
AN IRREDUCIBILITY CRITERION
FOR SUPERSINGULAR mod p REPRESENTATIONS OF GL2(F )

FOR TOTALLY RAMIFIED EXTENSIONS F OF Qp

MICHAEL M. SCHEIN

Abstract. Let F be a totally ramified extension of Qp. We consider supersingular represen-
tations of GL2(F ) whose socles as GL2(OF )-modules are of a certain form that is expected to

appear in the mod p local Langlands correspondence and establish a condition under which they

are irreducible.

1. Introduction

Let F be a finite extension of Qp with valuation ring O. Choose a uniformizer π ∈ O and
denote the residue field by k = O/(π). A question of immediate relevance to the emerging
mod p local Langlands correspondence is to construct smooth mod p representations of the group
G = GL2(F ). If K = GL2(O) and Z is the center of G, then any irreducible Fp-representation σ of
the finite group GL2(k) may be viewed naturally as a representation of KZ. We may then consider
the compact induction indGKZσ; a precise definition is given below. Barthel and Livné proved
([BL], Prop. 8) that the endomorphism algebra EndG(indGKZσ) is isomorphic to a polynomial ring
Fp[T ] for an explicitly defined generator T . Moreover, they showed ([BL], Theorem 33) that any
irreducible mod p representation V of G is, up to twist by an unramified character, a quotient of
indGKZσ/(T − λ)indGKZσ for some σ as above and some λ ∈ Fp. If λ 6= 0, then Barthel and Livné
classified these quotients completely. On the other hand, quotients of indGKZσ/T (indGKZσ) are
called supersingular and are still very poorly understood. In this paper we prove an irreducibility
criterion for certain quotients of indGKZσ/T (indGKZσ) when F/Qp is totally ramified.

Given a tamely ramified continuous irreducible Galois representation ρ : Gal(F/F )→ GL2(Fp),
for any finite extension F/Qp, Serre’s weight conjecture and its generalizations associate to ρ a
set D(ρ) of irreducible Fp-representations of GL2(k); these are called the modular weights of ρ.
These conjectures were formulated by Serre for F = Qp, by Buzzard, Diamond, and Jarvis [BDJ]
for F unramified over Qp, and by the author [Sch1] in general; the reader is referred to those
articles and to the beginning of the last section of this paper for more details. These conjectures
may be seen as describing the socle of the smooth representation π(ρ) of GL2(F ) associated to ρ
by the mod p local Langlands correspondence: generically, one expects socKπ(ρ) = ⊕σ∈D(ρ)σ. In
particular, this implies that a surjection indGKZσ � π(ρ) exists if and only if σ ∈ D(ρ).

Let F/Qp be totally ramified of degree e. Consider the Fp-representation σ = detw ⊗SymrF2

p

of GL2(Fp), where 0 < r < p − 2. Let fσ ∈ indGKZσ be a non-zero function supported on the
single coset KZ that satisfies fσ(id) ∈ σI(1). Here I(1) ⊂ K is the upper triangular pro-p-Iwahori
subgroup. Observe that fσ generates an irreducible K-submodule isomorphic to σ. The following
lemma is proved by computation.

Lemma 1.1. Let 0 < r < p− 2 and let σ and fσ be as above.
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(a) The image of
(

0 1
π 0

)
fσ in indGKZσ/T (indGKZσ) is invariant under the action of I(1)

and generates a K-submodule that is irreducible and isomorphic to detw+r ⊗Symp−r−1F2

p.

(b) The image of
∑
µ0,µ1∈Fp µ

r+1
1

(
π2 [µ0] + π[µ1]
0 1

)
fσ in indGKZσ/T (indGKZσ) is invariant

under the action of I(1) and generates a K-submodule that is irreducible and isomorphic
to detw+r+1⊗Symp−r−3F2

p. Here [µ] ∈ O is the canonical (Teichmüller) lift of µ ∈ Fp.

Proof. The first statement is Lemma 3.6. The second follows from the case n = 1 of Lemma 3.1
and Proposition 3.3. �

Now let 0 < r ≤ p − 2e − 1, and consider the set D = {σ0, . . . , σe−1} ∪ {σ′0, . . . , σ′e−1} of
Fp-representations of GL2(Fp), where

σi = det−i⊗Symr+2iF2

p, (1)

σ′i = detr+i⊗Symp−r−1−2iF2

p

This D arises as D(ρ) for a suitable Galois representation ρ, and it consists of 2e distinct

regular weights. Let β =
(

0 1
π 0

)
. We now define e explicit elements of indGKZσ0/T (indGKZσ0)

as follows. For 1 ≤ i ≤ e− 1 define

fi = β
∑

µ0,µ1∈Fp

µr+2i−1
1

(
π2 [µ0] + π[µ1]
0 1

)
fi−1

zi =
∑

µ0,µ1∈Fp

µp−r−2i
1

(
π2 [µ0] + π[µ1]
0 1

)
βfi.

Proposition 1.2. Let 0 < r ≤ p − 2e − 1, and let the set D of weights be defined as above.
Let τ : indGKZσ0/T (indGKZσ0) � W be a quotient. Suppose that W has no non-supersingular
subrepresentations, that socK(W ) ' ⊗σ∈Dσ, and that τ(fe−1) ∈ W is non-zero. Then for each
0 ≤ i ≤ e−1 the K-submodules of W generated by the elements τ(fi) (resp. τ(βfi) ) are irreducible
and isomorphic to σi (resp. σ′i).

Proof. This is Proposition 3.8 below. �

Admitting these two propositions, we can immediately establish the following irreducibility
criterion, which is the main result of this paper. See Remark 3.9 for a variation.

Theorem 1.3. Let 0 < r ≤ p − 2e − 1, and let the set D of weights be defined as above. Let
τ : indGKZσ0 � W be a quotient. Suppose that W has no non-supersingular subrepresentations,
that socK(W ) ' ⊗σ∈Dσ, and that τ(fe−1) ∈ W is non-zero. Suppose also that τ(zi) 6= 0 for all
1 ≤ i ≤ e− 1. Then W is an irreducible G-module.

Proof. Let U ⊆ W be an irreducible G-submodule. Since f0 generates indGKZσ0 as a G-module,
to conclude U = W it suffices to show that τ(f0) ∈ U . Note that if τ(βfi) ∈ U , then also
τ(fi) ∈ U . By our assumption on the K-socle of W and the previous proposition, it then follows
that any irreducible K-submodule of W must contain one of the elements τ(f0), . . . , τ(fe−1). Let
0 ≤ l ≤ e− 1 be the smallest number such that τ(fl) ∈ U , and suppose that l > 0.

By Frobenius duality there is a non-zero map ψl : indGKZσ
′
l → W such that ψl(fσ′l) = τ(βfl).

Since HomG(indGKZσ
′
l,W ) is a one-dimensional space, every non-zero element is an eigenvector

for the action of the commutative algebra EndG(indGKZσ
′
l). Therefore, ψl must factor through a

quotient indGKZσ
′
l/(T − λ)(indGKZσ

′
l) for some λ ∈ Fp. We must have λ = 0, since otherwise the

image of ψl in W would have a non-supersingular subrepresentation.

By assumption ψl

(∑
µ0,µ1∈Fp µ

p−r−2l
1

(
π2 [µ0] + π[µ1]
0 1

)
fσ′l

)
= τ(zl) is a non-zero element

of W . The second part of Lemma 1.1 then implies that τ(zl) generates an irreducible K-submodule
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of W that is isomorphic to σl−1. But since each irreducible submodule in socK(W ) appears with
multiplicity one, it follows that τ(zl) = cτ(fl−1) for a suitable non-zero scalar c ∈ Fp, contradicting
the minimality of l. It follows that l = 0, and hence U = W . �

We briefly discuss previous work to place this theorem in context. A first result towards
studying the supersingular representations of GL2(F ) was attained by Breuil, who showed in [Bre]
that if F = Qp then indGKZσ/T (indGKZσ) is irreducible for all σ. He proved this by explicitly
computing the I(1)-invariants of indGKZσ/T (indGKZσ) and observing that every non-zero I(1)-
invariant generates indGKZσ/T (indGKZσ) as a G-module. Since I(1) is a pro-p group, any irreducible
submodule of indGKZσ/T (indGKZσ) must have non-trivial I(1)-invariants, and the result follows. A
more conceptual version of this argument was given by Ollivier in [Oll], and other proofs were found
by Emerton ([Eme], Theorem 5.1) and Vignéras (unpublished). Moreover, indGKZσ/T (indGKZσ)
has the expected socle, and an explicit correspondence between irreducible Galois representations
and supersingular representations of GL2(Qp) was stated in [Bre].

The smooth representation theory of GL2(F ) for F 6= Qp is much more complicated, since
indGKZσ/T (indGKZσ) is of infinite length and there are many more supersingular representations
of GL2(F ) than there are Galois representations to pair them with. When F/Qp is unramified,
Breuil and Paskunas [BP] have applied Paskunas’ method of diagrams to prove the existence of
many supersingular representations with socle ⊕σ∈Dσ. These were again shown to be irreducible
by an argument on I(1)-invariants, although the argument relies on the combinatorics of D and
is considerably more complicated than in the case F = Qp. In fact, their method of construction
essentially works for arbitrary extensions F/Qp. Alternatively, Hu [Hu] associated a canonical
diagram to any supersingular representation (not necessarily irreducible) of GL2(F ) for arbitrary
F . In general it has been difficult to show that the representation of GL2(F ) associated to a
given diagram is irreducible, since the method of Breuil and Paskunas for proving irreducibility
fails in this case. We note that the Breuil-Paskunas construction applied to totally ramified F/Qp

yields representations with no non-supersingular subrepresentations and with K-socle
⊕

σ∈D σ.
However, neither these representations nor Hu’s canonical diagrams are understood explicitly
enough at present to verify the non-vanishing of τ(fe−1) and τ(zi) and establish irreducibility by
means of Theorem 1.3 in any example.

The second section of the paper is rather technical. It uses the methods of Breuil’s original
paper [Bre] to prove Corollary 2.11, which will provide information about the I(1)-invariants of
certain quotients of indGKZσ0/T (indGKZσ0). Lemma 1.1 and Proposition 1.2 are proved in the third
section. In fact, we obtain more precise information about Ve−1, which is used when constructing
irreducible supersingular representations of GL2(F ). This work will appear in a separate article.
We note that the constructions and results of this paper may be generalized to arbitrary extensions
F/Qp, although the presence of an unramified subextension complicates the computations.

The author is grateful to Christophe Breuil, Yongquan Hu, and Vytautas Paskunas for enlight-
ening conversations and for comments on an earlier version of this paper. He thanks the referee
for suggesting a number of improvements to the exposition.

1.1. Notations and background results. In this section we establish notation and recall some
results that we will need. Let p be an odd prime. Recall that F is totally ramified extension of
Qp with valuation ring O and π ∈ O is a uniformizer. Then O/(π) = Fp. Let e = [F : Qp] be
the ramification index. We assume that e > 1; note that in the case F = Qp the questions we
investigate have been resolved completely by Breuil. Let G = GL2(F ). Then K = GL2(O) ⊂ G
is a maximal compact subgroup. Let B ⊂ GL2(Fp) be the subgroup of upper triangular matrices.
Fix the Iwahori subgroup I = ω−1(B) ⊂ K, where ω : K → GL2(Fp) is the natural projection.
Let I(1) be the pro-p Sylow subgroup of I. Write Z for the center of G and K(1) for the kernel
of ω. We also define

α =
(

1 0
0 π

)
, w =

(
0 1
1 0

)
, β = αw =

(
0 1
π 0

)
.
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Recall that the distinct irreducible Fp-representations of GL2(Fp) are σr,w = detw ⊗ SymrF2

p,
where 0 ≤ w ≤ p − 2 and 0 ≤ r ≤ p − 1. A model for σr,w is given by the (r + 1)-dimensional
space Vσr,w of homogeneous polynomials P ∈ Fp[x, y] of degree r, where GL2(Fp) acts as follows.

If γ =
(
a b
c d

)
∈ GL2(Fp), then (γP )(x, y) = (ad− bc)wP (ax+ cy, bx+ dy).

Given λ ∈ Fp, let [λ] ∈ O be its canonical lift. For n ≥ 1 define the sets

In =
{

[λ0] + π[λ1] + · · ·+ πn−1[λn−1] : (λ0, . . . , λn−1) ∈ (Fp)n
}
⊂ O.

We also set I0 = {0}. Then for all n ≥ 0 and λ ∈ In we set

g0
n,λ =

(
πn λ
0 1

)
, g1

n,λ =
(

1 0
πλ πn+1

)
.

In particular, g0
0,0 is the identity matrix and g1

0,0 = α. Also g1
n,λ = βg0

n,λw for all n ≥ 0 and
λ ∈ In. It follows from the Cartan decomposition that these g0

n,λ and g1
n,λ comprise a set of coset

representatives for KZ in G:
G =

∐
i∈{0,1}
n≥0,λ∈In

gin,λKZ.

For n ≥ 0, we define S0
n = IZα−nKZ =

∐
λ∈In g

0
n,λKZ and S1

n = IZβα−nKZ =
∐
λ∈In g

1
n,λKZ

as in [Bre]. We also set Sn = S0
n

∐
S1
n and Bn = B0

n

∐
B1
n, where

B0
n =

∐
m≤n S

0
m and B1

n =
∐
m≤n S

1
m.

Given an irreducible Fp-representation σ of GL2(Fp), we can view it as a KZ-module where

K acts via ω and the matrix
(
π 0
0 π

)
acts trivially. Then a model for indGKZσ is the space of

functions f : G→ Vσ that are compactly supported modulo KZ and satisfy f(kg) = σ(k)f(g) for
all k ∈ KZ and g ∈ G. The group G acts by (hf)(g) = f(gh) for h ∈ G. Such a function is clearly
determined by its values on the (g0

n,λ)−1 and (g1
n,λ)−1. Note that indGKZσ ' Fp[G]⊗Fp[KZ] Vσ. If

g ∈ G and v ∈ Vσ, then the element g ⊗ v corresponds to the function defined by

(g ⊗ v)(h) =

{
σ(hg)v : h ∈ KZg−1

0 : h 6∈ KZg−1.

This is the element denoted [g, v] in [Bre]. Observe that any function f ∈ indGKZσ may be
written uniquely in the form

f =
∞∑
n=0

∑
λ∈In

(g0
n,λ ⊗ v0

n,λ + g1
n,λ ⊗ v1

n,λ)

for suitable v0
n,λ, v

1
n,λ ∈ Vσ. We say that the support of f is the set of gin,λ such that vin,λ 6= 0. We

write f ∈ Sn if the support of f is contained in Sn, and similarly for Bn, S0
n, etc.

Observe that any element z ∈ O has a unique expansion z =
∑∞
i=0 ziπ

i, where zi ∈ I1. Let [z]n
denote the truncation

∑n−1
i=0 ziπ

i ∈ In. We will sometimes write g0
n,z to mean g0

n,[z]n
.

Throughout this section and the following we assume that σ = σr,0, with 0 ≤ r ≤ p− 1. Then
the formulae of section 2.5 and Lemme 3.1.1 of [Bre] imply the following explicit expressions for
the action of the canonical endomorphism T ∈ End(indGKZσr).

Lemma 1.4. Let v =
∑r
i=0 cix

r−iyi ∈ Vσr . If n ≥ 1 and µ ∈ In, then the action of T is given by:

T (g0
n,µ ⊗ v) =

∑
λ∈I1

g0
n+1,µ+πnλ ⊗

(
r∑
i=0

ci(−λ)i
)
xr + g0

n−1,[µ]n−1
⊗ cr(µn−1x+ y)r,

T (g1
n,µ ⊗ v) =

∑
λ∈I1

g1
n+1,µ+πnλ ⊗

(
r∑
i=0

cr−i(−λ)i
)
yr + g1

n−1,[µ]n−1
⊗ c0(x+ µn−1y)r.
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In the remaining cases the action of T is given by:

T (Id⊗ v) =
∑
λ∈I1

g0
1,λ ⊗

(
r∑
i=0

ci(−λ)i
)
xr + α⊗ cryr,

T (α⊗ v) =
∑
λ∈I1

g1
1,λ ⊗

(
r∑
i=0

cr−i(−λ)i
)
yr + Id⊗ c0xr.

Corollary 1.5. The endomorphism T ∈ End(indGKZσr) is injective. In particular,

indGKZσr/T (indGKZσr) ' T e−1(indGKZσr)/T
e(indGKZσr).

Proof. Immediate from Lemma 1.4. �

Lemma 1.6. Suppose that v =
∑r
i=0 cix

r−iyi ∈ Vσ and n ≥ 0. Let µ = [µ0] + π[µ1] + · · · +
πn−1[µn−1] ∈ In. If k ≥ 1, then

T k(g0
n,µ ⊗ v) =

∑
(ν1,...,νk)∈(I1)k

(
g0
n+k,µ+πnν1+···πn+k−1νk

⊗

(
r∑
i=0

ci(−ν1)i
)
xr

)
+Bn+k−1,

T k(g1
n,µ ⊗ v) =

∑
(ν1,...,νk)∈(I1)k

(
g1
n+k,µ+πnν1+···πn+k−1νk

⊗

(
r∑
i=0

cr−i(−ν1)i
)
yr

)
+Bn+k−1.

In particular, if 1 ≤ k ≤ n and r > 0, then

T k(g0
n,µ ⊗ v) =

∑
(ν1,...,νk)∈(I1)k

(
g0
n+k,µ+πnν1+···πn+k−1νk

⊗

(
r∑
i=0

ci(−ν1)i
)
xr

)
+

k−1∑
m=1

∑
(ν1,...,νk−m)

∈(I1)k−m

(
g0
n+k−2m,[µ]n−m+

Pk−m
j=1 πn−m+jνj

⊗

(
cr

r∑
i=0

(
r

i

)
µr−in−m(−ν1)i

)
xr

)
+

g0
n−k,[µ]n−k

⊗ cr(µn−kx+ y)r,

T k(g1
n,µ ⊗ v) =

∑
(ν1,...,νk)∈(I1)k

(
g1
n+k,µ+πnν1+···πn+k−1νk

⊗

(
r∑
i=0

cr−i(−ν1)i
)
yr

)
+

k−1∑
m=1

∑
(ν1,...,νk−m)

∈(I1)k−m

(
g1
n+k−2m,[µ]n−m+

Pk−m
j=1 πn−m+jνj

⊗

(
c0

r∑
i=0

(
r

i

)
µr−in−m(−ν1)i

)
yr

)
+

g1
n−k,[µ]n−k

⊗ c0(x+ µn−ky)r.

Proof. This is a straightforward calculation using the formulae of Lemma 1.4. �

2. Structured submodules and I(1)-invariants

Lemma 2.1. Let n ≥ 1. Then for any set-theoretic map f : In → Fp there exists a unique
polynomial P ∈ Fp[X0, . . . , Xn−1] in which each variable appears with degree at most p − 1 and
such that f(µ) = P (µ0, . . . , µn−1) for all µ ∈ In.

Proof. When n = 1 this is Lemme 3.1.6 of [Bre]. Suppose the claim is known for n − 1. By the
claim for n = 1, for each µ ∈ In−1 there exist unique cµ0 , . . . , c

µ
p−1 ∈ Fp such that f(µ+πn−1[λ]) =∑p−1

j=0 c
µ
j λ

j . But by induction the map µ 7→ cµj is itself expressible as a unique polynomial in
µ0, . . . , µn−2 for each 0 ≤ j ≤ p− 1. �

Lemma 2.2. Let λ0, λ1, . . . , λe ∈ Fp. Then

[λ0] + π[λ1] + · · ·+ πe[λe] + 1 ≡

[λ0 + 1] + π[λ1] + · · ·+ πe−1[λe−1] + πe[λe +
λp

e

0 + 1− (λ0 + 1)p
e

πe
] mod πe+1.
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Proof. Using the isomorphism O ' lim←−O/(π)n, we see that [λ] can be viewed as the following
sequence on the right hand side: (λ+ (π), λp + (π2), λp

2
+ (π3), . . . ). The claim then follows from

a simple computation. �

Remark 2.3. An immediate consequence of the lemma is that if n ≤ e, then
n−1∑
i=0

[λi]πi +
n−1∑
i=0

[µi]πi ≡
n−1∑
i=0

[λi + µi]πi mod πn.

The computations in the sequel rely on this observation.

Remark 2.4. Observe that the binomial coefficient
(
pe

j

)
is divisible by p but not by p2 precisely

when j = mpe−1 for m = 1, 2, . . . , p− 1. Hence,

λp
e

0 + 1− (λ0 + 1)p
e

πe
= − 1

πe

p−1∑
m=1

(
pe

mpe−1

)
λmp

e−1

0 = − 1
πe

p−1∑
m=1

(
pe

mpe−1

)
λm0 .

In particular, the expression above is a polynomial of degree p− 1 in λ0.

Lemma 2.5. Fix elements a, b, c, d ∈ O and write a =
∑∞
i=0[ai]πi, and similarly for b, c, d.

Suppose that n ≤ e and ε ∈ In. Let µε = (1 + aπ − cεπ)−1(−b+ ε+ dεπ). Then,

µε ≡
n−1∑
u=0

[εu + Pu(ε0, . . . , εu−1)]πu mod πn.

Here if l ≥ 1 and x ∈ N, we define J(l, x) to be the set of ordered l-tuples (j1, . . . , jl) ∈ Nl such
that j1 + · · ·+ jl = x. Then the polynomial Pu(ε0, . . . , εu−1) is given by

Pu(ε0, . . . , εu−1) = −bu +
u−1∑
j=0

εjdu−j−1 +

u−1∑
m=1

−bu−m + εu−m +
u−m−1∑
j=0

εjdu−m−j−1

 u∑
l=1

∑
J(l,m−l)

(−1)l
l∏

k=1

(ajk −
jk∑
j=0

εjcjk−j)

+

(−b0 + ε0)
u∑
l=1

∑
J(l,u−l)

(−1)l
l∏

k=1

(ajk −
jk∑
j=0

εjcjk−j).

Proof. Since n ≤ e we see from Lemma 2.2 that π-adic decompositions behave well under addition
and multiplication modulo πn. For instance,

ε+ b ≡
∑n−1
i=0 [εi + bi]πi mod πn, εa ≡

∑n−1
i=0

[∑i
j=0 εjai−j

]
πi mod πn.

The claim is then obtained by a straightforward calculation. �

For later reference we record here the first few polynomials Pu:

P0 = −b0
P1(ε0) = c0ε

2
0 + (d0 − a0 − b0c0)ε0 + (−b1 + a0b0)

P2(ε0, ε1) = −c20ε30 + (b0c20 − 2a0c0 + c0d0 + c1)ε20 + 2c0ε0ε1 + (d0 − a0 − b0c0)ε1 +
(d1 − b1c0 − b0c1 − a0d0 + 2a0b0c0 + a2

0 − a1)ε0 + (−b2 + a0b1 + a1b0 − a2
0b0).

A similar but easier computation produces the following result:

Lemma 2.6. Suppose that n ≤ e and ν ∈ In. Let λ ∈ I1 be such that λν0 6= 1 and set ν̃ =
[ν(1− λν)−1]e. Denote u = 1− λν0. Then

ν̃ = u−1ν0 +
e−1∑
i=1

u−2(νi +Ri(ν0, . . . , νi−1))πi,
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where

Ri(ν0, . . . , νi−1) =
i−1∑
l=1

νi−l

 l∑
j=1

u−jλj
∑

J(j,l−j)

j∏
k=1

νjk+1

 .

Proof. This is a straightforward calculation. At its end the answer is simplified using the identity
1 + λν0u

−1 = u−1. �

Definition 2.7. Let M ≤ e be a positive integer and let Q = (q0, . . . , qM−1) be a sequence of
integers such that 0 ≤ qi < p− 1 for each 0 ≤ i ≤M − 1.

(1) A G-invariant submodule W ⊂ indGKZσ is called Q-structured if every element f ∈ W
such that f 6∈ B0 can be written in the form f = f0

n + f1
n + f ′, where f ′ ∈ Bn−1, f0

n ∈ S0
n,

f1
n ∈ S1

n, and f0
n and f1

n satisfy the following condition:
Let N = min{n,M}. For each 0 ≤ i ≤ N − 1 and each µ ∈ In−1−i there exist

polynomials P 0
µ,i(X), P 1

µ,i(X) ∈ Fp[X] of degree at most qi such that

f0
n =

∑
µ∈In−1

∑
λ∈I1

g0
n,µ+πn−1λ ⊗ P

0
µ,0(λ)xr +

N−1∑
i=1

∑
µ∈In−2−i

∑
λ∈I1

∑
ν∈Ii+1

g0
µ+πn−2−iλ+πn−1−iν ⊗ P

0
µ,i(λ)

i−1∏
j=1

νj

 νq0+1
i xr,

f1
n =

∑
µ∈In−1

∑
λ∈I1

g1
n,µ+πn−1λ ⊗ P

1
µ,0(λ)yr +

N−1∑
i=1

∑
µ∈In−2−i

∑
λ∈I1

∑
ν∈Ii+1

g1
µ+πn−2−iλ+πn−1−iν ⊗ P

1
µ,i(λ)

i−1∏
j=1

νj

 νq0+1
i yr.

Moreover, we require that for every collection of polynomials P 0
µ,i(X), P 1

µ,i(X), for 0 ≤
i ≤ N − 1 and every µ, there exists an element f ∈W of the above form.

(2) A G-invariant submodule U ⊂ indGKZσ is called extended Q-structured if every element
f ∈W such that f 6∈ Be−1 can be written in the form f = f0

n + f1
n + f ′, where f ′ ∈ Bn−1,

and f0
n and f1

n satisfy the following condition:
Let N = min{M,n + e − 1}. For each 0 ≤ i ≤ N − 1 and each µ ∈ In−i−e there exist

polynomials P 0
µ,i(X), P 1

µ,i(X) ∈ Fp[X] of degree at most qi such that

f0
n =

∑
µ∈In−e

∑
λ∈I1

∑
ζ∈Ie−1

g0
n,µ+πn−eλ+πn−e+1ζ ⊗ P

0
µ,0(λ)xr +

N−1∑
i=1

∑
µ∈In−e−1−i

λ∈I1

∑
ν∈Ii+1
ζ∈Ie−1

g0
µ+πn−e−1−iλ+πn−e−iν+πn−e+1ζ ⊗ P

0
µ,i(λ)

i−1∏
j=1

νj

 νq0+1
i xr,

f1
n =

∑
µ∈In−1

∑
λ∈I1

∑
ζ∈Ie−1

g1
n,µ+πn−eλ+πn−e+1ζ ⊗ P

1
µ,0(λ)yr +

N−1∑
i=1

∑
µ∈In−2−i
λ∈I1

∑
ν∈Ii+1
ζ∈Ie−1

g1
µ+πn−e−1−iλ+πn−e−iν+πn−e+1ζ ⊗ P

1
µ,i(λ)

i−1∏
j=1

νj

 νq0+1
i yr.

Again we require that for every collection of polynomials P 0
µ,i(X), P 1

µ,i(X), for all 0 ≤
i ≤ N − 1 and µ, there exists an element f ∈ U of the above form.

Remark 2.8. From the formulae of Lemma 1.4 one sees that T (indGKZσ) is a Q-structured sub-
module for M = 1 and q0 = r. Similarly, Lemma 1.6 shows that if W ⊂ indGKZσ is a Q-structured
submodule, then T e−1(W ) is extended Q-structured.
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Suppose that σ = detw ⊗ SymrF2
p and Q = (q0, . . . , qM−1). We will now define some special

elements of indGKZσ. Put X̃0
0 = Id⊗ xr and X̃1

0 = α⊗ yr, and for 1 ≤ n ≤ e− 1 we define

X̃0
n =

∑
µ∈In+1

g0
n+1,µ ⊗ µ1µ2 · · ·µn−1µ

r+1
n xr,

X̃1
n =

∑
µ∈In+1

g1
n+1,µ ⊗ µ1µ2 · · ·µn−1µ

r+1
n yr.

Observe that X̃1
n = βX̃0

n. If 1 ≤ l ≤M − 1, then for arbitrary n we set

X0,+
n,l =

∑
µ∈In

g0
n,µ ⊗ µ

ql+1
n−l−2

(
l−1∏
i=1

µn−l−1+i

)
µq0+1
n−1 x

r,

X1,+
n,l =

∑
µ∈In

g1
n,µ ⊗ µ

ql+1
n−l−2

(
l−1∏
i=1

µn−l−1+i

)
µq0+1
n−1 y

r.

We also define

X0,−
n,0 =

∑
µ∈In

g0
n,µ ⊗ µ

q0+2
n−1 x

r,

X1,−
n,0 =

∑
µ∈In

g1
n,µ ⊗ µ

q0+2
n−1 y

r,

X0,−
n,l =

∑
µ∈In

g0
n,µ ⊗ µ2

n−l−1

l−1∏
j=1

µn−l−1+j

µq0+1
n−1 x

r,

X1,−
n,l =

∑
µ∈In

g1
n,µ ⊗ µ2

n−l−1

l−1∏
j=1

µn−l−1+j

µq0+1
n−1 y

r,

X0,−
n,M−1 =

∑
µ∈In

g0
n,µ ⊗ µn−M

M−2∏
j=1

µn−M+j

µq0+1
n−1 x

r,

X1,−
n,M−1 =

∑
µ∈In

g1
n,µ ⊗ µn−M

M−2∏
j=1

µn−M+j

µq0+1
n−1 y

r,

where in the middle two lines we have 1 ≤ l ≤ M − 2. Define X̃0
n = X̃1

n = 0 if n ≥ e. Note also
that X1,s

n,j = βX0,s
n,j for all 0 ≤ j ≤M−1 and all s ∈ {+,−}. If n ≥ e, then we define Y j,sn,l to be the

part of T e−1(Xj,s
n−e+1,l) supported on Sn, for j ∈ {0, 1}, all s ∈ {+,−}, and all 0 ≤ l ≤M − 1 for

which this makes sense. Similarly we obtain Ỹ jn from X̃j
n. Explicit expressions for these elements

may be obtained from Lemma 1.6. For instance, if 1 ≤ l ≤M − 1, then

Y 0,+
n,l =

∑
µ∈In

g0
n,µ ⊗ µ

ql+1
n−e−l−1

(
l−1∏
i=1

µn−e−l+i

)
µq0+1
n−e x

r.

We state the following simple observation for later use; it implies that all the elements just
defined are eigenvectors under the action of the set D ⊂ K of diagonal matrices.

Lemma 2.9. Let a, d ∈ Fp and let ã, d̃ ∈ O be any lifts of a, d. Let δ = diag(ã, d̃) ∈ D. If P (µ) is a
homogeneous polynomial of degree s in the variables µ0, . . . , µn−1 and X0 =

∑
µ∈In g

0
n,µ⊗P (µ)xr ∈

indGKZσ (respectively, X1 =
∑
µ∈In g

1
n,µ ⊗ P (µ)yr), then

δX0 = (a−1d)sarX0,

δX1 = (ad−1)sdrX1.
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Proposition 2.10. Suppose that U ⊂ indGKZσ is an extended Q-structured G-submodule and that
q0 ≤ p− 3. Let n ≥ e and let M ′ = min{M,n− e}.

Let Y be the Fp-vector subspace of indGKZσ spanned by

{Ỹ 0
n , Ỹ

1
n } ∪ {Y

0,+
n,i , Y

1,+
n,i : 1 ≤ i ≤M ′ − 1} ∪ {Y 0,−

n,i , Y
1,−
n,i : 0 ≤ i ≤M ′ − 1}.

Suppose that f ∈ Sn is such that γfn−fn ∈ U+Bn−1 for all γ ∈ I(1). Then fn ∈ Y+U+Bn−1.

Proof. We largely follow the method of [Bre], Prop. 3.2.1, which considers the case of e = 1 and
U = T (indGKZσ).

We write f0
n =

∑
λ∈In g

0
n,λ ⊗ vλ. For λ = [λ0] + π[λ1] + · · · + πn−1[λn−1], define λ̃ = [λ0] +

· · · + πn−e−1[λn−e−1] + πn−e[λn−e + 1] + πn−e+1[λn−e+1] + · · · + πn−1[λn−1]. A straightforward
computation gives that(

1 πn

0 1

)
(g0
n,λ ⊗ vλ)− (g0

n,λ ⊗ vλ) = g0
n,λ ⊗

((
1 1
0 1

)
vλ − vλ

)
,(

1 πn−e

0 1

)
(g0
n,λ ⊗ vλ)− (g0

n,λ̃
⊗ vλ̃) = g0

n,λ̃
⊗

((
1

λp
e

n−e+1−(λn−e+1)p
e

πe

0 1

)
vλ − vλ̃

)
.

The hypothesis on fn then implies the following equalities for all λ ∈ In:(
1 1
0 1

)
vλ − vλ ∈ Fpxr, (2)(

1
λp
e

n−e+1−(λn−e+1)p
e

πe

0 1

)
vλ − vλ̃ ∈ Fpxr. (3)

The equality (2) is easily seen to imply vλ ∈ Fpxr + Fpxr−1y, so we write vλ = cλx
r + dλx

r−1y.
Then (3) implies that(

cλ − cλ̃ + dλ
λp

e

n−e + 1− (λn−e + 1)p
e

πe

)
xr + (dλ − dλ̃)xr−1y ∈ Fpxr. (4)

Given λ ∈ In, define 〈λ〉 = λ − [λn−e]πn−e ∈ In. In other words, 〈λ〉 is the same as λ, but
with λn−e replaced by 0. Then the above formula implies that dλ is independent of λn−e, so we
write dλ = d〈λ〉. Similarly, by Lemma 2.1 we can view cλ = c〈λ〉(λn−e) as a polynomial in λn−e of
degree at most p− 1. From the definition of an extended Q-structured module, we see that

c〈λ〉(λn−e)− c〈λ〉(λn−e + 1) + d〈λ〉 ·
λp

e

n−e + 1− (λn−e + 1)p
e

πe

must be a polynomial of degree at most q0 + 1 in λn−e. Since c〈λ〉(λn−e) has degree at most p− 1
in λn−e, the difference c〈λ〉(λn−e)− c〈λ〉(λn−e+ 1) has degree at most p−2. But q0 + 1 ≤ p−2, so

the remaining term d〈λ〉 ·
λp
e

n−e+1−(λn−e+1)p
e

πe must also have degree at most p− 2, and this forces
d〈λ〉 = 0 by the observation of Remark 2.4. Therefore c〈λ〉(λn−e) − c〈λ〉(λn−e + 1) has degree at
most q0 + 1 in the variable λn−e, and consequently c〈λ〉(λn−e) has degree at most q0 + 2.

Using the deduction above we may rewrite

f0
n =

∑
µ∈In−e

∑
λ∈I1

∑
ν∈Ie−1

g0
n,µ+πn−eλ+πn−e+1ν ⊗ cµ,ν(λ)xr, (5)

where cµ,ν(X) ∈ Fp[X] is a polynomial of degree at most q0 + 2. From the definition of an
extended Q-structured module it is easy to see (cf. [Bre], Lemme 3.1.5) that we may modify f by
an element of U + B0

n−1 if necessary and assume without loss of generality that for all µ ∈ In−e
we have cµ,0(X) = aµ,0X

q0+1 + bµ,0X
q0+2, where aµ,0, bµ,0 ∈ Fp are constants.

Now fix µ ∈ In−e and ν ∈ Ie−1. Suppose that µ′ ∈ In−e, λ′ ∈ I1, and ν′ ∈ Ie−1 are such that(
1 µ+ πn−e+1ν
0 1

)(
πn µ′ + πn−eλ′ + πn−e+1ν′

0 1

)
∈
(
πn µ+ πn−eλ+ πn−e+1ν′′

0 1

)
KZ
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for some λ ∈ I1 and ν′′ ∈ Ie−1. It is easy to see that, equivalently, (µ+µ′) +πn−eλ′+πn−e+1(ν+
ν′) ≡ µ+πn−eλ+πn−e+1ν′′ mod πn. Considering this congruence modulo π, we find that µ′0 = 0,
and it follows inductively that µ′ = 0. Similarly, λ = λ′, and ν′ = ν′′ − ν by Remark 2.3. We
conclude that the terms of

hµ =
(

1 µ+ πn−e+1ν
0 1

)
f0
n − f0

n

with support in
∐
λ,ν′′ KZ(g0

n,µ+πn−eλ+πn−e+1ν′′)
−1 are precisely:∑

λ∈I1

∑
ν′′∈Ie−1

g0
n,µ+πn−eλ+πn−e+1ν′′ ⊗ (cµ,ν′′−ν(λ)− cµ,ν(λ))xr. (6)

By assumption, hµ ∈ U + Bn−1 and hence cµ,ν is independent of ν. Thus we may write
cµ,ν(X) = cµ(X) = aµX

q0+1 + bµX
q0+2. From (6) we see that (a0−aµ)λq0+1 + (b0− bµ)λq0+2 is a

polynomial of degree at most q0 + 1 in λ, and hence bµ = b0 for all µ ∈ In−e. Thus we may write

f0
n =

∑
µ∈In−e

∑
λ∈I1
ν∈Ie−1

g0
n,µ+πn−eλ+πn−e+1ν ⊗ (a(µ0, . . . , µn−e−1)λq0+1 + bλq0+2)xr. (7)

Here a is a polynomial in the indicated variables and b is a constant. For all 0 ≤ j ≤ n − e
denote

γ(j) =
(

1 πn−e−j

0 1

)
and note that the action of γ(j) preserves S0

m for each m. Using Lemma 2.2 and (7), we observe
that if 1 ≤ j ≤ e− 1, then:

γ(j)f0
n − f0

n = (8)∑
µ∈In−e

∑
λ∈I1
ν∈Ie−1

g0
n,(µ,λ,ν) ⊗ (a(µ0, . . . , µn−e−1)− a(µ0, . . . , µn−e−j − 1, . . . , µn−e−1))λq0+1xr.

Here we have written g0
n,(µ,λ,ν) for g0

n,µ+πn−eλ+πn−e+1ν . If j ≥ e, then we get a similar formula
for γ(j)f0

n− f0
n, but with a(µ0, . . . , µn−e−j − 1, . . . , µn−e−1) replaced by an expression of the form

a(µ0, . . . , µn−e−j−1, µn−e−j − 1, µn−e−j+1 +Rn−e−j+1, . . . , µn−e−1 +Rn−e−1), where each Ri is a
polynomial in the variables µn−e−j , . . . , µi−e.

By assumption, γ(j)f0
n − f0

n ∈ U + Bn−1. If M ′ > 2 then it is evident from the case j = 1 of
the formula above that a has degree at most 2 in the variable µn−e−1. Therefore we may write
a = a(0)+a(1)µn−e−1+a(2)µ2

n−e−1, where each a(i) is a polynomial in the variables µ0, . . . , µn−e−2.
We claim that the polynomial a(2) is constant. Indeed, suppose it is not and consider the

minimal j ≥ 2 such that µn−e−j appears in a(2). Then we see from (8) and the remark following
it that γ(j)f0

n − f0
n has a term of the form

∑
(µ,λ,ν) g

0
n,(µ,λ,ν) ⊗R(µ0, . . . , µn−e−2)µ2

n−e−1λ
q0+1xr,

contradicting γ(j)f0
n − f0

n ∈ U +Bn−1.
It is immediate from the case j = 1 of (8) that a(0) and a(1) have degrees at most q1 + 1 and 2,

respectively, in the variable µn−e−2. Modifying a(0) by an element of U + Bn−1, we may assume
that it has the form a(0) = â(0)(µ0, . . . , µn−e−3)µq1+1

n−e−2. But then we can show that â(0) is a scalar
by the same argument that was used for a(2).

Therefore, after modifying f0
n by an element of Fp · Y 0,−

n,0 + Fp · Y 0,−
n,1 + Fp · Y 0,+

n,1 + U + Bn−1,
we may assume that

f0
n =

∑
µ∈In−e

∑
λ∈I1
ν∈Ie−1

g0
n,(µ,λ,ν) ⊗ a

(1)(µ0, . . . , µn−e−2)µn−e−1λ
q0+1xr,

where a(1) has degree at most 2 in the variable µn−e−1. We may now go back to the expression
(7) and repeat the entire argument with a(1) in place of a.
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Iterating the argument, we obtain inductively that, after adding to f0
n an element of Fp ·Y 0,−

n,0 +∑M−2
i=1 (Fp · Y 0,−

n,i + Fp · Y 0,+
n,i ) + U +Bn−1, we get

f0
n =

∑
µ∈In−e

∑
λ∈I1
ν∈Ie−1

g0
n,(µ,λ,ν) ⊗ a(µ0, . . . , µn−e−M+1)

M−2∏
j=1

µn−e−j

λq0+1xr,

and this time a has degree at most 1 in the variable µn−e−M+1. Thus we may write a = a(0) +
a(1)µn−e−M+1, where the a(i) are polynomials in the variables µ0, . . . , µn−e−M . We can show
as before that, modulo U + Bn−1, we may take a(0) = cµ

qM−1+1
n−e−M for some scalar c ∈ Fp. On

the other hand, a(1) must have degree at most 1 in µn−e−M . Using the same method as before,
we show that a(1) = d1µn−e−M + d0 for scalars d0, d1 ∈ Fp. Moreover, since qM−1 ≥ 0 we
may modify f0

n yet again by an element of U + Bn−1 and take d0 = 0. This proves that f0 ∈
FpỸ 0

n +
∑
i FpY

0,+
n,i +

∑
i FpY

0,−
n,i + U +Bn−1.

Observe that β−1f also satisfies the hypotheses of the lemma, and hence there exist scalars
c, c1,+i , c1,−i ∈ Fp such that β−1f1 = (β−1f)0 ≡ cỸ 0

n + c1,−0 Y 0,−
n,0 +

∑M ′

i=1(c1,+i Y 0,+
n,i + c1,−i Y 0,−

n,i )

modulo U + Bn−1. But this means that f1 ≡ cỸ 1
n + c1,−0 Y 1,−

n,0 +
∑M ′

i=1(c1,+i Y 1,+
n,i + c1,−i Y 1,−

n,i )
modulo U +Bn−1. �

Corollary 2.11. Suppose that W ⊂ indGKZσ is a Q-structured G-submodule and that q0 ≤ p− 3.
Let n ≥ 1 and let M ′ = min{M,n− 1}. Let X be the Fp-vector subspace of indGKZσ spanned by

{X̃0
n, X̃

1
n} ∪ {X

0,+
n,i , X

1,+
n,i : 1 ≤ i ≤M ′ − 1} ∪ {X0,−

n,i , X
1,−
n,i : 0 ≤ i ≤M ′ − 1}.

Suppose that f ∈ Sn is such that γfn−fn ∈W+Bn−1 for all γ ∈ I(1). Then fn ∈ X+U+Bn−1.

Proof. In view of Remark 2.8 and the injectivity of T (Corollary 1.5), the claim is immediate from
Proposition 2.10. �

3. Construction of a quotient

Let Fnr be the maximal unramified extension of F , and let L = Fnr(π1/(p2−1)). Choose a field
embedding Fp2 ↪→ Fp. It induces a character ω2 : IF � Gal(L/Fnr) ' F∗p2 → F∗p of the inertia

subgroup IF ⊂ Gal(F/F ). Then ωe(p+1)
2 is the restriction to IF of the mod p cyclotomic character.

Suppose that 0 < r ≤ p − 2e − 1. Consider a continuous irreducible tamely ramified Galois
representation ρ : Gal(F/F )→ GL2(Fp) whose restriction to IF has the form

ρ|IF ∼
(
ωr+e2 0

0 ω
p(r+e)
2

)
.

Recall that a Serre weight (in this context) is an irreducible Fp-representation of the finite group
GL2(Fp). In our case the author [Sch1], [Sch2] has conjectured that the set of modular weights of
ρ is the set D defined in (1). See [Sch1], Def. 1.2 for the definition of the modular weights of a
Galois representation. In almost all of the cases under consideration here (F/Qp totally ramified,
with restrictions on r) the conjecture has been proved by Gee and Savitt [GS].

We will inductively construct a sequence of quotients of V0 = indGKZσ0/T (indGKZσ0) as follows.
Let 1 ≤ i ≤ e − 1 and suppose that Vi−1 has been constructed. We claim that the image of X̃0

i

in Vi−1 is invariant under the action of I(1) and, furthermore, that the KZ-submodule of Vi−1

generated by X̃0
i is isomorphic to σ′i. This gives us a map ψ ∈ HomKZ(σ′i, (Vi−1)|KZ) determined

by ψ(v) = X̃0
i , where v ∈ V I(1)σ′i

is a highest weight vector. By Frobenius reciprocity we obtain a

map Ψi ∈ HomG(indGKZσ
′
i, Vi−1), and finally we define

Vi = Vi−1/Ψi(T (indGKZσ
′
i)).

Note that v is determined up to scalar, and hence Vi is independent of the choice of v. In this
section we show that the idea outlined here actually works. If Vi has been constructed, let Ni
denote the kernel of the natural projection indGKZσ0 → Vi.
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Lemma 3.1. Suppose that 1 ≤ n ≤ e − 1 and the quotient Vn−1 has been constructed. Then
X̃0
n ∈ (Vn−1)I(1) and X̃1

n ∈ (Vn−1)I(1).

Proof. Since X̃1
n = βX̃0

n and β normalizes I(1), it suffices to show that X̃0
n is an I(1)-invariant.

Let γ ∈ I(1), and write

γ =
(

1 + aπ b
cπ 1 + dπ

)
,

where a, b, c, d ∈ O. Expand a =
∑∞
i=0[ai]πi, where [ai] ∈ I1, and do similarly for b, c, d. For any

µ ∈ In+1, define
εµ = (1 + dπ + µcπ)−1(b+ µ+ µaπ)

and expand εµ =
∑∞
i=0[εi]πi. Observe that

γg0
n+1,µ =

(
πn+1 εµ

0 1

)(
1 + π(a− cεµ) 0

0 1 + π(d+ µc)

)( 1 0
πn+2c·

(1+π(d+µc))−1 1

)
.

On the other hand, (
πn+1 εµ

0 1

)
=
(
πn+1 [εµ]n+1

0 1

)(
1 z
0 1

)
,

where z ∈ O. We conclude that γg0
n+1,µ = g0

n+1,εµu for some u ∈ I(1).
Recall the definition of µε from Lemma 2.5 and observe that µ(εµ) = µ. Therefore, by the same

lemma,

γX̃0
n − X̃0

n =
∑

µ∈In+1

(g0
n+1,εµ ⊗ µ1 · · ·µn−1µ

r+1
n xr − g0

n+1,µ ⊗ µ1 · · ·µn−1µ
r+1
n xr) =

∑
ε∈In+1

g0
n+1,ε ⊗

(
(ε1 + P1) · · · (εn−1 + Pn−1)(εn + Pn)r+1 − ε1 · · · εn−1ε

r+1
n

)
xr.

Observe that we may write γX̃0
n − X̃0

n =
∑n
i=1 Cn, where

Cn =
∑

ε∈In+1

g0
n+1,ε ⊗ (ε1 + P1) · · · (εn−1 + Pn−1)((εn + Pn)r+1 − εr+1

n )xr

and if 1 ≤ i ≤ n− 1 then

Ci =
∑

ε∈In+1

g0
n+1,ε ⊗

i−1∏
j=1

(εj + Pj)

Pi(ε0, . . . , εi−1)

 n−1∏
j=i+1

εj

 εr+1
n xr.

For each 1 ≤ i ≤ n we claim that Ci ∈ Nn−i ⊂ Nn−1. This would imply that the image in Vn−1

of γX̃0
n − X̃0

n vanishes for all γ ∈ I(1), hence that X̃0
n is indeed an I(1)-invariant in Vn−1.

Let cj(ε0, . . . , εn−1), for 0 ≤ j ≤ r, be the polynomials such that
∑
j=0 cj(−εn)j = (ε1 +

P1) · · · (εn−1 + Pn−1)((εn + Pn)r+1 − εr+1
n ). In particular, cr(ε0, . . . , εn−1) = (−1)r(r + 1)(ε1 +

P1) · · · (εn−1 +Pn−1)Pn. For each ε̃ =
∑n−1
i=0 εiπ

i ∈ In, define vε̃ =
∑r
j=0 cj(ε0, . . . , εn−1)xr−jyj ∈

Vσ0 . Then it follows from Lemma 1.4 that

Cn = T

(∑
ε̃∈In

g0
n,ε̃ ⊗ vε̃

)
−

∑
ε̃∈In−1

⊗

 ∑
εn−1∈I1

cr(ε0, . . . , εn−1)(εn−1x+ y)r

 . (9)

It is easy to see from Lemma 2.5 that P1(ε0) is a quadratic polynomial in ε0, whereas if n > 1
then εn−1 appears with degree at most one in any term of Pn. Therefore, εn−1 appears with
degree at most r + 3 in any term of cr(εn−1x + y)r. Since r + 3 < p − 1 by assumption, we see
that the second term on the right-hand side of (9) vanishes and thus Cn ∈ T (indGKZσ0) = N0.

One proves in a similar way that Ci ∈ Ψn−i(T (indGKZσ
′
n−i)) if 1 ≤ i ≤ n − 1. For more detail

the reader is directed to the analogous argument for Ai in the proof of Lemma 3.2. �
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Lemma 3.2. For any λ ∈ I1, the following identities hold in Vn−1:

hλn =
(

1 0
λ 1

)
X̃0
n =

∑
ν∈In+1

g0
n+1,ν ⊗ (1− λν0)p−r−2n−1ν1 · · · νn−1ν

r+1
n xr +

∑
τ∈In

g1
n,τ ⊗ (−1)r+nλp−r−2n−1τ0 · · · τn−2τ

r+1
n−1y

r,

h∞n =
(

0 1
1 0

)
X̃0
n =

∑
ν∈In+1

g0
n+1,ν ⊗ (−1)nνp−r−2n−1

0 ν1 · · · νn−1ν
r+1
n xr +

∑
τ∈In

g1
n,τ ⊗ τ0 · · · τn−2τ

r+1
n−1y

r.

Proof. For λ = 0 the claim is obvious, so assume λ 6= 0. First we observe that(
1 0
λ 1

)
g0
n+1,µ = g0

n+1,µ(λµ+1)−1

(
1 z1
0 1

)(
(λµ+ 1)−1 0

0 λµ+ 1

)(
1 0

πn+1z2 1

)
if λµ+1 ∈ O∗, where z1, z2 ∈ O. On the other hand, if λµ+1 6∈ O∗ (in other words, if µ0 = −λ−1),
then(

1 0
λ 1

)
g0
n+1,µ = g1

n,π−1µ−1(1+λµ)

(
1 0
z 1

)(
µ 0
0 −µ−1

)(
0 1
1 0

)(
1 0

πn+1µ−1 1

)
.

Given our restrictions on r, it follows immediately that

hλn =
∑

µ∈In+1

g0
n+1,µ(λµ+1)−1 ⊗ µ1 · · ·µn−1µ

r+1
n (λµ0 + 1)p−1−rxr+

∑
µ∈In+1
λµ0+1=0

g1
n,π−1µ−1(λµ+1) ⊗ (−1)rµ1 · · ·µn−1µ

r+1
n µp−1−r

0 yr. (10)

For ν ∈ In+1, set ν̃ = ν(1− λν)−1 if this is defined. For τ ∈ In we set τ̃ = −(λ− πτ)−1, which
exists for all τ since we have assumed λ 6= 0. Then the expression above may be rewritten as

hλn =
∑

ν∈In+1

g0
n+1,ν ⊗ (1− λν0)rν̃1 · · · ν̃n−1ν̃

r+1
n xr +

∑
τ∈In

g1
n,τ ⊗ λr τ̃1 · · · τ̃n−1τ̃

r+1
n yr.

Let ĥλn denote the claimed expression for hλn in the statement of the lemma. We need to show
that hλn − ĥλn lies in Nn−1. By Lemma 2.6 we see that the first summand of hλn (consisting of the
terms supported on S0

n+1) can be expressed as∑
ν∈In+1

g0
n+1,ν ⊗ (1− λν0)p−1−2n−r(ν1 +R1) · · · (νn−1 +Rn−1)(νn +Rn)r+1xr.

As in the proof of the preceding lemma, the difference between this expression and the corre-
sponding summand of ĥλn can be written as a sum

∑n
i=1Ai, where

An =
∑

ν∈In+1

g0
n+1,ν ⊗ (1− λν0)p−r−2n−1(ν1 +R1) · · · (νn−1 +Rn−1)((νn +Rn)r+1 − νr+1

n )xr

and for 1 ≤ i ≤ n− 1 we have

Ai =
∑

ν∈In+1

g0
n+1,ν ⊗ (1− λν0)p−r−2n−1

i−1∏
j=1

(νj +Rj)

Ri(ν0, . . . , νi−1)

 n−1∏
j=i+1

νj

 νr+1
n xr.

We claim that Ai ∈ Nn−i ⊂ Nn−1 for all 1 ≤ i ≤ n. Indeed, consider first the case i = n. Define
polynomials cj(ν0, . . . , νn−1) such that

∑r
j=0 cj(−νn)j = (1 − λν0)p−r−2n−1(ν1 + R1) · · · (νn−1 +
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Rn−1)((νn + Rn)r+1 − νr+1
n ). For each ν ∈ In define vν =

∑r
j=0 cjx

r−jyj ∈ Vσ0 . Then we see
from the formulae of Lemma 1.4 that

An = T

(∑
ν∈In

g0
n,ν ⊗ vν

)
−
∑
ν∈In

g0
n−1,[ν]n−1

⊗B(ν0, . . . , νn−1)(νn−1x+ y)r =

T

(∑
ν∈In

g0
n,ν ⊗ vν

)
−

∑
ν∈In−1

g0
n−1,ν ⊗

 ∑
νn−1∈I1

B(ν0, . . . , νn−1)(νn−1x+ y)r

 ,

where

B(ν0, . . . , νn−1) = (−1)r(r + 1)(1− λν0)p−r−2n−1(ν1 +R1) · · · (νn−1 +Rn−1)Rn.

Observe that if n > 1, then νn−1 appears with degree at most two in any term ofRn(ν0, . . . , νn−1).
Thus νn−1 appears with degree at most r + 3 in any term of B(ν0, . . . , νn−1) · (νn−1x+ y)r. But
r+3 < p−1 by assumption, so

∑
νn−1∈I1 B(ν0, . . . , νn−1)(νn−1x+y)r = 0 and An ∈ T (indGKZσ0) =

N0. The case i = n = 1 is handled separately but analogously.
Now suppose that 1 ≤ i < n. Observe that νi does not appear in Ai, and that the projection

of Ai to Vn−i−1 is a scalar multiple of the image under Ψn−i of the element∑
ν∈Ii

g0
i,ν ⊗ (1− λ0)p−r−2n−1

i−1∏
j=1

(νj +Rj)

Ri(ν0, . . . , νi−1)x̂p−r−1−2(n−i) ∈ indGKZσ
′
n−i.

Here we denote the usual basis of Vσ′n−i by {x̂p−r−1−2(n−i)−j ŷj : 0 ≤ j ≤ p− r− 1− 2(n− i)}.
Using the assumption that p − r − 1 − 2(n − i) > 3, we find that this element actually lies in
T (indGKZσ

′
n−i) and hence that Ai ∈ Nn−i as claimed.

The remaining terms of hλn and ĥλn, those supported on S1
n, are shown to be equal modulo Nn−1

in a similar way, proving the claim about hλn. The case of h∞n is also treated by easy but somewhat
tedious computations. �

Proposition 3.3. The KZ-submodule U ⊂ Vn−1 generated by X̃0
n is irreducible and isomorphic

to σ′n.

Proof. Since KZ =
∐
λ∈I1

(
1 0
λ 1

)
I(1)

∐( 0 1
1 0

)
I(1) and since X̃0

n ∈ Vn−1 is an I(1)-

invariant by Lemma 3.1, we see that U is spanned by the p + 1 elements hλn and h∞n . Inspecting
the expressions of Lemma 3.2, we see easily by Corollary 2.11 that U I(1) = Fp · X̃0

n. Since I(1) is a
pro-p-group, any irreducible KZ-submodule U ′ ⊂ U must contain an I(1)-invariant vector, hence
X̃0
n ∈ U ′, so U ′ = U and U is irreducible. Finally, observe that for any a, b ∈ F∗p we have(

[a] 0
0 [b]

)
X̃0
n =

∑
µ∈In+1

g0
n+1,[ab−1]µ ⊗ µ1 · · ·µn−1µ

r+1
n arxr = (ab)r+nap−r−2n−1.

The claim follows from the classification of irreducible KZ-representations. See, for instance,
Proposition 4 of [BL]. �

Remark 3.4. It can be shown that the KZ-submodule of Vn−1 generated by X̃1
n is not irreducible,

but rather a principal series of dimension p+ 1.

The preceding proposition shows that the inductive program described at the beginning of this
section may indeed be carried out to produce a sequence of quotients indGKZσ0 → V0 → V1 → · · · →
Ve−1. Let κi : indGKZσ0 → Vi be the natural surjections. For each 0 ≤ i ≤ e− 1, let pi : Vi → Ve−1

be the natural surjection map. For 1 ≤ i ≤ e − 1 and j ∈ {0, 1}, let Xj
i = κe−1(X̃j

i ). For any
weight σ = σs,w, let X̃0

1 (σ) denote the element

X̃0
1 (σ) =

∑
µ∈I2

g0
2,µ ⊗ µs+1

1 x̂s ∈ indGKZσ.

We denote σe = det−e⊗Symr+2eF2

p and σ′e = detr+e⊗Symp−r−1−2eF2

p, compatibly with (1).
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Proposition 3.5. Let σ be a weight such that there exists a non-trivial G-equivariant map
indGKZσ/T (indGKZσ)→ Ve−1. Then σ ∈ D ∪ {σe, σ′e}.

Proof. Observe that D acts on the I(1)-invariants of σi via the character χi : diag(ã, d̃) 7→
(ad−1)iar and on the I(1)-invariants of σ′i via the character χ′i : diag(ã, d̃) 7→ (a−1d)idr. So
long as 0 < r < p− 1− 2e, each of these characters arises from a unique Serre weight.

Observe also that Ni is a Q-structured G-submodule of indGKZσ0 in the sense of Definition 2.7
for the (i+ 1)-tuple Q = (q0, . . . , qi) given by q0 = r and qj = p− r− 2j − 1 for j > 0. Indeed, for
i = 0 we already noted this above in Remark 2.8. If i > 0 this follows from the explicit expression
of the map Ψi (see, for instance, equation (7) on page 266 of [BL]) and the observation that, for
any n ≥ 0 and any ν ∈ In,

Ψi(g0
n,ν ⊗ x̂p−r−2i−1) = g0

n,ν · X̃0
i =

∑
µ∈Ii+1

g0
n+i+1,ν+πnµ ⊗ µ1 · · ·µi−1µ

r+1
i xr,

Ψi(g1
n,ν ⊗ ŷp−r−2i−1) = g1

n,ν · wX̃0
i =

∑
µ∈Ii+1

g1
n+i+1,ν+πnµ ⊗ µ1 · · ·µi−1µ

r+1
i yr.

Let 0 6= v ∈ V I(1)σ be a highest weight vector, and suppose that D acts on v via the character χ.
By assumption there exists a non-zero map Φ ∈ HomG(indGKZσ/T (indGKZσ), Ve−1). By Frobenius
reciprocity Φ corresponds to a non-zero map ϕ ∈ HomKZ(σ, (Ve−1)|KZ). Then ϕ(v) ∈ V I(1)e−1 . For
the e-tuple Q = (q0, . . . , qe−1) just defined, we see by Lemma 2.9 that the subgroup D ⊂ K of
diagonal matrices acts as follows:

diag(ã, d̃)X0,+
n,l = (ad−1)l−1arX0,+

n,l diag(ã, d̃)X1,+
n,l = (a−1d)l−1drX0,+

n,l , 1 ≤ l ≤ e− 1
diag(ã, d̃)X0,−

n,0 = (a−1d)2drX0,−
n,0 diag(ã, d̃)X1,−

n,0 = (ad−1)2arX1,−
n,0

diag(ã, d̃)X0,−
n,l = (a−1d)l+2drX0,−

n,l diag(ã, d̃)X1,−
n,l = (ad−1)l+2arX1,−

n,l , 1 ≤ l ≤ e− 2
diag(ã, d̃)X0,−

n,e−1 = (a−1d)edrX0,−
n,e−1 diag(ã, d̃)X1,−

n,e−1 = (ad−1)earX1,−
n,e−1

diag(ã, d̃)X̃0
n = (a−1d)ndrX̃0

n diag(ã, d̃)X̃1
n = (ad−1)narX̃1

n 1 ≤ n ≤ e− 1

By Corollary 2.11, ϕ(v) must be a linear combination of the elements Xj,+
n,l for j ∈ {0, 1} and

1 ≤ l ≤ e− 1 and Xj,−
n,l for j ∈ {0, 1} and 0 ≤ l ≤ e− 1, as well as X̃j

n if n is in the suitable range.
Hence χ is one of the characters appearing in the list above, all of which are equal to χi or χ′i for
some 0 ≤ i ≤ e. Therefore σ ∈ D ∪ {σe, σ′e}. �

Lemma 3.6. The element α⊗yr ∈ indGKZσ0/T (indGKZσ0) generates a KZ-submodule isomorphic
to σ′0.

Proof. One shows by explicit computation, starting from Corollary 2.11, that if the image of
f ∈ B1 ⊂ indGKZσ0 is an I(1)-invariant in indGKZσ0/T (indGKZσ0), then f ∈ Fp·(Id⊗xr)⊕Fp·(α⊗yr).
The claim now follows by the argument of [Bre], Prop. 4.1.2. �

Proposition 3.7. Suppose we are given a map of G-modules τ : V0 = indGKZσ0/T (indGKZσ0) →
W , where W satisfies socK(W ) =

⊕
σ∈D σ and has no non-supersingular subrepresentations. Then

τ factors through Ve−1.

Proof. We argue by induction. Let 1 ≤ n ≤ e− 1 and suppose it is known that τ factors through
Vn−1. We claim it factors through Vn. Let X0

n be the image in Vn−1 of X̃0
n. Note that the

image of the map Ψn : indGKZσ
′
n → Vn−1 is contained in (and in fact equal to) the submodule

of Vn−1 generated by the element X0
n. Hence if τ(X̃0

n) = 0, then obviously τ factors through
Vn−1/Ψn(indGKZσ

′
n) and hence through Vn.

Now suppose τ(X̃0
n) 6= 0. By our assumption on the socle ofW , the space HomG(indGKZσ

′
n,W ) '

HomKZ(σ′n,W|KZ) is one-dimensional. Thus every non-zero element of this space, and in particu-
lar τ ◦Ψn, is an eigenvector for the action of the commutative algebra EndG(indGKZσ

′
n). It follows

that τ ◦ Ψn factors through indGKZσ
′
n/(T − ξ)(indGKZσ

′
n) for some scalar ξ ∈ Fp. But ξ = 0,

since otherwise the classification of [BL] would imply that the image of τ ◦ Ψn in W contains a
non-supersingular representation. �
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Recall the elements fi defined in the introduction for 0 ≤ i ≤ e− 1.

Proposition 3.8. Suppose that τ : indGKZσ0/T (indGKZσ0) � W is a quotient, that W has no
non-supersingular subrepresentations, and that socK(W ) =

⊕
σ∈D σ. If τ(fe−1) 6= 0, then for

each 0 ≤ i ≤ e − 1 the K-submodule of W generated by τ(fi) (resp. τ(βfi)) is irreducible and
isomorphic to σi (resp. σ′i). Moreover, if 1 ≤ i ≤ e−1 and τ(X̃0

i ) 6= 0, then there exists a non-zero
scalar ci ∈ Fp such that τ(fi) = ciτ(X̃1

i ) and τ(βfi) = ciτ(X̃0
i ).

Proof. Recalling that β acts as an involution on indGKZσ0, observe from the definitions that f0 =
X̃0

0 and f1 = X̃1
1 . Hence βf0 = X̃1

0 and βf1 = X̃0
1 . Since these elements already generate

irreducible K-submodules of Ve−1 isomorphic to the specified Serre weights by Proposition 3.3
and Lemma 3.6, and since τ factors through Ve−1 by Proposition 3.7, the claim is established for
i ∈ {0, 1}.

Now suppose that the claim is known for i− 1. By Frobenius reciprocity the non-zero element
τ(fi−1) ∈W defines a map Ψi−1 : indGKZσi−1 →W , which factors through indGKZσi−1/T (indGKZσi−1)
as in the proof of the previous proposition. By the second part of Lemma 1.1, which follows from
results that were proved earlier in this section, the element h =

∑
µ∈I2 g

0
2,µ ⊗ µr+2i−1

1 x̂r+2i−2 ∈
indGKZσi−1/T (indGKZσi−1) generates an irreducibleK-submodule isomorphic to σ′i. Hence τ(βfi) =
Ψi−1(h) ∈W , which is non-zero by assumption, generates an irreducible K-submodule isomorphic
to σ′i. Moreover, τ(βfi) is an I(1)-invariant since h is. Similarly, τ(βfi) ∈ W determines a map
Ψi : indGKZσ

′
i/T (indGKZσ

′
i) → W with Ψi(fσ′i) = τ(βfi). Then Ψi(βfσ′i) = τ(fi) generates an ir-

reducible K-submodule isomorphic to σi by Lemma 3.6. Since X̃0
i is an I(1)-invariant generating

an irreducible K-submodule of Ve−1 isomorphic to σ′i if 1 ≤ i ≤ e− 1, and since the Serre weights
in socK(W ) appear with multiplicity one, τ(X̃0

i ) is necessarily a scalar multiple of τ(βfi). �

Remark 3.9. For each 1 ≤ i ≤ e− 1, define the elements

Zi =
∑
λ∈I2

λp−r−2i
1 g0

2,λX̃
0
i =

∑
λ∈I2

∑
µ∈Ii+1

g0
i+3,λ+π2µ ⊗ λ

p−r−2i
1 µ1 · · ·µi−1µ

r+1
i xr ∈ indGKZσ0.

Let τ : indGKZσ0/T (indGKZσ0) � W be such that W has no non-supersingular subrepresenta-
tions and that socK(W ) =

⊕
σ∈D σ. Assume that τ(Zi) 6= 0 for all 1 ≤ i ≤ e−1. Then τ(X̃0

i ) 6= 0
for all 0 ≤ i ≤ e−1, and one can show that W is irreducible by the same proof as that of Theorem
1.3, but with X̃1

i and Zi playing the roles of fi and zi respectively.

To conclude, we observe that the construction of the quotient Ve−1 is very natural. Indeed,
we began with a weight σ and took V0 = indGKZσ/T (indGKZσ). In each intermediate quotient
Vi−1, we used Corollary 2.11 to compute enough information about the I(1)-invariants in Vi−1

to find a unique (up to scalar multiplication) pair of minimal I(1)-invariants X̃0
i , X̃

1
i on which

D acts via characters that have not appeared in V
I(1)
i−2 . Here we denote V−1 = indGKZσ, and by

“minimal” we mean that among all I(1)-invariants with this property, X̃0
i and X̃1

i are supported
closest to the origin of the Bruhat-Tits tree of G. One of the elements of this pair generates an
irreducible KZ-module τ , which by Frobenius reciprocity gives a map Ψ : indGKZτ → Vi−1. We
defined Vi = Vi−1/Ψ(T (indGKZτ)) and repeated the process. Note that the quotient Ve−1 is very
large; it is non-admissible if e > 1. However, the main idea behind this paper is that Breuil’s [Bre]
original computational proof of irreducibility still applies for a totally ramified extension of Qp if
one works over Ve−1 rather than over V0 = indGKZσ0/T (indGKZσ0) itself.
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