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Abstract. In this mostly expository article we give a survey of some of the generalizations

of Serre’s conjecture and results towards them that have been obtained in recent years. We

also discuss recent progress towards a mod p local Langlands correspondence for p-adic fields

and its connections with Serre’s conjecture. A theorem describing the structure of some mod

p Hecke algebras for GLn is proved.

1. Introduction

1.1. The classical Serre conjecture. Algebraic number theory is, in some sense, the study
of the group Gal(Q/Q). In particular, we are interested in the continuous representations of
this group and its finite index subgroups. One source of such representations is the cohomology
of algebraic varieties. For instance, if X is a variety defined over a number field F and F is
an étale sheaf on X, then the étale cohomology H∗

ét(X⊗Q,F) carries an action of Gal(Q/F ).
Serre’s conjectures and its generalizations tell us which representations arise in this way.

In this section, we will briefly review the original conjecture of Serre. The reader is directed
to the excellent expository article [RS] for details. For each prime l, fix a decomposition
subgroup Gl ⊂ Gal(Q/Q) at l, let Il ⊂ Gl be the corresponding inertia subgroup, and let
Pl ⊂ Il be the pro-l-Sylow wild inertia subgroup. Let N ≥ 1 and recall that Γ1(N) ⊂ SL2(Z)
is the subgroup

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) : a− 1 ≡ c ≡ d− 1 ≡ 0 mod N

}
.

A modular form of weight k and level N is a holomorphic function f : H → C, where H is
the complex upper half plane, satisfying the following automorphy condition, as well as some
growth conditions at infinity:

f

(
az + b

cz + d

)
= (cz + d)kf(z) ∀z ∈ H,∀

(
a b

c d

)
∈ Γ1(N).

Note that

(
1 1
0 1

)
∈ Γ1(N), whence f(z + 1) = f(z) for all z ∈ H, so that f has a

Fourier expansion. If f is, moreover, cuspidal and an eigenform for the Hecke operators,
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then the expansion has only positive terms: f(z) =
∑

n≥1 anq
n, where q = e2πiz. The

classical construction of Eichler and Shimura associates to such an f a two-dimensional Galois
representation ρf : Gal(Q/Q) → GL2(Fp) which is unramified at all primes l - Np. In other
words, Il ⊂ ker ρf ; note that Il is defined up to conjugation, but this condition is well-
defined. It follows that if Frobl is an arithmetic Frobenius element for l, the characteristic
polynomial of ρf (Frobl) is well-defined for l - Np. It is x2−alx+ lk−1, and by the Chebotarev
density theorem the facts stated here determine ρf up to isomorphism. The Eichler-Shimura
construction essentially comes down to finding ρf inside the cohomology of a suitable modular
curve. We say that a Galois representation ρ : Gal(Q/Q)→ GL2(Fp) is modular if ρ ' ρf for
some modular form f .

Suppose we are given ρ : Gal(Q/Q) → GL2(Fp), and let c ∈ Gal(Q/Q) be the element
induced by complex conjugation. Since c2 is the identity, we must have det ρ(c) = ±1. We
say that ρ is odd if det ρ(c) = −1 and even otherwise. In the early 1970’s, J.-P. Serre
conjectured that

Conjecture 1.1. Suppose that ρ : Gal(Q/Q)→ GL2(Fp) is continuous, irreducible, and odd.
Then ρ is modular.

Moreover, Serre gave a combinatorial recipe for the weights of the modular forms giving rise
to such ρ. The quantitative statement that a continuous, irreducible, odd two-dimensional
Galois representation is modular of the specified weights is called the strong Serre conjecture.
Conjecture 1.1 was recently proved by Khare and Wintenberger [Kha], [KW1], [KW2], relying
on work of Kisin [Kis2], [Kis1]. However, the implication that the strong Serre conjecture
follows from Conjecture 1.1 (i.e. that if ρ is modular, then it is modular of precisely the
predicted weights) was known much earlier, except for a few cases with p = 2. It was
established by work of Mazur, Ribet, Deligne, Fontaine, Carayol, Gross, Coleman, Voloch,
and Edixhoven, among many others. An example of a statement towards this result is the
following theorem of Fontaine. It was proved in a letter to Serre in 1979, and a somewhat
different proof eventually appeared in print in [Edi]. Recall that Ip ' Gal(Qp/Qnr

p ), where
Qnr

p is the maximal unramified extension of Qp. A character ψ : Ip → F∗p is said to be of level
two if it factors through the quotient Gal(K2/Qnr

p ) ' F∗p2 of Ip, where Qnr
p ⊂ K2 ⊂ Qp is the

unique subextension with [K2 : Qnr
p ] = p2 − 1.

Theorem 1.2 (Fontaine). Let ρ : Gal(Q/Q)→ GL2(Fp) be modular of weight k and level N ,
with 2 ≤ k ≤ p+ 1. Suppose that ρ|Gp

is irreducible. Let ψ,ψ′ : Ip → F∗p be the characters of
level two induced by the two field embeddings Fp2 ↪→ Fp. Then,

ρ|Ip
∼

(
ψk−1 0

0 (ψ′)k−1

)
.

1.2. Generalizations of Serre’s conjecture. How can this picture be generalized? For
any number field F and any n ≥ 1, we need to have a notion of a Galois representation ρ :
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Gal(Q/F )→ GLn(Fp) being modular; roughly this should mean that ρ arises “geometrically.”
In most cases it is not known how to associate Galois representations to automorphic objects,
making it difficult to motivate a natural definition of modularity. But given a notion of
modularity, one can seek to formulate analogues of the Serre and strong Serre conjectures.

If F is a totally real number field, then it is known how to construct compatible families
of Galois representations associated to Hilbert modular forms over F (see [BR], [Tay]). The
first generalizations of Serre’s conjecture dealt with this case. When p is unramified in F , a
conjecture was formulated by Buzzard, Diamond, and Jarvis [BDJ]. It was extended by the
author to totally real fields F where p ramifies arbitrarily, but only when ρ is tamely ramified
at all places above p. This conjecture is discussed in the next section.

Serre’s conjecture has also been generalized in another direction, to Galois representations
ρ : Gal(Q/Q) → GLn(Fp) for arbitrary n. Ash, Doud, D. Pollack, and Sinnott [AS], [ADP]
conjectured a combinatorial recipe for some modular weights in this case, but never claimed to
have found all the modular weights. When ρ is tamely ramifed at p, their work was improved
by Herzig [Her1] who conjectured a complete list of regular modular weights that is defined
more conceptually. A more general conjecture (without the assumption of tame ramification)
was made by Gee [Gee1], but it specifies the modular weights in terms of the existence of
certain crystalline lifts and does not usually allow them to be written down explicitly. In fact,
the conjecture of Buzzard, Diamond, and Jarvis was already phrased in terms of crystalline
lifts, and hence non-explicit, when ρ had wild ramification at p.

The framework exists for stating Serre’s conjecture in an even more general context. This
work was begun by Gross in [Gro1] and [Gro2]. Let G/Q be a reductive group such that
all the arithmetic subgroups of G(Q) are finite, and suppose that G is an inner form of a
split group over Q. Let Ĝ be the split dual group over Z. To each weight and level (a
weight in this general context is an irreducible Fp-representation of G(Fp)) Gross associated
a space of modular forms with a Hecke-algebra action and conjectured ([Gro1], Conj. 1.1)
that to any Hecke eigenform one can associate a Galois representation ρ : Gal(Q/Q)→ Ĝ(Fp)
satisfying certain properties. This provides a notion of modularity. One can now ask when a
representation ρ : Gal(Q/Q) → Ĝ(Fp) is modular and what the weights are of the modular
forms giving rise to it.

2. Serre’s conjecture for Hilbert modular forms

2.1. Weights and modularity. Let F be a number field and n ≥ 1. For any place v of F ,
let Ov denote the ring of integers of the completion Fv, and let kv be the residue field. A
Serre weight is an irreducible Fp-representation of the finite group GLn(OF /p). Any Serre
weight factors through the quotient map

GLn(OF /p)→ ∆ =
∏
v|p

GLn(kv),
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since the kernel is a p-group. Therefore Serre weights have the form σ =
⊗

v|p σv, where σv

is an irreducible Fp-representation of GLn(kv). We call such σv local Serre weights at v.
Suppose for the rest of this section that n = 2 and F is totally real. We now introduce a

notion of modularity of a mod p Galois representation ρ : Gal(Q/F ) → GL2(Fp). Let D/F
be a quaternion algebra that splits at exactly one infinite place and at all places dividing
p. Consider the reductive group G = ResF/Q(D∗) and let U ⊂ G(A∞) be an open compact
subgroup. Let XU/F be the associated Shimura curve; its complex points are XU (C) =
G(Q)\G(A∞) × (C − R)/U . Recall that the relative Picard scheme of XU parametrizes line
bundles locally of degree zero, and let Pic0(XU )/F be its component containing the identity.
This is an abelian variety.

Let U ′p = ker((D⊗Ẑ)∗p =
∏

v|p GL2(Ov)→ GL2(OF /p)), and let U ′′p = ker(
∏

v|p GL2(Ov)→∏
v|p GL2(kv)). Clearly U ′p ⊂ U ′′p . We say that an open compact U ⊂ G(A∞) is of type (∗)

if U = U ′p × Up, where Up ⊂ G(A∞,p). Let V =
∏

v|p GL2(Ov) × Up. If Up is sufficiently
small in the sense of section 3.1 of [Sch3], then XU → XV is a Galois cover with group
V/U = GL2(OF /p). Hence we have an action of V/U on Pic0(XU ).

Definition 2.1. Let σ be a Serre weight. An irreducible Galois representation ρ : Gal(Q/F )→
GL2(Fp) is modular of weight σ if there exists a quaternion algebra D/F as above and an
open compact U ⊂ (D⊗ Ẑ)∗ ⊂ G(A∞) of type (∗), such that (Pic0(XU )[p]⊗Fp

σ)GL2(OF /p) =
(Pic0(XU ′′

p×Up)[p]⊗Fp
σ)∆ has ρ as a Jordan-Hölder constituent.

If [F : Q] = d, then each of the d embeddings of F into R ⊂ C induces a “complex
conjugation” in Gal(Q/F ). Denote these complex conjugations c1, . . . , cd. We say that ρ is
totally odd if det ρ(ci) = −1 for all 1 ≤ i ≤ d. The qualitative Serre conjecture generalizes to
our situation as follows.

Conjecture 2.2. Suppose that ρ : Gal(Q/F ) → GL2(Fp) is continuous, irreducible, and
totally odd. Then ρ is modular.

To formulate an analogue of the strong Serre conjecture we must, given a ρ, specify its
modular weights. The Langlands philosophy suggests that the modular weights should be
determined by local information, as was indeed the case for F = Q. We fix a decomposition
subgroup Gv ⊂ Gal(Q/F ) for each place v|p and will define a set Wv(ρ) of local Serre weights
at v that depends only on the restriction ρ|Gv

. Then we will conjecture that

Conjecture 2.3. Let ρ : Gal(Q/F )→ GL2(Fp) be a Galois representation. Its set of modular
weights is

W (ρ) =

σ =
⊗
v|p

σv : ∀v|p, σv ∈Wv(ρ)

 .

Fix a place p of F dividing p, let the cardinality of kp be q = pf , and let e be the ramification
index of Fp over Qp. When n = 2, it is easy to give explicit models for the local Serre weights
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at p. Let I be the set of field embeddings τ : kp ↪→ Fp. Let I = {τ0, τ1, . . . , τf−1} be a labeling
of the elements of I such that τi−1 = τp

i for all i ∈ Z/fZ. The irreducible Fp-representations
have the form

σv =
⊗
τ∈I

(detwτ Symkτ−2k2
p)⊗kp,τ Fp,

where 2 ≤ kτ ≤ p + 1 and 0 ≤ wτ ≤ p − 1, and not all the wτ are p − 1. An explicit model
is given by the space of polynomials P ∈ Fp[X0, Y0, . . . , Xf−1, Yf−1] in 2f variables that are
homogeneous of degree kτi − 2 in each pair of variables Xi, Yi. The GL2(kp)-action is given

as follows. For γ =

(
a b

c d

)
∈ GL2(kp), let I(γ) ∈ GL2f (Fp) be the matrix

I(γ) =



τ0(a) τ0(b)
τ0(c) τ0(d)

τ1(a) τ1(b)
τ1(c) τ1(d)

. . .
τf−1(a) τf−1(b)
τf−1(c) τf−1(d)


.

Then we have

(γP )(X0, . . . , Yf−1) =
∏
τ∈I

τ(ad− bc)wτP ((X0, Y0, . . . , Xf−1, Yf−1)I(γ)).

When n ≥ 3 there are no longer such nice models of Serre weights and it is often impossible
to do explicit computations; this is one of the many difficulties of n ≥ 3 relative to n = 2.

Let Ip ⊂ Gp be the inertia subgroup, and let Pp ⊂ Ip be the wild inertia; Pp is the pro-
p-Sylow subgroup of Ip. The quotient Ip/Pp is called the tame inertia and is isomorphic to
lim←−F∗pm . A character ϕ : Ip → Ip/Pp → F∗p is said to be of niveau m if it factors through the
quotient F∗pm . Such a character is called fundamental if the resulting map F∗pm → F∗p is the
restriction of an embedding Fpm → Fp of fields.

Let k′p be the quadratic extension of kp. Given an embedding of fields τ : kp ↪→ Fp (resp.
τ̃ : k′p ↪→ Fp), let ψτ (resp. ψτ̃ ) be the corresponding fundamental character of niveau f (resp.
2f).

The semisimplification ρss
|Ip

of ρ|Ip
factors through the tame inertia, which is abelian. Hence

ρss
|Ip

is a sum of characters ϕ ⊕ ϕ′. Moreover, the quotient Gp/Ip, which is topologically
generated by a Frobenius element Frobp, acts on the tame inertia by conjugation. It follows
that {ϕq, (ϕ′)q} = {ϕ,ϕ′}, so that two possible cases arise:

(1) The characters ϕ,ϕ′ have niveau 2f , so that ϕ′ = ϕq and (ϕ′)q = ϕ. This implies the
irreducibility of ρ|Gp

.
(2) The characters ϕ and ϕ′ are of niveau f , and ρ|Gp

is reducible.

We are now ready to provide a recipe for Wp(ρ) when ρ is tamely ramified at p.
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Definition 2.4. Let ρ : Gal(Q/F )→ GL2(Fp) be a Galois representation.

(1) Suppose that ρ|Gp
is irreducible. Then the local Serre weight

σp =
⊗
τ∈I

(detwτ Symkτ−2k2
p)⊗kp,τ Fp (1)

is contained in Wp(ρ) if and only if for each τ ∈ I there exists a labeling {τ̃ , τ̃ ′} of the
two lifts of τ to k′p and an integer 0 ≤ δτ ≤ e− 1 such that

ρ|Ip
∼
∏
τ∈I

ψwτ
τ

( ∏
τ ψ

kτ−1+δτ
τ̃ ψe−1−δτ

τ̃ ′ 0
0

∏
τ ψ

e−1−δτ
τ̃ ψkτ−1+δτ

τ̃ ′

)
.

(2) Suppose that ρ|Gp
is reducible and that ρ is tamely ramified at p (i.e. Pp ⊂ ker ρ).

Then Wp(ρ) consists precisely of the Serre weights as in (1) for which there exists a
subset J ⊂ I and an integer 0 ≤ δτ ≤ e− 1 for each τ ∈ I such that

ρ|Ip
∼
∏
τ∈I

ψwτ
τ

( ∏
τ∈J ψ

kτ−1+δτ
τ

∏
τ 6∈J ψ

e−1−δτ
τ 0

0
∏

τ∈J ψ
e−1−δτ
τ

∏
τ 6∈J ψ

kτ−1+δτ
τ

)
.

In particular, if e ≥ p − 1, then all Serre weights of suitable central character should be
modular.

2.2. Evidence. There are some results available towards this conjecture. Dembélé’s com-
putations of modular weights of Hilbert modular forms over Q(

√
5) for p = 5 agree with

Conjecture 2.3 (see section 4 of [Sch2]). The following theoretical results have also been
established.

Theorem 2.5 ([Sch2], Theorem 3.4). Suppose that e < p−1 and let ρ : Gal(Q/F )→ GL2(Fp)
be such that ρ|Gp

is irreducible and ρ is modular of weight σ = ⊗v|pσv, where σp, written as
in (1), satisfies kτ − 2 + e ≤ p− 1 for all τ ∈ I. Then σp ∈Wp(ρ).

If p is unramified in F , then a stronger result has been proved by Gee. We say that a local
Serre weight at p, written as in (1), is strongly regular if 3 ≤ kτ ≤ p − 1 for all τ ∈ I and
regular if 2 ≤ kτ ≤ p for all τ ∈ I. Gee uses a variant definition of modularity, working with
definite quaternion algebras, but his results should be translatable to our setting.

Theorem 2.6 ([Gee2], Thms. 5.1.2 and 5.1.3). Suppose that p is unramified in F , that
ρ : Gal(Q/F ) → GL2(Fp) is modular of weight σ, and that σ is strongly regular. Then
σ ∈W (ρ).

If σ ∈W (ρ) is strongly regular and non-ordinary, then it is a modular weight of ρ.

We refer the reader to Gee’s paper for the definition of “non-ordinary,” which is a technical
condition; “generically” weights are non-ordinary. We will briefly explain why the hypothesis
of kτ −2+e ≤ p−1 in Theorem 2.5 and that of strong regularity in Gee’s theorem ultimately
stem from the same source.
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A representation ρ : Gal(Q/Q) → GL2(Fp) that arises from a modular form of weight
2 ≤ k ≤ p + 1 and nebentype w is modular of weight detw⊗Symk−2F2

p. It is now clear
that Theorem 2.5 is a generalization of Fontaine’s Theorem 1.2 above, and its proof follows
the same method, although it works with Shimura curves rather than modular curves and
deals with complications introduced by the extra ramification. Let B2(kp) ⊂ GL2(kp) be the
upper triangular Borel subgroup, and choose a character θ : B2(kp) → F∗p such that σp is a

subquotient of IndGL2(kp)
B2(kp) θ. Then we find ρ inside a suitable piece of Jac(XUbal

1 (p)×Up)[p∞],
where

U bal
1 (p) =

{(
a b

c d

)
∈ GL2(Op) : a− 1, c, d− 1 ∈ p

}

and Up is the part of U away from p. This suitable piece is a vector space scheme to which
we can apply Raynaud’s theory [Ray] to obtain combinatorial restrictions on ρ. Effectively
we have lifted a mod p Hilbert modular form giving rise to ρ to trivial weight, but at the
price of raising its level to U bal

1 (p)×Up. In the process we have lost information about σp and
retained only θ. In fact, at this step of the proof ([Sch2], Prop. 3.3) ρ is restricted to being
precisely one of the Galois representations for which one of the subquotients of IndGL2(kp)

B2(kp) θ

is conjectured to be a modular weight, which is the best possible result. Then we consider
all characters θ such that σp appears in IndGL2(kp)

B2(kp) θ and intersect the sets of permitted ρ’s.
If the hypothesis that kτ − 2 + e ≤ p− 1 for all τ ∈ I does not hold, then this intersection is
too large and contains ρ’s for which σ is not conjectured to be modular.

Gee’s proof follows a completely different method and hinges on a variant of one of Kisin’s
modularity lifting results. Kisin’s functor from crystalline Galois representations to a certain
category of S-modules is only essentially surjective if the Hodge-Tate numbers on both sides
are restricted to {0, 1}, and the needed modularity lifting theorem is only available in this case.
This forces Gee also to lift to weight 2, work in weight 2, and deal with the same combinatorics
at the end. The point is that Theorems 2.5 and 2.6 are the best results obtainable by their
methods of proof with the available technology, except for ad hoc tricks such as the result of
[Sch1], which allows one to prove a bit more when the residue field kp is small. In order to
move forward, it appears that one will need more general modularity lifting theorems.

2.3. A more conceptual formulation of the sets of modular weights. In this section
we will briefly discuss the structure of Herzig’s conjecture and how his ideas can be used to
restate Conjecture 2.3 more conceptually.

Let ρ : Gal(Q/Q)→ GLn(Fp) be a Galois representation that is tamely ramified at p. Then
ρ|Ip

factors through the abelian group Ip/Pp, so it is a sum of characters. The action of Gp

on Ip/Pp by conjugation implies that if a character ψ : F∗pm → F∗p appears in ρ|Ip
, then so do
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all of its Galois conjugates. Hence there is a partition n1 + · · ·+ nr = n such that

ρ|Ip
∼


A1

A2

. . .
Ar

 ,

where each Ai is an ni × ni diagonal matrix whose diagonal entries are a Galois conjugacy
class [ψi] of characters F∗pni → F∗p. This conjugacy class defines a cuspidal characteristic
zero representation Θ([ψi]) of GLni(Fp). Now let P ⊂ GLn(Fp) be the standard parabolic
subgroup whose Levi subgroup is GLn1(Fp)× · · · ×GLnr(Fp). We define a characteristic zero
representation V (ρ|Ip

) of GLn(Fp) by

V (ρ|Ip
) = IndGLn(Fp)

P (Θ([ψ1])⊗ · · · ⊗Θ([ψr])).

Let JH(V (ρ|Ip
)) be the set of Jordan-Hölder constituents of the reduction modulo p of

V (ρ|Ip
). Its elements are irreducible Fp-representations of GLn(Fp) – in other words, weights.

Herzig defines a class of regular weights analogous to that for GL2. Roughly, a weight is
regular if it does not lie on some boundaries of alcoves; for n = 2 the notion of regularity
coincides with the one defined above. Then he defines an operator R sending the set of Serre
weights into that of regular Serre weights and conjectures ([Her1], Conj. 6.9) that the set of
regular modular Serre weights of ρ is R(JH(V (ρ|Ip

))).
Herzig also reformulates the conjecture of Buzzard, Diamond, and Jarvis in this language.

Given a tamely ramified ρ : Gal(Q/F )→ GL2(Fp), for F a totally real field in which p does not
ramify, he defines a representation V (ρ|Ip

) of GL2(kp) such that Wp(ρ) = R(JH(V (ρ|Ip
))) for

an operator R acting on the appropriate set of local Serre weights. Herzig’s restatement of the
conjecture accounts for the non-regular weights as well, at the price of R being multi-valued.

If Fp has ramification index e over Qp, then given a tamely ramified Galois representation
ρ : Gal(Q/F ) → GL2(Fp) it is shown in [Sch4] that one can define a collection V (ρ) of
characteristic zero representations of GL2(kp) such that

Wp(ρ) =
⋃

V ∈V (ρ)

R(JH(V )).

The collection V (ρ) has at most ef elements, where f = [kp : Fp].

3. Representations of GLn(M), for M a p-adic field

3.1. Notation. Let M/Qp be a finite extension, and denote by O its ring of integers, by π
a uniformizer, and by k the residue field. Set G = GLn(M), and let K denote the maximal
compact subgroup GLn(O). Let Z ' M∗ be the center of G. Write Γ ⊂ K for subgroup
of matrices congruent to the identity modulo π. Let N be the collection of non-decreasing
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n-tuples of integers ν = (ν1, . . . , νn), where 0 = ν1 ≤ ν2 ≤ · · · ≤ νn. For ν ∈ N , let αν ∈ G
be the matrix

αν =


1

πν2

. . .
πνn

 .

For 0 ≤ i ≤ n, let P i ⊂ GLn be the parabolic subgroup

P i =

{(
A 0
C D

)
: A ∈ GLi, D ∈ GLn−i

}
.

In particular, P 0 = Pn = GLn.
Recall the Cartan decomposition of G into a disjoint union of double cosets of KZ:

G =
∐
ν∈N

KZα−1
ν K. (2)

Let B ⊂ G be the upper triangular Borel subgroup, and let T ⊂ B and U ⊂ B be the
diagonal torus and the unipotent radical, respectively. Let S = {βi : 1 ≤ i ≤ n − 1} be
the standard set of simple roots of GLn; here βi = ei − ei+1, where Xij is the dual basis of
Mn(M)∗ and ei = Xii|T .

Let W ' Sn be the Weyl group of GLn. We consider W as a subgroup of K via the
usual realization by permutation matrices. Let ŵ ∈W be the element of greatest length. Let
ω : K → GLn(k) be the natural surjection. The Iwahori subgroup I ⊂ K is the preimage of
B(k) under ω, and we denote by I(1) ⊂ I the pro-p-Sylow subgroup.

If H ⊂ G is an open subgroup and (τ, Vτ ) is a smooth representation of H, then we
recall that the compact induction indG

Hτ is a smooth representation of G. A model for it is
the space S(G, τ) of compactly supported locally constant functions f : G → Vτ such that
f(hg) = τ(h)f(g) for all g ∈ G and h ∈ H. The G-action is given by (g′f)(g) = f(gg′). For
each v′ ∈ Vτ we can define an element f̂v′ ∈ indG

Hτ by

f̂v′(g) =

τ(g)v′ : g ∈ H

0 : g 6∈ H.
(3)

We observe that the set {f̂v′ : v′ ∈ Vτ} generates indG
Hτ as a G-module.

3.2. Hecke algebras. In this section we recall some basic facts about Hecke algebras. Let
H ⊂ G be an open subgroup, and let (τ, Vτ ) be a smooth representation of H. Then we define

H(H, τ) = EndG(indG
H(τ)).

Recall from section 2.2 of [BL] that H(H, τ) can be interpreted as a convolution algebra as
follows. Let HH(τ) be the space of functions ϕ : G→ EndFp

(Vτ ) such that
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(1) For each v ∈ Vτ , the function ϕv : G→ Vτ given by ϕv(g) = ϕ(g)v is locally constant
on G and supported on a set of the form HC, where C ⊂ G is compact.

(2) For all g ∈ G and all h1, h2 ∈ H, we have ϕ(h1gh2) = τ(h1)ϕ(g)τ(h2).

Given ϕ1, ϕ2 ∈ HH(τ), we define their convolution ϕ2 ∗ ϕ1 to be

(ϕ2 ∗ ϕ1)(g)(v) =
∑

y∈G/H

ϕ2(y)ϕ1(y−1g)(v)

for all g ∈ G and v ∈ Vτ . We recall the following result, which states that H(H, τ) and HH(τ)
are isomorphic and that composition in the former corresponds to convolution in the latter.

Proposition 3.1 ([BL], Proposition 5). Given ϕ ∈ HH(τ), define Tϕ ∈ H(H, τ) by

Tϕ(f)(g) =
∑

Hx∈H\G

ϕ(gx−1)f(x) =
∑

yH∈G/H

ϕ(y)f(y−1g) (4)

for all g ∈ G and f ∈ S(G, τ). Then the map

HH(τ) → H(H, τ)

ϕ 7→ Tϕ

is an isomorphism of Fp-modules. Moreover, if ϕ1, ϕ2 ∈ HH(τ), then Tϕ2 ◦ Tϕ1 = Tϕ2∗ϕ1.

Let σ be an irreducible Fp-representation of GLn(k). We can view σ as a representation of
KZ after inflating via ω and letting π act trivially. Let Vσ be the representation space, and
choose a highest weight vector v. Then v′ = ŵ · v is a lowest weight vector.

3.3. The structure of H(KZ, σ). Our immediate aim is to prove Proposition 3.5, which
states that the Hecke algebraH(KZ, σ) is isomorphic to a polynomial algebra Fp[T1, . . . , Tn−1]
in n−1 canonical generators. This was proved independently by Herzig, who recently extended
his result for GLn to a Satake isomorphism determining the structure of Hecke algebras
H(KZ, σ), where G is any connected split reductive group, K ⊂ G is a maximal compact
subgroup, and σ is an irreducible mod p representation of KZ (see [Her2]). Nevertheless, we
believe it is useful to write down an explicit proof for GLn; in particular, readers who are
unfamiliar with the representation theory of reductive groups may benefit from comparing
the two arguments.

Given ν ∈ N , we will define a linear transformation Uν of the vector space Vσ. Let
ω : K → GLn(k) be the natural projection, and set P ν = ω(K ∩ α−1

ν Kαν). This is a
parabolic subgroup of GLn(k). Let Nν be its unipotent radical, let Lν ∈ Nν be the Levi
subgroup, and let Pν = LνNν be the opposite parabolic. Let J ⊂ S be the set of simple roots
corresponding to Lν .

Let λ : T (k) → F∗p be the highest weight of σ = F (λ). For a weight µ, let (Vσ)µ ⊂ Vσ be
the corresponding weight subspace. Then [Jan], II.2.11a states that

V Nν
σ =

⊕
α∈ZJ

(Vσ)λ−α.
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It is easy to derive the analogous result for the negative standard parabolic subgroups.
Recall that ŵ ∈W is the longest element of the Weyl group, and define J ′ ⊂ S by J ′ = {βi :
βn−i ∈ J}. If PJ ′ ⊂ GLn(k) is the corresponding parabolic subgroup, then P ν = ŵPJ ′ŵ

−1.
Therefore, if λ̂ = ŵλ is the lowest weight of Vσ, we have

V Nν
σ = ŵ

( ⊕
α′∈ZJ ′

(Vσ)λ−α′

)
=
⊕
α∈ZJ

(Vσ)λ̂+α. (5)

We define an endomorphism Uν of Vσ as follows. Let B be a basis of Vσ consisting of weight
vectors. Then for v ∈ B we set

Uν(v) =

v : v ∈ V Nν
σ

0 : v 6∈ V Nν
σ .

By (5) this definition is independent of the choice of B. For each ν ∈ N , let ϕν ∈ HKZ(σ)
be the function supported on the double coset KZα−1

ν K that is determined by ϕν(α−1
ν ) =

Uν ∈ EndFp
(Vσ).

Lemma 3.2. The set {ϕν : ν ∈ N} is a basis of the Fp-vector space HKZ(σ).

Proof. The ϕν are linearly independent, so we only need to show that they span HKZ(σ).
Clearly it suffices to show that any non-zero element ϕ ∈ HKZ(σ) whose support consists of
a sole double coset KZα−1

ν K is a scalar multiple of ϕν .
As above, let Lν be the Levi subgroup of P ν ⊂ GLn(k). It is easy to see that V Nν

σ is
preserved by Lν . It is an irreducible Lν-module by the result of [Smi].

The definition of HKZ(σ) implies that for all k1, k2 ∈ K such that k1α
−1
ν = α−1

ν k2, we have

σ(k1)ϕ(α−1
ν ) = ϕ(α−1

ν )σ(k2). (6)

In particular, for every k̄ ∈ Nν we may choose k1 ∈ ω−1(k̄) and k2 ∈ Γ such that k1α
−1
ν =

α−1
ν k2. Hence the image of ϕ(α−1

ν ) lies in V Nν
σ . Similarly, we can take k1 and k2 to lie in

ω−1(l) for any l ∈ Lν . Thus ϕ(α−1
ν )|

V Nν
σ

: V Nν
σ → V Nν

σ is an Lν-module homomorphism, so

by Schur’s lemma it is a scalar c ∈ Fp.
Now suppose that v ∈ Vσ is a weight vector that is not contained in V Nν

σ , and let µ be the
weight of v. Any t ∈ T (O) ⊂ K commutes with α−1

ν , and hence we find that

σ(t)ϕ(α−1
ν )(v) = ϕ(α−1

ν )(σ(t)v) = µ(t)ϕ(α−1
ν )(v).

Hence ϕ(α−1
ν )(v) ∈ (Vσ)µ. But (Vσ)µ ∩ V Nν

σ = 0, whence v ∈ kerϕ(α−1
ν ). We have shown

that ϕ(α−1
ν ) = cUν and hence that ϕ = cϕν . Moreover, it is easy to check that ϕν is indeed

an element of HKZ(σ). �

Lemma 3.3. The Hecke algebra H(KZ, σ) is commutative.
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Proof. We will show thatHKZ(σ) is commutative using a Gelfand-type argument suggested by
Florian Herzig. Denote the transpose of a matrix g by gT . Recall that Vσ is the representation
space of σ. Following [Jan] II.2.12, we define V T

σ as follows: as a vector space it is the dual
space Hom(Vσ,Fp), but the GLn(k)-action is defined by (gf)(v) = f(gT v) for all g ∈ GLn(k)
and f ∈ V T

σ . It is easy to see that V T
σ is an irreducible GLn(k)-module. Since Vσ and V T

σ

have the same highest weight, they are isomorphic. Let α : Vσ → V T
σ be an isomorphism and

let 〈, 〉 : Vσ×Vσ → Fp be the corresponding non-degenerate bilinear form; for every v, v′ ∈ Vσ,
we have (α(v))(v′) = 〈v, v′〉. It is easy to see that for all g ∈ GLn(k) we must have

〈v, v′〉 = 〈gv, (g−1)T v′〉. (7)

As usual, we view V T
σ as a KZ-module. If A ∈ EndFp

(Vσ), let AT : Vσ → Vσ be given by
AT (v) = α−1(α(v)◦A). Equivalently, AT is characterized by the relation 〈AT v, v′〉 = 〈v,Av′〉
for all v, v′ ∈ Vσ. From this it is easy to check that (AB)T = BTAT for A,B ∈ EndFp

(Vσ).
Moreover, if ρ : KZ → Aut(Vσ) is the action of KZ on Vσ and A = ρ(h) for h ∈ KZ, then
〈AT v, v′〉 = 〈v, hv′〉 = 〈hT v, v′〉 by (7), and hence AT = ρ(hT ).

If v and v′ are weight vectors with weights λ : T (k)→ F∗p and λ′ : T (k)→ F∗p, respectively,
with λ 6= λ′, then by (7) for all t ∈ T (k) we have 〈v, v′〉 = 〈tv, t−1v′〉 = λ(t)(λ′)−1(t)〈v, v′〉,
and hence 〈v, v′〉 = 0. Therefore, if B is a basis for Vσ consisting of weight vectors and
v, v′ ∈ B, then for any ν ∈ N we have

〈Uνv, v
′〉 = 〈v, Uνv

′〉 =

〈v, v′〉 : v, v′ ∈ V Nν

0 : otherwise.

It follows that UT
ν = Uν . We now define an involution ϕ 7→ ϕ̃ of HKZ(σ). For all

ϕ ∈ HKZ(σ) and g ∈ G we put ϕ̃(g) = (ϕ(gT ))T . If h1, h2 ∈ KZ and g ∈ G, then we see
that ϕ̃(h1gh2) = (ϕ(hT

2 g
ThT

1 ))T = σ(hT
1 )Tϕ(gT )Tσ(hT

2 )T = σ(h1)ϕ̃(g)σ(h2), so that indeed
ϕ̃ ∈ HKZ(σ). Moreover, the map ϕ 7→ ϕ̃ is an anti-automorphism of HKZ(σ). Indeed, as y
runs over a set of coset representatives of G/KZ, so does z = g(yT )−1, and hence we have:

(ϕ̃1 ∗ ϕ2)(g) =

 ∑
y∈G/KZ

ϕ1(y)ϕ2(y−1gT )

T

=
∑

y∈G/KZ

ϕ2(y−1gT )Tϕ1(y)T = (8)

∑
z∈G/KZ

ϕ2(zT )Tϕ1(gT (zT )−1)T =
∑

z∈G/KZ

ϕ̃2(z)ϕ̃1(z−1g) =(ϕ̃2 ∗ ϕ̃1)(g).

We claim that ϕ̃ = ϕ for all ϕ ∈ HKZ(σ). Indeed, for any ν, µ ∈ N we have (α−1
ν )T = α−1

ν

and hence

ϕ̃µ(α−1
ν ) = (ϕµ(α−1

ν ))T =

Uµ : ν = µ

0 : ν 6= µ.

Therefore ϕ̃µ = ϕµ. Now (8) implies the commutativity of HKZ(σ). �
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If 1 ≤ i ≤ n − 1, define ν(i) ∈ N to be the vector (0, . . . , 0, 1, . . . , 1) consisting of i
zeroes followed by n − i ones. We will write αi and ϕi for αν(i) and ϕν(i), respectively. Let
Tν ∈ H(KZ, σ) be the operator corresponding to ϕν under the isomorphism of Proposition
3.1, and write Ti for Tν(i). Note that ω(K ∩α−1

i Kαi) is the parabolic subgroup P i ⊂ GLn(k)
that was defined in the introduction.

Let Wi ⊂ W be the subgroup of permutations that preserve the subsets {1, . . . , i} and
{i + 1, . . . , n}, and let Wi be a set of coset representatives of W/Wi. Then by the Bruhat
decomposition in GLn(k) we see that

GLn(k) =
∐

w∈Wi

U(k)wP i,

where U is the unipotent radical of the lower triangular Borel subgroup. Lifting to K, we can
obtain a set of coset representatives for K/(K ∩ α−1

i Kαi) of the form
⋃

w∈Wi
{uw : u ∈ Λw},

where Λw is a subset of the lower triangular pro-p-Iwahori subgroup I(1) ⊂ K.
Consider the reverse lexicographical ordering on N defined as follows. If ν = (ν1, . . . , νn)

and ν ′ = (ν ′1, . . . , ν
′
n), then ν ′ ≺ ν if and only if there is some 1 ≤ r ≤ n such that ν ′r < νr

and νi = ν ′i for i > r. This gives a complete linear ordering of N . Observe that for every
ν ∈ N there exist only finitely many ν ′ ∈ N such that ν ′ ≺ ν. Note that this ordering is not
the opposite of the usual lexicographical ordering; perhaps it would be clearer to call it the
Hebrew lexicographical ordering.

Lemma 3.4. Let ν = ν(i) for some 1 ≤ i ≤ n− 1, and suppose that µ, λ ∈ N are such that
(ϕi ∗ϕµ)(α−1

λ ) 6= 0. Then λ � µ+ ν(i), with respect to the ordering defined above. Moreover,
for each λ ≺ µ+ ν(i) there exists cλ ∈ Fp such that

ϕi ∗ ϕµ = ϕµ+ν(i) +
∑

λ≺µ+ν(i)

cλϕλ.

Proof. By definition of the convolution, we have that

(ϕi ∗ ϕµ)(α−1
λ ) =

∑
y∈G/KZ

ϕi(y)ϕµ(y−1α−1
λ ) =

∑
y∈Kα−1

i K/K

ϕi(y)ϕµ(y−1α−1
λ ). (9)

A set of coset representatives of Kα−1
i K/K is given by {zα−1

i }, where z runs over coset
representatives of K/(K ∩ α−1

i Kαi) ' GLn(k)/P i. We saw above that such a set is given
by
⋃

w∈Wi
Λww, where Λw is a set of matrices that may be taken to be lower triangular with

ones on the diagonal. Let x ∈ Λw, and let u = x−1. Then (xwα−1
i )−1α−1

λ = αiw
−1uα−1

λ =
w−1(wαiw

−1)uα−1
λ ) = w−1C, where C = (cij) is a lower triangular matrix whose elements

are given by

cij = uijπ
νw−1(i)−λj .

Since λ1 ≤ · · · ≤ λn, we see that by adding integer multiples of the rightmost column to
the other columns, we can clear out the non-diagonal terms in the bottom row. Proceeding
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in this way, we find that C = diag(c11, c22, . . . , cnn)C ′, where C ′ ∈ K is some lower triangular
matrix. Now let s ∈W be a permutation such that

νw−1(s(1)) − λs(1) ≥ νw−1(s(2)) − λs(2) ≥ · · · ≥ νw−1(s(n)) − λs(n)

and let κj = νw−1(s(1)) − λs(1) − (νw−1(s(j)) − λs(j)). Then κ = (κ1, . . . , κn) ∈ N , and we have

(xwα−1
i )−1α−1

λ = w−1sα−1
κ s−1C ′ ∈ Kα−1

κ KZ. (10)

Observe that κ = κ(λ,w) depends on λ and w, although we did not indicate this in the
notation to avoid encumbering it further. It follows from the above that if (ϕi ∗ϕµ)(α−1

λ ) 6= 0,
then µ = κ(λ,w) for some w ∈ Wi. It is easy to see that νw−1(s(1)) − λs(1) ∈ {0, 1} and that
we may assume that λ(s(j)) = λj for all 1 ≤ j ≤ n. Therefore κj = µj ≥ λj − 1. This proves
the first part of the lemma.

Moreover, we find that κ(λ,w) = λ − ν(i) if and only if w ∈ Wi belongs to the class of
the identity permutation. Then we may take Λw = {In} to consist of the identity matrix.
Therefore, if λ = µ + ν(i), then the only non-zero term of the sum in (9) is the one corre-
sponding to y = α−1

i , and this term is clearly equal to UiUµ = Uλ. The second part of our
claim follows. �

Proposition 3.5. As an Fp-algebra, H(KZ, σ) is isomorphic to the ring Fp[T1, . . . , Tn−1] of
polynomials in n− 1 variables.

Proof. We will prove the equivalent statement that HKZ(σ) ' Fp[ϕ1, . . . , ϕn−1]. We saw in
Lemma 3.3 that HKZ(σ) is commutative. By Lemma 3.2 the set {ϕν : ν ∈ N} spans HKZ(σ),
so it suffices to prove that each ϕν is contained in the subalgebra generated by {ϕ1, . . . , ϕn−1}.

We will argue by induction on ν with respect to the reverse lexicographical ordering. The
claim is trivial for ν = (0, . . . , 0). Otherwise, let i ≤ n − 1 be the largest integer such that
νi = 0. Then µ = ν − ν(i) ∈ N . By Lemma 3.4, we know that

ϕν = ϕi ∗ ϕµ −
∑
λ≺ν

cλϕλ

for some cλ ∈ Fp. Since µ ≺ ν, our claim follows by induction. �

Remark 3.6. We remark that using the decomposition of V Nν
σ into weight spaces from

[Jan], II.2.11, it is possible to obtain an explicit recursive formula expressing Tν in terms
of T1, . . . , Tn−1. Such a formula would be useful for any work involving computations on the
Hecke algebra H(KZ, σ).

3.4. Realization of irreducible admissible representations of G. As before, if σ is
an irreducible Fp-representation of GLn(k), we inflate it to K via the map ω. Letting the
uniformizer π act trivially, we obtain a representation of KZ that we continue to denote σ.
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Lemma 3.7. Let (ρ, Vρ) be a smooth irreducible representation of KZ. Then there exist a
unique unramified character χ : M∗ → F∗p and irreducible representation σ of GLn(k) such
that ρ = (χ ◦ det)⊗ σ.

Proof. This is the same proof as in [BL], Proposition 4. Since the uniformizer π lies in the
center of KZ, the operator ρ(π) is a KZ-module automorphism of Vρ. Hence, by Schur’s
Lemma, π acts as a scalar λ ∈ Fp. So ρ|K is still irreducible. Since the congruence subgroup
Γ ⊂ K is a pro-p group, the space of invariants V Γ

ρ is non-trivial. Since it is a normal
subgroup, V Γ

ρ is preserved by K, so by irreducibility it must be all of Vρ. Thus ρ|K factors
through K/Γ ' GLn(k), so it is the inflation of a unique irreducible representation σ of
GLn(k). Let χ : F ∗ → F∗p be the unramified character defined by setting χ(π) = λ. Clearly,
ρ = (χ ◦ det)⊗ σ. �

Now let (ρ, Vρ) be an irreducible Fp-representation of G = GLn(M) with central character.
Since I(1) is a pro-p-group, Vρ has non-zero I(1)-invariants. Clearly I preserves V I(1)

ρ and
its action factors through the abelian quotient I/I(1), so there is an eigenvector v′ ∈ V I(1)

ρ

on which I acts via a character ε : I → F∗p. The map Vε → Vρ|I given by 1 7→ v′ cor-
responds by Frobenius reciprocity to a non-zero element of HomK(indK

I ε, Vρ|K). Let σ be
an irreducible subrepresentation of indK

I ε. Since ρ has a central character, there is a KZ-
module homomorphism (χ◦det)⊗σ → Vρ|KZ for a suitable unramified character χ. Applying
Frobenius reciprocity again, we get a non-zero, hence surjective, G-module homomorphism
Φ : (χ ◦ det)⊗ indG

KZσ → Vρ.
The functor Vρ 7→ Vρ ⊗ (χ ◦ det) is an equivalence of categories from the category of G-

modules to itself. Hence EndG((χ ◦ det)⊗ indG
KZσ) ' H(KZ, σ). Recall from Proposition 3.5

that H(KZ, σ) is isomorphic to a polynomial ring Fp[T1, . . . , Tn−1].

Theorem 3.8. Let (ρ, Vρ) be an irreducible admissible Fp-representation of G = GLn(M)
such that there exists a surjective G-module map Φ : indG

KZσ → Vρ, where σ is an irreducible
Fp-representation of GLn(k). Then there exist scalars λ1, . . . , λn−1 ∈ Fp for which there is a
G-module surjection

indG
KZσ/(T1 − λ1, . . . , Tn−1 − λn−1)indG

KZσ → Vρ.

Proof. We need to show that the space HomG(indG
KZσ, Vρ), which is non-trivial by assumption,

contains an eigenvector for the action of H(KZ, σ). Since this Hecke algebra is commutative
by Lemma 3.3, it suffices to show that HomG(indG

KZσ, Vρ) is finite-dimensional.
Recall that Γ ⊂ K acts trivially on σ. By Frobenius reciprocity we have

HomG(indKZGσ, Vρ) ' HomKZ(σ, Vρ|KZ) = HomKZ(σ, V Γ
ρ ).

The subspace V Γ
ρ ⊂ V of invariants is finite-dimensional by admissibility of ρ, and the

theorem follows. �
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Remark 3.9. In view of the remark before the statement of Theorem 3.8, the theorem remains
true if we replace indG

KZσ by (χ ◦ det)⊗ indG
KZσ for an unramified character χ : M∗ → F∗p.

Remark 3.10. When n = 2, the previous result was proved by Barthel and Livné [BL] without
assuming admissibility. All irreducible complex representations of GL2(M) are admissible,
but is not known whether this is true for Fp-representations.

4. Towards the mod p local Langlands correspondence

In this section, all representations are over Fp. LetM/Qp be a finite extension, and maintain
all the notation from the previous section. The Langlands philosophy predicts roughly that
there is a natural bijection as follows:{

n-dimensional reps.
of Gal(M/M)

}
π
-

{
certain smooth admissible

irreducible reps. of GLn(M)

}
.

For complex representations, such a bijection was established by Harris and Taylor [HT];
on the left hand side in that case one considers Weil-Deligne representations rather than
Galois representations. A mod l correspondence for p-adic fields, when l 6= p, has been given
by work of Vignéras [Vig] and Emerton [Eme]. The l = p case is considerably more involved.
The bijection is then understood only when n = 2 and M = Qp. We briefly describe the mod
p local Langlands correspondence in this case.

We just showed in Theorem 3.8 above that any irreducible admissible representation V

of GLn(M) is a quotient of indG
KZσ/(T1 − λ1, . . . , Tn−1 − λn−1)indG

KZσ for some scalars
λ1, . . . , λn−1 ∈ Fp. We say that V is supersingular if this is true for λ1 = · · · = λn−1 = 0. All
Fp-representations of GL1(M) are also considered supersingular.

The non-supersingular representations of GL2(M) were classified by Barthel and Livné
for arbitrary M . When M = Qp, Breuil [Bre] proved that the indG

KZσ/(T1)indG
KZσ are all

irreducible, and that the only isomorphisms between them are precisely those that are required
to make the following definition well-defined.

Definition 4.1. Given an irreducible representation ρp : Gal(Qp/Qp)→ GL2(Fp), set π(ρp) =
indG

KZσ/(T1)indG
KZσ, where σ is a modular weight of ρp.

Recall that we may speak, somewhat abusively, of the modular weights of a local Galois
representation, since the modular weights of ρ : Gal(Q/Q)→ GL2(Fp) are determined by the
restriction of ρ to Gp ' Gal(Qp/Qp).

Thus we have obtained a natural bijection between irreducible two-dimensional repre-
sentations ρp : Gal(Qp/Qp) → GL2(Fp) and supersingular representations of GL2(Qp). In
all other cases, rather little is known. In particular, there appear to be far more super-
singular representations of GLn(M) than there are irreducible n-dimensional representa-
tions of Gal(M/M). The supersingular representations are far from being classified; the
indG

KZσ/(T1, . . . , Tn−1)indG
KZσ are in general of infinite length, even when n = 2, and their
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constituents are not understood. The first construction of supersingular representations of
GL2(M) was by Paskunas [Pas]. Together with Breuil [BP], they construct some represen-
tations, for p unramified in M , of the form that one would expect to find on the right-hand
side of the local Langlands correspondence, but the picture is still very murky. In particular,
it is not known how to characterize the representations of GLn(M) that appear in the image
of the mod p local Langlands correspondence.

The strong connection between the mod p local Langlands correspondence and Serre’s
conjecture that is evident in Definition 4.1 should hold in general. An argument of Emerton
strongly suggests that for any irreducible ρ : Gal(M/M)→ GLn(Fp), a non-zero surjection

indG
KZσ/(T1, . . . , Tn−1)indG

KZσ → π(ρ)

exists if and only if σ is a modular weight of ρ.
We conclude with some questions for future work on the representation theory of GLn(M).

Recall that S = {βi : 1 ≤ i ≤ n − 1} is the standard set of simple roots of GLn; here
βi = ei − ei+1, where Xij is the dual basis of Mn(M)∗ and ei = Xii|T .

Given an irreducible representation V of GLn(M) and a surjective G-module homomor-
phism Φ : indG

KZσ/(T1−λ1, . . . , Tn−1−λn−1)indG
KZσ → V , let IV,Φ = {i ∈ [1, n−1] : λi = 0}.

This induces a subset JV,Φ ⊂ S consisting of the roots βi such that i ∈ IV,Φ. Let PV,Φ ⊂ GLn

be the standard parabolic subgroup associated to the set of roots JV,Φ. We conjecture that
V arises from induction to GLn(M) of a representation of PV,Φ(M).

More precisely, suppose that PV,Φ ⊂ GLn is the parabolic subgroup consisting of elements
of the form 

A1 ∗ ∗
0 A2

. . . ∗
0 0 AR

 ,

where n =
∑R

r=1 nr is a partition and Ar ∈ GLnr . For each 1 ≤ r ≤ R, we let Gr ⊂ G be the
image of GLnr(M) under the embedding

GLnr(M) → PV,Φ ⊂ GLn(M)

Ar 7→


1 0

Ar

. . .
0 1

 .

Let Zr ⊂ Gr be the center, and let Kr = GLnr(O) ⊂ Gr be a maximal compact subgroup.
For convenience, we define Nr =

∑r
s=1 ns. If Vr is a representation of GLnr(M) for each

1 ≤ r ≤ R, then we write V1⊗ · · · ⊗ VR for the inflation to PV,Φ of the obvious representation
of its Levi subgroup GLn1(M)× · · · ×GLnR(M).



18 MICHAEL M. SCHEIN

For each 1 ≤ r ≤ R, we let σr be the following Fp-representation of GLnr(k), in the
standard Weyl-module notation:

σr = F (aNr−(nr−1), aNr−(nr−2), . . . , aNr).

In other words, σr is generated as a Gr(k)-module by the highest weight vector v ∈ Vσ. Note
that if nr = 1, then σr : M∗ → F∗p is just the character inflated from the map k∗ → F∗p defined
by x 7→ xaNr .

Conjecture 4.2. Maintain the notations defined above. For each 1 ≤ r ≤ R, there exists
a supersingular irreducible Fp-representation Vr of GLnr(M) such that V is a subquotient of
the parabolic induction

indG
PV,Φ

(V1 ⊗ · · · ⊗ VR).

Moreover, each Vr is a quotient of indGr
KrZr

σr/(T r
1 , . . . , T

r
nr−1)indGr

KrZr
σr, where T r

1 , . . . , T
r
nr−1

are the canonical generators of H(KrZr, σr).

Some progress towards results of this type has been made recently by Florian Herzig. He
is able to express the quotient indG

KZσ/(T1 − λ1, . . . , Tn−1 − λn−1)indG
KZσ, for many repre-

sentations σ of GLn(k), as a parabolic induction from the predicted parabolic subgroup of
G.

The conjecture above expects the modular representation theory of GLn(M) to have the
same general structure as the complex representation theory. The basic objects are the super-
singular representations, and everything else can be built from them by parabolic induction.
At the present time, we have no understanding of either the supersingular representations
of GLn(F ) or the structure of the parabolic inductions (except for the criterion of Rachel
Ollivier [Oll] specifying exactly when the induction of a character from a Borel subgroup is
irreducible), but these are beautiful and fruitful questions for research in the near future.
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