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1. Introduction

These notes are based on lectures given by the author at the winter school on Galois theory

held at the University of Luxembourg in February 2012. Their aim is to give an overview of

Serre’s modularity conjecture and of its proof by Khare, Wintenberger, and Kisin [36] [37]

[39], as well as of the results of other mathematicians that played an important role in the

proof. Along the way we will remark on some recent work concerning generalizations of the

conjecture. We have tried as much as possible to concentrate on giving a broad picture of

the structure of the arguments and have ignored technical details in places. Some results

are given incomplete statements, where we have chosen not to list technical hypotheses; we

request the reader’s forbearance.

Let F be a totally real number field. We will denote by GF the absolute Galois group

Gal(Q/F ). It was shown in Prof. Böckle’s lectures in this volume how, under some hypotheses,

a Hilbert modular eigenform f over F gives rise to a compatible system {ρf,v} of p-adic Galois

representations; see [34] for the most general theorem. These representations are extracted

from the cohomology of a suitable algebraic variety, and this construction is more or less the

only method we have for obtaining p-adic Galois representations. Therefore the following

question is of acute interest: given a Galois representation ρ : GF → GL2(Qp), when is ρ

modular , i.e. when does there exist a Hilbert modular eigenform f and a place v|p of F such

that ρ ' ρf,v?
This question is a very difficult one. We will split it into two questions, which are still very

difficult, by introducing the notion of the reduction of a Galois representation. The following

result is classical; the proof given here is attributed to N. Katz and appears in print, for

instance, at the beginning of section 2 of [55].

Proposition 1.1. Let G be a compact Hausdorff group, and let ρ : G → GLn(Qp) be a

continuous representation. Then ρ is equivalent to a representation ρ′ such that ρ′(G) ⊂
GLn(OL), where OL is the ring of integers of some finite extension L/Qp.

Proof. Since G is compact and Hausdorff, it admits a Haar measure µ; without loss of gener-

ality, µ(G) = 1. Now,

GLn(Qp) =
⋃

[L:Qp]<∞

GLn(L)
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and hence

G =
⋃

[L:Qp]<∞

ρ−1(GLn(L)).

Since there are countably many finite extensions L/Qp, there must be some L such that

µ(ρ−1(GLn(L))) > 0. Hence, ρ−1(GLn(L)) ⊂ G is a closed subgroup of finite index. Then

ρ−1(GLn(OL)) is an open subgroup of the compact group ρ−1(GLn(L)), so it has finite index

in it and thus in G. Let g1, . . . , gm be a collection of coset representatives for ρ−1(GLn(OL)).

Let Λ ⊂ Ln be the lattice generated by ρ(g1)OnL, . . . , ρ(gm)OnL. This is a lattice of maximal

rank, so Λ ' OnL. Furthermore, Λ is stable under the action of G. Let T ∈ GLn(L) be a

linear transformation that takes OnL to Λ, and set ρ′(g) = T−1ρ(g)T . �

The proposition above applies, in particular, to continuous representations ρ : GF →
GL2(Qp) such as we have been considering. If ρ is equivalent to ρ′ : GF → GL2(OL), then we

define the reduction ρ to be the semisimplification of the composition ρ̃′ : GF
ρ′→ GL2(OL)→

GL2(kL)→ GL2(Fp), where kL is the residue field of L and the inclusion kL ↪→ Fp is induced

from L ↪→ Qp. In other words, ρ is the direct sum of the Jordan-Hölder constituents of ρ̃′.

This definition is independent of all choices, and we call ρ the reduction modulo p of ρ.

Remark 1.2. Throughout these notes, except for Section 4, we will usually use ρ to denote a

mod p Galois representation. The bar simply serves to emphasize that we are dealing with a

mod p representation. It does not necessarily mean that we have any p-adic representation ρ

in mind, of which ρ is to be the reduction.

We say that a mod p Galois representation ρ : GF → GL2(Fp) is modular if it “arises from

geometry” in a way that will be made precise in the next section. If F = Q, then ρ is modular

if and only if there exists a modular eigenform f such that ρ ' ρf,p, while for larger totally

real fields we will require a somewhat more subtle notion of modularity. If a p-adic Galois

representation ρ is modular, then its reduction modulo p will be modular as well. We will

consider two questions:

(1) Let ρ : GF → GL2(Qp) be a p-adic Galois representation. Suppose that ρ is modular.

Is ρ modular?

(2) Let ρ : GF → GL2(Fp) be a mod p Galois representation. When is ρ modular?

It is clear that if we knew complete answers to both of these questions, their union would

resolve the question of when a general p-adic representation is modular. Affirmative responses

to the first question are known in a variety of different cases; results of this type are called

modularity lifting theorems. A conjectural response to the second question is given by Serre’s

modularity conjecture and its generalizations. Serre’s original conjecture, covering the case

of F = Q, is now a theorem of Khare, Wintenberger, and Kisin. However, as we shall see,

even if we do not know whether a mod p Galois representation is modular, we can say a lot

about the Hilbert modular forms f that it could come from if it were modular. The research

towards resolving each of these two questions is tightly interconnected with work concerning

the other, as shall become evident in these notes.



SERRE’S MODULARITY CONJECTURE 3

1.1. Acknowledgements. The author is very grateful to Sara Arias de Reyna, Lior Bary-

Soroker, and Gabor Wiese, the organizers of the Winter School on Galois Theory held in

Luxembourg in February 2012, for inviting him to present these lectures. He is grateful to

the audience for their stimulating questions, to Tommaso Centeleghe and Nicolas Billerey

for allowing him to make use of the notes they took in his lectures, and to the anonymous

referee for a thorough reading. The exposition given here has in places drawn on expositions

of similar material given elsewhere, such as the lectures by Toby Gee, Richard Taylor, and

Teruyoshi Yoshida at an MSRI workshop on modularity in 2006, of Richard Taylor at the

summer school on Serre’s conjecture at Luminy in 2007, and those by Fred Diamond at the

Galois Trimester at the Institut Henri Poincaré in Paris in 2010. All errors and inaccuracies

are, of course, entirely the responsibility of the author.

2. Statement of Serre’s modularity conjecture

2.1. The classical conjecture. If we fix an embedding Q ↪→ C, then complex conjugation is

a well-defined element c ∈ GQ. Since it is an involution, any Galois representation ρ : GQ →
GL2(Fp) must send c to a matrix with determinant ±1. We say that ρ is odd if det ρ(c) = −1.

Similarly, if F is a totally real field with [F : Q] = d, then the d embeddings F ↪→ R induce

d complex conjugation automorphisms c1, . . . , cd ∈ GF . We say that ρ : GF → GL2(Fp) is

totally odd if det ρ(ci) = −1 for each i = 1, . . . , d.

The original statement of Serre’s conjecture, which essentially dates back to the 1960’s,

appeared in some cases in [52], and was properly published only in [54], is the following.

Conjecture 2.1. Let ρ : GQ → GL2(Fp) be a mod p Galois representation. If ρ is continuous,

irreducible, and odd, then there exists a modular eigenform f ∈ Sk(Γ1(N)), for some weight

k and level N , such that ρ ' ρf,p.

This statement has a natural generalization for totally real fields:

Conjecture 2.2 (Weak Serre conjecture). If F is a totally real field and ρ : GF → GL2(Fp)
is continuous, irreducible, and totally odd, then it is modular.

While this conjecture is already very powerful, one generally wants to know in what weights

and levels to look for a modular form giving rise to ρ. In fact, Serre gave such a strengthened

version of his own conjecture, in which he specified a minimal weight k(ρ) and level N(ρ) such

that there should exist a modular eigenform f ∈ Sk(ρ)(Γ1(N(ρ))) with ρ ' ρf,p. We shall not

give the explicit formulae for k(ρ) and N(ρ) here, but the reader will be able to extract them

from our statement of a generalized conjecture later on.

2.2. Serre weights. One of the most basic and useful facts about mod p representation

theory, and one which is responsible for much of the difference in flavor between it and

representation theory in characteristic zero, is the following. A proof may be found in [19].

Proposition 2.3. Let G be a profinite group, let P ⊂ G be a normal pro-p-group, and let

τ : P → GL(V ) be a continuous finite-dimensional representation of P on an Fp-vector space

V . Let V P = {v ∈ V : ∀a ∈ P, τ(a)v = v}. Then V P 6= {0}. Moreover, if τ is irreducible,

then V P = V .
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Proof. Clearly we may restrict to the case where V is irreducible as a G-module. Since τ

is continuous and hence has finite image, we in fact have τ : G → GL(W ), where W is a

finite-dimensional vector space over a finite extension of Fp. Since P is normal in G, clearly

WP ⊂W is a sub-G-module. Since P is a pro-p-group, every non-trivial orbit of the P -action

on W must have cardinality divisible by p. However, the cardinality of W is itself divisible

by p. Hence, |WP | 6= 1, and thus WP = W . �

Definition 2.4. Let F be a number field, let v be a place of F , and let kv = OF /v be the

residue field at v.

(1) A Serre weight is an irreducible Fp-representation of GL2(OF /p).
(2) A local Serre weight at v is an irreducible Fp-representation of GL2(kv).

Since GL2(OF /p) is a finite group, there are only finitely many Serre weights for any

number field F . Moreover, suppose that the ideal pOF decomposes into prime factors as

pOF = pe11 pe22 · · · perr . Then by the Chinese remainder theorem, GL2(OF /p) = GL2(OF /pe11 )×
· · ·×GL2(OF /perr ). For each 1 ≤ i ≤ r, let ki denote the residue field OF /pi. Since the kernel

of the natural projection

GL2(OF /p)→ GL2(k1)× · · · ×GL2(kr)

is a p-group, all Serre weights factor through this projection by Proposition 2.3. It follows

that all Serre weights have the form

σ =
⊗
v|p

σv,

where σv is a local Serre weight at v. The representation theory of GL2 of a finite field is well

known [27], and the distinct local Serre weights at v are precisely the following:

σv =
⊗

τ :kv ↪→Fp

detwτ ⊗(Symrτk2
v ⊗kv ,τ Fp).

Here, k2
v is the standard action of GL2(kv) on a two-dimensional vector space over kv,

whereas 0 ≤ rτ ≤ p − 1 for all τ and 0 ≤ wτ ≤ p − 1 for all τ , with the stipulation that the

wτ are not all p− 1.

What is the connection between these Serre weights and the modularity of Galois represen-

tations? Observe, first of all, that if F = Q, then the Serre weights are just detw⊗SymrF2
p,

where 0 ≤ r ≤ p − 1 and 0 ≤ w ≤ p − 2. Let ρ : GQ → GL2(Fp) be a mod p Galois rep-

resentation, and let T be the Hecke algebra generated over Z by the Hecke operators Tl for

l - pN(ρ). Define the maximal ideal mρ ⊂ T to be the kernel of the map

T → Fp
Tl 7→ trρ(Frobl).

The following was observed by Ash and Stevens [2].

Proposition 2.5. Let k ≥ 2. A Galois representation ρ : GQ → GL2(Fp) is modular of level

N and weight k if and only if H1(Γ1(N), Symk−2F2
p)mρ 6= 0.
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We remark that by Theorem 3.4 of [18], any collection of eigenvalues of T for which there

exists an eigenform of some weight has an eigenform of weight at most p+ 1. Thus we do not

lose generality by concentrating on forms associated to Serre weights. The twist by a power

of the determinant that can occur in the Serre weight corresponds to Nebentypus.

2.3. Modularity. Inspired by the observations above, we will formulate a new definition of

modularity. We use quaternionic Shimura curves in place of modular curves.

Recall that F is our fixed totally real field and that d = [F : Q]. Let B/F be a quaternion

algebra that splits at exactly one real place and at all places above p (note that we make no

conditions at places away from p, so there are no parity issues). In other words, we are able

to fix isomorphisms

B ⊗ R ' M2(R)×Hd−1

B ⊗Qp ' M2(F ⊗Qp).

Denote by A the adeles of Q, and if S is a finite set of places of Q then we set AS to be

the adeles away from S. Define the group G = ResF/QB
∗, and let U ⊂ G(A∞) be an open

compact subgroup of the form U = Up × Up, where Up ⊂ G(A∞,p) and

Up = ker

∏
v|p

GL2(OFv)→
∏
v|p

GL2(kv)

 .

Then the Shimura curve

MU (C) = G(Q)\(G(A∞)× (C− R))/U

has a model over F . Set V ⊂ G(A∞) to be the following open compact subgroup:

V =

∏
v|p

GL2(OFv)

× Up.
It follows from a simple modification of an argument of Carayol [16] that if Up is sufficiently

small (see [46] for the precise definition of “sufficiently small”) then the natural map MU →
MV is a Galois cover of Shimura curves with Galois group V/U '

∏
v|p GL2(kv).

Definition 2.6. Let F be a totally real field, let σ be a Serre weight, and let ρ : GF →
GL2(Fp) be a mod p Galois representation. We say that ρ is modular of weight σ if there exist

a quaternion algebra B/F and an open compact subgroup U ⊂ G(A∞) as above such that

ρ ⊂ (Pic0(MU )[p]⊗ σ)
∏
v|p GL2(kv). (1)

The reader is referred to the introduction of [14] and to Propositions 2.5 and 2.10 of the

same paper for a discussion of why the naive notion of modularity (a Galois representation is

modular if it arises from a Hilbert modular form of weight (k1, . . . , kd)) is insufficient and of

the connection between this naive modularity and the notion of being modular of a certain

Serre weight.
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Remark 2.7. It is not hard to show, using the Eichler-Shimura relation, that the condition

(1) is equivalent to the following:

ρ∨ = Hom(ρ,Fp) ⊂ H1
ét(MV ⊗Q,Lσ),

where Lσ is the mod p local system associated to σ. While this fact is well-known, the author

does not know of a clear proof in the literature. See Proposition 2.6 of [46].

Remark 2.8. The reader may wonder why we assume throughout that F is a totally real field.

Why do we not work with arbitrary number fields? This question is strengthened by the fact

that the proofs of many of the results about Galois representations ρ : GF → GL2(Fp) that

are described below do not use global information about ρ, but only local information about

the restrictions of ρ to the decomposition subgroups at various places. It is very difficult

to study modular Galois representations over arbitrary number fields F because of the lack

of nice algebraic varieties over F that store automorphic data and in whose cohomology we

could look for our Galois representations. The theory of Shimura varieties over totally real

fields has no good analogue over general number fields. A number of mathematicians have

studied the modularity for quadratic imaginary fields: see, for example, [28], [57], and [6]. In

this case one can translate the problem to Siegel modular surfaces. See [7] and the end of [15]

for modularity lifting theorems in the quadratic imaginary case.

2.4. Serre’s weight conjecture. For every place v of F dividing p, denote by kv the corre-

sponding residue field and let its cardinality be qv = pfv . Recall that GFv can be embedded

non-canonically into GF as follows. For every finite extension L/F , we choose a place vL of L

such that vL|v and such that if L ⊂ L′, then vL′ |vL. Now let Gv = {α ∈ GF : ∀L/F, α(vL) =

vL}. This Gv is called a decomposition subgroup at v, and it is easy to show that Gv ' GFv .
If we replace the system {vL}L by a different compatible system of places, we will get a sub-

group conjugate to Gv. Inside Gv, we have the inertia subgroup Iv consisting of all α ∈ Gv
such that for each L/F , the induced automorphism of OL/vL is trivial. The wild inertia Pv is

the pro-p-Sylow subgroup of Iv. Note that the isomorphism Gv ' GFv induces isomorphisms

Iv ' Gal(Qp/F
nr
v ) and Pv ' Gal(Qp/F

tr
v ), where Fnrv and F trv are the maximal unramified

and maximal tamely ramified extensions of Fv, respectively. In particular, since F trv is a Galois

extension of Fv, we see that Pv is a normal subgroup of Gv. We have an exact sequence

1→ Iv → Gv → Gal(Fp/kv)→ 1. (2)

Now, let r ≥ 1 and consider an embedding of fields τ : Fpr ↪→ Fp. Fix a uniformizer

πv ∈ OFv and define ψτ : Iv → F∗p to be the following composition of homomorphisms:

Iv ' Gal(Qp/F
nr
v )→ Gal(Fnrv ( pr−1

√
πv)/F

nr
v ) ' F∗pr

τ→ F∗p.

Let ρ : GF → GL2(Fp) be a mod p Galois representation. Then Pv acts trivially on (ρ|Gv)
ss

by Proposition 2.3. It follows that ((ρ|Gv)
ss)|Iv factors through a representation of the abelian

group Iv/Pv and thus is a sum of characters ϕ⊕ϕ′. If Frobv is a lift to Gv via (2) of the map

x 7→ xqv , which is a topological generator of Gal(Fp/kv), then Frobv acts on ((ρ|Gv)
ss)|Iv by

conjugation. Therefore, {ϕ,ϕ′} = {(ϕ)qv , (ϕ′)qv}. Let [k′v : kv] = 2. We have two possibilities:
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(1) If ρ|Gv is reducible, then ρ|Iv ∼
(
ϕ ∗
0 ϕ′

)
, where ϕ and ϕ′ each factor through kv.

(2) If ρ|Gv is irreducible, then ρ|Iv ∼
(
ϕ 0

0 ϕ′

)
, where ϕ and ϕ′ factor through (k′v)

∗

and we have ϕ′ = ϕqv and ϕ = (ϕ′)qv .

We are finally ready to state Serre’s conjecture. Given a mod p Galois representation

ρ : GF → GL2(Fp), our aim is to define a set W (ρ) of Serre weights and then conjecture:

Conjecture 2.9 (Strong Serre conjecture). If ρ is continuous, irreducible, and totally odd,

then it is modular. Moreover, if σ is a Serre weight, then ρ is modular of weight σ if and only

if σ ∈W (ρ).

A crucial property of the set W (ρ) is that it is defined locally. This means that for each

place v|p we will specify a set Wv(ρ) of local Serre weights at v (recall Definition 2.4) and

then define

W (ρ) =

σ =
⊗
v|p

σv : ∀v|p, σv ∈Wv(ρ)

 . (3)

Given a place v|p, let ev be the ramification index of v|p, so that [Fv : Qp] = evfv. Let Sv
be the collection of all field embeddings kv ↪→ Fp. The definition of Wv(ρ) involves several

cases, corresponding to the cases above.

(1) If ρ|Gv is reducible and semisimple (i.e. the direct sum of two one-dimensional repre-

sentations) then a local Serre weight at v

σv =
⊗
τ∈Sv

(
detwτ ⊗Symrτk2

v ⊗kv ,τ Fp
)

(4)

is contained in Wv(ρ) if and only if there exists a subset A ⊂ Sv and an integer

0 ≤ δτ ≤ ev − 1 for each τ ∈ Sv, such that

ρ|Iv ∼

( ∏
τ∈A ψ

wτ+rτ+1+δτ
τ

∏
τ 6∈A ψ

wτ+ev−1−δτ
τ 0

0
∏
τ∈A ψ

wτ+ev−1−δτ
τ

∏
τ 6∈A ψ

wτ+rτ+1+δτ
τ

)
.

(5)

(2) If ρ|Gv is irreducible, then σv as in (4) is contained in Wv(ρ) if and only if for each

τ ∈ Sv there exists an integer 0 ≤ δτ ≤ ev − 1 and a lift τ̃ : k′v ↪→ Fp of τ (recall that

k′v is a quadratic extension of kv) such that

ρ|Iv ∼
(
ϕ 0

0 ϕqv

)
,

where

ϕ =
∏
τ∈Sv

ψ
(qv+1)wτ+rτ+1+δτ+qv(ev−1−δτ )
τ̃ . (6)

(3) If ρ|Gv is indecomposable, i.e. reducible but not semisimple, then

ρ|Gv ∼
(
ϕ ∗
0 ϕ′

)
,
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where ∗ corresponds to an element cρ ∈ Ext1(ϕ′, ϕ) ' H1(Gv, ϕ(ϕ′)−1). For each

local Serre weight σv and each subset A ⊂ Sv one defines a subspace LA,σv ⊂
H1(Gv, ϕ(ϕ′)−1). The definition of LA,σv is intricate, and we omit it here. Then

a local Serre weight as in (4) is contained in Wv(ρ) if and only if there exist a subset

A ⊂ Sv and an integer 0 ≤ δτ ≤ ev − 1 for each τ ∈ Sv such that ((ρ|Gv)
ss)|Iv has the

form of (5) and in addition cρ ∈ LA,σv .
As we mentioned above, this conjecture was first stated in the case of F = Q by Serre

several decades ago, in a slightly different language. We will now indicate how to extract the

minimal weight k(ρ) from the conjecture formulated above. It follows from Proposition 2.5

and the definition of modularity that ρ arises from a modular form of weight 2 ≤ k ≤ p+1 (and

trivial Nebentypus) precisely when it is modular of the Serre weight Symk−2F2
p. Furthermore,

it is easily shown by an argument with Eisenstein ideals that, for arbitrary k ≥ 2, we have

H1(Γ1(N), Symk−2F2
p)mρ 6= 0 if and only if H1(Γ1(N),W )mρ 6= 0 for some Jordan-Hölder

constituent W of Symk−2Fp. Thus, the minimal weight k(ρ) conjectured by Serre is just the

minimal k ≥ 2 such that ρ is modular (in the sense of Conjecture 2.9) of some Jordan-Hölder

constituent of Symk−2F2
p. This k(ρ) is easily computed using the following decomposition.

Lemma 2.10. Let m > p− 1. Then the following holds, where “ss” denotes semisimplifica-

tion:

(SymmF2
p)
ss = (det⊗Symm−p−1F2

p)
ss ⊕ SymrF2

p ⊕ detr ⊗Symp−1−rF2
p,

where r is the unique integer in the range 0 ≤ r ≤ p− 2 such that r ≡ m modulo p− 1.

The first generalization of Serre’s conjecture beyond the original case of F = Q, to the

case of totally real fields F in which p is unramified, was by Buzzard, Diamond, and Jarvis

[14] and circulated for nearly a decade before their paper appeared in print. A conjecture for

arbitrary totally real fields F but semisimple ρ|Gv (i.e. the first two of the three cases above)

was made by the author; see [45], Theorems 2.4 and 2.5. At around the same time, Herzig

[31] made a conjecture for n-dimensional representations ρ : GQ → GLn(Fp) for arbitrary n,

under the assumption that ρ|Gp is semisimple. These conjectures were later restated by other

authors [3] [21] to cover arbitrary ρ at the cost of becoming less explicit: if σ is a local Serre

weight at v|p, then σ ∈Wv(ρ) is conjectured to be equivalent to the existence of a p-adic lift

of ρ with some specified local properties. Such opacity appears already in the indecomposable

case of the conjecture of [14], in the form of the spaces LA,σv .

2.5. The level in Serre’s conjecture. Before proceeding, we will say a few words about

the level in Serre’s conjecture. For this, the notion of the Artin conductor of a Galois rep-

resentation is crucial. Roughly speaking, the Artin conductor n(ρ) of ρ : GF → GL2(Fp) is

an ideal n(ρ) =
∏
v v

av of OF , where v runs over the finite places of F and av measures the

ramification of ρ at v. If ρ is unramified at v, i.e. if Iv ⊂ ker ρ, then av = 0. Otherwise, the

exponent av reflects how far down the upper ramification filtration of Iv one has to go to find

a subgroup contained in ker ρ. More precisely, let L/F be a finite Galois extension such that

ρ factors through Gal(L/F ); this exists because ρ is continuous and GF is compact, hence ρ

has finite image. if v - p, then let vL be a place of L lying above v, and for each i ≥ 0 let
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Gi ⊂ GvL ' Gal(LvL/LvL) be the i-th ramification subgroup; see, for instance, Chapter IV

of [51] for the definition. If Vρ is a two-dimensional Fp-vector space on which ρ acts, then we

define

av =

∞∑
i=0

1

[IvL : Gi]
dimFp(Vρ/V

Gi
ρ ),

where V Gi
ρ is the subspace of Gi-invariants. More details about the Artin conductor may be

found in Chapter VI of [51].

When F = Q, any modular Galois representation ρ : GQ → GL2(Fp) arises from a modular

form of weight N that is prime to p, and Serre specified a minimal such weight N(ρ): this is

just the prime-to-p part of the Artin conductor of ρ. If F is an arbitrary totally real field,

we are no longer so lucky. We can no longer expect ρ to always arise in level prime to p (this

would correspond to Up =
∏
v|p GL2(OFv) in Section 2.3); see the introduction of [14] for a

discussion of why not. However, the prime-to-p part of the level may conjecturally always be

taken to be the prime-to-p part of n(ρ), which means that we may take Up =
∏
v-p U1(vav),

where the group U1(vav) ⊂ GL2(OFv) consists of all matrices

(
a b

c d

)
∈ GL2(OFv) such

that a− 1 ∈ vav and c ∈ vav .

3. Weak Serre implies strong Serre

The “weak” version of Serre’s modularity conjecture (Conjecture 2.2) is actually a very

strong statement. It has been proved only in the case F = Q. This was achieved by Khare,

Wintenberger, and Kisin [36], [37], [39], and we will sketch some of their methods below. As

we will see at the end of these notes, some of these methods fail crucially whenever F is a

totally real field with [F : Q] > 1, so that a major new idea is needed for any substantial

further progress on the conjecture.

In the meantime, much research in the area has focused on proving, in various settings, that

the weak version of Serre’s conjecture (Conjecture 2.2) implies the strong version (Conjecture

2.9), in other words that if ρ is modular, then it is modular of precisely the predicted Serre

weights. In the case F = Q, this fact has essentially been known since the late 1970’s except

for a few cases where p = 2 and was an important input in the proof of Serre’s conjecture

(the stubborn cases with p = 2 were also settled by Khare, Wintenberger, and Kisin’s work).

It was proved by Deligne for ρ|Gp reducible and by Fontaine for ρ|Gp irreducible. Fontaine’s

work was never published, and a (somewhat different) proof of the theorem first appeared in

print in [18].

We will now mention some of the “weak Serre implies strong Serre” theorems that have

been proved in recent years. The conjecture of [14], for F in which p is unramified, was

proved by Gee [23] for most Serre weights by deformation-theoretic methods; see also [46] for

a more geometric proof of most cases of one direction of this conjecture for locally irreducible

ρ. We will say more about the methods of these papers in the remainder of this section. The

remaining cases of the Buzzard-Diamond-Jarvis conjecture were attacked in a series of papers

by Gee and coauthors, until it was finally proved completely in [24]. The results of [46] were
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extended in [45] to cases where p ramifies in F . Moreover, the conjecture of [45] was proved,

for most cases where p is totally ramified in F , by Gee and Savitt [26]. More cases in the

related, but not equivalent, unitary setting were resolved in [25]. Some non-totally ramified

cases with e = f = 2 were addressed by R. Smith in his Ph.D. thesis at the University of

Arizona, but it seems that new ideas are needed to make substantial further progress.

3.1. A sketch of Gee’s argument. The claim that weak Serre implies strong Serre consists,

of course, of two claims in opposite directions:

(1) If ρ is modular of weight σ, then σ ∈W (ρ).

(2) If ρ is modular of some weight and σ ∈W (ρ), then ρ is modular of weight σ.

The most successful method for proving “weak Serre implies strong Serre” has been that

of relating the modularity of ρ to the existence of lifts of ρ with some specific local properties

and then using p-adic Hodge theory to investigate the existence of such lifts.

An important breakthrough was Gee’s paper [23], which proved the following result. Its

statement involves the following definition: a local Serre weight at v is said to be regular if

it is of the form (4) with 1 ≤ rτ ≤ p− 3 for all τ ∈ Sv. A Serre weight σ =
⊗

v|p σv is called

regular if all the σv are regular.

Theorem 3.1. Suppose that p ≥ 5 is unramified in the totally real field F , that ρ : GF →
GL2(Fp) is modular of some Serre weight, and that ρ|GF (ζp)

is irreducible. Suppose that σ is

a regular Serre weight. If ρ is modular of weight σ, then σ ∈W (ρ). Conversely, if σ ∈W (ρ)

and some further technical conditions are satisfied at places v|p where ρ|Gv is reducible and

σv arises from A = Sv or A = ∅ in the recipe of Section 2.4, then ρ is modular of weight σ.

We will give a very brief sketch of part of the argument of [23] to illustrate the method;

the reader is referred to that paper (and the papers cited in it!) for further details. It

should be noted that Gee works with a different notion of modularity than the one given

above; he uses definite quaternion algebras, rather than indefinite ones. It is not possible

to translate theorems directly from one setting to the other, but his local arguments can be

translated. In this section, we will assume that p is unramified in the totally real field F . Let

ρ : GF → GL2(Fp) be a continuous, irreducible, and totally odd mod p Galois representation.

Recall that in Section 2.4 we defined a set Wv(ρ) of local Serre weights at v for each v|p.
Let v|p; for the purposes of this section, we will say that a p-adic representation ηv of

GL2(kv) is good if it is either an irreducible principal series or supercuspidal; in other words,

ηv is any irreducible p-adic representation of GL2(kv) that is not one-dimensional or special.

We regard ηv as a representation of the group GL2(OFv) via the obvious inflation. Then ηv
has an associated inertial type τv, namely a p-adic representation of Iv with the property that

for any irreducible p-adic representation π of GL2(Fv), we have ηv ⊂ π|GL2(OFv ) if and only if

LLC(π)|Iv ' τv. Here LLC(π) is the Weil-Deligne representation associated to π by the local

Langlands correspondence. See Henniart’s appendix to [11] for an exposition of the theory of

types for GL2.

Proposition 3.2 ([23], Lemma 2.1.4). Let ρ be as above, and for each v|p let ηv be a good

representation as above. Then ρ is modular of some Serre weight σ ∈ JH(
⊗

v|p(ηv⊗Fp)) if and
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only if ρ has a modular p-adic lift ρ : GF → GL2(Qp) such that for each v|p, the restriction

ρ|Gv is potentially Barsotti-Tate (i.e. potentially crystalline with Hodge-Tate weights (0, 1))

and WD(ρ|Gv)|Iv = τv.

Here, and subsequently, we write JH(V ) for the set of Jordan-Hölder constituents of a

representation V , whereas WD(ρ|Gv) denotes the Weil-Deligne representation corresponding

to the local Galois representation ρ|Gv . The reader is referred to the classic article [56] for

the correspondence between Galois and Weil-Deligne representations.

Suppose that we know how to prove the first of the two claims at the beginning of this

section, namely that if ρ is modular of weight σ, then σ ∈ W (ρ). Assuming that, here is

a strategy for proving the second claim. Let σ ∈ W (ρ) be a Serre weight. If it is regular,

then for each v|p there exists a good ηv as above such that JH(⊗v|p(ηv ⊗ Fp)) ∩W (ρ) = {σ}.
Then by Proposition 3.2 it suffices to find a modular lift ρ with the properties specified in

the statement of that proposition.

The most daunting aspect of coming up with a lift ρ of ρ that satisfies the conditions

of Proposition 3.2 is clearly that of showing that the ρ we have constructed is modular.

Fortunately, Gee’s adaption of a modularity lifting theorem of Kisin comes to the rescue.

This is the first of many close connections that we will see in these lectures between Serre’s

modularity conjecture and modularity lifting theorems.

Proposition 3.3. Suppose that the hypotheses of Theorem 3.1 hold and that ρ : GF →
GL2(Qp) is a lift of ρ such that ρ|Gv is potentially Barsotti-Tate and WD(ρ|Gv)|Iv = τv for

each v|p. Suppose that there exists a cuspidal automorphic representation π of GL2(AF ) such

that for every v|p, the local Galois representation ρπ,v is potentially ordinary if and only if

ρ|Gv is potentially ordinary. Then ρ is modular.

Note that the hypothesis on ρ|GF (ζp)
in the statement of Theorem 3.1 is common in mod-

ularity lifting theorems à la Kisin, and this is the point in the proof where it is necessary.

Now we need to construct a lift ρ satisfying the conditions of Proposition 3.3. The theory

of Breuil modules allows us to translate local conditions on Galois representations into linear-

algebraic data.

Let k be a finite field of characteristic p > 2, let W (k) be the associated ring of Witt

vectors, and let K0 = W (k)[1/p] be its fraction field. Let K/K0 be a totally tamely ramified

Galois extension of degree e. Let B ⊂ K0 be a subfield such that there exists a uniformizer

π ∈ OK satisfying πe ∈ B. Choose such a π. Let 2 ≤ k ≤ p − 1 be an integer; this

conflict of notation is standard and will produce no confusion. Let E/Fp be a finite exten-

sion. The category BrModk−1
dd,B of Breuil modules with descent data has as objects quintuples

(M,Mk−1, ϕk−1, N, ĝ) such that:

(1) M is a finitely generated (k ⊗Fp E)[u]/uep-module that is free over k[u]/uep.

(2) Mk−1 is a submodule such that ue(k−1)M ⊂Mk−1.

(3) ϕk−1 : Mk−1 → M is an E-linear and Frobenius-semilinear homomorphism whose

image generates M as a (k ⊗Fp E)[u]/uep-module. Frobenius-semilinear in this case

means that if a ∈ k[u]/uep and m ∈Mk−1, then ϕk−1(am) = apϕk−1(m).

(4) N : M → uM is a (k ⊗Fp E)-linear map satisfying
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(a) N(um) = uN(m)− um for all m ∈M .

(b) ueN(Mk−1) ⊂Mk−1.

(c) ϕk−1(ueN(m)) = −πe

p N(ϕk−1(m)) for all m ∈Mk−1.

(5) For each g ∈ Gal(K/B), there is an additive bijection ĝ : M →M such that

(a) Each ĝ commutes with, ϕk−1, M , and the E-action.

(b) 1̂ is the identity map, where 1 ∈ Gal(K/B) is the identity automorphism.

(c) ĝ ◦ ĥ = ĝ ◦ h for all g, h ∈ Gal(K/B).

(d) ĝ(auim) = g(a)((g(π)/π)i ⊗ 1)uiĝ(m) for all a ∈ k⊗Fp E, m ∈M , and i ≥ 0. To

make sense of g(a), note that k is the residue field of K0, hence of K, and so is

acted on by Gal(K/B). We let Gal(K/B) act trivially on the second component

of k ⊗Fp E.

The connection between Breuil modules and potentially Barsotti-Tate Galois representa-

tions is evidenced, for instance, by the fact that the category BrMod1
dd,B is equivalent to the

category of finite flat group schemes over OK with an action of E and descent data to B. Gee

proves that the existence of a lift ρ which is potentially Barsotti-Tate at v of inertial type τv
is equivalent to the existence of a Breuil module satisfying certain conditions. As we see from

the definition above, Breuil modules with descent data are complicated objects but are very

explicit, and one constructs the needed Breuil module by hand.

The proof for arbitrary (i.e. not necessarily regular) Serre weights follows the same lines,

but the theory of Breuil modules, which itself is an extension of Fontaine-Laffaille theory, is

not powerful enough. Here one uses Liu’s theory of Kisin modules.

3.2. Modular weights are predicted ones: some algebraic geometry. In this section

we will sketch how to prove that if ρ is modular of a Serre weight σ, then σ ∈W (ρ). In order to

illustrate the variety of methods applicable to this problem, we will give an algebraic-geometry

argument following [46] and [45]. This method was used to obtain the earliest results in this

direction, but it has turned out to be less effective than the deformation-theoretic and p-adic

Hodge-theoretic techniques of which a flavor was given in the previous section. The reader

may, of course, find further details in [46].

In this section we will not impose such severe limitations on the ramification of p in the

totally real field F , but we will suppose that ρ|Gv is irreducible for all v|p. For each v|p, let

ev be the ramification index of Fv/Qp. Let σ =
⊗

v|p σv be a Serre weight such that for each

v and each τ ∈ Sv we have 0 ≤ rτ ≤ p − ev − 1 (so in particular we are assuming here that

ev ≤ p− 1).

Now we will recall some notions from Sections 2.2 and 2.3. Assume that ρ : GF → GL2(Fp)
is modular of weight σ. By definition, this implies the existence of a quaternion algebra B/F ,

giving rise to an algebraic group G, and an open compact subgroup V =
(∏

v|p GL2(OFv)
)
×

Up ⊂ G(A∞) such that H1
ét(MV ⊗ Q,Lσ)mρ 6= 0. For each v|p, let U bal1 (v) ⊂ GL2(OFv) be

the subgroup of matrices whose reductions modulo v are unipotent upper triangular, i.e. of
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matrices that are congruent to

(
1 ∗
0 1

)
modulo v. Consider the open compact subgroup

U bal1 (p) =

∏
v|p

U bal1 (v)

× Up ⊂ G(A∞).

Fix a place v|p. Let D = W (kv) be a ring of Witt vectors, let K = Fnrv be the fraction field

of D, let K ′ = K( qv−1
√
πv) be a totally tamely ramified extension with Gal(K ′/K) ' k∗v , and

let D′ = OK′ . Then MUbal1 (p) has an integral model over D, which we shall denote MUbal1 (p).

Moreover, MUbal1 (p) ×D D′ has a well-behaved special fiber consisting of two smooth curves

intersecting transversally at finitely many points.

Let j : Gal(K ′/K) → O∗Fv/(1 + v) be the isomorphism induced by the Artin reciprocity

map of local class field theory (normalized so as to send arithmetic Frobenius to uniformizers).

We have natural actions of GL2(OFv) (coming from the p-component of G(A∞)) and of

Gal(K ′/K) on the special fiber of MUbal1 (p) ×D D′, and Carayol ([16], 10.3) shows that the

action of γ ∈ Gal(K ′/K) is equal to that of

(
j(γ)−1 0

0 1

)
and

(
1 0

0 j(γ)−1

)
, respectively,

on the two components of the special fiber.

Recall that we are assuming that ρ is modular of a given Serre weight σ. Let B(kv) ⊂
GL2(kv) be the Borel subgroup of upper triangular matrices, and let θ : B(kv) → F∗p be a

character such that σv ∈ JH(Ind
GL2(kv)
B(kv) θ). Let C be the Néron model over D′ of the curve

Pic0(MUbal1 (p)) × K ′. Then C[p∞] is a p-divisible group, and the reduction C[p∞] ⊗ T/mρ

contains a finite piece Gθ on which the diagonal matrices in GL2(OFv) act via the character

θ. By the main result of [9], Gθ[mρ]K is a direct sum of a finite number of copies of ρ. As in

Section 2.4 above, ρ|Iv is a direct sum of two characters, ϕ and ϕ′, that satisfy ϕqv = ϕ′ and

(ϕ′)qv = ϕ. We can pick out a subspace H ⊂ Gθ[mρ]K of rank q2
v on which Gal(K/K) ' Iv

acts by the character ϕ.

Let F be a finite field, sufficiently large so that im(ρ|Gv) ⊂ GL2(F) and Fq2v ⊂ F. We will

apply Raynaud’s theory of vector space schemes [44]. An F-vector space scheme over D is a

commutative group scheme W/D carrying an action of F. Let I ⊂ OW be the augmentation

ideal, so that OW = I ⊕ OD. Here OW is the structure sheaf of W . It is easy to see that I
decomposes as follows:

I =
⊕

χ:F∗→D∗
Iχ,

where Iχ is the piece of I on which F acts via the character χ. We see that H is an Fq2v -
vector space scheme, and it satisfies the additional crucial property that each Iχ is a non-zero

invertible sheaf. The vector space scheme H is endowed with two Galois actions:

(1) As we noted before, Gal(K/K) ' Iv acts on H(K) by the character ϕ, which we are

trying to determine.

(2) Gal(K ′/K) ' k∗v acts on the cotangent space cot(HD′ ×D′ Fp). Thanks to Carayol’s

congruences mentioned above, we can express this action explicitly in terms of the

character θ.
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From Raynaud’s work one deduces an explicit relation between these two different Galois

actions. We will not perform the calculations here, but the reader can find them in Section 3

of [45]. At the end we obtain a collection Φ(θ) of characters ϕ that are compatible with the

known action of Gal(K ′/K). It turns out that these are precisely the characters ϕ arising

from mod p Galois representations ρ that are modular of some Serre weight σ′ ⊗ σv, where

σ′ ∈ JH(Ind
GL2(kv)
B(kv) θ) and σv =

⊗
w|p,w 6=v σw, where σw is an arbitrary local Serre weight at

w. Observe that this is the best result that we can hope to obtain at this stage of the proof,

since so far we have only used θ in our calculations and not σv itself.

To get a more precise result, we consider all the characters θ : B(kv) → F∗p such that

σv ∈ JH(Ind
GL2(kv)
B(kv) θ). Clearly all the ϕ associated to ρ that are modular of weight σv ⊗ σv

lie in the intersection
⋂
σv∈JH(Indθ) Φθ. We hope that this intersection will turn out to be

exactly the collection of representations ρ such that σv ∈Wv(ρ). The hope comes true when

σv is of the form (4) with 0 ≤ rτ ≤ p − 1 − ev for all τ ∈ Sv, which is the reason for the

hypothesis to this effect that we made above. The combinatorial issues that prevent this

method from giving us as good a theorem as we would like when rτ does not satisfy the

constraint 0 ≤ rτ ≤ p − 1 − ev are essentially also what prevents the method of [23] from

handling the non-regular Serre weights.

4. The mod p local Langlands correspondence

The Langlands philosophy postulates a deep connection between algebra and analysis and

is one of the main motivations behind modern research on Serre’s modularity conjecture and

its generalizations. In this section we will show a very brief glimmer of the connection between

them. Let n ≥ 1, let F/Qp be a p-adic field, and let E be a field. In very rough terms, we would

like to have a correspondence between certain Galois representations ρ : GF → GLn(E) and

certain representations of GLn(F ) on vector spaces over E; one of the most difficult parts of

this problem is finding the correct definition of “certain.” Often one can attach L-functions to

each of these types of objects, and the L-functions of the objects paired by the correspondence

should match.

In the case of E = C, the correspondence was proved by Harris and Taylor [29] and

Henniart [30], working with Weil-Deligne representations instead of the closely related Galois

representations. If E = Fl, with l 6= p, then considerable progress was made by Vignéras

[60]. However, if E = Fp, then very little is known. In many respects the study of the mod

p local Langlands correspondence is at the stage in its development where the complex local

Langlands correspondence was in the 1970’s: one tries to classify objects on both sides and

pair them up explicitly in a natural way, but no deep underlying theory is yet available.

Moreover, understanding the mod p representation theory of GLn(F ) has turned out to be

remarkably difficult.

In this section, we will use the following notation. We let G = GLn(F ) and consider

the maximal open compact subgroup K = GLn(OF ) and the center Z = Z(G) ' F ∗. Let

π ∈ OF be a uniformizer, and let kF = OF /(π) be the residue field as usual. Let q = pf

be the cardinality of k. Let I ⊂ K be the Iwahori subgroup consisting of matrices that are

upper triangular modulo π, and let I(1) be the pro-p-Sylow subgroup of I. For instance, if
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n = 2 then

I =

{(
a b

c d

)
∈ GL2(OF ) : c ∈ πOF

}
I(1) =

{(
a b

c d

)
∈ GL2(OF ) : c ∈ πOF ; a, d ∈ 1 + πOF

}
.

Let σ be an irreducible Fp-representation of K. By Proposition 2.3, σ factors through the

natural reduction map K → GLn(k), since the kernel of this map is a pro-p group. Therefore,

σ arises from an irreducible Fp-representation of GLn(k) by inflation; these are exactly the

objects that we called local Serre weights above in the case n = 2. Moreover, we can view σ

as a representation of the larger group KZ by decreeing that

(
π 0

0 π

)
acts trivially.

If H ⊂ G is any open subgroup, and τ is an Fp-representation of H, we can consider

the compact induction indGHτ . A model for this representation is given by the space of

functions f : G → Vτ that are locally constant, compactly supported modulo Z, and satisfy

the condition f(hg) = τ(h) · f(g) for every h ∈ H and g ∈ G. Here Vτ is the underlying

Fp-vector space of τ . The action of G is given by (gf)(x) = f(xg) for all g, x ∈ G. Note that

if H is a subgroup of finite index, then local constancy and compact support are automatic

and this is just the usual induction. The endomorphisms of this compact induction were

computed by Barthel and Livné [4] for n = 2. For n ≥ 2, see [48] for an explicit computation

and [33] for a more conceptual argument on the level of algebraic groups.

Proposition 4.1. Let σ be an irreducible Fp-representation of K. The endomorphism algebra

EndG(indGKZσ) is equal to a polynomial ring Fp[T1, . . . , Tn−1], where the Ti are explicitly

defined endomorphisms.

Let W be an irreducible Fp-representation of G with central character, i.e. such that the

elements of Z act by scalars. Twisting by an unramified character, we may assume that(
π 0

0 π

)
acts trivially. If σ ⊂ W|K is a K-submodule of G, then by Frobenius reciprocity

we obtain a non-zero homomorphism indGKZσ →W of G-modules, which must be a surjection

by the irreducibility of W . We say that W is admissible if the space of invariants WU = {w ∈
W : ∀u ∈ U, uw = w} is finite-dimensional for any open subgroup U ⊂ G; since W is an

Fp-representation this is in fact equivalent to W I(1) being finite-dimensional.

The endomorphism algebra EndG(indGKZσ) is commutative by Proposition 4.1, and it

acts on HomG(indGKZσ,W ) in the obvious way. If W is assumed to be admissible, then

HomG(indGKZσ,W ) ' HomKZ(σ,W|KZ) is finite-dimensional (because σ must contain a non-

zero I(1)-invariant, which must map to an element of W I(1)) and necessarily contains an

eigenvector for the EndG(indGKZσ)-action. We obtain the following result.

Proposition 4.2. Let W be a smooth irreducible Fp[G]-module with central character. As-

sume that W is admissible if n ≥ 3. Let σ be an irreducible Fp[K]-module σ such that

σ ⊂W|K . Then there exist an unramified character χ : F ∗ → F∗p and scalars λ1, . . . , λn−1 ∈ Fp
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such that there exists a surjection of G-modules

(χ ◦ det)⊗ indGKZσ/(T1 − λ1, . . . , Tn−1 − λn−1)indGKZσ �W. (7)

Proof. If W is admissible, then we have sketched out the proof. If n = 2, then Barthel and

Livné (see Theorems 32 and 33 of [4]) obtain this result without assuming admissibility of W

by using the fact that EndG(indGKZσ) has Krull dimension 1. �

For the rest of this section, suppose that n = 2. In this case, the endomorphism al-

gebra EndG(indGKZσ) has a single generator T1, which we will call T . Up to unramified

twist, we know that every irreducible Fp[G]-module with central character is a quotient of

indGKZσ/(T − λ)(indGKZσ) for some σ and some λ ∈ Fp. We say that an irreducible W as

above is supersingular if it is a quotient of some indGKZσ/(T − λ)(indGKZσ). Barthel and

Livné proved a partial classification of the irreducible Fp[G]-modules with central character

as follows. Note that if G = GL2(Qp), then Berger [5] recently showed that all irreducible

Fp[G]-modules have central character, but this is not known even for G = GL2(F ) whenever

F 6= Qp.

Theorem 4.3 (Barthel-Livné). Let σ be an irreducible Fp[K]-module.

(1) If σ has dimension other than 1 or pf (the minimal and maximal dimensions possible)

or if λ 6= ±1, then indGKZσ/(T − λ)(indGKZσ) is irreducible and is isomorphic to the

parabolic induction of a character from the upper triangular Borel subgroup B ⊂ G.

(2) The induction indGB1, where 1 is the trivial character of B, has length two. Its subquo-

tients are a one-dimensional representation det and an infinite-dimensional analogue

of the Steinberg representation, denoted St.

(3) Up to unramified twist, every smooth irreducible Fp[G]-module W with central char-

acter satisfies exactly one of the following statements:

(a) W ' indGKZσ/(T − λ)(indGKZσ), where σ has dimension other than 1 or pf , or

λ 6= ±1.

(b) W ' χ ◦ det for some smooth character χ : F ∗ → F∗p.
(c) W ' (χ ◦ det)⊗ St for some smooth character χ : F ∗ → F∗p.
(d) W is supersingular.

Remark 4.4. The previous theorem classifies all non-supersingular (smooth, with central char-

acter) Fp-representations of GL2(F ) for arbitrary finite extensions F/Qp. Herzig [32] proved

a generalization of this theorem of GLn(F ) for n > 2, in which all smooth admissible rep-

resentations of GLn(F ) with central character are classified in terms of the supersingular

representations of GLm(F ) for m ≤ n. A representation of GLn(F ) is called supersingular if

it is a quotient of indGKZσ/(T1, . . . , Tn−1). Abe [1] further generalized this result to a wider

class of reductive groups.

Let L be a number field and v a place of L such that Lv ' F . If ρ : GF → GL2(Fp) is an

irreducible local Galois representation, let ρ̃ : GL → GL2(Fp) be a global representation such

that ρ̃|Gv ' ρ. Recall that in Conjecture 2.9 we defined a set Wv(ρ̃) of local Serre weights at

v, which in fact depends only on ρ. Thus we can speak of a set W (ρ) of modular local Serre

weights.
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Now suppose that G = GL2(Qp). In this case, the irreducible Fp[K]-modules have the form

σ = detw⊗SymrF2
p with 0 ≤ w ≤ p − 2 and 0 ≤ r ≤ p − 1. We define an involution on the

set of these local Serre weights as follows. For σ as above, define σ′ = detw+r ⊗Symp−1−rF2
p.

Note that (σ′)′ = σ. It is easy to compute from the statement of Conjecture 2.9 that if

ρ : GQp → GL2(Fp) is irreducible, then W (ρ) is necessarily of the form W (ρ) = {σ, σ′}.
Breuil [10] completed the classification of the irreducible Fp-representations of GL2(Qp)

with the following result.

Theorem 4.5 (Breuil). Let G = GL2(Qp). Then for every local Serre weight σ, the G-module

indGKZσ/T (indGKZσ) is irreducible. Moreover, for every σ we have

indGKZσ/T (indGKZσ) ' indGKZσ
′/T (indGKZσ

′) (8)

and these are the only isomorphisms among supersingular Fp[G]-modules.

Remark 4.6. Note that the two operators T appearing in (8) are different objects. The T on

the left-hand side is the generator of the endomorphism algebra of indGKZσ, while the one on

the right-hand side generates the endomorphism algebra of indGKZσ
′.

Proof. Let W = indGKZσ/T (indGKZσ) and let U ⊂ W be an irreducible G-submodule. By ex-

plicit computation, one shows that W I(1) is two-dimensional and that every non-zero element

of W I(1) generates W as a G-module. But U I(1) 6= 0 by Proposition 2.3 and hence U = W .

The isomorphisms of (8) are constructed explicitly, and one shows that

socK(indGKZσ/T (indGKZσ)) ' σ ⊕ σ′, (9)

implying that there are no other isomorphisms. Recall that for a G-module M , the socle

socK(M) is the direct sum of all irreducible K-submodules of M . �

If ρ : GQp → GL2(Fp) is an irreducible local Galois representation, define an Fp-representation

of GL2(Qp) by π(ρ) = indGKZσ/T (indGKZσ), where σ ∈W (ρ). It is immediate from the results

just presented that π(ρ) is well-defined and that this construction provides a bijection between

irreducible Galois representations ρ : GQp → GL2(Fp) and supersingular representations of

GL2(Qp). Note that the following relation is satisfied:

socK(π(ρ)) =
⊕

σ∈W (ρ)

σ. (10)

In the same paper [10], Breuil constructed π(ρ) for semisimple reducible ρ, and eventually

Colmez defined π(ρ) for indecomposable ρ, thereby completing the mod p local Langlands

correspondence for GL2(Qp). These constructions are more complicated than the one pre-

sented above, and we will not give them here, nor shall we argue why these definitions of π(ρ)

are the “correct” ones. However, it is important to note that the property (10) remains true

for all ρ.

If F 6= Qp, then almost nothing is known about the mod p local Langlands correspondence

for GL2(F ), and the statements that are known are almost all negative. For instance, we know

that there cannot be a bijection between irreducible Galois representations ρ : GF → GL2(Fp)
and supersingular representations of GL2(F ) because there are far too many of the latter. The
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condition (10) does not isolate a π(ρ) because, for unramified extensions F/Qp, Breuil and

Paskunas [12] have proved the existence of infinite families of supersingular representations

W satisfying socK(W ) '
⊕

σ∈W (ρ) σ. Moreover, although it is immediate from Zorn’s Lemma

that supersingular representations of GL2(F ) exist, we do not have a single explicit construc-

tion of one; the proof of Breuil and Paskunas uses the theory of diagrams and involves the

taking of injective envelopes, which makes their work very non-explicit. In fact, Schraen [49]

has shown that if F/Qp is quadratic, then no supersingular representation of GL2(F ) is finitely

presented. This makes it difficult to contemplate generalizations of Colmez’s construction.

Let e be the ramification index of F/Qp, and recall that the residue field k of F satisfies

[k : Fp] = f . Let F0 be the maximal unramified subextension of F/Qp, and observe that, since

F and F0 have the same residue field, the Serre weights for F0 are the same as those for F .

If ρ : GF → GL2(Fp) is irreducible, then (see [47]) one defines ef irreducible representations

ρ1, . . . , ρef : GF0 → GL2(Fp) such that one expects

socK(π(ρ)) '
ef⊕
i=1

⊕
σ∈W (ρi)

σ.

The formula above explains the multiplicities of the different constituents of the K-socle of

π(ρ). Ongoing work of Breuil and Diamond aims to specify the K-socles of π(ρ) for reducible

ρ. This section has only scratched the surface of the mod p local Langlands correspondence

and has said almost nothing about current research, but we hope that it has sufficiently

piqued the reader’s interest to consult the literature for more details about the field.

5. Potential modularity and compatible systems

After the digression about mod p local Langlands in the previous section, we return to

our discussion of Serre’s modularity conjecture. In particular, we return to the notation of

Section 2, so that F is now again a totally real number field.

5.1. A wish list. Suppose that we have two mod p Galois representations ρ1 : GF →
GL2(Fp1) and ρ2 : GF → GL2(Fp2), where p1 and p2 are two primes, possibly distinct.

It clearly would be useful to be able to prove statements of the form “if ρ1 is modular and

certain conditions are satisfied, then ρ2 is modular as well.” Such theorems would allow us

to leverage knowledge of Serre’s conjecture in some special cases to prove it for larger classes

of Galois representations.

How can we relate the modularity of two different Galois representations? A crucial idea

is to think about p-adic Galois representations, and to recall that when we first encountered

them, in Prof. Böckle’s lectures, they were constructed in families. Indeed, for a modular

form f , we obtained a representation ρf,l : GQ → GL2(Ql) for each prime l. The ρf,l for

different l were very intimately related.

An important starting point for work on modularity is an axiomatization of this phenom-

enon: the notion of weakly and strongly compatible systems that we saw in Prof. Böckle’s

lectures. A strongly compatible system {ρl : GQ → GL2(Ql)} of Galois representations be-

haves like a family of representations arising from a modular form. In particular, if one
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member of the system is modular, then they all are, and the same is true of their reductions.

This gives us a general strategy for proving the “if ρ1 is modular, then ρ2 is too” theorems

that we wished for at the beginning of this section. Suppose we could find a compatible

system {ρl} such that ρ1 ' ρp1 and ρ2 ' ρp2 . We are assuming that ρ1 is modular. If we

could somehow prove that ρp1 is modular, the compatible system would allow us to conclude

that ρp2 is modular as well, and hence that ρ2 is modular.

Three major ingredients are involved in implementing this strategy. Starting with a repre-

sentation ρ : GQ → GL2(Fp), we have the following wish list:

(1) Find nice lifts ρ : GQ → GL2(Qp) of ρ. “Nice” will mean that ρ satisfies hypotheses

that make the other parts of the wish list available.

(2) Given such a lift ρ, embed it in a compatible system {ρl} such that ρ ' ρp.
(3) Modularity lifting theorems.

5.2. Potential modularity of mod p Galois representations. In this section we will

sketch a proof of the following theorem of Taylor [58].

Proposition 5.1. Let ρ : GQ → GL2(k) be a continuous, irreducible, odd Galois represen-

tation, where k is a finite field of characteristic p. Then there exists a Galois totally real

extension F/Q that is unramified at p and such that ρ|GF is modular.

If ρ has solvable image, then this problem may be handled by the methods of Langlands

and Tunnell, so we will assume that this is not the case. Passing to a suitable totally real

extension F/Q that is unramified at p, we may assume that the determinant of ρ|Gv is the

mod p cyclotomic character for all places v|p of F , and that ρ has the following form at all

v|p:

ρ|Gv ∼
(
εχ−1

v ∗
0 χv

)
,

where ε is the mod p cyclotomic character and χv : Gv → k∗ is a character. Now ρGF looks

like it could be the restriction of an ordinary p-adic representation of Hodge-Tate weights

{0, 1} coming from an abelian variety, and our task is to show that this is indeed the case.

Recall that if A/F is an abelian variety, then for every finite place v of F , the Galois group

GF acts on the torsion A[v], and the reductions of these representations give us a strictly

compatible system {ρA,v}. We are looking for an abelian variety A/F such that ρ|GF ' ρA,v
for some v. Let v′ 6= v be another place of F lying over p. We will cleverly set up a moduli

problem of abelian varieties in such a way that a handy theorem of Morel-Bailly [42], quoted

below, will give us exactly the existence of the A that we need.

Let M/Q be an imaginary quadratic extension and ψ : GM → Q∗p a character. Consider

the moduli problem of triples (A,ϕv, ϕv′) such that A is a Hilbert-Blumenthal abelian variety

(this is an abelian variety carrying an action of the ring of integers OE of a specified totally

real field E and some additional structure such as a Rosati involution and a polarization; we

will not give a precise definition here but only mention that there is a well-developed theory

of moduli problems for these objects, founded by Rapoport in [43]), and the ϕv and ϕv′ are

isomorphisms ϕv : ρ|GF
∼→ ρA,v and ϕv′ : Ind

GQ
GM

ψ
∼→ ρA,v′ . The general theory of Hilbert-

Blumenthal abelian varieties tells us that this moduli problem is representable by some moduli
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space X/Q, and if we knew that this space had a rational point, it would correspond to the

abelian variety A that we are looking for.

Proposition 5.2 (Moret-Bailly). Let K be a number field and S a finite set of places of K.

If X/K is a geometrically irreducible smooth quasi-projective scheme and X(Kv) 6= ∅ for all

v ∈ S, then X(KS) is Zariski dense in X. Here KS/K is the maximal extension of K in

which all v ∈ S split completely.

By choosing E, v, v′, ψ wisely, it can be arranged that the hypotheses of Moret-Bailly’s

theorem are satisfied for K = Q and X/Q the moduli space considered above. In fact,

Moret-Bailly’s result appears to be far stronger than what we need to prove the existence

of a rational point. This gives us the freedom to strengthen Proposition 5.1 by imposing a

number of additional properties on the totally real field F , such as requiring it to be linearly

disjoint from any specified number field. These strengthenings turn out to be essential, as

they allow ρ|GF to satisfy the hypotheses of the modularity lifting theorems that we will call

upon later.

5.3. Deformation theory and modularity lifting results. In the previous section we

laid out the ingredients of the proof of a potential modularity theorem for mod p representa-

tions. Now we want to build on that result to get a potential modularity theorem for p-adic

representations, which will be used in Section 5.4. Suppose that we are given a continuous,

odd, irreducible mod p Galois representation ρ : GQ → GL2(k), as usual. First of all, we want

to find a nice p-adic lift of ρ as in the first item of the wish list of Section 5.1.

Consider the following deformation problem. We want to study deformations ρ : GQ →
GL2(A), where A is a complete local noetherian algebra with residue field k, such that ρ lifts

ρ. In addition, for each prime l we fix an equivalence class τl of representations of the inertia

group Il ' GQnrl , such that all but finitely many of the τl are trivial. Let χp : GQ → Q∗p be a

character; we have χp = ωk−1
p , where ωp is the p-adic cyclotomic character. We require that

det ρ = χp, that τl be the restriction to inertia of the Weil-Deligne representation associated

to ρ|Gl for each l, and that ρ|Gp be crystalline of Hodge-Tate weights {0, k − 1}.
By general deformation theory, this deformation problem is represented by a complete

noetherian local ring RXρ,Q with residue field k. It can be proved with very considerable effort,

using Galois cohomology and the Euler characteristic formula (see [8]), that dimRXρ,Q ≥ 1 (by

the dimension of a ring we mean the Krull dimension). To get our nice lift of ρ, we need to

show that RXρ,Q has a point over an algebra of characteristic zero.

Consider the Hecke algebra T = Zp[Tl : l 6= p], which acts on the space of modular forms

Sk(Γ1(N(ρ)). We get a natural surjection

RXρ,Q � Tmρ (11)

by the universal property of RXρ,Q. On the other hand, if every deformation classified by RXρ,Q is

modular, then the universal deformation must factor through Tmρ and therefore RXρ,Q ' Tmρ .

Proving a modularity lifting theorem, therefore, comes down to proving such an isomorphism,

i.e. an “R = T” theorem. One of the breakthroughs of the Taylor-Wiles method [61] [59] was

the understanding that modularity lifting results could often be reduced to statements about
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ring-theoretic properties of Hecke algebras. For example, if RXρ,Q were an integral domain,

then proving dimRXρ,Q = dim Tmρ would suffice to establish that (11) is an isomorphism, since

the quotient of an integral domain by a non-trivial ideal has strictly lower Krull dimension

than the original ring. In general, Spec RXρ,Q will have more than one irreducible component,

and proving that (11) is an isomorphism often amounts to showing that each component

overlaps the image of Spec Tmρ as well as comparing Krull dimensions.

In fact, we do not know that (11) is an isomorphism. However, we know from Proposition

5.1 that ρ|GF is modular for some totally real fields F . We may consider an analogous

deformation problem to the one studied above, but over F ; it is represented by a deformation

ring RXρ,F . Moreover, if we choose F correctly, then a modularity lifting theorem is known by

work of Diamond [17] and Fujiwara [22]; in that case one can prove that RXρ,F is isomorphic

to a suitable localized Hecke algebra TF .

The map Spec RXρ,Q → Spec RXρ,F corresponding to restriction to the subgroup GF of

representations of GQ is clearly quasi-finite, i.e. has finite fibers. Indeed, GF has finite

index in GQ and it is not hard to see that there are only finitely many ways to extend a

representation of GF to the larger group GQ. Moreover, the Hecke algebra TF is finitely

generated as a Zp-module, since it embeds in the endomorphism algebra of a suitable abelian

variety. This implies that TF /(p) is a finite set, therefore that RXρ,F /(p) is finite, and therefore

that RXρ,Q/(p) is finite, hence has dimension zero. Hence, any prime ideal of RXρ,Q containing

(p) is necessarily maximal.

On the other hand, recall that dimRXρ,Q ≥ 1. This means that there exists a non-maximal

prime ideal P ⊂ RXρ,Q. By the above, we know that P does not contain (p). Since RXρ,Q is

finitely generated over Zp, it follows that the quotient RXρ,Q/P embeds into the ring of integers

OL of a suitable finite extension L/Qp. Now by the universal property of RXρ,Q, the embedding

RXρ,Q/P ↪→ OL corresponds to a p-adic Galois representation ρ : GQ → GL2(OL) lifting ρ.

We have now achieved the first part of the wish list in Section 5.1. In fact, by doing all of

this more carefully we could ensure that the obtained lift ρ has a variety of good properties.

5.4. Constructing compatible systems. In the previous section, we started with a mod

p representation ρ : GQ → GL2(Fp) and found a finite extension L/Qp and a p-adic represen-

tation ρ : GQ → GL2(OL) lifting ρ, thereby fulfilling the first part of the wish list of section

5.1. In this section we will build a compatible system around ρ.

By Taylor’s potential modularity theorem (Proposition 5.1), we know that there is a Galois

totally real field F/Q such that ρ|GF is modular. By the modularity lifting theorems of

Diamond and Fujiwara that were mentioned in the previous section, we know that ρ|GF
is modular as well. Let G = Gal(F/Q). By Brauer’s theorem (see, for instance, chapter

10 of [53]) there exist solvable subgroups Hi ⊂ G, integers ni ∈ Z, and one-dimensional

representations χi of Hi such that

1 =

t∑
i=1

niIndGHiχi, (12)
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in the Grothendieck group of G, where 1 is the trivial representation of G. Note that even

though 1 is a true representation, some of the ni might be negative. This will cause us

problems later. Set Fi to be the fixed field of Hi. Tensoring with ρ, we obtain that

ρ =
t∑
i=1

niInd
GQ
GFi

(ρ|GFi
⊗ χi). (13)

Since Gal(F/Fi) = Hi is solvable, we conclude by Langlands-Tunnell solvable base change

that each ρ|GFi
arises from an automorphic form πi on Fi. Hence we can trivially rewrite (13)

as

ρ = ρp =
t∑
i=1

niInd
GQ
GFi

(ρπi,p ⊗ χi). (14)

Since each ρπi,p comes from an automorphic form and therefore sits in a compatible system

of representations of GFi , it is very tempting to define

ρl =
t∑
i=1

niInd
GQ
GFi

(ρπi,l ⊗ χi) (15)

for arbitrary primes l. In fact, this idea works. If we knew that the ρl were true representations

and not just virtual ones, then the compatible system properties of the {ρπi,l} would easily

imply that {ρl} is a compatible system as well. In fact, it can indeed be checked that the

{ρl} are true representations. This fulfills the second part of the wish list.

6. Proof of Serre’s conjecture

We are finally in a position to give an exceedingly impressionistic sketch of the strategy be-

hind the proof of Serre’s conjecture. For more detail, the reader is referred to Wintenberger’s

excellent expository article [62] and to Khare’s exposition [35], which has somewhat fewer

details but paints the big picture in bold strokes. For simplicity, we will only consider the

level one case of Serre’s conjecture. This means that we start with a Galois representation

ρ : GQ → GL2(Fp) that is continuous, irreducible, odd, and unramified outside p. Recall from

Section 2.5 that the lack of ramification outside p means that the prime-to-p part of the Artin

conductor n(ρ) is trivial, and hence N(ρ) = 1. We aim to prove that ρ is modular.

It is important to note that some special cases of Serre’s conjecture were known well before

Khare’s idea of applying Taylor’s potential modularity results and Kisin’s modularity lifting

techniques to this problem. In the 1970’s Tate used discriminant bounds to prove that there

are no continuous irreducible odd representations ρ : GQ → GL2(F2), and therefore that the

level one case of Serre’s modularity conjecture is vacuously true for p = 2. Serre extended

his argument to p = 3 shortly afterwards, and these two results are essential to the work of

Khare and Wintenberger, since they constitute the base cases of their induction argument.

We note that the level one case of Serre’s conjecture for p = 5 was proved by Brueggeman

[13] contingent on the generalized Riemann hypothesis, and that, with some local hypotheses

at small primes but no restriction on the level, the conjecture was proved for ρ with image

lying in GL2(F7) by Manoharmayum [40] and for ρ with image lying in GL2(F9) by Ellenberg

[20].
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To give a taste of the inductive argument that proves Serre’s conjecture, and to illustrate

its crucial reliance on modularity lifting theorems, we will first flagrantly disregard the current

reality and describe what the proof would look like if modularity lifting technology were more

advanced than it actually is. Assume the following, for the moment:

Dream 6.1. Let ρ : GQ → GL2(Qp) be continuous, irreducible, unramified outside p, and

crystalline at p with Hodge-Tate weights {w, 0} for some w ≤ 2p. Suppose that its reduction

ρ is modular. Then ρ is modular.

This dream follows, of course, from the Fontaine-Mazur conjecture. It was considered to-

tally out of reach when Khare and Wintenberger did their work, but such a modularity lifting

result has since been proved in most cases by Kisin [38]. In fact, since Serre’s conjecture is

now known, his work implies most cases of Fontaine-Mazur for two-dimensional representa-

tions of GQ. In any case, let us assume the dream and then prove Serre’s conjecture in level

one.

Let pn be the n-th prime. We will prove Serre’s conjecture by induction on n. It is known

for p1 = 2 and p2 = 3 by the theorems of Tate and Serre that were mentioned above. Suppose

that it is also known for pn−1. Let ρ : GQ → GL2(Fpn) be continuous, irreducible, odd, and

unramified outside pn. By the methods of Sections 5.3 and 5.4, we can find a lift ρ of ρ that

sits in a compatible system {ρl}, so that ρpn ' ρ. Consider ρpn−1
; it is modular by induction.

Moreover, by the properties of compatible systems, ρpn−1 is unramified outside pn−1 and is

crystalline of Hodge-Tate weight (0, k(ρ)− 1). As we saw at the beginning of these notes, up

to a twist we can assume that k(ρ) ≤ pn ≤ 2pn−1, where the second inequality is Bertrand’s

Postulate. By the Dream, ρpn−1 is modular. Hence ρpn is modular by the compatible system,

and hence ρ is modular and we are done.

The powerful modularity lifting theorem of the Dream can be seen as a fulfillment of the

third part of the wish list of Section 5.1. Even though the Dream is not yet known, the

modularity lifting theorems available to Khare and Wintenberger in 2005 were enough to

prove Serre’s conjecture, albeit with lots of technical work. The modularity lifting theorems

available now, and still more those available then, come with long lists of technical hypotheses,

and one must be very careful to ensure that the liftings of ρ and the compatible systems

obtained from the methods of Sections 5.3 and 5.4 satisfy these. In these notes we have

entirely ignored these technical points, which complicate the work tremendously. However,

at its core the basic idea is the simple one presented here.

We conclude with the unfortunate observation that it does not appear to be possible,

at least not without a major new idea, to generalize the beautiful argument of Khare and

Wintenberger to obtain a proof of the generalizations of Serre’s conjecture to totally real fields

that were incorporated into Conjecture 2.9 above. While all the ingredients of their proof –

potential modularity, construction of lifts, compatible systems, modularity lifting theorems –

are less developed for arbitrary totally real fields than for Q, a more fundamental problem

is that any inductive argument on the places of F would require that enough base cases be

proved first, and we have no idea how to prove them. Recall that Tate and Serre proved (the

level one case of) Serre’s conjecture for p = 2 and p = 3 by showing that it was vacuously

true, i.e. that there were no ρ that were continuous, irreducible, odd, and unramified outside
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p. While analogous non-existence theorems have been proved for some small primes and a

few specific quadratic real fields (see, for instance, [41] and [50]), we know that for general

totally real fields, even quadratic ones, Serre’s conjecture is never vacuously true. Indeed,

for general totally real fields, for all p there exist continuous, irreducible, odd mod p Galois

representations that are unramified outside p; see the introduction to [14] for an example in

the case of F = Q(
√

29). Thus, to get the base case for an induction argument, one would

need to establish a sufficiently large number of non-vacuous cases of Serre’s conjecture, and

it is not clear at all at the present time how to attack this problem. Serre’s modularity

conjecture will likely continue to be an important motivation and source of research problems

for some time to come.
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[6] Tobias Berger and Gergely Harcos. l-adic representations associated to modular forms over imaginary

quadratic fields. Int. Math. Res. Not. IMRN, (23):Art. ID rnm113, 16, 2007.

[7] Tobias Berger and Krzysztof Klosin. An R = T theorem for imaginary quadratic fields. Math. Ann.,

349(3):675–703, 2011.
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