$

˙

: d P On´1

*

;

‚ Un “

"ˆ

1 b
0 1

˙

: b P On

*

;

‚ Un “

"ˆ

1 0
c$ 1

˙

: c P On´1

*

.

Let B ď GL2 be the algebraic subgroup of upper triangular matrices. For n P N,

write On “ O{mn and let Gn “ GL2pOnq, and Bn “ BpOnq. Let w “

ˆ

0 1
1 0

˙

P Gn.

If r P Z{pq ´ 1qZ, then we define χr : Bn Ñ kˆ to be the character

χr :

ˆ

a b
0 d

˙

ÞÑ dr0.

2.2. Principal series representations. The primary aim of this paper is to investigate
the following representations of Gn:

Definition 2.3. Let n P N and let r P Z{pq ´ 1qZ. We set Vn,r “ IndGnBnχr.

We view Vn,r as a representation of dimension pq`1qqn´1 over some sufficiently large
extension field k Ď E. For explicit computations below, it is convenient to define an
explicit E-basis of Vn,r.

Definition 2.4. If j “ pj0, . . . , jn´1q P rNn, set

fj “
ÿ

λPOn

ˆ

λ 1
1 0

˙

b λj00 ¨ ¨ ¨λ
jn´1

n´1 .

If j1 “ pj1, . . . , jn´1q P rNn´1, then set

fp8,j1q “ wfp0,j1q “
ÿ

λPOˆn

ˆ

λ 1
1 0

˙

b p´λ0q
r
n´1
ź

i“1

Pipλq
ji `

ÿ

λPOn´1

ˆ

1 0
λ$ 1

˙

b

n´1
ź

i“1

λjii .

Here Pi : Oˆn Ñ k is defined by λ´1 “
řn´1
i“0 rPipλqs$

i; see Lemma 3.7 below for an

explicit formula. We write λj for λj00 λ
j1
1 . . . λ

jn´1

n´1 when this is unlikely to cause confusion.

Note also that r P Z{pq´1qZ “ rNzt0u by definition, so that the first sum in the previous
displayed formula receives no contribution from λ P On such that λ0 “ 0 and thus is
actually a sum over Oˆn , where the functions Pi are defined.

Lemma 2.5. The set Bn,r “ tfj | j P rNnu Y tfp8,j1q | j1 P rNn´1u is an E-basis of Vn,r.



8 MICHAEL M. SCHEIN AND RE’EM WAXMAN

Proof. A set of representatives of left cosets of Bn in Gn is given by

Ξ “

"ˆ

λ 1
1 0

˙

: λ P On

*

Y

"ˆ

1 0
λπ 1

˙

: λ P On´1

*

,

from which it is clear that tξb 1 : ξ P Ξu is a basis of Vn,r. Iterating a standard Vander-

monde argument (cf. [22, Lemma 2.10(ii)]) we find that the set tfj : j P rNnu is linearly

independent, and that it spans the subspace V 1n,r spanned by

"ˆ

λ 1
1 0

˙

b 1 : λ P On

*

.

Since V 1n,r Ă spanpBn,rq, it is evident that spanpBn,rq contains the linear span of the

set

"

ř

λPOn´1

ˆ

1 0
λ$ 1

˙

b λj : j P rNn´1

*

, which is the same as the linear span of
"ˆ

1 0
λ$ 1

˙

b 1 : λ P On´1

*

by the Vandermonde argument. Hence spanpBn,rq “ Vn,r.

Furthermore, |Bn,r| “ pq ` 1qqn´1 “ dimE Vn,r, so Bn,r is indeed a basis of Vn,r. �

The elements of Definition 2.4 have the advantage of being eigenvectors for the action

of the torus T “

"ˆ

ras 0
0 rds

˙

: a, d P kˆ
*

and of the center ZpGnq.

Lemma 2.6. The following equalities hold:

(1) If t P T , then

tfj “ arpa´1dqj0`¨¨¨`jn´1fj

tfp8,j1q “ drpad´1qj1`¨¨¨`jn´1fp8,j1q.

(2) If α P Oˆn and z “ diagpα, αq P ZpGnq, then zϕ “ αr0ϕ for any ϕ P Bn,r.

Proof. This is a simple calculation. �

2.3. Carry sets. If n “ 1, then the principal series representation V1,r “ Ind
GL2pkq
Bpkq χr

was studied by Bardoe and Sin [2]. We will give a mild reformulation of their results,
in terms of the definition below.

Lemma 2.7. Let α, β P rN. As above, let αi, βi P rp ´ 1s0 be such that
řf´1
i“0 αip

i P α

and
řf´1
i“0 βip

i P β. View the indices i as elements of Z{fZ via the natural identification
of the sets rf ´ 1s0 and Z{fZ. There exists a unique subset Ipα, βq Ď Z{fZ satisfying
the conditions:

‚ αi ` βi ď p´ 1 if i´ 1 R Ipα, βq and i R Ipα, βq,
‚ αi ` βi ď p´ 2 if i´ 1 P Ipα, βq and i R Ipα, βq,
‚ αi ` βi ě p if i´ 1 R Ipα, βq and i P Ipα, βq,
‚ αi ` βi ě p´ 1 if i´ 1 P Ipα, βq and i P Ipα, βq,
‚ Ipα, βq “ ∅ if αi ` βi “ p´ 1 for all i P rf ´ 1s0.

Proof. Suppose that there is some index i for which αi ` βi ‰ p´ 1. If αi ` βi ă p´ 1,
then the first two conditions imply that if such a set Ipα, βq exists, then necessarily
i R Ipα, βq. Similarly, if αi ` βi ą p ´ 1 then i P Ipα, βq by the third and fourth
conditions. In either case, the conditions now determine whether or not i` 1 P Ipα, βq.
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Continuing in this way, we find that a set satisfying the first four conditions exists and
is unique.

The only unresolved case is when αi`βi “ p´ 1 for all i. In this case, the two sets ∅
and Z{fZ satisfy the first four conditions, but the fifth one determines Ipα, βq “ ∅. �

Remark 2.8. Informally, Ipα, βq is the set of columns where a carry is performed when

computing the sum of
řf´1
i“0 αip

i and
řf´1
i“0 βip

i in base p. Observe that carries can
only occur when α and β are both non-zero; indeed, Ipα, βq “ ∅ if α “ 0 or β “ 0.

Otherwise, since we are working in rNzt0u “ Z{pq´1qZ, any excess from the pf´1 column
is carried to the p0 column.

Definition 2.9. Let γ P rN. We say that a set J Ď Z{fZ is γ-admissible if there exist

α, β P rN such that α` β “ γ and Ipα, βq “ J .

The γ-admissible sets are easy to describe directly. We leave the proof of the following
observation to the reader, noting that Ipq ´ 1, q ´ 1q “ Z{fZ.

Proposition 2.10. Let γ P rN and J Ď Z{fZ.

(a) If γ P t0, q ´ 1u, then J is γ-admissible if and only if J P t∅,Z{fZu.
(b) If γ R t0, q´1u, then J is γ-admissible if and only if the following two conditions

are satisfied for every i P Z{fZ:
‚ If γi “ 0 and i´ 1 P J , then i P J .
‚ If γi “ p´ 1 and i P J , then i´ 1 P J .

The following lemma and its corollary state a property of carry sets that will be
essential for some of our arguments below. It has surely been well-known for centuries,
but we were unable to find a proof in the literature. The following argument was
suggested by Steven Landsburg in a Math Overflow answer to a related question.

Lemma 2.11. Let α, β, γ P rN. Then Ipα, γq Y Ipα ` γ, βq “ Ipα, βq Y Ipα ` β, γq. In
particular, Ipα` γ, βq Ď Ipα, βq Y Ipα` β, γq.

Proof. Consider the natural short exact sequence

(1) 0 Ñ Z{pZ ι
Ñ Z{pf`1Z π

Ñ Z{pfZÑ 0,

where we view elements of Z{pmZ as m-digit numbers written in base p and the maps
are given by ιpaq “ a0 ¨ ¨ ¨ 0 and πpafaf´1 ¨ ¨ ¨ a1a0q “ af´1 ¨ ¨ ¨ a1a0. Here the ai are
digits. Consider the section η of π defined by ηpaf´1 ¨ ¨ ¨ a0q “ 0af´1 ¨ ¨ ¨ a0. Then the

class in H2pZ{pfZ,Z{pZq corresponding to the extension (1) is represented by the 2-
cocycle ψ : Z{pfZ ˆ Z{pfZ Ñ Z{pZ given by ψpα, βq “ ι´1pηpαq ` ηpβq ´ ηpα ` βqq.
It is clear that ψpα, βq “ 1 if f ´ 1 P Ipα, βq and ψpα, βq “ 0 otherwise. Here we use

the natural correspondence of sets between Z{pfZ and rN; of course, this correspondence
does not respect the addition on each side. Since the groups in (1) are abelian, the
induced Z{pfZ-module structure on Z{pZ is trivial. Hence the cocycle condition on ψ
amounts to

ψpα, βq ` ψpα` β, γq “ ψpα, γq ` ψpα` γ, βq.
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Thus f ´ 1 is contained in the left-hand side of the claimed equality of sets if and only
it is contained in the right-hand side. By permuting the digits, the same statement can
be obtained for all i P Z{fZ.

Observe finally that if we treat both sides of the claimed equality as multisets, then
equality still holds. �

Now let m ě 2 and let ε1, . . . , εm P rN. Let T be a full rooted binary tree with m leaf
nodes v1, . . . , vm. Let v0 be the root of T . Let V 0pT q be the set of leaf nodes and V 2pT q
the set of non-leaf nodes. We now associate an element τv P rN to each node v of T and
a subset Iv Ď Z{fZ to each v P V 2pT q. If vi P V

0pT q, then set τvi “ εi. If v P V 2pT q
is a non-leaf node with children v1 and v2, then we define recursively τv “ τv1 ` τv2 and
Iv “ Ipτv1 , τv2q.

Observe that τv0 “
řm
i“1 εi is independent of the choice of tree T . The full binary

trees T correspond to all possible ways of computing this sum by adding two elements of
rN at a time. The following corollary states the number of times each column is carried
while computing the sum τv0 does not depend on the way in which it is computed.

Corollary 2.12. Let m ě 2 and let T be a full rooted binary tree as above. The multiset
IT “

š

vPV 2pT q Iv is independent of the choice of T .

Proof. Label each node v of T by the subset of rms enumerating the leaves lying below
v. If A,B,C Ă rms are disjoint subsets such that the configuration on the left of the
figure below appears as a subgraph of T ,

AYB Y C

AYB

A B

C

ù

AYB Y C

A B Y C

B C

then by Lemma 2.11 we may replace it by the configuration on the right to obtain a
tree T 1 satisfying IT “ IT 1 . We say that two trees are equivalent if one may be reached
from the other by a sequence of such moves; this is clearly an equivalence relation. To
prove the claim, it suffices to show that any two full rooted binary trees with m leaves
are equivalent.

We argue by induction on m. If m “ 2, there is only one such tree and nothing to
prove. If m ą 2, it suffices to show that any tree T is equivalent to one of the form

rms

rT tmu

where rT is a full binary rooted tree with leaves labeled by elements of rm´ 1s; indeed,
any two trees of this form are equivalent by the induction hypothesis. Let the children
of the root of T have labels A and B. Then A X B “ ∅ and A Y B “ rms. Assume
without loss of generality that m P A. If A “ tmu we are done. Otherwise, the node v
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labeled by A is not a leaf; applying the induction hypothesis to the subtree generated
by v, we may assume that the children of v are labeled by Aztmu and tmu. Then the
replacement

rms

A

tmu Aztmu

B

ù

rms

tmu rm´ 1s

Aztmu B.

of subgraphs completes the proof of our claim. �

2.4. Submodule structure of principal series for GL2pkq. Every irreducible k-
representation of GL2pOnq factors through GL2pkq and is defined over k; such a repre-
sentation is called a Serre weight. See, for instance, [16, §3.3] for a survey of the basics
of Serre weights and, in particular, for the following notation. If α P Z{pq ´ 1qZ and
a2 P Z, then by F pα, a2q we mean the Serre weight F pa1, a2q, where a1 P Z is the unique
integer satisfying a1 P α and 0 ď a1 ´ a2 ă q ´ 1.

Definition 2.13. Let r P Z{pq´1qZ and J Ď Z{fZ. Define sJprq “
řf´1
i“0 sJ,iprq, where

sJ,iprq “

$

’

&

’

%

0 : i R J

ri ` 1 : i´ 1 R J, i P J

ri : i´ 1, i P J.

Let σJprq be the Serre weight F pr ´ sJprq, sJprqq.

Remark 2.14. We leave it as a combinatorial exercise for the reader to determine the dig-

its of r´sJprq in base p and thus establish that σJprq “ detsJ prqb
Âf´1

i“0 pSymtJ,iprqk2qpiq,

where τ piq is the twist of the k-representation τ by the i-th power of the Frobenius au-
tomorphism of k and

tJ,iprq “

$

’

’

’

&

’

’

’

%

ri : i´ 1, i R J

ri ´ 1 : i´ 1 P J, i R J

p´ 2´ ri : i´ 1 R J, i P J

p´ 1´ ri : i´ 1, i P J.

Recall that our basis B1,r of V1,r “ Ind
GL2pkq
Bpkq χr consists of the following q`1 elements:

fj0 “
ÿ

λPk

ˆ

λ 1
1 0

˙

b λj0 , j0 P rN

f8 “ wf0.

This coincides with the basis defined just after [9, Theorem 2.4].

Definition 2.15. For each I Ď Z{fZ, define VI Ď V1,r to be the linear span of tf8u Y

tfj0 : j0 P rN, Ipj0, r ´ j0q Ď Iu. In particular, VI Ď VJ if and only if I Ď J .
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The work of Bardoe and Sin [2] completely describes the submodule structure of

V1,r “ Ind
GL2pkq
Bpkq χr. Recall that r is defined modulo q ´ 1, so we view r as an element

of rNzt0u. To provide a dictionary between the notions of [2] and those of the present
paper, consider the ring

A “ ErX,Y s{pXq ´X,Y q ´ Y, pXq´1 ´ 1qpY q´1 ´ 1qq,

and let Arrs be the subgroup of the underlying abelian group of A generated by monomi-
als whose total degree is congruent to r modulo q´ 1; note that this is well-defined. Let

GL2pkq act on Arrs by pgP qpX,Y q “ P paX ` cY, bX ` dY q for g “

ˆ

a b
c d

˙

P GL2pkq

and P P Arrs. Observing that p1 ´Xq´1qY r P Arrs is an eigenvector for the action of
Bpkq, with character χr, by Frobenius reciprocity we obtain a map ι : V1,r Ñ Arrs. It is
easy to check that this map is an isomorphism and is given explicitly by

ιpfjq “

$

’

’

’

&

’

’

’

%

Xr : j “ 0

Y r : j “ 8

´XrY q´1 : j “ q ´ 1
`

q´1
j

˘

Xr´jY j : j R t0, q ´ 1,8u.

If α, β P rN, then XαY β P Arrs is a basis monomial in the sense of [2]. The type of
XαY β is defined in [2, §3.1] when r “ q ´ 1 and in [2, §9.1] when r ‰ q ´ 1; this is
an f -tuple ps0, . . . , sf´1q P Nf . Unwinding the definition, one verifies that si “ 1 if
i´ 1 P Ipα, βq and si “ 0 otherwise. We can now translate some results of Bardoe and
Sin into the following theorem. These results are also stated in Theorems 2.4 and 2.7
of [9], with an alternative proof given in [9, §4]; observe, again by unwinding definitions,
that the subset J Ď Z{fZ associated to an irreducible subquotient σ of V1,r just after [9,
Lemma 2.2] is the one satisfying σ “ σJprq.

Theorem 2.16. Suppose that r ‰ q ´ 1. The following statements hold.

(a) Let j0 P rN. The GL2pkq-submodule of V1,r generated by fj0 is VIpj0,r´j0q.
(b) The GL2pkq-submodule of V1,r generated by f8 is V∅.
(c) If I Ď Z{fZ is r-admissible, then the submodule VI has irreducible cosocle iso-

morphic to σIprq.
(d) If M Ď V1,r is a submodule with irreducible cosocle, then M “ VI for some

r-admissible I Ď Z{fZ. In particular, if M Ď V1,r is any submodule, then
M “

ř

IĎZ{fZ
VIĎM

VI .

Proof. The first two claims follow from [2, Theorem 5.1] and the third and fourth claims
are Corollary 6.1 and Theorem C of [2]. The results of §5-6 of [2] are stated in the case
r “ q ´ 1, but it is observed in [2, §9.2] that the proofs work in general. �

It remains to consider the exceptional case r “ q ´ 1, i.e. χr “ 1. Observe that if

j0 P rN, there are only two possibilities for the carry set Ipj0, q´ 1´ j0q: this set is Z{fZ
if j0 “ q´ 1 and ∅ otherwise. The following claim is obtained as above, except that we
apply Theorem A of [2] rather than Theorem C.
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Theorem 2.17. The GL2pkq-module V1,q´1 “ Ind
GL2pkq
Bpkq 1 is a direct sum of two Serre

weights:

V1,q´1 » F pq ´ 1, 0q ‘ F p0, 0q.

The q-dimensional irreducible submodule F pq´1, 0q is V∅, namely the linear span of the

set tf8u Y tfj0 : j0 P rNztq´ 1uu. The one-dimensional submodule F p0, 0q is the span of
f0 ` f8 ´ fq´1.

3. The Jordan-Hölder constituents of Vn,r

3.1. Jordan-Hölder constituents. Using the work of Bardoe and Sin, it is simple to
produce a recursive expression for the multiset JHpn, χq of Jordan-Hölder characters of

IndGnBnχ, for a character χ : Bn Ñ k
˚
; note that χ necessarily factors through Bpkq.

Recall the character η : Bpkq Ñ kˆ of the introduction. For each n ě 2, define the
subgroup

(2) rBn “ pψ
n
n´1q

´1pBpOn´1qq “

"ˆ

a b
c d

˙

P Gn : c P mn´1{mn

*

ď Gn.

In the following, we view characters of Bpkq as characters of Bn and rBn for all n by
inflation and omit composition with ψn1 from the notation.

Lemma 3.1. Let χ : Bpkq Ñ kˆ be a character. The multiset of Jordan-Hölder factors

of Ind
rBn
Bn
χ is tχηα : α P rNu.

Proof. The q-dimensional space Ind
rBn
Bn
χ clearly has a basis consisting of the elements

ˆ

1 0
rλs$n´1 1

˙

b 1 for λ P k. By the same Vandermonde argument as in the proof of

Lemma 2.5, an alternative basis is given by the elements

mα “
ÿ

λPk

ˆ

1 0
rλs$n´1 1

˙

b λα

for α P rN. Moreover, a straightforward computation shows that for g P rBn as in (2) and

β P rN, we have

(3) gmβ “
ÿ

λPk

ˆ

1 0
ra´1

0 pd0λ` cn´1qs$
n´1 1

˙

b χpgqλβ “

ÿ

λPk

ˆ

1 0
rλs$n´1 1

˙

b χpgqpd´1
0 qβpa0λ´ cn´1q

β,

from which it is evident that the subspaces Uβ “ spantmα : α ĺ βu are rBn-submodules

of Ind
rBn
Bn
χ. Moreover, we have

(4) Uβ{
ÿ

αĺβ

Uα » χηβ,

since the left-hand side is a one-dimensional space spanned by the image of mβ. �
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Now we obtain the promised recursive formula for JHpn, χq. For the basis of the

recursion, recall that the sets JHp1, χq of Jordan-Hölder constituents of Ind
GL2pkq
Bpkq χ are

specified (up to twist) in Theorems 2.16 and 2.17.

Corollary 3.2. Suppose n ě 2, and let χ : Bpkq Ñ kˆ be a character. Then JHpn, χq
is equal to the disjoint union of multisets

JHpn, χq “
ž

βPrN

JHpn´ 1, χηβq.

Proof. Set Kn “ kerψn1 . Then Kn E Gn is a normal subgroup that acts trivially on

any one-dimensional representation of Gn, and Kn ď rBn. By Lemma 3.1, the in-

duced module IndGnBnχ “ IndGn
rBn
pInd

rBn
Bn
χq has an exhaustive filtration with quotients

IndGn
rBn
χηβ » Ind

Gn{Kn
rBn{Kn

χηβ » Ind
Gn´1

Bn´1
χηβ. �

Remark 3.3. A recursive description of Jordan-Hölder constituents in a similar spirit,
although proved by computations of Brauer characters, is given in [24, Theorem 2.3] for
reductions modulo p of cuspidal representations of GL2pOeq.

3.2. A filtration. In this section we assume n ě 2 and further investigate the filtration

of Vn,r, indexed by rN, that arose in the proof of Corollary 3.2. We also compute the
action of certain elements of Gn on the elements fj P Vn,r of Definition 2.4. These
computations will be crucial later in the paper when we study a much finer filtration of
V2,r.

Definition 3.4. Given β P rN, define the subspace Wβ to be the linear span of

Bβ “
!

fpj0,...,jn´1q, fp8,j1,...,jn´1q : j0, . . . , jn´2 P rN, jn´1 ĺ β
)

.

Proposition 3.5. Let β P rN.

(a) The subspace Wβ is a Gn-submodule of Vn,r.
(b) There is an isomorphism of Gn-modules

Wβ{
ÿ

αăβ

Wα » pψ
n
1 ˝ detβq b Vn´1,r´2β,

where Gn acts on the right-hand side via the projection ψnn´1 : Gn Ñ Gn´1.

Proof. Examining the isomorphism IndGn
rBn
pInd

rBn
Bn
χrq Ñ IndGnBnχr of Gn-modules, it is

easy to see that that Wβ is the image of IndGn
rBn
Uβ, where Uβ Ď Ind

rBn
Bn
χr are the subspaces

defined in the proof of Lemma 3.1. This implies the first claim, and the second follows
from (4). �

The following claim, which is a corollary of the proof of Proposition 3.5 rather than
of its statement, will be an ingredient in some of the structural results of §4.

Corollary 3.6. If β P rN satisfies r ´ 2β ‰ q ´ 1, then Wβ has a unique maximal
Gn-submodule.
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Proof. We saw in the course of proving Proposition 3.5 that Wβ » IndGn
rBn
Uβ. Let σ be

an irreducible Gn-module. By Frobenius reciprocity, HomGnpWβ, σq » Hom
rBn
pUβ, σq.

The image of any non-zero ϕ P Hom
rBn
pUβ, σq is a submodule of σ, hence is invariant

under the action of

ˆ

1 0
rcn´1s$

n´1 1

˙

for all cn´1 P k. It is evident from (3) that

ˆ

1 0
rcn´1s$

n´1 1

˙

mβ ´mβ “
ÿ

αăβ

p´1qβ´α
ˆ

β

α

˙

cβ´αn´1mα

vanishes in any quotient of Uβ with this property. By the Vandermonde argument, the

only such non-zero quotient is the one-dimensional cosocle χrη
β. By assumption, there

is only one irreducible Gn-module σ admitting χrη
β as a rBn-submodule. Only this σ

arises as an irreducible quotient of Wβ. It satisfies dim HomGnpWβ, σq “ 1, implying
the claim. �

3.3. Some computations. Proposition 3.5 can be proved more laboriously by direct
computation, applying elements of a set of generators of Gn to the basis Bβ of Wβ

and verifying that the image is contained in Wβ. We now state the results of some
computations of this sort, as we will rely on their specializations later in the paper.

Given ` P N, let Partp`q be the set of partitions of `, namely non-increasing sequences
m “ pm1, . . . ,mrq such that

řr
i“1mi “ `. For a partition m P Partp`q, let |m| “ r

denote the length of m. For every j P N, let mpjq “ |ti P rrs : mi “ ju| be the number
of times j appears as a part of m. We start with two auxiliary lemmas.

Lemma 3.7. Let the functions P`pλq : Oˆ Ñ k be defined by λ´1 “
ř8
`“0rP`pλqs$

`. If
` ď e, then

P`pλq “
ÿ

βPPart`

p´1q|β||β|!λ
´p|β|`1q
0

˜

ź̀

i“1

λ
βpiq
i

βpiq!

¸

.

Proof. Let E be a field, and let
ř8
i“0 aiX

i P ErrXssˆ be an invertible formal series.

Then its inverse is
ř8
`“0 b`X

`, where

(5) b` “
ÿ

βPPart`

p´1q|β||β|! a
´p|β|`1q
0

˜

ź̀

i“1

a
βpiq
i

βpiq!

¸

.

Indeed, the sequence tbiu is determined by b0 “ a´1
0 and the recursion

ř`
i“0 a`´ibi “ 0

for all ` P N; it is easy to verify that the sequence of (5) satisfies these conditions. The
claim follows from this and Lemma 2.1. �

By definition, wfp0,j1,...,jn´1q “ fp8,j1,...,jn´1q and wfp8,j1,...,jn´1q “ fp0,j1,...,jn´1q. So

consider j “ pj0, . . . , jn´1q P rNn with j0 ‰ 0. Observing that λ P Oˆn if and only if
λ0 ‰ 0, we have

fj “
ÿ

λPOˆn

ˆ

λ 1
1 0

˙

b λj P Vn,r,
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and thus

(6) wfj “
ÿ

λPOˆn

ˆ

1 0
λ 1

˙

b λj “
ÿ

λPOˆn

ˆ

λ´1 1
1 0

˙ˆ

λ 1
0 ´λ´1

˙

b λj “

ÿ

λPOˆn

ˆ

λ 1
1 0

˙

b p´λ0q
r
n´1
ź

i“0

Pipλq
ji ,

with Pipλq as in Lemma 3.7. Similarly, if d P On´1 then
(7)
ˆ

1 0
0 1` d$

˙

fj “
ÿ

λPOn

ˆ

λp1` d$q´1 1
1 0

˙

b λj “
ÿ

λPOn

ˆ

λ 1
1 0

˙

b

n´1
ź

i“0

Qipλq
ji ,

where the Qipλq are defined by λp1` d$q “
řn´1
i“0 rQipλqs$

i.

Lemma 3.8. Suppose that λ, b P O, and let the series of functions Ri : O Ñ k be defined
by λ´ b “

ř8
i“0rRipλqs$

i. Then

(a) Ripλq “ λi ´ bi for all i P re´ 1s0.

(b) Repλq “ λe ´ be ` u0Spλ
pf´1

0 ,´bp
f´1

0 q.
(c) For all i ě e we have Ripλq “ λi ´ bi ` R1ipλq, where R1ipλq depends only on

λ0, . . . , λi´e.

Proof. All the claims are immediate consequences of Lemma 2.1. �

Consider j “ pj0, . . . , jn´1q P rNn and observe that

(8)

ˆ

1 b
0 1

˙

fj “
ÿ

λPOn

ˆ

λ` b 1
1 0

˙

b λj “
ÿ

λPOn

ˆ

λ 1
1 0

˙

b

n´1
ź

i“0

Ripλq
ji ,

where the Ripλq are as in Lemma 3.8. Finally, a direct computation shows that if

j P rNn´1 and λj “
śn´1
i“1 λ

ji
i , then

(9)

ˆ

1 b
0 1

˙

fp8,jq “
ÿ

λPOˆn

ˆ

λ´1p1` λbq 1
1 0

˙ˆ

λ 1
0 ´λ´1

˙

b λj`

ÿ

λPm{mn

ˆ

1 0
λp1` λbq´1 1

˙ˆ

1` λb b
0 p1` λbq´1

˙

b λj “

ÿ

νPb`Oˆn

ˆ

ν 1
1 0

˙

bpb0´ν0q
r
n´1
ź

i“1

PipR0pνq, . . . , Rn´1pνqq
ji`

ÿ

νPm{mn

ˆ

1 0
ν 1

˙

b

n´1
ź

i“1

R̃ipνq
ji ,

where R̃ipνq is defined by νp1´ νbq´1 “
řn´1
i“1 rR̃ipνqs$

i for ν P m{mn.

4. Principal series for GL2pO{m2q

We assume for the remainder of the paper that n “ 2. If additionally e ě 2, then O2

is isomorphic to Fqrπs{pπ2q and we can compute easily. The results also apply in the
case of function fields as O is the power series ring Fqppπqq.
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4.1. Preliminary computations. In this section we prepare some computational lem-
mas that will be main ingredients in the proofs of our main results. The first indication
that life is particularly simple when n “ 2 is that w permutes the elements of our basis,
up to sign.

Lemma 4.1. Let pj0, j1q P prNY t8uq ˆ rN. Then

wfpj0,j1q “

$

’

&

’

%

fp8,j1q : j0 “ 0

fp0,j1q : j0 “ 8

p´1qr`j1fpr´2j1´j0,j1q : j0 R t0,8u.

Proof. The first two lines are immediate from the definition of fp8,j1q. To obtain the
third line, observe that if λ0 ‰ 0, then the identity

prλ0s ` rλ1s$q
´1 ” rλ´1

0 s ´ rλ´2
0 λ1s$mod$2

holds in O with no restriction on the ramification of F {Qp. Hence P0pλq “ λ´1
0 and

P1pλq “ ´λ´2
0 λ1, in the notation of the proof of Proposition 3.5, and our claim is

immediate from (6). �

Lemma 4.2. Let pj0, j1q P prNYt8uqˆrN. The D2-submodule of V2,r generated by fpj0,j1q
is the linear span of

$

&

%

!

fpj0`j11,j1´j11q : j11 ĺ j1

)

: j0 P rN

tfp8,j1qu Y
!

fpr´2j1`j11,j1´j
1
1q

: 0 ‰ j11 ĺ j1

)

: j0 “ 8.

Proof. Observe that if n ď e` 1, then for all λ, d P O we have

p1` d$qλ “
n´1
ÿ

i“0

˜

λi `
i´1
ÿ

`“0

λ`di´`´1

¸

$i mod$n;

indeed, the Witt vector summation of Lemma 2.1 does not appear. In particular, for
all e ě 1 we have Q0pλq “ λ0 and Q1pλq “ λ1 ` λ0d0, in the notation of the proof of

Proposition 3.5. It follows from (7) that if j0, j1 P rN, then in V2,r we have
ˆ

1 0
0 1` d$

˙

fpj0,j1q “
ÿ

λPO2

ˆ

λ 1
1 0

˙

b λj00 pλ1 ` λ0d0q
j1 ,

and hence if j11 ĺ j1 then

(10) ´
ÿ

d0Pk

d
pq´1q´j11
0

ˆ

1 0
0 1` rd0s$

˙

fpj0,j1q “

ˆ

j1
j11

˙

fpj0`j11,j1´j11q.

The binomial coefficients are non-zero in E, and by the usual Vandermonde argument
the elements of the form (10) linearly span the D2-module generated by fpj0,j1q.

The remaining case j0 “ 8 follows from Lemma 2.6, Lemma 4.1 and the observation
ˆ

1 0
0 1` d$

˙

fp8,j1q “ w

ˆ

1 0
0 p1` d$q´1

˙ˆ

1` d$ 0
0 1` d$

˙

fp0,j1q,

so that xD2 ¨ fp8,j1qy “ wxD2 ¨ fp0,j1qy. �
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Remark 4.3. The previous two lemmas already show that the analogous computations
become much more involved when n ě 3. Indeed, by Lemma 3.7 the expressions P`pλq
appearing in the computation of wfj are sums of monomials indexed by partitions of
`. The clean statement of Lemma 4.1, that w permutes the elements of the basis
B2,r up to sign, arises because all elements of rn ´ 1s0 have only one partition when
n “ 2. Of course, this is false for larger n, and we obtain far messier formulas. These
difficulties cannot be resolved by computing with respect to a different basis. Moreover,
the previous observation is independent of the complications arising when e ă n and
the computations involve Witt vector polynomials as in Lemma 2.1. The latter features
appear already when n “ 2, in the unramified case e “ 1; see §5 below.

Lemma 4.4. Let pj0, j1q P rN2. The U2-submodule of V2,r generated by fpj0,j1q is the

linear span of
!

fpj0`2j11,j1´j
1
1q

: j11 ĺ j1

)

.

Proof. A straightforward computation shows that for all e ě 1 we have
ˆ

1 0
c$ 1

˙

fpj0,j1q “
ÿ

λPO2

ˆ

λ 1
1 0

˙

b λj00 pλ1 ` λ
2
0c0q

j1 ,

whence the claim follows by the usual Vandermonde argument. �

The next lemmas study the action of the subgroup U2 ď G2 of upper unitriangular
matrices. Here we already see a divergence in behavior depending on whether F {Qp is
unramified (e “ 1) or ramified (e ě 2); the analogue of the following statement in the
unramified case appears in Lemma 5.1 below.

Lemma 4.5. Suppose that e ě 2. If pj0, j1q P rN2, then the U2-submodule of V2,r

generated by fpj0,j1q is the linear span of
!

fpj10,j11q : j10 ĺ j0, j
1
1 ĺ j1

)

.

Proof. Since we have assumed e ě 2, it follows from Lemma 3.8 and (8) that

(11)

ˆ

1 b
0 1

˙

fpj0,j1q “
ÿ

λPO2

ˆ

λ 1
1 0

˙

b pλ0 ´ b0q
j0pλ1 ´ b1q

j1 .

If j10 ĺ j0 and j11 ĺ j1, then

(12)
ÿ

b0,b1Pk

b
pq´1q´pj0´j10q
0 b

pq´1q´pj1´j11q
1

ˆ

1 rb0s ` rb1s$
0 1

˙

fpj0,j1q “

ˆ

j0
j10

˙ˆ

j1
j11

˙

fpj10,j11q.

Elements of the form (12) span xU2 ¨fpj0,j1qy by a standard Vandermonde argument. �

Lemma 4.6. Suppose that e ě 2. Let j1 P rN. The U2-submodule of V2,r generated by
fp8,j1q is the linear span of

 

fp8,j1q
(

Y

!

fpj10,j11q : j10 ĺ r ´ 2j1, j
1
1 ĺ j1, pr ´ 2j1, j1q ‰ pj

1
0, j

1
1q P

rN2
)

.
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Proof. Specializing (9) to the case n “ 2, we obtain

(13)

ˆ

1 b
0 1

˙

fp8,j1q “

ÿ

νPO2

ˆ

ν 1
1 0

˙

b p´1qr`j1pν0 ´ b0q
r´2j1pν1 ´ b1q

j1 `
ÿ

ν1Pk

ˆ

1 0
rν1s$ 1

˙

b νj11 ,

where we observe that r ´ 2j1 P rNzt0u by definition, and therefore the first sum only
has non-zero contributions from ν P b ` Oˆ2 as in (9). Now consider weighted sums
analogously to (12). �

4.2. Types and submodules. Consider the set Θ “ prN Y t8uq ˆ rN. Recall that a
preorder is a reflexive and transitive relation. We will now define a preorder ĺr on Θ.
Its equivalence classes will correspond to the Jordan-Hölder constituents of V2,r.

Definition 4.7. The preorder ďr on the set Θ is defined to be the preorder generated
by the following relations:

(1) If pj0, j1q P rN2 and m P rf ´ 1s0 satisfies pm ĺ j0, then pj0 ´ pm, j1q ďr pj0, j1q.

(2) If pj0, j1q P rN2 and m P rf ´ 1s0 satisfies pm ĺ j1, then pj0, j1 ´ pmq ďr pj0, j1q.

(3) If pj0, j1q P rN2 and m P rf ´ 1s0 satisfies pm ĺ j1, then pj0 ` pm, j1 ´ pmq ďr
pj0, j1q.

(4) If j0 R t0,8u and j1 P rN, then pr ´ 2j1 ´ j0, j1q ďr pj0, j1q.

(5) If j1 P rN and m P rf ´ 1s0 satisfies pm ĺ j1, then pr ´ 2j1, j1 ´ pmq ďr p8, j1q.

(6) If j1 P rN and m P rf ´ 1s0 satisfies pm ĺ r ´ 2j1, then ppr ´ 2j1q ´ pm, j1q ďr
p8, j1q.

(7) For all j1 P rN, the elements p0, j1q and p8, j1q are equivalent, i.e. p0, j1q ďr
p8, j1q and p8, j1q ďr p0, j1q.

We say that pj0, j1q, pj
1
0, j

1
1q P Θ are equivalent if both pj0, j1q ďr pj

1
0, j

1
1q and pj10, j

1
1q ďr

pj0, j1q. Then ďr induces a partial order, also denoted ďr, on the set rΘ of equivalence
classes.

Remark 4.8. We record some implications of the relations, for use below.

(1) Applying the fourth generating relation to pr ´ 2j1 ´ j0, j1q, we observe that if
j0 R t0,8u, then pj0, j1q and pr ´ 2j1 ´ j0, j1q are equivalent.

(2) Applying the sixth and seventh relations, we observe that if pm ĺ r ´ 2j1, then
p0, j1q ďr ppr´ 2j1q´ pm, j1q ďr p8, j1q ďr p0, j1q, so all of these are equivalent.

(3) If j1 P rN and pm ĺ j1 for some m P rf ´ 1s0, then pr ´ 2j1 ` pm, j1 ´ pmq
is equivalent to ppm, j1 ´ pmq by the first observation of this remark. Hence
pr ´ 2j1 ` p

m, j1 ´ pmq ĺ p8, j1q by the third and seventh relations.
(4) If pm ĺ j1, then applying the fourth, second, and fourth relations in sequence

produces pj0`2pm, j1´p
mq ďr pr´2j1´j0, j1´p

mq ďr pr´2j1´j0, j1q ďr pj0, j1q.

The elements of rΘ will be called types. If pj0, j1q P Θ, then the equivalence class in
rΘ to which it belongs is denoted by rpj0, j1qs.
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Definition 4.9. Let θ P rΘ be a type. Set Vθ to be the subspace of V2,r with basis
tfpj0,j1q : pj0, j1q P Θ, rpj0, j1qs ďr θu.

Proposition 4.10. Let θ P rΘ. If e ě 2, then the subspace Vθ is stable under the action
of G2 “ GL2pO{m2q.

Proof. By the Bruhat decomposition, for every n P N the group Gn is generated by Bn
and w, whereas Bn is, in turn, generated by the center ZpGnq and the subgroups T , Dn,
and Un of Definition 2.2. Hence it suffices to verify that Vθ is stable under the action of
the subgroups ZpG2q, T,D2, U2 and the element w. Since each of the basis elements in
Definition 4.9 is an eigenvector for the actions of ZpG2q and of T by Lemma 2.6, it is
clear that these subgroups preserve Vθ. By Lemma 4.1, together with Remark 4.8(1) and
the last generating relation, the action of w sends every basis element fpj0,j1q to a scalar
multiple of a basis element of the same type. Similarly, it is immediate from Lemma 4.2,
Remark 4.8(3), and the third generating relation that the subgroup D2 preserves the
subspace Vθ.

It remains to verify that the subgroup U2 preserves Vθ. If j0 P rN, then by Lemma 4.5
and the first two relations, the U2-module generated by fpj0,j1q is spanned by basis
elements of type equal to or smaller than rpj0, j1qs. The analogous claim for the U2-
module generated by fp8,j1q follows from Lemma 4.6 and the fifth and sixth generating
relations.

While this follows from the above, we can also observe directly from Remark 4.8(4)
that Vθ is stable under the action of U2 described in Lemma 4.4. �

Theorem 4.11. Let pj0, j1q P Θ. If e ě 2, then the GL2pO{m2q-submodule of V2,r

generated by fpj0,j1q is Vrpj0,j1qs.

Proof. Since fpj0,j1q P Vrpj0,j1qs by definition, it suffices to prove Vrpj0,j1qs Ď xG2 ¨ fpj0,j1qy.
We argue by induction on the type rpj0, j1qs, with respect to the partial order ďr on the

set rΘ of types. If j1 “ 0, then we are working inside the submodule W0 of Definition 3.4,

which is isomorphic to Ind
GL2pkq
Bpkq χr by Proposition 3.5. In this case our claim was proved

by Bardoe and Sin; see Theorems 2.16 and 2.17.
In general, by induction it suffices to show that if pj10, j

1
1q ďr pj0, j1q by one of the

generating relations for the preorder ďr on Θ, then fpj10,j11q P xG2 ¨ fpj0,j1qy. For the first
and second relations, this follows from Lemma 4.5. The claim for the third relation is
implied by Lemma 4.2 and for the fourth and seventh by Lemma 4.1. For the fifth and
sixth covering relations, this is Lemma 4.6. �

4.3. An alternative view of types. The carry sets defined in Lemma 2.7 provide
an alternative way to describe types that is often more convenient to work with than
the equivalence classes in terms of which they were defined. Recall the notion of a γ-
admissible set J Ď Z{fZ of Definition 2.9; an explicit characterization of such sets is
given in Proposition 2.10.

Proposition 4.12. There is a well-defined injection Υ : rΘ Ñ PpZ{fZq ˆ rN given by

rpj0, j1qs ÞÑ pIpj0, r ´ 2j1 ´ j0q, j1q.

The image of Υ consists of the pairs pJ, j1q such that J is pr ´ 2j1q-admissible.
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Proof. It is clear from the generating relations that if pj10, j
1
1q ďr pj0, j1q, then j11 ĺ j1.

Thus the second component is constant for all elements θ “ pj0, j1q of a type. Observe

from their definition that the submodules Vθ are distinct for distinct types θ P rΘ.
By Theorem 4.11, the elements pj0, j1q, pj

1
0, j1q P Θ belong to the same type if and

only if fpj0,j1q and fpj10,j1q generate the same submodule of V2,r. In particular they

generate the same submodule of Wj1{
ř

`ăj1
W`, which is isomorphic to detj1 bV1,r´2j1

by Proposition 3.5. The structure of V1,r´2j1 is described by Theorems 2.16 and 2.17,
from which we conclude that the carry sets Ipj0, r´2j1´ j0q and Ipj10, r´2j1´ j

1
0q must

coincide. Hence the claimed map is well-defined.
To show the map is injective, it suffices to show that Vrpj0,j1qs is determined by its

image in the quotient Wj1{
ř

`ĺj1
W`. Indeed, suppose that Vrpj10,j11qs has the same image.

Then Vrpj10,j11qs contains an element of the form fpj0,j1q ` h, where h P
ř

`ĺj1
W`. Since

Vrpj10,j11qs is the linear span of a subset of B2,r, it must contain fpj0,j1q and hence, by
Theorem 4.11, we have Vrpj0,j1qs Ď Vrpj10,j11qs. Reversing the roles of the two types, we
obtain the opposite inclusion. Hence Vrpj0,j1qs “ Vrpj10,j11qs as claimed.

The claim regarding the image of the map Υ is immediate from the definition of
pr ´ 2j1q-admissibility. �

In light of the previous claim, we will often write types in the form θ “ pI, γq, where

I Ď Z{fZ and γ P rN. Note that the map of Proposition 4.12 is in general not surjective.

Remark 4.13. We collect several observations that follow readily from Proposition 4.12
and its proof.

(1) If pI, γq and pI 1, γq are types with the same second component, then pI 1, γq ďr
pI, γq if and only if I 1 Ď I.

(2) The types p∅, γq and pZ{fZ, γq lie in the image of Υ for any γ P rN.
(3) If r ´ 2j1 ” 0 mod q ´ 1, then Υprpq ´ 1, j1qsq “ pZ{fZ, j1q and Υprpj0, j1qsq “

p∅, j1q for j0 ‰ q ´ 1.

We can strengthen the previous remark by producing a closed-form definition of the
partial order on types that is convenient to use in practice. Our proof of the following
statement is completely elementary but long and rather tedious and independent of the
rest of the paper, apart from the definition of carry sets and their properties in §2.3
above. For these reasons we relegate it to §6 below.

Proposition 4.14. Let pI, γq and pI 1, γ1q be two types. Then pI 1, γ1q ďr pI, γq if and
only if the following two conditions are satisfied:

‚ γ1 ĺ γ;
‚ I 1 Ď I Y Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q.

4.4. Extensions of Serre weights as subquotients of principal series. Through-
out this section, and for the remainder of §4, we assume e ě 2. As demonstrated in
Proposition 4.23, the principal series V2,r may, in general, have infinitely many submod-

ules. However, we can elucidate the structure of the family of submodules tVθ : θ P rΘu.
Recall the Serre weight σJprq of Definition 2.13.

Definition 4.15. Given a type pI, γq, set LpI, γq “ VpI,γq{
ř

pI 1,γ1qărpI,γq
VpI 1,γ1q.
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Lemma 4.16. Let pI, γq be a type. If e ě 2, then the GL2pO2q-module LpI, γq is
irreducible and isomorphic to detγ bσIpr ´ 2γq.

Proof. By definition, LpI, γq is a subquotient of Wγ{
ř

αĺγWα, which is isomorphic
to detγ bV1,r´2γ by Proposition 3.5. Moreover, the image of VpI,γq in this quotient is
VI Ď detγ bV1,r´2γ . By Remark 4.13, inside this quotient we can compute LpI, γq “

VI{
ř

I 1ĂI VI 1 . If r ´ 2γ ‰ q ´ 1 P rNzt0u, then LpI, γq “ detγ bσIpr ´ 2γq by Theo-
rem 2.16. In the exceptional case r ´ 2γ “ q ´ 1, we find V∅ “ F pγ ` q ´ 1, γq by The-
orem 2.17, whereas VZ{fZ is the entire space detγ bV1,r´2γ . Thus VZ{fZ{V∅ » F pγ, γq.
Since σZ{fZpr ´ 2γq “ F ppq ´ 1q ´ pq ´ 1q, q ´ 1q “ F pq ´ 1, q ´ 1q “ F p0, 0q by Defini-
tion 2.13, the claim holds in this case also. �

Now, assume that the types pI 1, γ1q ăr pI, γq are adjacent, i.e. there is no other type
between them. Consider the extension

E “ VpI,γq{
ÿ

pI2,γ2qďrpI,γq

pI2,γ2q‰pI1,γ1q

VpI2,γ2q,

so that there is a short exact sequence

(14) 0 Ñ LpI 1, γ1q Ñ E Ñ LpI, γq Ñ 0

As LpI 1, γ1q and LpI, γq are irreducible by Lemma 4.16, the extension E is of length two.

Proposition 4.17. Suppose e ě 2, and consider adjacent types pI 1, γ1q ăr pI, γq. The
corresponding short exact sequence (14) splits if and only if γ1 “ γ and r ´ 2γ “ q ´ 1.

Proof. By assumption, there exist pairs pj10, j
1
1q, pj0, j1q P Θ representing the classes

pI 1, γ1q, pI, γq, respectively, such that pj10, j
1
1q ăr pj0, j1q by one of the generating relations

of Definition 4.7. We need not concern ourselves with the fourth, sixth (see Remark 4.8),
or seventh covering relations, as these are equivalences. We consider the remaining
relations in sequence.

If pj10, j
1
1q, pj0, j1q P Θ by the first generating relation, then j11 “ j1 and E is a sub-

quotient of the tame principal series Wj1{
ř

`ăj1
W` » detj1 bV1,r´2j1 . In this case the

sequence (14) splits by Theorem 2.17 when r ´ 2j1 “ q ´ 1 and is non-split otherwise
by [2, Theorem 6.1].

In the case of the second relation, we have pj10, j
1
1q “ pj0, j1 ´ pmq for pm ĺ j1. Then

we see from (11) that

(15)
ÿ

b1Pk

b
pq´1q´pm

1

ˆ

1 rb1s$
0 1

˙

fpj0,j1q “ pj1qmfpj10,j11q ‰ 0.

If (14) were to split, then E would be isomorphic to a direct sum of Serre weights, and
the action of GL2pO{m2q on E would factor through GL2pkq. In that case, the left-

hand side of the previous displayed formula would be
ř

b1Pk
b
pq´1q´pm

1 fpj0,j1q “ 0. This
contradiction proves that (14) does not split.
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The arguments for the third and fifth relations are similar. Observe by (10) and (13),
respectively, that

´
ÿ

d0Pk

d
pq´1q´pm

0

ˆ

1 0
0 1` rd0s$

˙

fpj0,j1q “ pj1qmfpj10,j11q ‰ 0

p´1qr`j1
ÿ

b1Pk

b
pq´1q´pm

1

ˆ

1 rb1s$
0 1

˙

fp8,j1q “ pj1qmfpr´2j1,j1´pmq ‰ 0

and again the left-hand side of each expression would vanish if (14) split and the action
of GL2pO{m2q on E factored through GL2pkq. �

The following claim is a modification of the previous one, accounting for the fact that
VpZ{fZ,γq does not have irreducible cosocle if r ´ 2γ “ q ´ 1.

Lemma 4.18. Suppose that e ě 2, that γ P rN satisfies r ´ 2γ “ q ´ 1, and that
m P rf ´ 1s0 is such that pm ĺ γ. Let M Ă V2,r be a GL2pO{m2q-submodule with
one-dimensional image in the quotient V2,r{

ř

βăγWβ.

(a) The containment Wγ´pm ĂM holds.
(b) Let N “

ř

βăγ, JĎZ{fZ
pJ,βq‰pZ{fZ,γ´pmq

VpJ,βq. The subquotient E “M{N admits a short exact

sequence 0 Ñ LpZ{fZ, γ ´ pmq Ñ E Ñ LpZ{fZ, γq Ñ 0 that does not split.

Proof. Combining Theorem 2.17 with Proposition 3.5, note that M contains an element
of the form h “ fp0,γq ` fp8,γq ´ fpq´1,γq ` z, for some z P

ř

βăγWβ. Observe by (12)
that

(16)
ÿ

b1Pk

b
pq´1q´pm

1

ˆ

1 rb1s$
0 1

˙

h “ γmpfpq´1,γ´pmq´fp0,γ´pmq´fp8,γ´pmqq`z
1 PM,

where z1 P
ř

βăγ´pmWβ and γm ‰ 0. By Theorem 4.11, the element fpq´1,γ´pmq gen-

erates Vrpq´1,γ´pmqs “ Wγ´pm , whereas γmpfp0,γ´pmq ` fp8,γ´pmqq ´ z1 is contained in
a proper submodule of Wγ´pm . Since Wγ´pm has a unique maximal submodule by
Corollary 3.6, the right-hand side of (16) generates Wγ´pm . This proves the first claim.

Now consider the restriction to E of the projection Wγ{N Ñ Wγ{
ř

βăγWβ. The

image is the one-dimensional Serre weight LpZ{fZ, γq by assumption, and the kernel is
p
ř

βăγWβq{N » LpZ{fZ, γ ´ pmq by part (a). Hence E admits a short exact sequence

as claimed. By (16), the extension E is not semisimple, so it cannot split. �

4.5. Socle and radical filtrations. Let Γpďrq be the graph associated to the partial

order ďr: the set of its vertices is the set rΘ of types (identified, as usual, with the
image of Υ), and there is a directed edge from θ to θ1 if the types θ1 ăr θ are adjacent.

Let Γr be the graph obtained from Γpďrq by the following procedure: for all γ P rN
such that r ´ 2γ “ q ´ 1, we remove the edge pZ{fZ, γq Ñ p∅, γq and add the edge
pZ{fZ, γq Ñ pZ{fZ, γ ´ pmq for all m P rf ´ 1s0 such that pj ĺ γ.

Lemma 4.19. Let θ P ΥprΘq. Then Γr contains a path from the maximal vertex
pZ{fZ, q ´ 1q to θ, and a path from θ to the minimal vertex p∅, 0q.
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Proof. If pI2, δq ăr pI
1, δq are vertices of Γr and r´2δ ‰ q´1, then by [2, Corollary 4.1]

(see also Lemma 6.6 below) there is a path

pI 1, δq “ pI0, δq Ñ pI1, δq Ñ ¨ ¨ ¨ Ñ pIs, δq “ pI
2, δq,

where for each i P rss the set Ii is obtained from Ii´1 by removing exactly one element.

Let θ “ pI, γq P ΥprΘq. Fix a sequence

0 “ γ0 ă γ1 ă ¨ ¨ ¨ ă γřf´1
i“0 γi

“ γ ă ¨ ¨ ¨ ă γfpp´1q “ q ´ 1,

where for each i P rfpp´ 1qs there exists ji P Z{fZ such that γi ´ γi´1 “ pji . Then
(17)
p∅, γ0q ďr p∅, γ1q ďr ¨ ¨ ¨ ďr p∅, γq ďr pI, γq ďr pZ{fZ, γq ďr ¨ ¨ ¨ ďr pZ{fZ, γfpp´1qq

is a sequence of vertices of Γr by Remark 4.13(2). If δ P rN satisfies r ´ 2δ “ q ´ 1
and pm ĺ δ, then Γr contains an edge pZ{fZ, δq Ñ pZ{fZ, δ ´ pmq by definition and
an edge p∅, δq Ñ pZ{fZ, δ ´ pmq by Proposition 4.14. By this observation and the first
paragraph of this proof, the sequence (17) may be refined to a path from pZ{fZ, q ´ 1q
to p∅, 0q passing through θ. �

For every vertex θ of Γr, set `Òpθq to be the length of the longest path from pZ{fZ, q´1q
to θ, and `Ópθq to be the length of the longest path from θ to p∅, 0q. Let L “ `Òp∅, 0q “
`ÓpZ{fZ, q ´ 1q. These definitions make sense by Lemma 4.19. Then the socle and
radical filtrations of V2,r can be determined from Proposition 4.17 and Lemma 4.18.
Recall that if θ “ pI, γq, then Lpθq is the Serre weight detγ bσIpr ´ 2γq.

To fix definitions, recall that the socle filtration of V2,r is defined recursively as follows:
soc´1pV2,rq “ 0, whereas socipV2,rq is the pre-image in V2,r of socpV2,r{soci´1pV2,rqq for
all i ě 0. Similarly, the radical filtration is determined by rad´1pV2,rq “ V2,r and the
recursion radipV2,rq “ radpradi´1pV2,rqq for i ě 0.

Corollary 4.20. Suppose e ě 2. The socle and radical filtrations of V2,r have length L,
and their graded pieces are given by

socipV2,rq{soci´1pV2,rq »
À

θPΥp rΘq
`Ópθq“i

Lpθq, radi´1pV2,rq{radipV2,rq »
À

θPΥp rΘq

`Òpθq“i

Lpθq.

Remark 4.21. For the tame principal series V1,r, the elements of the radical filtration
are just the elements of the socle filtration in reverse [2, Corollary 7.1]. This is false for

V2,r. For instance, suppose that γ P rN satisfies r ´ 2γ “ q ´ 1. Let θ1 “ pI 1, γ1q be any
type with γ1 ă γ. Since Ipr ´ 2γ, 2pγ ´ γ1qq “ Z{fZ, we see by Proposition 4.14 that
θ1 ăr p∅, γq. Thus a vertex of Γr lies below p∅, γq if and only if it lies below pZ{fZ, γq.
Hence `Óp∅, γq “ `ÓpZ{fZ, γq, and these two Serre weights appear in the same graded
piece of the socle filtration.

This need not be true for the radical filtration. For instance, if r “ q ´ 3, then the
only vertex above pZ{fZ, q ´ 2q is pZ{fZ, q ´ 1q, so `ÒpZ{fZ, q ´ 2q “ 1. By contrast,
p∅, q ´ 2q ăr p∅, q ´ 1q, so `Òp∅, q ´ 2q ě 2. Analogous examples are readily produced
for other values of r.



PRINCIPAL SERIES OF GL2 OVER FINITE RINGS 25

4.6. Infinite submodule structure. In this section we will show that if E is an infinite
field, then V2,r will, in general, contain infinitely many submodules. An important
exception occurs when F {Qp is totally ramified; see Theorem 4.28 below. We will make
use of the following classical criterion.

Lemma 4.22. Let E be an infinite field, let R be an E-algebra, and let M be a left
R-module. Then M has finitely many R-submodules if and only if the socle of M{N is
multiplicity-free for every R-submodule N ĎM .

Proof. Combine [19, Lemma 1.2] with [10, Theorem 1]. �

The genericity hypothesis in the next claim could be removed with a suitable adjust-
ment of the proof that would make it more involved and less transparent.

Proposition 4.23. Suppose that e ě 2 and f ě 2, i.e. the extension F {Qp is ramified
but not totally ramified. Let r P Z{pq ´ 1qZ such that 1 ď ri ď p´ 2 for all i P Z{fZ. If
E is an infinite field, then V2,r has infinitely many GL2pO{m2q-submodules.

Proof. By Lemma 4.22 it suffices to exhibit a quotient of V2,r whose socle fails to be

multiplicity-free. Let ∅ ‰ J Ď Z{fZ and set γpJq “
řf´1
i“0 γipJqp

i P Z{pq´1qZ “ rNzt0u,
where

γipJq “

$

’

’

’

&

’

’

’

%

0 : i´ 1, i R J

´1 : i´ 1 P J, i R J

ri ` 1 : i´ 1 R J, i P J

ri : i´ 1, i P J.

Under our assumptions on r, a simple calculation and substitution in Definition 2.13
verify that LpJ, γpJqq “ detγpJqbσJpr ´ 2γpJqq “ F pr, 0q “ Lp∅, 0q, where the first
equality is Lemma 4.16. Consider the singleton sets J “ tju for j P Z{fZ. We find that

γptjuq “
ÿ

iPrf´1s0ztju

pp´ 1qpi ` rjp
j .

Let j, j1 be distinct elements of Z{fZ, which exist since we assumed f ě 2. Then γptjuq

and γptj1uq are incomparable with respect to the partial order ĺ on rN. Now put

M “
ÿ

pI,γqărptju,γptjuq

VpI,γq `
ÿ

pI,γqărptj1u,γptj1uq

VpI,γq.

It is clear from Lemma 4.16 that Lptju, γptjuq‘Lptj1u, γptj1uq » F pr, 0q‘F pr, 0q injects
into V2,r{M , and this completes the proof. �

4.7. An example: the totally ramified case. To illustrate our results, in this section
we discuss in detail the submodule structure of V2,r when F {Qp is totally ramified.
In contrast to Proposition 4.23, we will find that in this case V2,r always has finite
submodule structure, and we will be able to give an explicit description of all submodules
with irreducible cosocle; see Theorem 4.28 below.

For the rest of this section, k “ Fp and e ě 2. We assume p ě 5 to avoid degenerate
cases. In this case the distinct Serre weights are precisely

F pr ` s, sq “ detsbSymrE2
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for s P Z{pp´ 1qZ and r P rp´ 1s0. We usually drop E2 from the notation for brevity.

There is a natural correspondence between elements of rN and integers in the interval

rp ´ 1s0. Write pαq P rp ´ 1s0 for the integer corresponding to α P rN. In this case, the

order ĺ on the monoid rN is a total linear order: 0 ă 1 ă ¨ ¨ ¨ ă p´ 1. The filtration of
§3 is therefore a flag of subspaces 0 Ă W1 Ă ¨ ¨ ¨ Ă Wp´1 “ V2,r, and its quotients are

the tame principal series Wi{Wi´1 » detibV1,r´2i. If r ´ 2i ‰ q ´ 1, then this is the
unique non-split extension

0 Ñ detibSympr´2iqE2 ÑWi{Wi´1 Ñ detr´ibSympp´1´r`2iqE2 Ñ 0.

The short exact sequence above is a special case of Theorem 2.16; the uniqueness

of the extension is [9, Corollary 5.6]. If r ´ 2i “ p ´ 1 P rN, then Wi{Wi´1 »

deti‘deti Symp´1E2.

We conclude that all the pairs pI, γq with I Ď t0u and γ P rN lie in the image of
the correspondence of Proposition 4.12. This observation readily identities the Jordan-
Hölder constituents of V2,r and their multiplicities; in particular, V2,r has exactly 2p
Jordan-Hölder constituents. Moreover, the partial order ďr is easily made explicit using
the criterion of Proposition 4.14; alternatively, it can readily be worked out directly from

Definition 4.7. Given r P Z{pp´ 1qZ “ rNzt0u, define t r2 u to be the least element α P rN,
with respect to ĺ, satisfying 2α ă r but not 2pα ` 1q ă r. Note that the parity of r is
well-defined, since p ą 2, and that t r2 u is r´1

2 if r is odd and r
2 ´ 1 if r is even, so this is

a non-standard use of the floor notation. However, it is convenient for our purposes.

Lemma 4.24. Let F {Qp be a non-trivial totally ramified extension, and let pI 1, γq and
pI, γq be two types. Then pI 1, γ1q ďr pI, γq if and only if γ1 ĺ γ and (at least) one of the
following conditions holds:

‚ I 1 Ď I;

‚ There exists α P
!

t r2 u, t
r
2 u`

p´1
2

)

such that γ1 ĺ α ă γ.

Proof. Since I 1 has at most one element, it is immediate from Proposition 4.14 that
pI 1, γ1q ďr pI, γq if and only if γ1 ĺ γ and one of the following holds:

‚ I 1 Ď I;
‚ I 1 Ď Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q.

The second option holds precisely when Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q ‰ ∅.

Clearly, Ipγ ´ γ1, γ ´ γ1q ‰ ∅ if and only if γ1 ` p´1
2 ă γ. On the other hand,

we see that Ipr ´ 2γ, 2pγ ´ γ1qq ‰ ∅ if and only if pr ´ 2γq ` p2pγ ´ γ1qq ą p ´ 1 as
integers. Thus Ipγ ´ γ1, γ ´ γ1q ‰ ∅ implies Ipr ´ 2γ, 2pγ ´ γ1qq ‰ ∅, whereas the
condition Ipr ´ 2γ, 2pγ ´ γ1qq ‰ ∅ is easily seen to be equivalent to the second of the
two alternatives in our claim. �

The structure of V2,r is more uniform if r is odd, since the exceptional case r ´ 2γ “
p´ 1 does not arise. For this reason, we treat the odd case first.

Proposition 4.25. Let F {Qp be a non-trivial totally ramified extension, and suppose
that r P Z{pp´ 1qZ is odd. Then V2,r has 2p Jordan-Hölder constituents. Moreover,
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(a) The Serre weight SymrE2 appears with multiplicity three, as Lp∅, 0q, as Lpt0u, rq,
and as Lp∅, p´ 1q.

(b) The Serre weight detr bSymp´1´rE2 appears with multiplicity three, as Lpt0u, 0q,
as Lp∅, rq, and as Lpt0u, p´ 1q.

(c) For each of the p´3 elements i P rNzt0, r, p´1u, the Serre weight detibSympr´2iqE2

appears with multiplicity two, as Lp∅, iq and as Lpt0u, r ´ iq.

Proof. This is immediate from Lemma 4.16 and the observation above that the corre-
spondence of Proposition 4.12 is surjective in our case, noting that r´ 2i ‰ p´ 1 for all

i P rN as r is odd. �

The set of types in the case of odd r, together with the partial order ďr and the cor-
responding Serre weights LpI, γq, are illustrated in Figure 1. An arrow has been drawn
from LpI, γq to LpI 1, γ1q when pI 1, γ1q ďr pI, γq are adjacent types; by Proposition 4.17,
a non-split extension of these Serre weights appears as a subquotient of V2,r.

The analogous statement for even r is very similar, but the numerology must be ad-
justed to make allowance for the exceptional case r ´ 2γ “ 0, in which case Lp∅, γq is
always p-dimensional and Lpt0u, γq is one-dimensional. As in the case of odd r above,
Lemma 4.16 implies the following listing of Jordan-Hölder constituents and their multi-
plicities.

Proposition 4.26. Let F {Qp be a non-trivial totally ramified extension, and suppose
that r P Z{pp´ 1qZ is even. Then V2,r has 2p Jordan-Hölder constituents.

(a) If r ‰ p´ 1, then
(i) The Serre weight Symr appears with multiplicity three, as Lp∅, 0q, as Lpt0u, rq,

and as Lp∅, p´ 1q.
(ii) The Serre weight detr bSymp´r´1 appears with multiplicity three, as Lpt0u, 0q,

as Lp∅, rq, and as Lpt0u, p´ 1q.

(iii) There are exactly two elements γ P rN satisfying r ´ 2γ “ p ´ 1. For each
such γ, the Serre weight detγ bSymp´1 appears with multiplicity one as
Lp∅, γq, and the Serre weight detγ “ detr´γ appears with multiplicity one
as Lpt0u, γq.

(iv) For each of the p ´ 5 elements i P rNzt0, r, p ´ 1u such that r ´ 2i ‰ p ´ 1,

the Serre weight detibSympr´2iq appears with multiplicity two, as Lp∅, iq
and as Lpt0u, r ´ iq.

(b) If r “ p´ 1, then
(i) The Serre weight Symp´1 appears with multiplicity two, as Lp∅, 0q and

Lp∅, p´ 1q.
(ii) The trivial Serre weight 1 appears with multiplicity two, as Lpt0u, 0q and

Lpt0u, p´ 1q.

(iii) The Serre weights det
p´1

2 bSymp´1 and det
p´1

2 each appear with multiplicity

one, as Lp∅, p´1
2 q and Lpt0u, p´1

2 q, respectively.

(iv) For each of the p ´ 3 elements i P rNz
!

0, p´1
2 , p´ 1

)

, the Serre weight

detibSympr´2iq appears with multiplicity two, as Lp∅, iq and as Lpt0u, r´iq.
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Lp∅, p´ 1q “ Symr detr bSymp´1´r “ Lpt0u, p´ 1q

Lp∅, p´ 2q “ detp´2bSymr`2 detr`1bSymp´3´r “ Lpt0u, p´ 2q

...
...

Lp∅, p`r2 ` 1q “ det
p`r

2
`1bSymp´4 det

p`r
2
´2bSym3 “ Lpt0u, p`r2 ` 1q

Lp∅, p`r2 q “ det
p`r

2 bSymp´2 det
p`r

2
´1bSym1 “ Lpt0u, p`r2 q

Lp∅, p`r2 ´ 1q “ det
p`r

2
´1bSym1 det

p`r
2 bSymp´2 “ Lpt0u, p`r2 ´ 1q

...
...

Lp∅, r`1
2 q “ det

r`1
2 bSymp´2 det

r´1
2 bSym1 “ Lpt0u, r`1

2 q

Lp∅, r´1
2 q “ det

r´1
2 bSym1 det

r`1
2 bSymp´2 “ Lpt0u, r´1

2 q

Lp∅, r´3
2 q “ det

r´3
2 bSym3 det

r`3
2 bSymp´4 “ Lpt0u, r´3

2 q

...
...

Lp∅, 1q “ detbSymr´2 detr´1bSymp`1´r “ Lpt0u, 1q

Lp∅, 0q “ Symr detr bSymp´1´r “ Lpt0u, 0q

Figure 1. Submodule structure of V2,r for F {Qp totally ramified, r odd
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Lemma 4.27. Let F {Qp be a non-trivial totally ramified extension, suppose we are given

r P Z{pp´ 1qZ, and let α P
!

t r2 u, t
r
2 u`

p´1
2

)

. Let M Ď V2,r be a GL2pO{m2q-submodule.

Then either M ĎWα or Wα ĂM .

Proof. First consider the case α “ t r2 u `
p´1

2 . Assume M is not contained in Wα. By
the explicit Propositions 4.25 and 4.26, the quotient V2,r{Wα is multiplicity free with
the following socle:

soc pV2,r{Wαq “

#

Lp∅, α` 1q » detα`1bSymp´2 : r odd

Lp∅, α` 1q ‘ Lpt0u, α` 1q » detα`1bSymp´1 ‘ detα`1 : r even.

The image of M in V2,r{Wα must contain at least one component of the socle. Suppose
first either that r is odd, or that r is even and that the image of M contains the first
component of the socle. Then there exists w P Wα such that z “ fpp´2,α`1q ` w P M .
By (15) we have

(18)
ÿ

b1PFp

bp´2
1

ˆ

1 rb1s$
0 1

˙

z “ pα` 1qfpp´2,αq ` w
1 PM

for some w1 P Wα´1. Since p ě 3, we see that rpp ´ 2, αqs “ pt0u, αq. Since Wα has a
unique maximal submodule by Corollary 3.6 (the hypotheses of the corollary are satisfied
because of our non-standard definition of t r2 u) and w1 is contained in it, the element in
the right-hand side of the previous displayed formula generates Wα “ xG2 ¨ fpp´2,αqy.
Thus Wα ĂM .

The remaining case is that r is even and the image of M in V2,r{Wα contains only the
one-dimensional component of the socle. Then the claim follows from Lemma 4.18(a).

Now suppose α “ t r2 u. If M is not contained in Wα` p´1
2

, then Wα ĂWα` p´1
2
ĎM by

the previous paragraph. So we may assume M ĎWα` p´1
2

. Observe that the subquotient

Wα` p´1
2
{Wα is multiplicity-free and repeat the argument of the previous paragraph. �

We are now able to determine the submodule structure of V2,r completely, when F {Qp

is totally ramified.

Theorem 4.28. Suppose the extension F {Qp is totally ramified and non-trivial. The
following statements hold for all r P Z{pp´ 1qZ:

(a) The GL2pO{m2q-module V2,r has finitely many submodules.
(b) Let M Ď V2,r be a submodule. Then M has irreducible cosocle if and only if

M “ VpI,γq for some type pI, γq, except that if r ´ 2γ “ p ´ 1 then we consider

the submodule V 1
pt0u,γq generated by f0,γ ` f8,γ ´ fp´1,γ instead of Vpt0u,γq.

(c) The multiset of Jordan-Hölder constituents of VpI,γq is tLpI 1, γ1q : pI 1, γ1q ďr pI, γqu.

If r ´ 2γ “ p ´ 1, then the multiset of Jordan-Hölder constituents of V 1
pt0u,γq is

tLpI 1, γ1q : pI 1, γ1q ďr pt0u, γqu ztLp∅, γqu.

Proof. To establish (a), it suffices by Lemma 4.22 to prove that the quotient V2,r{M
has multiplicity-free socle for every submodule M Ď V2,r. Suppose that M Ď V2,r is a
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counterexample, and let M ĂM 1 be such that M 1{M “ socV2,r{M . Set

V
p0q

2,r “ 0, V
p1q

2,r “Wt r
2
u, V

p2q
2,r “W

t r
2
u`

p´1
2
V
p3q

2,r “ V2,r.

By Proposition 4.25 for odd r and Proposition 4.26 for even r, the quotients V
piq

2,r {V
pi´1q

2,r

are multiplicity-free for all i P r3s. Thus by Lemma 4.27 there exists α P
!

t r2 u, t
r
2 u`

p´1
2

)

such that M Ă Wα Ă M 1. As in the proof of Lemma 4.27 there exists w P Wα such
that fpp´3,α`1q ` w PM

1. Since the quotient M 1{M is semisimple, it is invariant under

the action of the first congruence subgroup kerpGL2pO{m2q � GL2pkqq. Hence the
expression in (18), which is already known to generate Wα, is contained in M . However,
this contradicts M ĂWα, completing the proof of (a).

For every i P r3s and every Jordan-Hölder constituent σ of V
piq

2,r {V
pi´1q

2,r , there is a

unique submodule of V
piq

2,r {V
pi´1q

2,r with cosocle σ and hence a unique submodule M Ă V2,r

such that V
pi´1q

2,r Ď M Ď V
piq

2,r and M has cosocle σ. These are exactly the submodules

of the statement (b). By Proposition 4.27, they exhaust the submodules of V2,r with
irreducible cosocle, and (b) is proved.

Finally, (c) follows from Lemma 4.16 and Proposition 4.17. �

5. The unramified case and the representation Rpσq of Breuil and
Pas̆kūnas

In this section we assume that F {Qp is an unramified extension. In this case, the ana-
logue of Theorem 4.11, the principal result of the previous section, fails. When e “ 1,
it is not in general true that the submodule of V2,r generated by a basis vector fpj0,j1q is
the linear span of a subset of the basis B2,r. However, if we restrict to the submodule of
V2,r generated by fp0,1`p`¨¨¨`pf´1q, then we can obtain an elegant description of its sub-
module structure. While it is possible to make a self-contained study of this submodule,
roughly along the lines of §4, we will take a shortcut. It turns out that this submodule
is isomorphic to the module Rpσq considered by Breuil and Pas̆kūnas in [9, §17-18], for
the Serre weight σ “ σ∅prq, and we make use of their results on our way to providing a
complete description of the submodule structure.

5.1. Preliminary computations. The results of the previous section, for the ramified
case e ě 2, rely on the explicit computations of §4.1. While Lemmas 4.1 and 4.2 make
no assumption on the ramification of F {Qp, the action of upper unitriangular matrices
on V2,r involves summation of Witt vectors in the unramified case and produces more
complicated formulae than those of Lemma 4.5. In particular, the U2-submodule of
V2,r generated by a basis element fpj0,j1q will not, in general, be a linear span of basis
elements. However, the U2-submodule generated by fpj0,j1q does have this property in
some special cases.

Lemma 5.1. Suppose that e “ 1.
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(1) If pj0, j1q P rN2, then the U2-submodule of V2,r generated by fpj0,j1q is the linear
span of the elements

(19)
ÿ

λPO2

ˆ

λ 1
1 0

˙

b pλ0 ´ b0q
j0pλ1 ` Spλ

pf´1

0 , p´b0q
pf´1

qqj
1
1 ,

where b0 P k and j11 ĺ j1.

(2) In particular, let I Ď rf ´ 1s0, and let j0 P rN satisfy supppj0q X pI ´ 1q “ ∅.
Then a basis of the U2-submodule of V2,r generated by fpj0,pIq is given by

#

f´ř
iPpI1´1qYsupppj0q

aipi,pJ
¯ : J, I 1 Ď I, J X I 1 “ ∅; ai P

#

rp´ 1s : i P I 1 ´ 1

rpj0qis0 : i P supppj0q

+

.

Proof. In the case e “ 1, it is immediate from Lemma 3.8 and (8) that

(20)

ˆ

1 b
0 1

˙

fpj0,j1q “
ÿ

λPO2

ˆ

λ 1
1 0

˙

b pλ0 ´ b0q
j0pλ1 ´ b1 ` Spλ

pf´1

0 , p´b0q
pf´1

qqj1 ,

and considering weighted sums of the form

ÿ

b1Pk

b
pq´1q´pj1´j11q
1

ˆ

1 rb0s ` rb1s$
0 1

˙

fpj0,j1q

for b0 P k and j11 ĺ j1 gives the first part of our claim. In general, the expressions of
the form (19), viewed as functions of three variables λ0, λ1, b0, contain more than one
monomial in which b0 appears with a given exponent. Thus, taking weighted sums with
respect to b0 will produce linear combinations of the basis elements fpj10,j11q.

The case pj0, j1q “ pj0, p
Iq, where supppj0q and I´1 are disjoint, behaves particularly

agreeably. Observe that j11 ĺ pI if and only if j11 “ pJ for some subset J Ď I. Then the
elements of (19) have the form

ÿ

λPO2

ˆ

λ 1
1 0

˙

b pλ0 ´ b0q
j0
ź

iPJ

pλ1 ` Spλ
pf´1

0 , p´b0q
pf´1

qqp
i
“

ÿ

λPO2

ˆ

λ 1
1 0

˙

b pλ0 ´ b0q
j0
ź

iPJ

˜

λp
i

1 `

p´1
ÿ

a“1

p´1qp´a
`

p
a

˘

p
λap

i´1`f

0 b
pp´aqpi´1`f

0

¸

.

Each monomial has a distinct exponent of b0, since we have assumed that supppj0q
and J ´ 1 are disjoint. Taking weighted sums, with respect to b0, of such expressions
produces non-zero scalar multiples of all elements of the form

ÿ

λPO2

ˆ

λ 1
1 0

˙

b λp
I1

1 λ
j10`

ř

iPppJzI1q´1q aip
i

0 ,

where j10 ĺ j0. Running over all J Ď I, we obtain the claimed basis of xU2 ¨ fpj0,pJ qy. �
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Recall from §3.1 that rB2 “ pψ
2
1q
´1pBpkqq ď GL2pO{m2q is the image of the standard

Iwahori subgroup of GL2pOq under the projection GL2pOq Ñ GL2pO{m2q. Thus

rB2 “

"ˆ

a b
c d

˙

P GL2pO{m2q : c P m{m2

*

.

Lemma 5.2. Let I Ď rf ´ 1s0, and suppose that j0 P rN satisfies supppj0qX pI ´ 1q “ ∅.
Given a subset I 1 Ď I, define

Lpj0, I 1q “

$

&

%

ÿ

iPpI 1´1qYsupppj0q

aip
i : ai P

#

rp´ 1s : i P I 1 ´ 1

rpj0qis0 : i P supppj0q

,

.

-

.

The rB2-submodule of V2,r generated by fpj0,pIq is the linear span of the following basis:

Bpj0, Iq “
!

f
p``pJzJ

1
`2pJ

1zJ2 ,pJ2 q : I 1, J Ď I, I 1 X J “ ∅, ` P Lpj0, I 1q, J2 Ď J 1 Ď J
)

.

In particular, the rB2-submodule of V2,r generated by fp0,1`p`¨¨¨`pf´1q is the linear span

of the basis tfp``pIzJ`2pJzL,pLq : L Ď J Ď I, ` P rN, suppp`q X pI ´ 1q “ ∅u.

Proof. Any element ξ P rB2 may be expressed in the form ξ “ κδµ, where µ P U2 and
κ P U2 (see Definition 2.2), while δ is a diagonal matrix. The claim follows from an
application of Lemma 5.1(2) to account for the action of µ, then of Lemmas 2.6 and 4.2
to describe the action of δ, and finally of Lemma 4.4 to treat the action of κ. �

5.2. A family of submodules. We now define the analogue, in the setting of unrami-
fied F {Qp, of (a subset of) the family of submodules tVθuθPrΘ considered in Definition 4.9.
Recall that we identify Z{fZ with rf ´ 1s0. Given r P Z{pq ´ 1qZ and J Ď Z{fZ, recall
the integer sJprq from Definition 2.13.

Definition 5.3. Let rΘ1 “ tpJ, Iq : I, J Ď Z{fZ , J X pI ´ 1q “ ∅u.
If θ “ pJ, Iq P rΘ1, set fθ “ fpsJ pr´2pIq,pIq, and let Mθ be the GL2pO{m2q-submodule

of V2,r generated by fθ. Let σθ be the Serre weight σθ “ detp
I
bσJpr ´ 2pIq.

Define a partial order Ď on rΘ1 as follows: pJ 1, I 1q Ď pJ, Iq if I 1 Ď I and if J 1 Ď
J Y ppIzI 1q ´ 1q.

In order to obtain uniform results in this section, we make a genericity assumption
stronger than the one of [9, Definition 11.7].

Definition 5.4. We say that r P Z{pq´1qZ is generic if 3 ď ri ď p´3 for all i P Z{fZ.

Lemma 5.5. If r P Z{pq´1qZ is generic, then the GL2pO{m2q-submodule W1`p`¨¨¨`pf´1 Ă

V2,r is multiplicity-free.

Proof. By genericity, for all I Ď Z{fZ we have r´2pI ‰ q´1. Hence by the filtration of
Proposition 3.5 and by Theorem 2.16, which describes the graded pieces of this filtration,
we see that the multiset of Jordan-Hölder constituents of W1`p`¨¨¨`pf´1 is

!

detp
I
bσJpr ´ 2pIq » F pr ´ sJpr ´ 2pIq ` pI , sJpr ´ 2pIq ` pIq : I, J Ď Z{fZ

)

.



PRINCIPAL SERIES OF GL2 OVER FINITE RINGS 33

Hence it suffices to show that the numbers sJpr´2pIq`pI (recall Definition 2.13), viewed
as elements of Z{pq ´ 1qZ, are distinct for all pairs pI, Jq P PpZ{fZq2. By genericity,
given α “ σJpr ´ 2pIq ` pI we can read off J “ ti P Z{fZ : αi ą 1u. Knowing J , we
can then determine I “ ti P Z{fZ : αi ‰ sJ,iprqu. �

Proposition 5.6. Let θ “ pJ, Iq P rΘ1, and suppose that r is generic. The GL2pO{m2q-
module Mθ has irreducible cosocle isomorphic to the Serre weight σθ.

Proof. Let Nθ Ď W1`p`¨¨¨`pf´1 be the submodule with cosocle σθ; this is well-defined

by Lemma 5.5. Recall from Proposition 3.5 that WpI {
ř

I 1ĂIWpI1 » detp
I
bV1,r´2pI .

The image of Mθ in this quotient is generated by fsJ pr´2pIq. This is the submodule of

detp
I
bV1,r´2pI with cosocle σθ, by [9, Theorem 2.7] or Theorem 2.16. Since Nθ is the

minimal submodule of W1`p`¨¨¨`pf´1 that contains σθ as a Jordan-Hölder constituent,
the inclusion Nθ ĎMθ must hold.

The module Nθ is cyclic, and by the previous paragraph it has a generator of the
form h “ fθ ` z, for z P

ř

I 1ĂIWpI1 . Without loss of generality we may assume that h

is an eigenvector for the action of T . By genericity of r, this implies that

h “ fθ `
ÿ

I 1ĂI

εI 1fpsJ pr´2pIq`pIzI
1
,pI1 q,

for scalars εI 1 P E. Now by (10) we have

´
ÿ

dPk

dpq´1q´pIzI
1
ˆ

1 0
0 1` rds$

˙

h “

f
psJ pr´2pIq`pIzI

1
,pI1 q `

ÿ

I2ĂI 1

εI2YpIzI 1qfpsJ pr´2pIq`pIzI
2
,pI2 q P Nθ.

Taking a suitable linear combination of these elements, we find that fθ P Nθ and hence
that Mθ Ď Nθ, which proves the claim. �

Proposition 5.7. Suppose that r is generic. Let θ, θ1 P rΘ1. If θ1 Ď θ, then Mθ1 ĎMθ.

Proof. Let θ “ pJ, Iq. The partial order Ď is generated by the following two covering
relations:

‚ pJztju, Iq Ă pJ, Iq for all j P J ;
‚ pJ Y ti´ 1u, Iztiuq Ă pJ, Iq for all i P I.

If θ1 Ă θ is a cover of the first kind, then by Theorem 2.16 and the proof of Propo-
sition 5.6, the image of Mθ in the quotient WpI {

ř

I 1ĂIWpI1 admits the Serre weight

σθ1 “ detp
I
bσJztjupr ´ 2pIq as a Jordan-Hölder constituent. Hence so does Mθ. This

implies Mθ1 Ď Mθ, since it is immediate from Proposition 5.6 that Mθ1 is the minimal
submodule admitting σθ1 as a Jordan-Hölder constituent.

Let θ1 Ă θ now be a cover of the second kind, and let i P I. We see directly from
Definition 2.13 that sJYti´1upr´2pI`2piq “ sJpr´2pIq`pri´1`κqp

i´1`δiPJp
i, where
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δiPJ “ 1 if i P J and δiPJ “ 0 otherwise, while

κ “

$

’

&

’

%

1 : i´ 2 R J, i´ 1 R I

0 : i´ 2 P J, i´ 1 R I

´1 : i´ 2 R J, i´ 1 P I.

Observe that sJpr ´ 2pIq ` pri´1 ` κqpi´1 P LpsJpr ´ 2pIq, tiuq by the genericity of r.

Hence if i R J , then fθ1 P x rB2 ¨ fθy ĎMθ by Lemma 5.2, where I 1 in the notation of that
lemma is tiu, while J “ J 1 “ J2 is Iztiu. Thus Mθ1 Ď Mθ by Proposition 5.6; in fact,
the containment is proper since Mθ1 and Mθ have non-isomorphic cosocles.

If i P J , then we observe that fpsJ pr´2pIq`pi,pIq generates Mθ by the same argument as
in the proof of Proposition 5.6, but with this element in place of fθ. Applying Lemma 5.2
to fpsJ pr´2pIq`pi,pIq, we find as in the previous case that fθ1 PMθ. �

5.3. Relation to work of Breuil and Pas̆kūnas. Observe that p∅,Z{fZq is the

unique maximal element of rΘ1. Hence, by Proposition 5.7, the submodule Mp∅,Z{fZq of

V2,r generated by fp0,1`p`¨¨¨`pf´1q contains the modules Mθ for all θ P rΘ1. In order to
completely describe the submodule structure of Mp∅,Z{fZq, it remains to show that these
submodules exhaust the submodules of Mp∅,Z{fZq with irreducible cosocle and that the
implication of Proposition 5.7 is, in fact, an equivalence. For this we make use of the
results of [9], where the module Mp∅,Z{fZq was studied in another guise. We start by
elucidating the dictionary between some concepts of [9] and those of the present paper.

Write σr for the Serre weight F pr, 0q “ σ∅prq, and recall that it can be modeled as
the subspace of the space Arrs of §2.4 spanned by the monomials Xr´iY i for i ĺ r.

Set Π “

ˆ

0 1
$ 0

˙

. Given a subset J Ď ti P Z{fZ : ri ą 0u, Breuil and Pas̆kūnas

define FilJ rRpσrq to be the GL2pOq-submodule of the compact induction c-ind
GL2pF q
FˆGL2pOqσr

generated by the element ΠbXr´pJY pJ ; note that the notation rg, vs of [9] corresponds
to our g b v.

Lemma 5.8. Let J Ď ti P Z{fZ : ri ą 0u. There is an isomorphism of GL2pOq-
modules FilJ rRpσrq » WpJ , where WpJ is viewed as a GL2pOq-module by inflation via

the surjection GL2pOq Ñ GL2pO{m2q.

Proof. Recall the submodules Uβ Ď Ind
rB2
B2
χr defined in the proof of Lemma 3.1, for all

β P rN. For every β ĺ r there is an embedding of rB2-modules Uβ Ñ c-ind
GL2pF q
FˆGL2pOqσr

given by mα ÞÑ Π b p´1qαXr´αY α for all α ĺ β; indeed, the action of rB2 on the
left-hand side is given by (3), while a simple calculation provides the action on the

right-hand side. Now set β “ pJ ; then the image of this map is the rB2-submodule of

c-ind
GL2pF q
FˆGL2pOqσr generated by Π b Xr´pJY pJ , and by Frobenius reciprocity we get a

surjection of GL2pO{m2q-modules Φ : WpJ “ Ind
GL2pO{m2q

rB2
UpJ Ñ FilJ rRpσrq.
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It remains to prove that Φ is injective. We show this directly. Consider the basis of

WpJ given in Definition 3.4 and compute, for all j0 P rN and J 1 Ď J , that

Φpf
pj0,pJ

1
q
q “

ÿ

λPk

ˆ

$ λ
0 1

˙

b p´1qp
J1

λj0Xr´pJ
1

Y pJ
1

Φpf
p8,pJ1 qq “

ÿ

λPk

ˆ

$ λ
0 1

˙

b λr´2pJ
1

Xr´pJ
1

Y pJ
1

`

ˆ

1 0
0 $

˙

b p´1qp
J1

XpJ
1

Y r´pJ
1

.

The elements on the right-hand side are well-known to be linearly independent in

c-ind
GL2pF q
FˆGL2pOqσr; for instance, cf. [4, §3]. �

Remark 5.9. Lemma 5.8 allows us to recover [9, Lemma 17.1] as a special case of Propo-
sition 3.5.

We are now in a position to reinterpret the module Rpσrq of [9, Definition 17.9] in
terms of the notions studied in the present paper.

Lemma 5.10. Suppose that ri ą 0 for all i P Z{fZ. The GL2pOq-modules Rpσrq and
Mp∅,Z{fZq are isomorphic.

Proof. Let I Ď ti P Z{fZ : ri ą 0u. A Jordan-Hölder constituent detp
I
bσJpr ´ 2pIq of

WpI {
ř

I 1ĂIWpI1 is special in the sense of [9, Definition 17.2], where we have implicitly

applied the isomorphism of Proposition 3.5 and the identification of Lemma 5.8, if
tJ,ipr ´ 2pIq P tpr ´ 2pIqi, p´ 2´ pr ´ 2pIqiu for all i P I. By Remark 2.14 this exactly
means that pI ´ 1q X J “ ∅. Under our hypotheses on r, the subset I can be any

subset of Z{fZ, and thus detp
I
bσJpr´ 2pIq is special if and only if pJ, Iq P rΘ1. By the

definition of Rpσrq and Proposition 5.6, we have Rpσrq »
ř

θPrΘ1
Mθ. Since p∅,Z{fZq is

the unique maximal element of rΘ1, by Proposition 5.7 the sum on the right-hand side
is just Mp∅,Z{fZq. �

5.4. Submodule structure. Before giving a complete description of the submodule
structure of Rpσrq »Mp∅,Z{fZq, we state an auxiliary lemma.

Lemma 5.11. Suppose that r is generic and Mp∅,Z{fZq admits a non-split extension E
of two Serre weights σθ and σθ1, for θ, θ1 P rΘ1, as a subquotient: 0 Ñ σθ1 Ñ E Ñ σθ Ñ 0.
Then θ1 Ă θ.

Proof. If f “ 1, then it is simple to work out the submodule structure of Mp∅,Z{fZq
directly. It is a uniserial module of length three:

socpMp∅,Z{fZqq » σ∅prq “ SymrE2

radpMp∅,Z{fZqq » W0 » Ind
GL2pFpq
B2pFpq χr

Mp∅,Z{fZq{radpMp∅,Z{fZqq » detbσ∅pr ´ 2q “ detbSymr´2E2.

In particular, the claim holds. So we assume f ą 1.
If Ext1

GL2pOqpσθ, σθ1q ‰ 0, then the Serre weights σθ and σθ1 must satisfy one of

five conditions specified by [9, Corollary 5.6]. The conditions (i)(a) and (i)(b), in the
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labeling of [9], amount to the union of the following possibilities, where I, J Ď Z{fZ
satisfy J X pI ´ 1q “ ∅:

‚ tθ, θ1u “ tpJ, Iq, pJ Y tju, Iqu for some j R J ;
‚ tθ, θ1u “ tpJ, Iq, pJ Y ti´ 1u, Iztiuqu for some i P I.

The conditions (ii)(a), (ii)(b), and (ii)(c) amount to the following possibilities:

‚ tθ, θ1u “ tpJ, Iq, pJ, Iztiuqu for some i P I;
‚ θ “ θ1.

The module Mp∅,Z{fZq is multiplicity-free, so θ “ θ1 is impossible; see also [17, Propo-

sition 2.10]. For the other possibilities, either θ1 Ă θ or θ Ă θ1. If θ Ă θ1, then E is
a subquotient of Mθ1 . But Proposition 5.6 implies that Mθ1 cannot admit a reducible
subquotient containing σθ1 in its socle, giving rise to a contradiction. Therefore, the
relation θ1 Ă θ necessarily holds. �

Theorem 5.12. Suppose that r is generic.

(1) The GL2pO{m2q-module Mp∅,Z{fZq is multiplicity-free, and the set of its Jordan-
Hölder constituents is

JHpMp∅,Z{fZqq “ tσθ : θ P rΘ1u.

(2) Let θ “ pJ, Iq P rΘ1. Then Mθ is the unique submodule of Mp∅,Z{fZq with cosocle
σθ, and its Jordan-Hölder constituents are

JHpMθq “ tσθ1 : θ1 P rΘ1, θ
1 Ď θu.

Proof. If θ “ pJ, Iq P rΘ1, then σθ is a constituent of Mθ by Proposition 5.6 and hence of
Mp∅,Z{fZq by Proposition 5.7. To prove the first statement, we must show that Mp∅,Z{fZq
has no other Jordan-Hölder constituents. This is the content of [9, Lemma 17.8]; recall
our characterization of special subquotients in the course of the proof of Lemma 5.10.

Now consider the second part of the claim. Again by Proposition 5.7 we know that all
the Serre weights contained in the right-hand side are indeed Jordan-Hölder constituents

of Mθ. If our claim were false, there would exist θ1, θ2 P rΘ1 such that θ2 Ę θ1 and yet Mθ

admits as a subquotient a non-split extension E of the form 0 Ñ σθ2 Ñ E Ñ σθ1 Ñ 0,
contradicting Lemma 5.11. �

We immediately deduce an analogue of Proposition 4.17.

Corollary 5.13. Suppose that r is generic and θ1 Ă θ are adjacent elements of rΘ1,
with respect to the partial order Ď. Then a non-split extension of σθ by σθ1 arises as a
subquotient of Mp∅,Z{fZq.

Remark 5.14. The “extension lemma” [9, Lemma 18.4] is a crucial ingredient in the
main results of [9]. Corollary 5.13 should be viewed as a strengthening of this lemma,
specifying which of the two non-split extensions occurs in Rpσq. In fact, the proof, which
is less intricate than the argument in [9], involves only Propositions 5.6 and 5.7 and a

translation of conditions on Serre weights into conditions on elements of rΘ1 as in the
proof of Lemma 5.11.
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6. Proof of Proposition 4.14

In this section we prove a closed-form description of the partial order ďr on the set
rΘ of types of the elements of the basis B2 of V2,r, for ramified extensions F {Qp. This
partial order was originally introduced in Definition 4.7 in terms of generating relations.

In this section we refer to any pair pI, γq P PpZ{fZq ˆ rN as a type, and the notion of

r-admissible types will distinguish the pairs arising from equivalence classes in rΘ by the
correspondence Υ of Proposition 4.12; see Definition 6.4 and Remark 6.5 below.

Definition 6.1. Let pI 1, γ1q and pI, γq be two types. We say that pI 1, γ1q ĺr pI, γq if the
following conditions are satisfied:

‚ γ1 ĺ γ;
‚ I 1 Ď I Y Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q.

Lemma 6.2. The relation ĺr is a partial order.

Proof. Observe that pI 1, γq ĺr pI, γq if and only if I 1 Ď I. It remains to show that the
relation ĺr is transitive. Suppose pI2, γ2q ĺr pI

1, γ1q ĺr pI, γq. Then clearly γ2 ĺ γ. By
our assumptions,

I2 Ď IYIpr´2γ1, 2pγ1´γ2qqYIpγ1´γ2, γ1´γ2qYIpr´2γ, 2pγ´γ1qqYIpγ´γ1, γ´γ1q,

so it suffices to prove that

Ipr ´ 2γ1, 2pγ1 ´ γ2qq Y Ipγ1 ´ γ2, γ1 ´ γ2q Y Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q Ď

Ipr ´ 2γ, 2pγ ´ γ2qq Y Ipγ ´ γ2, γ ´ γ2q.

In fact, this is an equality. Set pε1, . . . , ε5q “ pr ´ 2γ, γ ´ γ1, γ ´ γ1, γ1 ´ γ2, γ1 ´ γ2q.
Then we indeed obtain

Ipr ´ 2γ1, 2pγ1 ´ γ2qq Y Ipγ1 ´ γ2, γ1 ´ γ2q Y Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q “

Ipε2, ε3q Y Ipε4, ε5q Y Ipε1, ε2 ` ε3q Y Ipε1 ` ε2 ` ε3, ε4 ` ε5q “

Ipε2, ε4q Y Ipε3, ε5q Y Ipε2 ` ε4, ε3 ` ε5q Y Ipε1, ε2 ` ε3 ` ε4 ` ε5q “

Ipε2 ` ε4, ε3 ` ε5q Y Ipε1, ε2 ` ε3 ` ε4 ` ε5q “ Ipr´ 2γ, 2pγ ´ γ2qq Y Ipγ ´ γ2, γ ´ γ2q,

where the second equality is an application of Lemma 2.12 and the third holds because
Ipε2, ε4q “ Ipε3, ε5q “ Ipγ ´ γ1, γ1 ´ γ2q “ ∅ since γ2 ĺ γ1 ĺ γ. �

Our aim now is to show that each of the partial orders ĺr and ďr refines the other.

Lemma 6.3. The partial order ĺr is a refinement of ďr.

Proof. We must show that if pI 1, γ1q ďr pI, γq by one of the generating relations of
Definition 4.7, then pI 1, γ1q ĺr pI, γq. Note that the relation pI 1, γq ďr pI, γq is equivalent,
by definition, to the inclusion VpI 1,γq Ď VpI,γq of submodules of V2,r. As in the proof of
Proposition 4.12, we see using Proposition 3.5 and the results of [2] that this inclusion
of submodules is equivalent to the inclusion I 1 Ď I. Thus we see that pI 1, γq ďr pI, γq
if and only if I 1 Ď I, and it is evident from the definition of ĺr that this is equivalent
to pI 1, γq ĺr pI, γq. This implies our claim for the first, fourth, sixth, and seventh
generating relations of Definition 4.7.
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The second generating relation states that rpj0, j1 ´ pmqs ďr rpj0, j1qs if pm ĺ j1. By
the map Υ of Proposition 4.12, this is equivalent to pIpj0, r´2j1´j0`2pmq, j1´p

mq ďr
pIpj0, r ´ 2j1 ´ j0q, j1q. By Corollary 2.12 we have

Ipj0, r ´ 2j1 ´ j0 ` 2pmq Ď Ipj0, r ´ 2j1 ´ j0 ` 2pmq Y Ipr ´ 2j1 ´ j0, 2p
mq “

Ipj0, r ´ 2j1 ´ j0q Y Ipr ´ 2j1, 2p
mq,

and this implies pIpj0, r ´ 2j1 ´ j0 ` 2pmq, j1 ´ pmq ĺr pIpj0, r ´ 2j1 ´ j0q, j1q by the
definition of ĺr.

The third generating relation is that rpj0 ` pm, j1 ´ pmqs ďr rpj0, j1qs if pm ĺ j1, or,
equivalently, that pIpj0`p

m, r´2j1´ j0`p
mq, j1´p

mq ďr pIpj0, r´2j1´ j0q, j1q. Now,
by Corollary 2.12 we have

Ipj0 ` p
m, r´ 2j1 ` p

mq Ď Ipj0 ` p
m, r´ 2j1 ` p

mq Y Ipj0, p
mq Y Ipr´ 2j1 ´ j0, p

mq “

Ipr ´ 2j1 ´ j0, j0q Y Ipr ´ 2j1, 2p
mq Y Ippm, pmq,

which is equivalent to rpj0 ` p
m, j1 ´ pmqs ĺr rpj0, j1qs.

It remains to treat the fifth generating relation. Abusing notation, we write the
correspondence of Proposition 4.12 as an equality. Then it is clear from the definition
of ĺr that if pm ĺ j1, then

rpr ´ 2j1, j1 ´ pmqs “ pIpr ´ 2j1, 2p
mq, j1 ´ pmq ĺr p∅, j1q “ rp0, j1qs “ rp8, j1qs,

which is exactly what we need. We have now finished checking the generating relations
of Definition 4.7 and can conclude that ĺr refines ďr. �

The proof of the opposite inclusion of relations, namely that ďr refines ĺr, is sub-
stantially more involved than that of Lemma 6.3. The primary reason for this is that
the correspondence Υ of Proposition 4.12 need not be surjective. The relation ĺr is
defined in terms of pairs pI, γq, but when we work with such pairs, we must take care
to remain inside the image of Υ, so that we can translate to the equivalence classes of
pairs pj0, j1q P Θ in terms of which ďr is defined.

Definition 6.4. A type pI, γq P PpZ{fZq ˆ rN is called r-admissible if I is pr ´ 2γq-
admissible in the sense of Definition 2.9.

Remark 6.5. Equivalently, a type pI, γq is r-admissible if and only if it lies in the image

of the correspondence Υ of Proposition 4.12, i.e. if there exists pj0, j1q P rN2 such that
pI, γq “ pIpj0, r ´ 2j1 ´ j0q, j1q.

Denote the set of r-admissible types by Hr Ď PpZ{fZq ˆ rN. The restriction of ĺr

gives a partial order on Hr.
To prove that ďr refines ĺr, we need to show that if pI 1, γ1q ĺr pI, γq are two r-

admissible types, then they are connected in the poset Hr by a path of a specific form
compatible with the generating relations of ďr. The next claim is due to Bardoe and
Sin [2, Corollary 4.1]; we reprove it here in our terminology.

Lemma 6.6. Let γ P rN and let pI 1, γq ăr pI, γq be two r-admissible types. Then there
exists j P IzI 1 such that pI 1 Y tju, γq P Hr.
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Proof. We may assume r ´ 2γ ‰ q ´ 1, since otherwise the claim is vacuously true.
Observe that I 1 Ă I. If j P IzI 1 and pI 1 Y tju, γq R Hr then it is immediate from
Definition 6.4 that one of the following two options must hold:

‚ pr ´ 2γqj`1 “ 0 and j ` 1 R I 1;
‚ pr ´ 2γqj “ p´ 1 and j ´ 1 R I 1.

Since pI, γq P Hr by assumption, it follows that if our claim is false, then for all j P IzI 1

one of the following two alternatives must hold:

‚ pr ´ 2γqj`1 “ 0 and j ` 1 P IzI 1;
‚ pr ´ 2γqj “ p´ 1 and j ´ 1 P IzI 1.

If j P IzI 1 satisfies the first alternative, then j ` 1 P IzI 1 necessarily also satisfies the
same condition. Hence pr ´ 2γqj “ 0 for all j P Z{fZ. If j P IzI 1 satisfies the second
alternative, then pr ´ 2γqj “ p ´ 1 for all j P Z{fZ by a similar argument. In either
case, this contradicts the hypothesis r ´ 2γ ‰ q ´ 1. �

Lemma 6.7. Suppose that pI 1, γ1q ĺr pI, γq are two r-admissible types. Then there exist
j P Z{fZ such that γ1j ă γj and a subset I2 Ď Z{fZ such that pI2, γ1 ` pjq P Hr and

(21) pI 1, γ1q ĺr pI
2, γ1 ` pjq ĺr pI, γq.

Moreover, I2 may be taken to be the set I 1zIpr´2γ1´2pj , 2pjq, except when pr´2γ1qj “ 2
and j ´ 1 P I 1 and j R I 1 for all j such that γ1j ă γj. In this exceptional case, we may

take I2 “ I 1Ytj, j`1, . . . , j``u, where ` ě 0 is maximal such that pr´2γ1´2pjqj`i “ 0
and j ` i R I 1 for all i P r`s0.

Proof. For any j such that γ1j ă γj , observe that (21) amounts to the following three
conditions:

(a) I 1 Ď I Y Ipr ´ 2γ, 2pγ ´ γ1qq Y Ipγ ´ γ1, γ ´ γ1q;
(b) I 1 Ď I2 Y Ipr ´ 2γ1 ´ 2pj , 2pjq;
(c) I2 Ď I Y Ipr ´ 2γ, 2pγ ´ γ1 ´ pjqq Y Ipγ ´ γ1 ´ pj , γ ´ γ1 ´ pjq.

By assumption, we have γ1 ĺ γ ´ pj , and hence Ipγ ´ γ1 ´ pj , pjq “ ∅. Moreover, since
p ą 2, we have Ippj , pjq “ ∅. It follows from Lemma 2.12 that

(22) Ipγ ´ γ1 ´ pj , γ ´ γ1 ´ pjq Y Ipr ´ 2γ, 2pγ ´ γ1 ´ pjqq Y Ipr ´ 2γ1 ´ 2pj , 2pjq “

Ipγ ´ γ1, γ ´ γ1q Y Ipr ´ 2γ, 2pγ ´ γ1qq

and hence that the set I2 “ I 1zIpr´ 2γ1 ´ 2pj , 2pjq satisfies the three conditions above.
We now consider several cases.

Suppose first that Ipr´2γ1´2pj , 2pjq ‰ ∅. In this case, we have pr´2γ1´2pjqj ě p´2.
Let ` P rf ´ 1s0 be maximal such that pr ´ 2γ1 ´ 2pjqj`i “ p ´ 1 for all i P r`s; recall
that r`s “ ∅ when ` “ 0. In particular, if r ´ 2γ1 ´ 2pj “ q ´ 1 then ` “ f ´ 1. We
then have Ipr ´ 2γ1 ´ 2pj , 2pjq “ tj ` i : i P r`s0u. Set I2 “ I 1zIpr ´ 2γ1 ´ 2pj , 2pjq and
check that the type pI2, γ1 ` pjq is r-admissible since pI 1, γ1q is. Since we already know
that pI2, γ1 ` pjq satisfies (21), we have established our claim in this case.

Now suppose that Ipr ´ 2γ1 ´ 2pj , 2pjq “ ∅. Then the digits of r ´ 2γ1 are the
same as those of r ´ 2γ1 ´ 2pj , except for pr ´ 2γ1 ´ 2pjqj “ pr ´ 2γ1qj ´ 2. If we set
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I2 “ I 1zIpr ´ 2γ1 ´ 2pj , 2pjq “ I 1, then the r-admissibility of pI 1, γ1q implies that of
pI 1, γ1 ` pjq, except in the case where pr ´ 2γ1 ´ 2pjqj “ 0 and j R I 1 but j ´ 1 P I 1.

So suppose that this problematic situation holds for all j such that γ1j ă γj , and fix

one such j. Let ` ě 0 be maximal such that pr ´ 2γ1 ´ 2pjqj`i “ 0 and j ` i R I 1 for
all i P r`s0. Note that this condition implies γ1j`i “ γj`i for all i P r`s, and also that

γ1j´1 “ γj´1 and hence j ´ 1 R Ipγ ´ γ1 ´ pj , γ ´ γ1 ´ pjq. Set I2 “ I 1 Y tj ` i : i P r`s0u

and observe that pI2, γ1 ` pjq is r-admissible. To complete the proof of this lemma, it
remains to show that I2 satisfies the condition (c) above. By (22) and the condition (a),
it suffices to show that

(23) tj ` i : i P r`s0u Ď I Y Ipr ´ 2γ, 2pγ ´ γ1 ´ pjqq Y Ipγ ´ γ1 ´ pj , γ ´ γ1 ´ pjq.

If j P Ipr ´ 2γ, 2pγ ´ γ1 ´ pjqq, then tj ` i : i P r`s0u Ď Ipr ´ 2γ, 2pγ ´ γ1 ´ pjqq
by Remark 6.5 and the r-admissibility of pI2, γ1 ` pjq, and we are done. So suppose
j R Ipr´2γ, 2pγ´γ1´pjqq. Then necessarily pr´2γqj “ p2pγ´γ

1´pjqqj “ 0. Applying
Remark 6.5 again, we may conclude that j´1 R Ipr´2γ, 2pγ´γ1´pjqq, and we already
know j´1 R Ipγ´γ1´pj , γ´γ1´pjq. But j´1 P I 1 by assumption, which forces j´1 P I
by (22) and the condition (a). Since pr ´ 2γqj “ 0 we obtain j P I by Remark 6.5. We
have thus established that j is contained in the right-hand side of (23).

Now we iterate this argument. Suppose that i P r`s and it is known that j` i1 P I for
all i1 P ri´ 1s0. If j ` i P Ipr´ 2γ, 2pγ ´ γ1 ´ pjqq, then j `m P Ipr´ 2γ, 2pγ ´ γ1 ´ pjqq
for all i ď m ď `, and we are done. If not, then necessarily pr ´ 2γqj`i “ 0. Hence
j` i P I by the r-admissibility of the type pγ, Iq, and we may apply this argument again
for i` 1. After at most ` iterations, we complete the proof of the remaining case of the
lemma. �

Corollary 6.8. Let pI 1, γ1q ăr pI, γq be two r-admissible types. Then there exists a
finite sequence

pI0, γ0q ăr pI1, γ1q ăr ¨ ¨ ¨ ăr pIs, γsq

of r-admissible types such that for each i P rss one of the following statements holds:

(a) γi “ γi´1 and Ii “ Ii´1 Y tju for some j R Ii´1, or
(b) γi “ γi´1 ` p

j for some j P rf ´ 1s0 and Ii´1 “ Ii Y Ipr ´ 2γi, 2p
jq.

Proof. We argue by induction on γ ´ γ1, with respect to the partial order ĺ on rN. If
γ´γ1 “ 0, then our claims follows easily from Lemma 6.6. So assume that γ´γ1 ą 0 and
obtain a sequence pI 1, γ1q ĺr pI

2, γ1`pjq ĺr pI, γq of r-admissible types as in Lemma 6.7.
If we may take I2 “ I 1zIpr ´ 2γ1 ´ 2pj , 2pjq, then the segment pI 1, γ1q ĺr pI

2, γ1 ` pjq
satisfies (b), whereas the segment pI2, γ1 ` pjq ĺr pI, γq may be refined to a sequence
with the desired properties by induction.

In the remaining exceptional case of Lemma 6.7, we have I2 “ I 1Ytj, j`1, . . . , j` `u
for a suitable ` ě 0. In this case either j ` ` ` 1 P I 1 or pr ´ 2γ1qj```1 ą 0, so it
is easy to check that pI2, γ1q is an r-admissible type. Thus we obtain the refinement
pI 1, γ1q ĺr pI

2, γ1q ĺr pI
2, γ1` pjq ĺr pI, γq. Since Ipr´ 2pγ1` pjq, 2pjq “ ∅ in this case,

the second jump in this refinement satisfies (b), whereas the first and third jumps may
be refined to sequences with the desired properties by induction. �
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The next lemma, whose proof is tedious but completely elementary, relates the refine-
ments of Corollary 6.8 with the types of specific basis elements of V2,r. This will finally
allow us to relate our conclusions to the partial order ďr.

Lemma 6.9. Let pI 1, γ1q ăr pI, γq be two r-admissible types such that γ1 ă γ. Let

α, β P rN satisfy I “ Ipα, βq. Then there exists j P Z{fZ such that at least one of the
following statements holds:

‚ pIpα` 2pj , βq, γ ´ pjq P Hr and pI 1, γ1q ĺr pIpα` 2pj , βq, γ ´ pjq.
‚ pIpα` pj , β ` pjq, γ ´ pjq P Hr and pI 1, γ1q ĺr pIpα` p

j , β ` pjq, γ ´ pjq.
‚ pIpα, β ` 2pjq, γ ´ pjq P Hr and pI 1, γ1q ĺr pIpα, β ` 2pjq, γ ´ pjq.

Proof. By Corollary 6.8 there exists j P Z{fZ and an r-admissible type pI2, γ ´ pjq
such that pI 1, γ1q ĺr pI

2, γ ´ pjq ĺr pI, γq. Observe that the second relation amounts to
I2 Ď IYIpα`β, 2pjq. It suffices to show that at least one of the three sets Ipα`2pj , βq,
Ipα ` pj , β ` pjq, Ipα, β ` 2pjq is the largest subset I2 of I Y Ipα ` β, 2pjq such that
pI2, γ ´ pjq is r-admissible. We consider several cases, which exhaust all possibilities.

Case 1: αj ă p´ 2 or βj ă p´ 2. If αj ă p´ 2, then Ipα, 2pjq “ ∅. Hence it follows
from Lemma 2.11 that

(24) Ipα` 2pj , βq “ Ipα, βq Y Ipα` β, 2pjq.

In particular, pI Y Ipα`β, 2pjq, γ´ pjq “ pIpα` 2pj , βq, γ´ pjq is itself an r-admissible
type. The case βj ă p´ 2 is analogous.

Case 2: αj “ βj “ p ´ 2. In this case Ipα, pjq “ Ipβ, pjq “ ∅. By Corollary 2.12
we may conclude that Ipα, βq Y Ipα ` β, 2pjq “ Ipα ` pj , β ` pjq. Hence pI Y Ipα `
β, 2pjq, γ ´ pjq “ pIpα` pj , β ` pjq, γ ´ pjq is an r-admissible type.

Case 3: tαj , βju “ tp ´ 1, p ´ 2u and j ´ 1 R I. Observe that Ipα ` β, 2pjq “ ∅,
so (24) implies that I Y Ipα ` β, 2pjq “ I. However, since pα ` β ` 2pjqj “ p ´ 1, the
type pI, γ ´ pjq fails to be admissible if j ´ 1 R I but j P I. In this case, it is clear that
the largest subset I2 Ď I such that pI2, γ´ pjq is r-admissible is I2 “ Iztj` i : i P r`s0u,
where ` P rf ´ 1s0 is maximal such that pα ` β ` 2pjqj`i “ p ´ 1 and j ` i P I for all
i P r`s0. Observe that αj`i “ βj`i “ p´1 for all i P r`s. If αj```1 “ βj```1 “ p´1, then
the maximality of ` forces j ` ` ` 1 R I “ Ipα, βq, which is absurd. If αj```1 ă p ´ 1,
then Ipα, 2pjq “ tj ` i : i P r`s0u. By Lemma 2.11 we have I “ I Y Ipα ` β, 2pjq “
Ipα, 2pjq Y Ipα` 2pj , βq. Hence I2 Ď Ipα` 2pj , βq. But the type pIpα` 2pj , βq, γ ´ pjq
is manifestly r-admissible, so I2 “ Ipα ` 2pj , βq by the maximality of I2. Similarly, if
βj```1 ă p´ 1 then I2 “ Ipα, β ` 2pjq.

Case 4: αj “ βj “ p´ 1 or (tαj , βju “ tp´ 1, p´ 2u and j ´ 1 P I). Let ` P rf ´ 1s0
be maximal such that αj`i “ p´ 1 for all i P r`s. We may also assume that βj`i “ p´ 1
for all i P r`s; otherwise, we proceed analogously but switch the roles of α and β. Note
that Ipα, 2pjq “ tj ` i : i P r`s0u and that tj ` i : i P r`su Ď Ipα` 2pj , βq.

If αj “ p´1, then j P Ipα`2pj , βq. Hence IYIpα`β, 2pjq “ Ipα, 2pjqYIpα`2pj , βq “
Ipα` 2pj , βq, where the first equality comes from Lemma 2.11.

It remains only to treat the case pαj , βjq “ pp ´ 2, p ´ 1q with j ´ 1 P I. Suppose
first that j ´ 1 P Ipα, 2pjq. Then ` “ f ´ 1, hence α “ q ´ 1 ´ pj and β “ q ´ 1, so
that Ipα, 2pjq “ Ipα` 2pj , βq “ Ippj , q´ 1q “ Z{fZ. Now assume j ´ 1 R Ipα, 2pjq. By
assumption j ´ 1 P I Ď Ipα, 2pjq Y Ipα ` 2pj , βq, so necessarily j ´ 1 P Ipα ` 2pj , βq.
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This implies that pα` 2pj ` βqj “ 0, whence j P Ipα` 2pj , βq by Remark 6.5. In either
case, we have again shown that I Y Ipα` β, 2pjq “ Ipα` 2pj , βq. �

Corollary 6.10. The partial order ďr is a refinement of ĺr.

Proof. Suppose that pI 1, γ1q ĺr pI
2, γ2q are r-admissible types. Repeatedly applying

Lemma 6.9, we may refine pI 1, γ1q ĺr pI, γq to a sequence of steps, in which each step
is of one of four sorts: either it is of the form pI 1, γq ĺr pI, γq for some I 1 Ď I, or there

exist α, β, γ P rN such that α ` β “ r ´ 2γ and one of the following three possibilities
holds:

‚ pIpα` 2pj , βq, γ ´ pjq ăr pIpα, βq, γq, for pj ĺ γ;
‚ pIpα` pj , β ` pjq, γ ´ pjq ăr pIpα, βq, γq, for pj ĺ γ;
‚ pIpα, β ` 2pjq, γ ´ pjq ăr pIpα, βq, γq, for pj ĺ γ.

We already showed at the beginning of the proof of Lemma 6.3 that pI 1, γq ĺr pI, γq
is equivalent to pI 1, γq ďr pI, γq.

In the first case of the trichotomy, we have

pIpα` 2pj , βq, γ ´ pjq “ pIpβ, r ´ 2γ ´ β ` 2pjq, γ ´ pjq “ rpβ, γ ´ pjqs ďr rpβ, γqs “

pIpβ, r ´ 2γ ´ βq, γq “ pIpα, βq, γq

by the second generating relation of Definition 4.7. The third case is the same, with the
roles of α and β switched.

In the remaining second case, we have

pIpα` pj , β ` pjq, γ ´ pjq “ rpα` pj , γ ´ pjqs ďr rpα, γqs “ pIpα, βq, γq

by the third generating relation of ďr. Since each step of the refinement of pI 1, γ1q ĺr

pI2, γ2q is compatible with ďr, we conclude that pI 1, γ1q ďr pI
2, γ2q. �

Together, Lemma 6.3 and Corollary 6.10 imply Proposition 4.14.
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