Number Theory for Computer Scientists 89-256
 Question Sheet 3

Due May 3, 2011 // 29 Nisan 5771
(1) Prove that for every integer $1 \leq n \leq 512$ there exists a prime number p such that $n<p \leq 2 n$. Hint: One of the primes $2,3,5,7,13,23,43,83,163,317,631$ always works.
(2) Suppose that Alice uses the Rabin encryption protocol with public key $n=4757$. Suppose she agrees with Bob that he only sends messages m whose first two and last two digits are equal when m is written in base 2. Suppose Bob sends the encrypted message 1935. Decrypt.
(3) Recall that $\theta(x)=\sum_{p \leq x} \ln p$. You may assume it known that there exist constants $C_{1}, C_{2}>$ 0 such that $C_{1} x<\theta(x)<C_{2} x$ for all $x \geq 1$. (In class we proved that C_{2} exists and that we may take $C_{2}=2 \ln 2$.) Deduce the following weak version of Bertrand's postulate: there exists a constant $B>1$ such that for all $n \geq 1$ there is a prime number p such that $n<p \leq B n$.
(4) Let $n=768283049$. The solutions of the congruence $x^{2} \equiv 27468081 \bmod n$ are:

$$
\begin{aligned}
x & \equiv 5241 \quad \bmod n \\
x & \equiv 16929093 \quad \bmod n \\
x & \equiv 751353956 \quad \bmod n \\
x & \equiv 768277808 \quad \bmod n .
\end{aligned}
$$

Find the factorization of n into primes.

```
חג פסח כשר ושמח!
```

