
MODULARITY LIFTING THEOREMS AND THE PROOF OF THE
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MICHAEL SCHEIN

These are lecture notes for the first meetings of the seminar held at the Hebrew University in
Fall 2006, offered without warranty. They aim to explain, following [CHT], [HSBT], and [Tay], how
a certain powerful modularity lifting result implies the Sato-Tate conjecture.

1. Compatible systems

We consider an example to illustrate the ideas. Let E/Q be an elliptic curve and let l be a prime.
For n ≥ 1, denote by E[n] the n-torsion points of E. Then E[n] ' Z/nZ × Z/nZ for all n. Thus
we can consider the Tate module

Tl(E) = lim←−E[ln] ' Zl × Zl.

Clearly the action of Gal(Q/Q) on E preserves n-torsion, as the “multiplication-by-n” maps on
E are defined over Q. Thus the groups acts on Tl(E) and we get an l-adic Galois representation

ρE.l : Gal(Q/Q)→ GL2(Zl).

We can reduce modulo l to obtain a mod l Galois representation

ρE.l : Gal(Q/Q)→ GL2(Fl).

We note that any continuous representation ρ : Gal(Q/Q) → GLn(Ql) has a well-defined (up to
isomorphism) reduction modulo l. The following argument is attributed to N. Katz.

Theorem 1.1. Let G be a compact Hausdorff group, and let ρ : G → GLn(Qp) be a continuous
representation. Then ρ is equivalent to a representation ρ′ such that ρ′(G) ⊂ GLn(OL), where OL

is the ring of integers of some finite extension L/Qp.

Proof. Since G is compact and Hausdorff, it admits a Haar measure µ; without loss of generality,
µ(G) = 1. Now,

GLn(Qp) =
⋃

[L:Qp]<∞

GLn(L)

and hence
G =

⋃
[L:Qp]<∞

ρ−1(GLn(L)).
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Since there are countably many finite extensions L/Qp, there must be some such finite extension
L with µ(ρ−1(GLn(L))) > 0. Hence, ρ−1(GLn(L)) ⊂ G is a closed subgroup of finite index. Then
ρ−1(GLn(OL)) is an open subgroup of the compact group ρ−1(GLn(L)), so it has finite index in it
and thus in G. Let g1, . . . , gm be a collection of coset representatives for ρ−1(GLn(OL)). Let Λ ⊂ Ln

be the lattice generated by ρ(g1)On
L, . . . , ρ(gm)On

L. This is a lattice of maximal rank, so Λ ' On
L.

Furthermore, Λ is stable under the action of G. Let T ∈ GLn(L) be a linear transformation that
takes On

L to Λ, and set ρ′(g) = T−1ρ(g)T . �

Returning to our elliptic curve example, recall that by Hasse’s bound, for almost all primes p

we have #E(Fp) − 1 − p = ap with |ap| ≤ 2
√

p. It is the case that for almost all p, the trace of
ρE,l(Frobp) is ap; the point is that this is independent of l. The same holds for the determinant,
so that the characteristic polynomial of ρE,l(Frobp) does not depend on l. This makes the family
of Galois representations ρE,l an example of a compatible system:

Definition 1.2. Let F be a number field. A rank n compatible system of representations of
Gal(F/F ) consists of the following data:

(1) A number field M .
(2) A finite set S of places of F .
(3) For all v 6∈ S a monic degree n polynomial Qv(x) ∈M [x].
(4) For all places w of M , a Galois representation

ρw : Gal(F/F )→ GLn(Mw)

such that if w has residual characteristic l, and v is a place of F such that v 6∈ S and v does
not divide l, then ρw(Frobv) has characteristic polynomial Qv(x).

2. Automorphicity

Recall that if f is a cuspidal modular form which is an eigenform for the Hecke operators,
then the classical construction of Deligne produces for almost all primes l a representation ρf,l :
Gal(Q/Q)→ GL2(Ql) which is determined by the eigenvalues of f . In this section we describe an
analogous notion in our setting.

Definition 2.1. Let F be a totally real field. A RAESDC (regular algebraic essentially self-dual
cuspidal) automorphic representation π of GLn(AF ) is a cuspidal automorphic representation such
that:

(1) π∨ ' χπ for some character χ : F ∗\A∗F → C∗, with χv(−1) independent of v for all infinite
places v of F .

(2) π∞ has the same infinitesimal character as some irreducible algebraic representation of
ResF/QGLn.
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Definition 2.2. A weight is an element a ∈ (Zn)Hom(F,C) such that for all τ ∈ Hom(F, C) we have

aτ,1 ≥ · · · ≥ aτ,n.

If a is a weight, denote by Ξa the irreducible algebraic representation
⊗

τ F (aτ,1, . . . , aτ,n) of∏
τ∈Hom(F,C) GLn.

Definition 2.3. We say that a RAESDC π as above has weight a if π∞ and Ξa have the same
infinitesimal character.

Note that if π has weight a, then by the (essential) self-duality of π there exists an integer wa

such that aτ,i + aτ,n+1−i = wa for all τ ∈ Hom(F, C) and all 1 ≤ i ≤ n.
Let S be a finite set of finite places of F , and for v ∈ S let ρv be an irreducible square-integrable

representation of GLn(Fv). We say that π has type {ρv}v∈S if πv is an unramified twist of ρ∨v for all
v ∈ S. If π is a RAESDC automorphic representation of GLn(AF ) of weight a and type {ρv}v∈S ,
and ι is an isomorphism Ql

∼→ C, then Clozel, Harris, and Taylor (essentially using a construction
from [HT]) construct a continuous Galois representation

rl,ι(π) : Gal(F/F )→ GLn(Ql),

determined by a list of properties. The most important one is that for every place v of F not
dividing l we have

rl,ι(π)|ss
Gal(Fv/Fv)

= rl(ι−1πv)∨(1− n)ss,

where rl(π) is the l-adic representation associated by Tate to the Weil-Deligne representation
recl(π∨ ⊗ | · |(1−n)/2).

As we saw earlier, rl,ι(π) can be reduced modulo l. Let rl,ι(π) : Gal(F/F ) → GLn(Fl) be the
semisimplification of the reduction.

Definition 2.4. A continuous semisimple representation r : Gal(F/F ) → GLn(Ql) (resp. r :
Gal(F/F ) → GLn(F l)) is called automorphic of weight a and level {ρv}v∈S if it is isomorphic to
rl,ι(π) (resp. rl,ι(π)) for some choice of ι and some π of weight a and type {ρv}v∈S such that πl is
unramified.

3. A modularity lifting theorem

We have now introduced the notions necessary to state Taylor’s modularity lifting theorem, apart
from a few technical conditions. In the following, c will always denote complex conjugation. Let
the algebraic group Gn be the semidirect product of GLn and GL1 by Z/2Z = {1, η}, where η acts
by (g ∈ GLn, µ ∈ GL1)

η(g, µ)η−1 = (µ(g−1)t, µ).
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Theorem 3.1 (Taylor). Let F be a CM field. In other words, F is a totally imaginary number
field that contains a totally real subfield F+ with [F : F+] = 2. Let n ≥ 1 and let l > n be a prime
unramified in F . Let

r : Gal(F/F )→ GLn(Ql)

be a continuous irreducible Galois representation. Let

r : Gal(F/F )→ GLn(Fl)

be the semisimplification of its reduction, and let r′ be the natural extension

r′ : Gal(F/F+)→ Gn(Ql).

Assume the following:

(1) rc ' r∨ε1−n. Here ε is the l-adic cyclotomic character.
(2) At almost all places of F , r is unramified.
(3) For all places v|l of F , the restriction r|Gal(Fv/Fv) is crystalline. (Here of course r|Gal(Fv/Fv)

is defined up to equivalence by identifying Gal(Fv/Fv) with a decomposition subgroup at v.)
(4) There is an element a ∈ (Zn)Hom(F,Ql) such that

(a) For all τ ∈ Hom(F, Ql) we have either

l − 1− n ≥ aτ,1 ≥ · · · ≥ aτ,n ≥ 0

or
l − 1− n ≥ aτc,1 ≥ · · · ≥ aτ,n ≥ 0.

(b) For all τ ∈ Hom(F, Ql) and all 1 ≤ i ≤ n we have aτc,i = −aτ,n+1−i.
(c) For all τ ∈ Hom(F, Ql) above a prime v|l of F , we have

dimQl
gri(r ⊗τ,Fv BdR)Gal(Fv/Fv) =

1 : i = aτ,j + n− jforsome1 ≤ j ≤ n

0 : otherwise

(5) There exists a non-empty finite let S of places of F not dividing l, and for each v ∈ S a
square-integrable Ql-representation ρv of GLn(Fv) such that r|ss

Gal(Fv/Fv)
= rl(ρv)∨(1−n)ss.

(6) FINISH THIS
(7) r is irreducible and automorphic of weight a and type {ρv}v∈S.

Then r is automorphic of weight a and type {ρv}v∈S.

Observe that if one member of a compatible system is automorphic of a certain weight and
type, then so are all the other members. For instance, if we wish to prove that a certain Galois
representation ρ is automorphic (we will see below that the Sato-Tate conjecture follows from the
automorphicity of a family of ρ’s), and we know that another representation ρ′ is automorphic and
can find a compatible system that contains both ρ and ρ′, then we are done. Usually one is not so
lucky. But suppose that there are representations ρ′′ and ρ′′′ such that:



MODULARITY LIFTING THEOREMS AND THE PROOF OF THE SATO-TATE CONJECTURE 5

• ρ and ρ′′ are contained in a compatible system.
• ρ′ and ρ′′′ are contained in a compatible system.
• ρ′′ ' ρ′′′.

Then if ρ′ is automorphic, then so is ρ′′′, and hence so is ρ′′′. If we have a sufficiently good
modularity lifting theorem, we can prove that ρ′′ is automorphic, and hence that ρ is automorphic.

In order to apply this strategy to prove automorphicity of Galois representations, one must be
able to do two things sufficiently well: prove modularity lifting theorems and construct compatible
systems. In our case, a sufficiently strong modularity lifting theorem was proved by Clozel, Harris,
and Taylor [CHT], assuming that an analogue of Ihara’s lemma was true. Taylor [Tay] then found
a way, using Kisin’s work, to modify the argument to remove the dependence on Ihara’s lemma
and make it unconditional.

Compatible systems are generally obtained from the cohomology of algebraic varieties, as in
the elliptic curves example at the beginning of these notes. Harris, Shepherd-Barron, and Taylor
[HSBT] consider a family of Calabi-Yau varieties, which were studied by Dwork in the 1960’s and
then more extensively by mirror symmetry people. These produce the compatible systems used in
the proof of Sato-Tate.

4. The Sato-Tate conjecture

Let E/Q be an elliptic curve. We have already mentioned the Hasse bound

|#E(Fp)− 1− p| ≤ 2
√

p.

Equivalently,
#E(Fp) = 1 + p−√p(eiθp + e−iθp)

for some angle θp ∈ [0, π]. If we fix an elliptic curve E and vary p, then we may ask how θp is
distributed.

Definition 4.1. Let µ be a measure on the interval [0, π]. A sequence xn of points on this interval
is said to be equidistributed with respect to µ if for all continuous functions f on [0, π] we have

lim
n→∞

1
n

n∑
i=1

f(xn) = µ(f).

Conjecture 1 (Sato and Tate, 1960). If E is an elliptic curve without complex multiplication (i.e.
End(E) = Z), then the sequence θp is equidistributed with respect to the measure 2

π sin2 θdθ.

Now let G be a compact group and X the space of its conjugacy classes. We will denote by µ

both the Haar measure on G and the measure it induces on X. A sequence of elements xn of X is
µ-equidistributed if and only if for any irreducible character χ of G we have

lim
n→∞

1
n

n∑
i=1

χ(xi) = µ(χ).
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Indeed, by the Peter-Weyl theorem the irreducible characters generate a dense subspace of the
space C(X) of continuous functions on X, and we obtain the desired statement for all of C(X) by a
standard equicontinuity argument. Therefore, if µ(G) = 1 then the sequence xn is µ-equidistributed
if and only if for every non-trivial irreducible character χ we have

lim
n→∞

1
n

n∑
i=1

χ(xi) = 0.

Indeed, we also need the following condition for the trivial character χ = 1, but it always holds
trivially:

lim
n→∞

1
n

n∑
i=1

χ(xi) = 1.

Returning to our elliptic curve, if ρE,l : Gal(Q/Q)→ GL2(Zl) is unramified at p, then it is known
that

ρE,l(Frobp) ∼
√

p

(
eiθp

e−iθp

)
.

In particular, the trace of ρE,l(Frobp) is ap, as we mentioned earlier. Let G = SU(2). Then every

element of G is conjugate to a unique matrix of the form

(
eiθ 0
0 e−iθ

)
with 0 ≤ θ ≤ π, so the

space X of conjugacy classes is homeomorphic to the interval [0, π]. Moreover, the Haar measure
on G induces the measure 2

π sin2 θdθ on X. Hence the Sato-Tate conjecture may be reformulated
as follows:

The sequence 1√
pρE,l(Frobp) of points on X is equidistributed with respect to the Haar measure.

If r is the natural 2-dimensional representation of SU(2), then the non-trivial irreducible repre-
sentations of SU(2) are precisely the symmetric powers Symnr for n ≥ 1. By the considerations
above, to prove Sato-Tate we need to show that for all n > 1:

lim
x→∞

∑
p≤x

trSymn−1ρE,l(Frobp)

p(n−1)/2)∑
p≤x 1

= lim
x→∞

log x

x

∑
p≤x

trSymn−1ρE,l(Frobp)
p(n−1)/2

= 0. (1)

5. L-functions

How are L-functions relevant to any of this? The standard construction of the L-function of a
representation yields:

L(Symn−1ρE,l, s) =
∏
p

(
det
(

1−
Symn−1ρE,l(Frobp)

ps

))−1

.
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This converges for Res > n+1
2 . A fun exercise for the reader is to compute the logarithmic derivative

of this:

(log L)′ =
L′

L
= −

∑
p

(log p)trSymn−1ρ(Frobp)
ps

+ ∆,

where ∆ converges in Res > n
2 . Comparing this with equation (1) above, we see that the following

conjecture implies Sato-Tate:

Conjecture 2 (Tate). If E does not have complex multiplication, then L(Symn−1ρE,l, s) has
analytic continuation to Res > n+1

2 and does not vanish in this region.

By virtue of the good behavior of L-functions of cuspidal automorphic representations, it is easy
to see that the following implies Conjecture 2:

Conjecture 3. For all n > 1 there is a cuspidal automorphic representation π of GLn(AQ) such
that L(π, s) = L(Symn−1ρ, s) on Res > n+1

2 .

This is known for n = 2, 3 by work of Gelbart and Jacquet, and for n = 4, 5 by Kim and Shahidi,
but unfortunately it is not yet known in general. Instead, Taylor and collaborators proved the
following potential version of the conjecture, which is sufficient to imply Conjecture 2.

Proposition 5.1. For all n > 1 there is a totally real field F , which is a Galois extension of Q, and
a cuspidal automorphic representation πF of GLn(AF ) such that L(πF , s) = L(Symn−1ρ|Gal(F/F ), s).

To see why this implies Conjecture 2, observe that if Q ⊂ L ⊂ F is an intermediate extension
with F/L solvable, then by Langlands base change there is a cuspidal automorphic representation
πL of GLn(AL) with L(πL, s) = L(Symn−1ρ|Gal(L/L), s). By Brauer’s theorem, we can decompose
the trivial representation 1 of Gal(F/Q) as follows:

1 =
∑
i∈I

niInd
Gal(F/Q)
Gal(F/Fi)

χi,

where I is a finite set and for each i ∈ I, ni ∈ Z, Gal(F/Fi) is solvable, and χi is a one-dimensional
representation of Gal(F/Fi).

Now we see that

L(Symn−1ρ, s) =
∏

i

L(Symn−1ρ⊗ Indχi, s)ni = (2)∏
i

L(Symn−1ρ|Gal(Fi/Fi)
⊗ χi, s)ni = (3)∏

i

L(πFi ⊗ χi, s)ni , (4)

and since the L-functions in the bottom line have the desired properties, so does their product.
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6. Strategy to prove Proposition 5.1

Recall that E has multiplicative reduction at a prime q, and we need to show for every n > 1
that Symn−1ρE,l is automorphic for some prime l. Suppose n fixed, and choose l > n such that E

has good reduction at l and l does not divide qi − 1 for 1 ≤ i ≤ n.
Now choose a prime l′ and a totally real field F ′ which is Galois over Q and in which l and l′ are

unramified and q splits completely. Choose an elliptic curve E′/F ′ with good reduction at l and
l′, multiplicative reduction at q, and such that ρE′,l ' ρE,l and ρE′,l′ |Il′ ' 1⊕ ε−1

l′ . Here of course
εl′ is the mod l′ cyclotomic character, and the statement that such an E′ exists (as well as other
choices that will be made below) is not entirely trivial (see [HSBT], Theorem 3.3).

We will find a prime l′′ and a totally real extension F ′′/F ′ such that l, l′, and l′′ are unramified in
F ′′, such that q splits completely there, and such that F ′′ is Galois over Q. We will then construct
a compatible system of representations rp : Gal(F ′′/F ′′)→ GSpn(Zp) (we only defined compatible
systems above for representations into GLn, but it should be clear what is meant here) for which:

(1) There is a finite set S of primes such that l, l′, l′′ 6∈ S and for all p 6∈ S, rp is crystalline with
Hodge-Tate weights 0, 1, . . . , n − 1. (Note that finite flat group schemes have Hodge-Tate
numbers 0 and 1. This is why we cannot use torsion of abelian varieties to produce our
compatible system in dimension n > 2.)

(2) rl′ ' Symn−1ρE′,l′ .
(3) rl′′ ' Indθ, where θ : Gal(M/M) arises from a suitable CM extension M/F ′′.
(4) For all primes p 6= q, we have rp|ssGal(F ′′

q /F ′′
q )

= 1⊕ ε−1
q ⊕ · · · ⊕ ε

−(n−1)
q .

If we can do this, we will be finished, since Indθ is automorphic by automorphic induction,
and hence (given the modularity lifting theorem), so is rl′′ . Hence rl′ is automorphic, whence
rl′ = Symn−1rE′,l′ is, whence (using modularity lifting and another compatible system) Symn−1ρE,l

is automorphic as desired. It is necessary to introduce the auxiliary elliptic curve E′, and generally
to carry around a large number of technical conditions, in order to make sure that the hypotheses of
the modularity lifting theorems are satisfied. We will now sketch how to construct the compatible
system of rp’s.

7. A family of Calabi-Yau varieties

Let n be even (we will explain at the very end how to get Proposition 5.1 for odd n) and consider
the scheme Y ⊂ Pn × P1 defined over Z[ 1

n+1 ] by the equation

s(Xn+1
0 + · · ·+ Xn+1

n ) = (n + 1)tX0 · · ·Xn.

Here [X0 : · · · : Xn] and [s : t] are the homogenous coordinates on Pn and P1, respectively.
Let π : Y → P1 be the projection to the second factor, and let Yt be the fiber above the point

[1 : t] (t = ∞ is allowed). Consider the scheme T0/Z[ 1
n+1 ] given by T0 = P1\{∞ ∪ µn+1}, where

µn+1 is the scheme of (n + 1)-st roots of unity. Then the map Y |T0 → T0 is smooth; if t ∈ µn+1,
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then Yt has isolated ordinary quadratic singularities at points where the Xi are all in µn+1 and
X0 · · ·Xn = t−1.

Let H = (µn+1)n+1/µn+1, where the subgroup µn+1 in question is embedded diagonally. Over
Z[ 1

n+1 , µn+1], H acts on Y by

(ζ0, . . . , ζn)[X0 : · · · : Xn] = [ζ0X0 : · · · : ζnXn].

Let H0 = {(ζ0, . . . , ζn) ∈ H : ζ0 · · · ζn = 1}. Then it is easy to see that H0 preserves each fiber
Yt. If t ∈ µn+1, then H0 permutes the singularities transitively. If (N,n + 1) = 1, define a lisse
sheaf on T0 × Z[ 1

N(n+1) ] by

Vn[N ] = V [N ] = (Rn−1π∗Z/NZ)H0 .

If l is a prime that does not divide n + 1, then let Vn,l = Vl = lim←−V [lm]⊗Zl
Ql.

Similarly, define V = (Rn−1π∗Z)H0 . Note that since Y is an (n−1)-dimensional variety, Poincaré
duality gives us alternating perfect pairings:

V [N ]× V [N ] → (Z/NZ)(1− n)

Vl × Vl → Ql(1− n)

V × V → Z.

Note that V [N ], Vl, and V ⊗Q are locally free of rank n. This and other basic facts about our
family were known to Dwork in the 1960’s. Observe that the map

(P1\{0,∞})× C → (P1\{0,∞})

t 7→ tn+1

is a finite étale Galois cover with Galois group H/H0. Thus V descends to a locally constant sheaf
Ṽ on P1(C)\{0, 1,∞}. We still have an alternating pairing Ṽ × Ṽ → Z. As usual, let Sp(Ṽz ⊗ C)
be the group of automorphisms that respect the pairing. By studying monodromy, one can prove:

Lemma 7.1. If z ∈ P1(C)\{0, 1,∞}, then the map π1(P1(C)\{0, 1,∞}, z)→ Sp(Ṽz⊗C) has Zariski
dense image.

Combining this with a theorem of Matthews, Vaserstein, and Weisfeiler (Hy”d) whose proof
relies upon the classification of finite simple groups, we obtain

Lemma 7.2. There exists a constant C(n) such that if t ∈ T0(C) and all the prime factors of N

are greater than C(n), then the map π1(T0(C), t)→ Sp(V [N ]t) is surjective.

If F is a number field, let W be a free rank n Z/NZ-module with a continuous action of Gal(F/F )
and a perfect alternating pairing 〈, 〉W : W ×W → Z/NZ(1− n). View W as a sheaf over Spec F ,
and consider the functor {T0 × F−schemes} → {Sets} that sends a T0 × F -scheme X to the set of
isomorphisms between (the pullbacks to X of) W and V [N ] that are compatible with the pairings.
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This functor is represented by a finite étale scheme TW /(T0×F ). Then a corollary of the previous
lemma is that

Corollary 7.3. If the prime factors of N are all greater than C(n), then TW (C) is connected for
any F ↪→ C, i.e. TW is geometrically irreducible.

Observe that if F is a number field and t ∈ T0(F ), then the Vl,t are a compatible system of l-adic
representations of Gal(F/F ). Let N = l′l′′, and, choosing W appropriately, consider the scheme
TW that parametrizes t ∈ T0 with Vt[l′] ' Symn−1ρE′,l′ and Vt[l′′] ' Indθl′′ .

It is now clear that to obtain our compatible system we just need to show that there exists
a totally real field K such that TW (K) 6= ∅. To do this, we use the following “local-to-global
principle” of Moret-Bailly.

Theorem 7.4. Let F be a number field and let T/F be a smooth geometrically irreducible variety.
Let S = S1

∐
S2 be a finite set of places of F such that S2 contains no infinite places. If v ∈ S1

(resp. w ∈ S2) assume that there is a non-empty (v-adically) open set Ωv ⊂ T (Fv) (resp. a non-
empty open Gal(Fnr

w /Fw)-invariant subset Ωw ⊂ T (Fnr
w )). Here Fnr

w is the maximal unramified
extension of Fw. Fix a finite extension L/F .

Then there exists a finite Galois extension K/Q and a point P ∈ T (K) such that

(1) L and K are linearly disjoint over Q.
(2) For all v ∈ S1, v splits completely in K and P ∈ Ωv. For all w ∈ S2, w is unramified in S2

and also P ∈ Ωw.

We wish to apply this theorem with T = TW and S1 = {∞, q, . . . } and S2 = {l, l′, l′′, . . . }. Note
that ∞ ∈ S1 forces the field K given by the theorem to be totally real. As we already know the
geometric irreducibility of TW , it remains to show the existence of the open sets Ωv,Ω, w.
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