AN TIRREDUCIBILITY CRITERION
FOR SUPERSINGULAR mod p REPRESENTATIONS OF GLy(F)
FOR TOTALLY RAMIFIED EXTENSIONS F OF Q,

MICHAEL M. SCHEIN

ABSTRACT. Let F' be a totally ramified extension of Q. We consider supersingular represen-
tations of GL2(F') whose socles as GL2(Op)-modules are of a certain form that is expected to
appear in the mod p local Langlands correspondence and establish a condition under which they
are irreducible.

1. INTRODUCTION

Let F' be a finite extension of @, with valuation ring O. Choose a uniformizer 7 € O and
denote the residue field by & = O/(w). A question of immediate relevance to the emerging
mod p local Langlands correspondence is to construct smooth mod p representations of the group
G = GLy(F). If K = GL2(O) and Z is the center of G, then any irreducible F,-representation o of
the finite group GLo (k) may be viewed naturally as a representation of K Z. We may then consider
the compact induction indf(zo; a precise definition is given below. Barthel and Livné proved
(IBL], Prop. 8) that the endomorphism algebra End(ind%- ,0) is isomorphic to a polynomial ring
F,[T] for an explicitly defined generator 7. Moreover, they showed ([BL], Theorem 33) that any
irreducible mod p representation V of G is, up to twist by an unramified character, a quotient of
ind% ;0 /(T — \)ind% 40 for some o as above and some X € F,,. If A # 0, then Barthel and Livné
classified these quotients completely. On the other hand, quotients of ind%ZJ/T(indf{ZU) are
called supersingular and are still very poorly understood. In this paper we prove an irreducibility
criterion for certain quotients of ind% ;o /T (ind% ;o) when F/Q, is totally ramified.

Given a tamely ramified continuous irreducible Galois representation p : Gal(F/F) — GL2(F,),
for any finite extension F'/Q,, Serre’s weight conjecture and its generalizations associate to p a
set D(p) of irreducible F,-representations of GLz(k); these are called the modular weights of p.
These conjectures were formulated by Serre for F' = Q,, by Buzzard, Diamond, and Jarvis [BDJ]
for F' unramified over Q,, and by the author [Schl] in general; the reader is referred to those
articles and to the beginning of the last section of this paper for more details. These conjectures
may be seen as describing the socle of the smooth representation 7 (p) of GLy(F') associated to p
by the mod p local Langlands correspondence: generically, one expects socxm(p) = @oep(p)o. In

particular, this implies that a surjection ind?( »0 — m(p) exists if and only if o € D(p).

Let F/Q, be totally ramified of degree e. Consider the F,-representation o = det" ®Sym’“F§
of GLo(F,), where 0 < r < p—2. Let f, € ind% ;o be a non-zero function supported on the
single coset K Z that satisfies f,(id) € o). Here I(1) C K is the upper triangular pro-p-Iwahori

subgroup. Observe that f, generates an irreducible K-submodule isomorphic to . The following
lemma is proved by computation.

Lemma 1.1. Let 0 <r < p—2 and let o and f, be as above.
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(a) The image of -0 fo in indg 4o /T (ind% ,0) is invariant under the action of I(1)
and generates a K -submodule that is irreducible and isomorphic to det™ ™" ®Symp_r—1F§.

10,111 €F,, F1 0 1
under the action of I(1) and generates a K-submodule that is irreducible and isomorphic
to det® ! ®Symp_r_3ﬁi. Here [u] € O is the canonical (Teichmdiller) lift of pn € Fp.

2
(b) The image of > r ( ™[] + mlm] > fy inind$ o /T (ind$. ,0) is invariant

Proof. The first statement is Lemma 3.6. The second follows from the case n = 1 of Lemma 3.1
and Proposition 3.3. O

Now let 0 < r < p — 2e — 1, and consider the set D = {og,...,0c-1} U {0{,...,0,_1} of
F,-representations of GLx(F,), where

o; = det™? ®Symr+2iﬁi, (1)

ol = det™ ®Symp7r71*2sz

?

This D arises as D(p) for a suitable Galois representation p, and it consists of 2e distinct

0 1
0

as follows. For 1 < ¢ < e — 1 define

regular weights. Let 8 = . We now define e explicit elements of ind$ o0 /T (ind% ,00)

2
fi= 8 s ( m [po] + wlpa] )f¢1
/"Ovﬂzle]Fp ' 0 1
2
2 = MP—""—z’i ( T [:U‘O] +7T[.u“1] )ﬁfz
#Ovﬂzler 1 0 1

Proposition 1.2. Let 0 < r < p — 2e — 1, and let the set D of weights be defined as above.
Let 7 : ind% ,00/T(ind% ;00) — W be a quotient. Suppose that W has no non-supersingular
subrepresentations, that socx (W) ~ ®,epo, and that 7(fe—1) € W is non-zero. Then for each
0 < i <e—1 the K-submodules of W generated by the elements 7(f;) (resp. 7(8f;) ) are irreducible
and isomorphic to o; (resp. o}).

Proof. This is Proposition 3.8 below. O

Admitting these two propositions, we can immediately establish the following irreducibility
criterion, which is the main result of this paper. See Remark 3.9 for a variation.

Theorem 1.3. Let 0 < r < p—2e — 1, and let the set D of weights be defined as above. Let
T indf(zao — W be a quotient. Suppose that W has no non-supersingular subrepresentations,
that socg (W) ~ ®yepo, and that T(fe—1) € W is non-zero. Suppose also that 7(z;) # 0 for all
1<i<e—1. Then W is an irreducible G-module.

Proof. Let U C W be an irreducible G-submodule. Since f, generates ind%zoo as a G-module,
to conclude U = W it suffices to show that 7(fy) € U. Note that if 7(8f;) € U, then also
7(f;) € U. By our assumption on the K-socle of W and the previous proposition, it then follows
that any irreducible K-submodule of W must contain one of the elements 7(fo),...,7(fe—1). Let
0 <1< e—1 be the smallest number such that 7(f;) € U, and suppose that [ > 0.

By Frobenius duality there is a non-zero map ) : indgzaf — W such that ¥i(f,;) = 7(Bf1).
Since Homg(indgzof ,W) is a one-dimensional space, every non-zero element is an eigenvector
for the action of the commutative algebra Endg(ind$: 20]). Therefore, ¢; must factor through a
quotient ind% ,o!/(T — \)(ind% 407) for some A € F,. We must have A = 0, since otherwise the
image of ¥; in W would have a non-supersingular subrepresentation.

2
By assumption ¢; <Z#07H1€FP lea—r—zl ( ﬂ(‘) (0] Jrlw[ﬂl] > fUz’) = 7(z) is a non-zero element

of W. The second part of Lemma 1.1 then implies that 7(z;) generates an irreducible K-submodule
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of W that is isomorphic to o;—;. But since each irreducible submodule in socK(H/) appears with
multiplicity one, it follows that 7(z;) = ¢7(fi—1) for a suitable non-zero scalar ¢ € F,,, contradicting
the minimality of [. It follows that | = 0, and hence U = W. O

We briefly discuss previous work to place this theorem in context. A first result towards
studying the supersingular representations of GLy(F') was attained by Breuil, who showed in [Bre]
that if F = Q, then ind%,o/T(ind% o) is irreducible for all o. He proved this by explicitly
computing the I(1)-invariants of ind% ,o/T(ind% ,o) and observing that every non-zero I(1)-
invariant generates ind% ;0 /T (ind% ;o) as a G-module. Since I(1) is a pro-p group, any irreducible
submodule of ind% ,o /T (ind% ,0) must have non-trivial I(1)-invariants, and the result follows. A
more conceptual version of this argument was given by Ollivier in [Oll], and other proofs were found
by Emerton ([Eme], Theorem 5.1) and Vignéras (unpublished). Moreover, ind%,o/T(ind$ ,0)
has the expected socle, and an explicit correspondence between irreducible Galois representations
and supersingular representations of GL2(Q,) was stated in [Bre].

The smooth representation theory of GLo(F') for F' # Q, is much more complicated, since
ind% ,0/T(ind% ,0) is of infinite length and there are many more supersingular representations
of GLy(F) than there are Galois representations to pair them with. When F/Q, is unramified,
Breuil and Paskunas [BP] have applied Paskunas’ method of diagrams to prove the existence of
many supersingular representations with socle ®,cpo. These were again shown to be irreducible
by an argument on I(1)-invariants, although the argument relies on the combinatorics of D and
is considerably more complicated than in the case F' = Q,. In fact, their method of construction
essentially works for arbitrary extensions F/Q,. Alternatively, Hu [Hu] associated a canonical
diagram to any supersingular representation (not necessarily irreducible) of GLo(F) for arbitrary
F. In general it has been difficult to show that the representation of GLq2(F') associated to a
given diagram is irreducible, since the method of Breuil and Paskunas for proving irreducibility
fails in this case. We note that the Breuil-Paskunas construction applied to totally ramified F/Q,
yields representations with no non-supersingular subrepresentations and with K-socle P .p 0.
However, neither these representations nor Hu’s canonical diagrams are understood explicitly
enough at present to verify the non-vanishing of 7(f._1) and 7(z;) and establish irreducibility by
means of Theorem 1.3 in any example.

The second section of the paper is rather technical. It uses the methods of Breuil’s original
paper [Bre] to prove Corollary 2.11, which will provide information about the I(1)-invariants of
certain quotients of ind% ;00 /T'(ind% ,00). Lemma 1.1 and Proposition 1.2 are proved in the third
section. In fact, we obtain more precise information about V,_;, which is used when constructing
irreducible supersingular representations of GLy(F'). This work will appear in a separate article.
We note that the constructions and results of this paper may be generalized to arbitrary extensions
F/Q,, although the presence of an unramified subextension complicates the computations.

The author is grateful to Christophe Breuil, Yongquan Hu, and Vytautas Paskunas for enlight-
ening conversations and for comments on an earlier version of this paper. He thanks the referee
for suggesting a number of improvements to the exposition.

1.1. Notations and background results. In this section we establish notation and recall some
results that we will need. Let p be an odd prime. Recall that F' is totally ramified extension of
Q, with valuation ring O and 7 € O is a uniformizer. Then O/(7) = F,. Let e = [F : Q,] be
the ramification index. We assume that e > 1; note that in the case F' = Q,, the questions we
investigate have been resolved completely by Breuil. Let G = GLo(F). Then K = GL3(0O) C G
is a maximal compact subgroup. Let B C GLy(FF,) be the subgroup of upper triangular matrices.
Fix the Iwahori subgroup I = w™!(B) C K, where w : K — GL3(F,) is the natural projection.
Let I(1) be the pro-p Sylow subgroup of I. Write Z for the center of G and K(1) for the kernel
of w. We also define

(32 o

= O
O =
N———
@
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Q
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Recall that the distinct irreducible F-representations of GLo(F,) are 0,.,, = det” ® Symrﬁi,
where 0 < w < p—2and 0 <r < p—1. A model for o,,, is given by the (r 4+ 1)-dimensional
space V;, . of homogeneous polynomials P € Fp[z,y] of degree r, where GLy(IF,) acts as follows.

If v = ( i Z ) € GLo(F,), then (vP)(z,y) = (ad — be)* P(ax + cy, bz + dy).

Given A € F,,, let [A] € O be its canonical lift. For n > 1 define the sets
L= {Do] + 7]+ + 7" il s (Ao, -, Anc1) € (Fp)"} C O,
We also set Iy = {0}. Then for all n > 0 and X € I,, we set

0 ™ A 1 1 0
gn,)\ = 0 1 ) gn)\ = T\ gntl .

In particular, g870 is the identity matrix and g(l)’o = «. Also g}%/\ = ﬂgfmw for all n > 0 and
A € I,. It follows from the Cartan decomposition that these 92, 5 and g}h \ comprise a set of coset
representatives for K7 in G:

G= J] ¢..Kz

i€{0,1}
n>0,\€lp

Forn > 0, wedefine Sy = 1Za™"KZ = [1,¢; 9n \KZand S, = IZBa "KZ = [1,¢;, 902 KZ
as in [Bre]. We also set S,, = SO [[ S} and B,, = B[] B}, where

By =1ln<n So and Bl =11,,<, Sm-
Given an irreducible F,-representation o of GLy(F,), we can view it as a K Z-module where

K acts via w and the matrix < 7(;

functions f : G — V, that are compactly supported modulo KZ and satisfy f(kg) = o(k)f(g) for
all k € KZ and g € G. The group G acts by (hf)(g) = f(gh) for h € G. Such a function is clearly
determined by its values on the (g3 ,)~* and (g} ,)~!. Note that ind ;o ~ F,[G] ®F, (k7 Vo If
g € G and v € V,, then the element g ® v corresponds to the function defined by

olhg)v :he KZg!
0 cheg KZg 1.

2 > acts trivially. Then a model for indf{za is the space of

(9@ v)(h) = {

This is the element denoted [g,v] in [Bre]. Observe that any function f € ind%, 0 may be
written uniquely in the form

o0
f= Z Z (gg,x ® Ug,x + gflb,)\ ® U}L,)\)
n=0\el,
for suitable v?L’A, v}%)\ € V,. We say that the support of f is the set of g}, , such that vim #0. We
write f € S, if the support of f is contained in S, and similarly for B,, S9, etc.
Observe that any element z € O has a unique expansion z = Y .~ zimt, where z; € I1. Let [2],
denote the truncation Z?;()l 2wt € I,,. We will sometimes write g?L’z to mean 92,[z]n'
Throughout this section and the following we assume that o = 0,0, with 0 <7 <p —1. Then
the formulae of section 2.5 and Lemme 3.1.1 of [Bre] imply the following explicit expressions for
the action of the canonical endomorphism 7' € End(ind% ,0,.).

Lemma 1.4. Letv = 22:0 "yt €V, . If n>1 and p € I, then the action of T is given by:

r
T(gg,y & U) - Z gg+1,,u+7r”)\ ® <Z cl(>\)2> z" + gg—l,[p]n_l ® CT(:LLn—l:E + y)ra
el =0

T(gh, @V) =D Ghitppanr @ (Z Cr—i(_)‘>i> Y G 1, @ o+ pn1y)”
el 1=0
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In the remaining cases the action of T is given by:

T(Id®v) = Zgu®<z i(— )\)i>x7’+06®67,yr,

el
zglm(zm )ymd@c(]xr.
el
Corollary 1.5. The endomorphism T € End(indKZar) is injective. In particular,
ind% ,o,./T(ind% 40,) ~ T (ind% 40,)/T¢(Ind% 40,).
Proof. Immediate from Lemma 1.4. O

Lemma 1.6. Suppose that v = Y ._c;x"'y" € V, and n > 0. Let u = [po] + wlwa] + -+ +
7" Wun_1] € I,. If k > 1, then

r
Tk(gghﬂ ® U) = Z <g2+k7ﬂ+7r"l/1+~~7r"+k—1'/k ® (Z Ci(_yl)l> xr) * Bn+k—1,

(V15eesvr)E€(I1)F =0

Tk(gvlw ®v) = Z (g’flLJrkMJrﬂ'"V1+---7r"+k‘—1’/k ® (Z Cri(_yl)l) yr) + Brtk-1-
i=0

(V1o vi)E(I1)F
In particular, if 1 <k <n andr > 0, then

T

Tk(gg’“‘ ® U) - Z <92+k»lt+7r"u1+m7r"+k1vk ® <Z Cl( Vl) ) x'r‘) +

(1) (1) =0
k—1 r r
0 r—1 % T
Z Z gn+k—2m,[u]n_m+2f;{” an—mtiy; Q| cr <Z>/j’nm( 1/1) X +
m=1 (v1,- Vg _m) =0
e(Ipk-—m

Ik @ Cr(pn—rx +y)",

I
Z <g711+k-#+7r"u1+~~77"+k1I/k ® (Z Cri(_yl)’L) yr> +
=0

(W15esvp) €T
k—1
1 .
Z Z <9n+k2m,[u]nm+2f_f" =Mty (CO Z ( >/’Ln m V1)1> y’“) +

Inteidnr @ C0(T + pn—ry)"

Proof. This is a straightforward calculation using the formulae of Lemma 1.4. O

k(.1
T%(gn, 0 @)

2. STRUCTURED SUBMODULES AND I(1)-INVARIANTS

Lemma 2.1. Let n > 1. Then for any set-theoretic map f : I, — Fp there exists a unique

polynomial P € F,[Xo,...,X,_1] in which each variable appears with degree at most p — 1 and
such that f(u) = P(lo, .-, fin—1) for all u € I,.

Proof. When n = 1 this is Lemme 3.1.6 of [Bre]. Suppose the claim is known for n — 1. By the

claim for n = 1, for each p € I,,_; there exist unique cfy, ..., ), € F, such that f(u+7""1[\]) =
Zf é 5 M. But by induction the map p +— c is itself expressible as a unique polynomial in
Oy -y o foreach 0 < j <p—1. O

Lemma 2.2. Let \g, A1,...,A\c € Fp. Then
o]+ 7m[M]+ -+ 7]+ 1=
A1 — (A + 1)

ﬂ-e

Mo+ 1 +7[A]+ -+ 7 A1) + 7N + +

] mod =€
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Proof. Using the isomorphism O ~ limO/(m)", we see that [A] can be viewed as the following

sequence on the right hand side: (A+ (), \? + (72), \?" + (7),...). The claim then follows from
a simple computation. O

Remark 2.3. An immediate consequence of the lemma is that if n < e, then

n—1 n—1 n—1
Z[Ai]wi + Z[ui]wi = Z[Ai + pg]m mod 7.
i=0 i=0 i=0

The computations in the sequel rely on this observation.

Remark 2.4. Observe that the binomial coefficient (pj) is divisible by p but not by p? precisely

when j = mp*~! form=1,2,...,p— 1. Hence,
. . —1 —1
M=o LR Ve 1R
e e mp871 0 e mpefl 0 -
m=1 m=1

In particular, the expression above is a polynomial of degree p — 1 in Ag.

Lemma 2.5. Fiz elements a,b,c,d € O and write a = Y o,la;|n?, and similarly for b,c,d.
Suppose that n < e and € € I,,. Let ji. = (1 + aw — cem) "1 (=b+ e + der). Then,

n—1

He = Z[Eu + Py(e0,...,eu—1)|m" mod 7".
u=0

Here if 1 > 1 and x € N, we define J(I,z) to be the set of ordered I-tuples (jy,...,5;) € N such
that j1 + - -+ + j; = x. Then the polynomial P,(eo,...,cu—1) is given by

u—1
Pu(go, ... ,Eufl) = —b, + Z Ejdu,j,1 +
=0
w—1 u—m—1 u l Jk
S T SLRN § D SIS SIETD | (T S
m=1 =0 =1 J(lm—1) k=1 =0
—b0+50)2 Z (-1 H a5y, — ZEJCJk -j
I=1 J(l,u—1) k=1

Proof. Since n < e we see from Lemma 2.2 that m-adic decompositions behave well under addition
and multiplication modulo n™. For instance,

e+b=""lei + bi]nt mod 77,  ea= Y {Z;:O sjai,j} 7t mod ™.
The claim is then obtained by a straightforward calculation. O

For later reference we record here the first few polynomials P,:

Py = b
Pi(e0) = cogg + (do — ao — boco)eo + (—b1 + aobo)
PQ(E(), 51) = 76368 (bocg - 20,060 + Codo + 01)63 + 2606061 + (do —ag — b000)€1 +

(dl - blco - boCl - (l()d() + 2(],01)000 + ag - (11)50 + (71)2 + a()bl + a1b0 - agbo).
A similar but easier computation produces the following result:
Lemma 2.6. Suppose that n < e and v € I,. Let A\ € I; be such that A\vg # 1 and set v =
[v(1 = Av)71].. Denote u=1— A\vy. Then

v=u" Vo—i—Zu (vi + Ri(vo, ... vi1))T,
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where

Ri(l/(),...,Vi 1 Zl/z 1 Zu j)\j Z HVJk+1

J(5,1—j) k=1

Proof. This is a straightforward calculation. At its end the answer is simplified using the identity
14+ put=ut. O

Definition 2.7. Let M < e be a positive integer and let Q = (qo,...,qm—1) be a sequence of
integers such that 0 < ¢ <p—1foreach 0 <i< M — 1.

(1) A G-invariant submodule W C ind% 40 is called Q-structured if every element f € W
such that f ¢ By can be written in the form f = f0+ f}! + f/, where f' € B,,_1, f € SY
fre Sl and fO and f! satisfy the following condition:

Let N = min{n,M}. For each 0 < ¢ < N — 1 and each u € I,_;_; there exist
polynomials P) ,(X), P} ;(X) € F,[X] of degree at most ¢; such that

F= Y D G ® PN +

pEln—1 A€l

N—-1 i—1
0 0 qo+1_r
2 2 2 2w iagwmn @ PO | [Tv | v
j=1

i=1 p€ly, 2 Aely vel;y1

fib = Z Zgnu—Hr" 1)\®P ()‘)

peEl,_1 Nel

- i—1
Z Z Z Z gllt+ﬂ—nf2fi)\+ﬂ.n717iu ®P;},1()‘) Hyj V;]0+1yr.
=1

i=1 p€ln 2 NIy vEI;11

Moreover, we require that for every collection of polynomials Pﬁyi(X ), Pﬁyi(X ), for 0 <
1 < N — 1 and every pu, there exists an element f € W of the above form.

(2) A G-invariant submodule U C ind% o is called extended Q-structured if every element
f € W such that f ¢ B._; can be written in the form f = f0 + f! + f/, where f’ € B,,_1,
and f0 and f} satisfy the following condition:

Let N = min{M,n+e —1}. For each 0 <i < N — 1 and each y € I,_;_. there exist
polynomials P) ;(X), P, ;(X) € F,[X] of degree at most ¢; such that

fg Z Z Z g27u+ﬂ—n—e)\+ﬂ-n—e+1< & PS,O()\):ET -+

Mejnfe )\GII CGIE—I

N-1 i—1
E § 2 0 0 | | qo+1 7
g“+ﬂ—nfeflf'i)\+ﬂ-n—efiV+7rn—e+lc ® PIM'L(A) Vj V’i T ,

=1

i=1 p€ln_e—1-3 vE€lipy
XEIy Cel,_q

PR DI o1 S SRS o vt

wEL, 1 N€Iy CETe—y

N—-1
1 1 qo+1 T
g E E g’H_Trn—e—1—7:/\+7Tn—e—7:,/+ﬂ.n—e+1c ®P Hl/] v;

i=1 w€l,_o_; vEl1q
XEIy Celo_q

Again we require that for every collection of polynomials P?;(X), P, ;(X), for all 0 <
t < N — 1 and p, there exists an element f € U of the above form.

Remark 2.8. From the formulae of Lemma 1.4 one sees that T(ind?( 0) is a Q-structured sub-
module for M =1 and ¢p = r. Similarly, Lemma 1.6 shows that if W C ind% 50 is a Q-structured
submodule, then T¢~!(W) is extended Q-structured.
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Suppose that o = det” ® SymTIF]% and Q = (qo,-..,qm—1). We will now define some special
elements of ind% ;0. Put X =Id ® z” and X} = a®y", and for 1 <n < e — 1 we define

v0 E 0 r+1_.r

Xn - gn+1,u ® H1p2 - - /~‘L7L—1/~‘Ln €,
pelni1

vl 1 r4+1_r

X, = E Inti @ PAH2 - fn—1fly Y
pEIln 1

Observe that )N(TIL = ﬁf(g. If 1 <1< M —1, then for arbitrary n we set

-1
0,+ _ E 0 q+1 qo+1 _r
Xn,l - gn,p. ® Moy 12 (H Mnll+i> Hp_1 T,
HeIn i=1
-1
1+ _ 1 a+1 go+1, r
X' = D g @ (T | iy
MGIH =1
We also define
S Z 0 q0+2, .7
Xn,O - In,p QMg T
pnel,
1,— _ E 1 qo+2, r
Xn,O - gn,/L & Hn-1Y
pnely
-1
0,— _ 2 : 0 2 qo+1_r
Xn,l - In,p & Hp_i—1 H Hn—1—1+5 | Hbp—1 T ,
pel, j=1
-1
1,— _ 2 : 1 2 qo+1, r
Xn,l - In,p & M1 H Hn—1—1+5 | bp_1 Y »
pnely, j=1
M—-2
0,— _ E 0 qo+1,_r
Xn,M—l - gn,u ® Mn—M H Hn—M+5 | Bp—1 T ,
pnely, j=1
M—-2
1,— _ 1 qo+1 r
Xn,M—l - § In,p & tn—M H Hn—M+j | Bp—1 Y >
pnely, j=1

where in the middle two lines we have 1 <1 < M — 2. Define X0 = X! = 0 if n > e. Note also
that X}Lj = ﬂng forall0 <j < M—1landalls € {+,—}. If n > e, then we define nyls to be the
part of Te’l(XZ’feH)l) supported on S, for j € {0,1}, all s € {4+, -}, and all 0 <! < M — 1 for
which this makes sense. Similarly we obtain }77{ from X% Explicit expressions for these elements
may be obtained from Lemma 1.6. For instance, if 1 <[ < M — 1, then

-1
Y,?,f = Z gg,u ® “gfjel—l—l (H l‘n—e—l+i> Ngojelfr-
pnely, i=1
We state the following simple observation for later use; it implies that all the elements just
defined are eigenvectors under the action of the set D C K of diagonal matrices.
Lemma 2.9. Let a,d € F, and let a,d € O be any lifts of a,d. Let § = diag(a,d) € D. If P(u) is a
homogeneous polynomial of degree s in the variables g, . . ., jin—1 and X° = Zueln 927H®P(u)x’” €
ind$ ;o (respectively, X' = > el 9 @ P(p)y"), then
6X° = (a”'d)*a"X°,
X' = (ad h)*d X'
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Proposition 2.10. Suppose that U C ind?(Zcf is an extended Q-structured G-submodule and that
go <p—3. Let n > e and let M/ = min{M,n — e}.
Let Y be the E,-vector subspace of ind%zo spanned by

(Vv Uy vy 1 <i < M -1y u{yy) Y c0<i < M -1}

nz’

Suppose that f € Sy, is such that vy fn,— fr, € U+ By—1 for allw € I(1). Then f, € Y+U+Bp_1.

Proof. We largely follow the method of [Bre], Prop. 3.2.1, which considers the case of e =1 and
U= T(ind%ZU).

We write fp = 35 gny @ va. For A = [Ao] + m[A] 4 -+ + 7" [\,_1], define A =[] +

e N e ] T A e H 1] TN ]+ T N1, A straightforward

computation gives that
1 " 1 1
< 0 1 > (92,,\ ®vy) — (92,/\ ® vy) 92,/\ ® <( 0 1 ) ux — UA) ,

Loan=e 0 0 0 1 A 1= e+ )P
0 1 (Gna®@va) = (9, 50v5) = ¢,5® 0 B vx =3 | -

The hypothesis on f,, then implies the following equalities for all A € I,,:

11 .
( 0 1 >v>\v>\ e Fpa”, (2)
1 AT 1= (et 1)?” _
0 7rle vy —v; € Fpa'. (3)

The equality (2) is easily seen to imply vy € E,xr +E,x“1y, so we write vy = cxx” +dxz" "y,

Then (3) implies that
N 41— (Ao + 1P

T‘—E

(c,\ —c5 +dy ) 2"+ (dy — d3)a" "ty € Fpa”. (4)

Given X € I, define () = X\ — [A\,—_c|7" ¢ € I,. In other words, (\) is the same as A, but
with \,_. replaced by 0. Then the above formula implies that d is independent of \,_., so we
write dy = dyy. Similarly, by Lemma 2.1 we can view cx = ¢(x)(An—¢) as a polynomial in A, of
degree at most p — 1. From the definition of an extended Q-structured module, we see that

N 41— (Ao + 1)P°
71-6

Y ()\n,e) — C<>\>(>\n76 + 1) + d()\>

must be a polynomial of degree at most go + 1 in A, _. Since c¢(y)(An—c) has degree at most p — 1
in \,_e, the difference c<,\)()\n ¢) = ¢ (An—e +1) has degree at most p—2. But go+1 < p—2, so
e t1=(ne c+1)P°

the remaining term dy) - must also have degree at most p — 2, and this forces
d(ny = 0 by the observation of Remark 2.4. Therefore c(xy(An—c) — cony(An—e + 1) has degree at
most qo + 1 in the variable A, _., and consequently c(x)(A,—) has degree at most go + 2.

Using the deduction above we may rewrite

Z Z Z gg;u-l‘ﬂ'"_“)\-l-fr"_e‘*'ll/®c#71/(/\)xra (5)

pEl,_e NeIi veElo_1

where ¢, ,(X) € Fp[X] is a polynomial of degree at most gop + 2. From the definition of an
extended Q-structured module it is easy to see (cf. [Bre], Lemme 3.1.5) that we may modify f by
an element of U + BY_; if necessary and assume without loss of generality that for all u € I,,_
we have ¢,,.0(X) = a,,0X%°" +b,0X%*2 where a,,0,b,0 € F, are constants.

Now fix p € I,_. and v € I._;. Suppose that u’ € I,,_., N € I, and v/ € I._; are such that

1 M+’/Tnie+ll/ " ,U,/+’/Tnie>\/+7rnie+1l// " ‘u+ﬂ_n76)\+7rnfe+11///
( 0 1 0 1 Lo 1 Kz
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for some \ € I and v € I._;. It is easy to see that, equivalently, (u+ p') +7" "N + 7"~ (v +
V') = p+r" A+ 7" " mod 7. Considering this congruence modulo 7, we find that uf, = 0,
and it follows inductively that p/ = 0. Similarly, A = X, and v = " — v by Remark 2.3. We

conclude that the terms of
_ 1 U + 7.‘.nfe%»ly o 0
N SRR Ry

with support in [T, ,» KZ(g) ~1 are precisely:

n7u+7rn—e)\+ﬂn—e+lu//)
S D st ® (V) = uu (V) (6)
ey v'el._

By assumption, h, € U + B,_; and hence ¢, , is independent of v. Thus we may write
Cuw(X) = cu(X) = a, X0 +5, X902 From (6) we see that (ag —a, )AL + (bg — b, )APH2 is a
polynomial of degree at most go + 1 in A, and hence b, = by for all 4 € I,,_.. Thus we may write

f;l) - Z Z gi)lyu+77”_e>\+ﬂ'"_e+lu ® (a’(MOv v 7Un—e—1))\qo+1 + b)\q0+2)$r. (7)
BELL e ’E\fll
vele—1

Here a is a polynomial in the indicated variables and b is a constant. For all 0 < 7 < n —e

denote
) 1 qgn—ed

and note that the action of y(j) preserves S9, for each m. Using Lemma 2.2 and (7), we observe
that if 1 < j <e—1, then:

YOI — £ = (8)

Z Z 927(;47)\,1/) & (a’(MOa s 7/’Ln—e—1) - G(MO, sy bp—e—j — L <o 7/’Ln—e—1)))\q0+1xr~

WEI,_. AED
vel,_4

2,(u,)\,u) g,pﬂHr"*e)\Jrﬂ'"*e*lV
for v(5) f2 — f9, but with a(uo, ..., n—e—j — 1, ., fn—e—1) replaced by an expression of the form
a(,uo, ceoyHn—e—j—1; Hn—e—j — 1; Hn—e—j+1 + RnfefjJrla cooy Pn—e—1 T+ Rnfefl)a where each Rz is a
polynomial in the variables ptp—c—j, ..., fti—e-

By assumption, v(j)f2 — fY € U + B,_1. If M’ > 2 then it is evident from the case j = 1 of
the formula above that a has degree at most 2 in the variable p,_._1. Therefore we may write
a=a® +a(1)un7671 +a(2)ui,e,1, where each a( is a polynomial in the variables uq, ..., tn—c—2-

We claim that the polynomial a(® is constant. Indeed, suppose it is not and consider the
minimal j > 2 such that y,_._; appears in a(®. Then we see from (8) and the remark following
it that () f° — f2 has a term of the form 2 (uw) g?%(m)\,y) ® R(f10y - -+, fr—e—2) 2 _ oy A0OHLgT,
contradicting v(j)f0 — f0 € U + B,,_1.

It is immediate from the case j = 1 of (8) that a® and o) have degrees at most ¢; + 1 and 2,
respectively, in the variable ji,_._s. Modifying a(®) by an element of U + B,,_;, we may assume

that it has the form a(®) = a(® (o, ..., fin—c_3)p2 "' ,. But then we can show that a(©) is a scalar

Here we have written g for g . If j > e, then we get a similar formula

by the same argument that was used for a(?). B B _
Therefore, after modifying f0 by an element of F,, - Yv?fo_ +F,- Yff +F,- YT?7’1+ + U + Bp—-1,
we may assume that

f,? = Z Z gg,(ﬂ,)\,u) ® a(l)(/mv cee >/‘n76*2)/‘n*6*1)‘q0+1xr>

WEL,_. XEI
vel, 4

where a(!) has degree at most 2 in the variable yi,,_._1. We may now go back to the expression
(7) and repeat the entire argument with a(*) in place of a.
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Iterating the argument, we obtain inductively that, after adding to f0 an element of Fp . Y,?w’of +
S By Yo +Fp - Yu5) + U + Booy, we get

M-—2
§ § 0 1
gn’(p")\,y) ® a(NOv v 7/14nfefM+1> H Hn—e—j )\q0+ x?"’
peEl,_o Aen j=1

veleg_q

and this time a has degree at most 1 in the variable pi,,—c—pr4+1. Thus we may write a = al® +
a™M iy _e_pr41, where the a(® are polynomials in the variables i, ..., fin—c_pr. We can show
as before that, modulo U + B,,_;, we may take a(®) = c,uq”’;lﬂ for some scalar ¢ € F,. On
the other hand, a(*) must have degree at most 1 in j,,_._ys. Using the same method as before,
we show that a(l) = diptn—e—pm + do for scalars dy,d; € ]Fp. Moreover, since qp;—1 > 0 we
may modify f0 yet again by an element of U + B,,_; and take dy = 0. This proves that f° ¢
F Y0+ 3, FpY i + 3, B, + U+ By

Observe that 37! f also satisfies the hypotheses of the lemma, and hence there exist scalars
c,ei e € Fy such that 871 f1 = (671f)° = ¥ + Co Y+ M 1( Y Ty

modulo U + B,_;. But this means that f! = ¢V} + ¢ Ylo_ + ZZ L(cf +Y1 tpeh _Yl )

n,t

modulo U + B,,_;. O

Corollary 2.11. Suppose that W C indgzo is a Q-structured G-submodule and that g9 < p — 3.
Let n > 1 and let M' = min{M,n — 1}. Let X be the F,-vector subspace of ind% ,o spanned by

(X0, Xy u{xOF xM o1 <i< M -1 u{X% X i0<i< M -1}

n,t n,t n,t n,t

Suppose that f € Sy, is such that v fp,— fn € W+DBp_1 forally € I(1). Then f, € X+U+By,_1.

Proof. In view of Remark 2.8 and the injectivity of T' (Corollary 1.5), the claim is immediate from
Proposition 2.10. O

3. CONSTRUCTION OF A QUOTIENT

Let F™" be the maximal unramified extension of F, and let L = F"(71/®*=1)). Choose a field
embedding F,2 < F,. It induces a character wy : Ip — Gal(L/F"") ~ . — F; of the inertia
subgroup Ir C Gal(F/F). Then w;’(pﬂ) is the restriction to I of the mod p cyclotomic character.

Suppose that 0 < r < p —2e — 1. Consider a continuous irreducible tamely ramified Galois
representation p : Gal(F'/F) — GLy(F,) whose restriction to I has the form

wyte 0
p\IF ~ 0 wg(r—l—e) .

Recall that a Serre weight (in this context) is an irreducible F-representation of the finite group
GL3(F,). In our case the author [Schl], [Sch2] has conjectured that the set of modular weights of
p is the set D defined in (1). See [Schl], Def. 1.2 for the definition of the modular weights of a
Galois representation. In almost all of the cases under consideration here (F/Q), totally ramified,
with restrictions on r) the conjecture has been proved by Gee and Savitt [GS].

We will inductively construct a sequence of quotients of Vo = ind% ,00/T(ind% ,00) as follows.
Let 1 <7 < e—1 and suppose that V;_; has been constructed. We claim that the image of X?
in V;_; is invariant under the action of I(1) and, furthermore, that the KZ-submodule of V;_;
generated by XZO is isomorphic to o;. This gives us a map ¢ € Homgz (07, (Vi—1)|xz) determined
by 1(v) = X9, where v € Vl(l) is a highest weight vector. By Frobenius reciprocity we obtain a

map ¥; € Homg(ind% 40/, V 1), and finally we define
Vi=Vie1/U(T (lndKszr ))-

Note that v is determined up to scalar, and hence V; is independent of the choice of v. In this
section we show that the idea outlined here actually works. If V; has been constructed, let N;
denote the kernel of the natural projection ind?( 7200 — Vi
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Iiemma 3.1. Supposg that 1 < n < e—1 and the quotient V,_1 has been constructed. Then
X0 € (Voo)'@ and X} € (V,_1)' .

Proof. Since X} = X? and § normalizes (1), it suffices to show that X0 is an I(1)-invariant.

Let v € I(1), and write
[ 14arm b
7= er l4dm )’

where a,b,c,d € O. Expand a = ;= [a;]7?, where [a;] € I, and do similarly for b, ¢, d. For any
€ Inyq, define

ep = (1 +dm + per) (b + p + par)
and expand £, = > .o [e;]m". Observe that

0 g, 1+ m(a—cey,) 0 1 0
’ygn+1 = ant2e. .
e 0 1 0 1+ 7(d+ pc) (Lin(diney-1 1

On the other hand,
ot oe, _ ZSCR 1S N 1 z
0 1 0 1 0 1)’

where z € O. We conclude that vg9,, , = g2+175uu for some u € I(1).
Recall the definition of pi. from Lemma 2.5 and observe that p () = p. Therefore, by the same
lemma,

VX=X = Y (g0, @ ey — g0y ® e ) =
pEIln 1
Z 92+175 ® ((51 + Pl) s (En—l + Pn—l)(fn + Pn)r+l — &1 5n—15:1+1) z".
e€ln41

Observe that we may write X2 — X0 = Yo, Cy, where

Co= 3 1. ® (1 +P) - (eno1 + Puct)((en + Bo)" ' — el 2"

e€ln41

and if 1 <i<n—1 then

1—1 n—1
0 1
Ci: E gn+1,€® H(€j+Pj) Pi(507---751'—1) H Ej {:‘:LJr z".
e€lnt J=1 j=i+1

For each 1 < i < n we claim that C; € N,,_; C N,,_1. This would imply that the image in V,,_;
of ¥X9 — X0 vanishes for all 4 € I(1), hence that X0 is indeed an I(1)-invariant in V,,_;.

Let c¢j(€o,..,€n-1), for 0 < j < r, be the polynomials such that 7., ci(—en)? = (e1 +
Py)--(en1+ Po1)((en + P,)" 1 — ent1). In particular, ¢.(gg,...,en—1) = (=1)"(r + 1)(e1 +
Py)---(ep—1+ Py—1)P,. For each £ = 2?2—01 g;mt € I, define vz = Z;:O cj(€0y. . en—1)z Iyl €
Voo- Then it follows from Lemma 1.4 that

Cp=T (Z 9275 ® Ué) - Z & Z Cr(507 s ,<€TL—1)(51’L—13j + y)r . (9)

eel, gel, 1 en—1€

It is easy to see from Lemma 2.5 that P(eg) is a quadratic polynomial in €g, whereas if n > 1
then e,_; appears with degree at most one in any term of P,. Therefore, £, 1 appears with
degree at most r + 3 in any term of ¢,.(e,—12 + y)". Since r + 3 < p — 1 by assumption, we see
that the second term on the right-hand side of (9) vanishes and thus C,, € T(ind% ,00) = No.

One proves in a similar way that C; € ¥,,_;(T(ind% 40!, ;) if 1 <i < n — 1. For more detail
the reader is directed to the analogous argument for A; in the proof of Lemma 3.2. O
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Lemma 3.2. For any A € I, the following identities hold in V,_1:

1 0 o
hﬁ ( N )XO — Z 92+1,V®(1_)\V0)p R 1yr+1 vy
veln i1
Zgnr r+n/\p r—2n—1 To T 2’1’r+%yr7
T€l,
0 1 ~ o
hzo = < 10 )Xg = Z 970714,17,/@(—1)”1/5 r—2n 11/1_..]/,”711/’:;-‘1-1!%7*_’_
vEl, 41

1 r+1_r
E gTL,T @To " T 2Tp1Y -
T€l,

Proof. For A = 0 the claim is obvious, so assume A # 0. First we observe that

1 0 0 0 1 Z1 (A/,L+1)71 0 1 0
A1) It T Inuut) = o 1 0 M+l )\ a1

if \u+1 € O*, where z1, 2o € O. On the other hand, if Au+1 ¢ O* (in other words, if g = —A71),
then

1 0o 10 g0 0 1 1 0
A1) T Inetaaw 21 ) Lo —pt )L o )\t 1)

Given our restrictions on r, it follows immediately that

D e @B o Qg + )P4
HEIn 41

p—1—
> Gy ® (D) P Ty (10)
HEIn 11
Apg+1=0

For v € I,,41, set 7 = v(1 — Av) ! if this is defined. For 7 € I,, we set 7 = —(\ — w7)~!, which

exists for all 7 since we have assumed A\ # 0. Then the expression above may be rewritten as

1 1
E 9n+1 L@ (1= Avg) 0y -+ g D 2™ E gn s QN T Ty 1Tty
vel, 11 Tel,

Let fAL;\l denote the claimed expression for A} in the statement of the lemma. We need to show
that h)) — h} lies in N,,_;. By Lemma 2.6 we see that the first summand of k) (consisting of the
terms supported on SO ;) can be expressed as

> g, ® (1= M) T (4 Ry) - (Ve Rosr) (v + R)
vEl,41

As in the proof of the preceding lemma, the difference between this expression and the corre-
sponding summand of h)‘ can be written as a sum » . ; A;, where

= > 0w ® (1= M) 0+ Ry (et + R (0 + Ba)™ = v

vEl,11

and for 1 <7 <n —1 we have

1—1 n—1
2 2n—1 +1
gn+1v ]. 7)\V0)p roen— H(Vj +RJ) Ri(V07~~-aVi—1) H l/j I/; fﬂr.
velnta j=1 j=it+1

We claim that A; € N,,_; C N,,_1 for all 1 <14 < n. Indeed, consider first the case ¢ = n. Define
polynomials ¢;(vp, ..., Vn—1) such that Z;:O ci(—vn) = (1= Av)?P "2 Huy + Ry) -+ (U1 +
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Ry 1)((vp + R, — v7+1). For each v € I, define v, = Z;ZO cjz" Iyl € V. Then we see
from the formulae of Lemma 1.4 that

An =T <Z 92,V®UV> - Z 92—1,[11]71,1 ®B(V0’..,’Vn_l)(yn_1$+y)r =

vel, vel,

T <Z gg,p & UU) - Z gg—l,y ® Z B(VOa ceey anl)(’/nflx + y)r ’

vel, vEln_1 vp—1€l
where
B(vo,...,vn_1) = (=1)"(r+1)(1 = A)? "> vy + R1)--- (Vn_1 + Rp_1)Rn.
Observe that if n > 1, then v,,_1 appears with degree at most two in any term of R, (vg, . .., Vp—1).
Thus v,,—1 appears with degree at most r + 3 in any term of B(vg,...,Vp—1) - (Vp—12 +y)". But
r+3 < p—1 by assumption, so >, .y B(o,...,Vn—1)(n—12+y)" =0and 4, € T(ind% ,00) =
Ny. The case ¢ = n = 1 is handled separately but analogously.
Now suppose that 1 < i < n. Observe that v; does not appear in A;, and that the projection
of A; to V,,_;_1 is a scalar multiple of the image under ¥, _; of the element
i—1
Yo, o= [+ Ry) | Rilwo, -, vin)@ 7172070 € ind 40, .
vel, j=1
Here we denote the usual basis of V,, by {pr 172000l . 0< j<p—r—1-2(n—1i)}.
Using the assumption that p —r — 1 — 2(n — i) > 3, we find that this element actually lies in
T(ind$ 07, _.) and hence that A; € N,,_; as claimed.
The remaining terms of h;) and iALf‘L, those supported on S}, are shown to be equal modulo N,,_;

in a similar way, proving the claim about h;}. The case of h2° is also treated by easy but somewhat
tedious computations. O

Proposition 3.3. The KZ-submodule U C V,,_1 generated by Xg is irreducible and isomorphic
to a,.
. 10 0 1 . =0 .

Proof. Since KZ = [[y¢;, \ o1 ()] 10 I(1) and since X, € V,_; is an I(1)-
invariant by Lemma 3.1, we see that U is spanned by the p + 1 elements h) and hS°. Inspecting
the expressions of Lemma 3.2, we see easily by Corollary 2.11 that U!(Y) =T, - X?. Since I(1) is a
pro-p-group, any irreducible K'Z-submodule U’ C U must contain an I(1)-invariant vector, hence
X% €U’ so U =U and U is irreducible. Finally, observe that for any a,b € [, we have

( [g] [(b)] ) X0= Y 00 ey @B iy a2 = (ab) TP
pel, 11

The claim follows from the classification of irreducible K Z-representations. See, for instance,
Proposition 4 of [BL]. O

Remark 3.4. It can be shown that the K Z-submodule of V,,_; generated by X; is not irreducible,
but rather a principal series of dimension p + 1.

The preceding proposition shows that the inductive program described at the beginning of this
section may indeed be carried out to produce a sequence of quotients indg g00—>Vo—-Vi— . —
Ve_1. Let k; : indgzao — V; be the natural surjections. For each 0 <¢<e—1,let p; : V; — Vo1
be the natural surjection map. For 1 <i <e—1and j € {0,1}, let Xij = ne,l()?ij). For any
weight 0 = 0., let X9(0) denote the element

X0) =3 68, @ uitet € indf 0.
el

We denote o, = det™® ®Symr+2€F; and ¢!, = det”*¢ ®Symp7“172eﬁi, compatibly with (1).
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Proposition 3.5. Let 0 be a weight such that there exists a non-trivial G-equivariant map
ind% ,0/T(ind% ,0) — V._1. Then o € DU {o,,0.}.

Proof. Observe that D acts on the I(1)-invariants of o; via the character y; : diag(a,d) —
(ad=")a” and on the I(1)-invariants of o/ via the character x; : diag(d,d) — (a~'d)'d". So
long as 0 < 7 < p — 1 — 2e, each of these characters arises from a unique Serre weight.

Observe also that N; is a Q-structured G-submodule of ind% ;0 in the sense of Definition 2.7
for the (i 4 1)-tuple Q@ = (qo, ..., ¢;) given by ¢o = r and ¢; = p—r —2j — 1 for j > 0. Indeed, for
i = 0 we already noted this above in Remark 2.8. If ¢ > 0 this follows from the explicit expression
of the map U, (see, for instance, equation (7) on page 266 of [BL]) and the observation that, for
any n > 0 and any v € I,

0 ~ap—r—21—1 _ 0 v 0 _ 0 7"+1 r
\I/i(gn,u ® &P ) =9nyv- Xz - Z In+it1l,v+nmp @ p1 e -1y )
nelipy
~p—r—2i—1 _ 1 v 0 _ 1 r+1 T
\Ij (gn v ® Yy ) - gn,u : sz - Z gn+i+1,u+ﬂ'ny ® Ml ﬂl 1/‘1’1
pelip

Let 0 £ v € VU( ) be a highest weight vector, and suppose that D acts on v via the character x.
By assumption there exists a non-zero map ® € Homg(ind% ;o /T(ind% ,0), V._1). By Frobenius
reciprocity ® corresponds to a non-zero map ¢ € Homg z (0, (Ve—1)xz). Then ¢(v) € V, (1) For
the e-tuple @ = (qo,...,ge—1) just defined, we see by Lemma 2.9 that the subgroup D C K of
diagonal matrices acts as follows:

diag(a, ~)X2:l+ = (adil)l’laTX?L:Jr diag(a, ~)X71Ll+ = (a’ld)lfldTngf, 1<i<e—1

diag(a,d) X,y = (a~d)*d" Xy diag(a,d) X,y = (ad™!)%a" X,y

diag(a,d) X = (a=td) 247 X2 diag(a,d) X" = (ad= 1) *2qm X1, 1<l<e—2
n,l n,l n,l n,l

diag(a,d) X0y = (a7 'd)°d"Xpo, diag(a d)X, o, = (ad™")a" X0,

diag(a,d) X% = (a=d)"d" X? diag(a,d) X} = (ad=")"a" X} 1<n<e-1

By Corollary 2.11, ¢(v) must be a linear combination of the elements Xfl;r for j € {0,1} and
1<[<e—1and Xfll_ for j € {0,1} and 0 <[ < e—1, as well as Xﬁl if n is in the suitable range.
Hence x is one of the characters appearing in the list above, all of which are equal to x; or x; for
some 0 < ¢ < e. Therefore o € DU {o.,0.}. O

Lemma 3.6. The element a®@y" € indiZUO/T(indf(Zao) generates a K Z-submodule isomorphic
to oy,.

Proof. One shows by explicit computation, starting from Corollary 2.11, that if the image of
f € By c ind¥ 400 is an I(1)-invariant in ind% ;00 /T (ind% ,00), then f € F,-(Idoz")F,-(a2y").
The claim now follows by the argument of [Bre], Prop. 4.1.2. O

Proposition 3.7. Suppose we are given a map of G-modules T : Vo = ind% ,00/T(ind% ,00) —
W, where W satisfies socg (W) = @, cp 0 and has no non-supersingular subrepresentations. Then
T factors through Ve_;.

Proof. We argue by induction. Let 1 < n < e — 1 and suppose it is known that 7 factors through
Va_1. We claim it factors through V,,. Let Xg be the image in V,,_1 of Xg Note that the
image of the map W, : ind% 0/, — V,_; is contained in (and in fact equal to) the submodule
of V;,_1 generated by the element X2. Hence if 7(X?) = 0, then obviously 7 factors through
Voo1/,,(ind% ,0!) and hence through V;,.

Now suppose T(f(g) # 0. By our assumption on the socle of W, the space Homg(indﬁzag, W) ~
Homg 7 (0;,, Wk z) is one-dimensional. Thus every non-zero element of this space and in particu-
lar 7o W,,, is an eigenvector for the action of the commutative algebra Endg(lnd K o). Tt follows
that 7 o U, factors through ind% o’ /(T — £)(ind% 407)) for some scalar ¢ € F,. But & = 0,
since otherwise the classification of [BL] would imply that the image of 7 o ¥,, in W contains a
non-supersingular representation. O
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Recall the elements f; defined in the introduction for 0 <i <e — 1.

Proposition 3.8. Suppose that 7 : ind% ,00/T(ind% ,00) — W is a quotient, that W has no
non-supersingular subrepresentations, and that sock (W) = @, cpo. If T(fe—1) # 0, then for
each 0 < i < e —1 the K-submodule of W generated by 7(f;) (resp. 7(8f:)) is irreducible and
isomorphic to o; (resp. o}). Moreover, if 1 <i<e—1 and T(X?) # 0, then there exists a non-zero
scalar ¢; € T,y such that 7(f;) = ¢;7(X}) and 7(Bf:) = cim(X?).

Proof. Recalling that § acts as an involution on ind?( 700, observe from the definitions that fy =
Xg and f; = Xll Hence Gfy = X& and 3f, = X?. Since these elements already generate
irreducible K-submodules of V,_; isomorphic to the specified Serre weights by Proposition 3.3
and Lemma 3.6, and since 7 factors through V._; by Proposition 3.7, the claim is established for
i€{0,1}.

Now suppose that the claim is known for ¢ — 1. By Frobenius reciprocity the non-zero element
7(fi—1) € W defines amap ¥,_; : ind$ ,0,_1 — W, which factors through ind% ,o;_1 /T(ind% ,04_1)
as in the proof of the previous proposition. By the second part of Lemma 1.1, which follows from

results that were proved earlier in this section, the element h = }° ;. g%u @ py A= ¢

ind% ;0,1 /T (ind% ,0;_1) generates an irreducible K-submodule isomorphic to 0. Hence 7(6f;) =
U, _1(h) € W, which is non-zero by assumption, generates an irreducible K-submodule isomorphic
to 0. Moreover, 7(4f;) is an I(1)-invariant since h is. Similarly, 7(8f;) € W determines a map
W, : ind% 0! /T (ind% ,0}) — W with Vi(fo:) = 7(Bfi). Then V;(Bfs;) = 7(fi) generates an ir-
reducible K-submodule isomorphic to o; by Lemma 3.6. Since X? is an I(1)-invariant generating
an irreducible K-submodule of V,_; isomorphic to o} if 1 <i < e — 1, and since the Serre weights
in soc (W) appear with multiplicity one, 7(X?) is necessarily a scalar multiple of 7(3f;). O

Remark 3.9. For each 1 < i < e — 1, define the elements

_ p—r—2t 0 w0 __ 0 p—r—24 r+1_r - 1G
Zi = E Al G2 Xi = § E Girzagnzp @ AL pacecpicapy @ € indgzog.
ANEI> Aely peliqy

Let 7 : indf( 200 /T(indg z00) = W be such that W has no non-supersingular subrepresenta-
tions and that socy (W) = @,cp 0. Assume that 7(Z;) # 0 forall 1 <i < e—1. Then 7(X9) #0
for all 0 <4 < e—1, and one can show that W is irreducible by the same proof as that of Theorem
1.3, but with X’ll and Z; playing the roles of f; and z; respectively.

To conclude, we observe that the construction of the quotient V,_; is very natural. Indeed,
we began with a weight o and took Vo = ind%,0/T(ind$ ,0). In each intermediate quotient
Vi—1, we used Corollary 2.11 to compute enough information about the I(1)-invariants in V;_4

to find a unique (up to scalar multiplication) pair of minimal I(1)-invariants X2, X} on which

). Here we denote V_; = ind% ,o, and by

D acts via characters that have not appeared in VL(;
“minimal” we mean that among all I(1)-invariants with this property, X? and X} are supported
closest to the origin of the Bruhat-Tits tree of G. One of the elements of this pair generates an
irreducible K Z-module 7, which by Frobenius reciprocity gives a map ¥ : ind?( 77 — Vioi. We
defined V; = V;_; /U(T(ind% ,7)) and repeated the process. Note that the quotient V._; is very
large; it is non-admissible if e > 1. However, the main idea behind this paper is that Breuil’s [Bre|
original computational proof of irreducibility still applies for a totally ramified extension of Q, if

one works over V,_; rather than over V = ind% 00 /T (ind$ ,00) itself.
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