Question Sheet 4
Due May 31, 2011 // 27 Iyar 5771
(1) Use the Miller-Rabin primality test to show that $2^{32}+1$ is not prime.
(2) Let $n=221$. How many elements $a \in(\mathbb{Z} / n \mathbb{Z})^{+}=\{1,2, \ldots, 220\}$ are there such that the Miller-Rabin test would return an output of "yes" if a were chosen, although n is not prime? Does this contradict the bound we proved in class for the probability of error by this test?
(3) Here is another primality test. Let $n>1$ be odd and let $k \geq 1$. Pick a random k-tuple $\left(a_{1}, \ldots, a_{k}\right)$, where the a_{i} are elements of $(\mathbb{Z} / n \mathbb{Z})^{+}$. For each $1 \leq i \leq k$, let $b_{i}=a_{i}^{(n-1) / 2}$. If $\left(b_{1}, \ldots, b_{k}\right)=(\pm 1, \ldots, \pm 1)$, but $\left(b_{1}, \ldots, b_{k}\right) \neq(1, \ldots, 1)$, the test outputs "yes." Otherwise, it outputs "no."

Prove that this algorithm runs in polynomial time. Prove that if the input n is prime, then the algorithm will output "yes" with probability at least $1-\frac{1}{2^{k}}$, and that if n is not prime, then it will output "no" with probability at least $1-\frac{1}{2^{k}}$.
(4) Let p be prime. Prove that $n=2 p+1$ is prime if and only if $2^{n-1} \equiv 1 \bmod n$.
(5) Show that a number $n>1$ is prime if and only if the group $(\mathbb{Z} / n \mathbb{Z})^{*}$ has an element of order $n-1$.
(6) Recall that $\pi(x)$ is the number of primes not larger than x, recall the function $\theta(x)=$ $\sum_{p \leq x} \ln p$. Prove that for all $0<\delta<1$ and for all $x>2$ the following is true:

$$
1 \leq \frac{\pi(x) \ln x}{\theta(x)} \leq \frac{x^{1-\delta} \ln x}{\theta(x)}+\frac{1}{1-\delta} .
$$

Deduce that

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\frac{\theta(x)}{\ln x}}=1 .
$$

(7) For each natural number n, let $\sigma(n)$ be the sum of all the divisors of n. For example,

$$
\begin{aligned}
& \sigma(18)=1+2+3+6+9+18=39 \\
& \sigma(28)=1+2+4+7+14+28=56 .
\end{aligned}
$$

Suppose that $n=p q r$ is a product of three distinct primes. Suppose that the three numbers $n, \varphi(n)$, and $\sigma(n)$ are known. Find a fast algorithm that factors n.
(8) Find all the Carmichael numbers of the form $7 \cdot 23 \cdot q$, where $q>23$ is a prime number.

