SYSTOLIC LENGTH OF TRIANGULAR MODULAR CURVES

MICHAEL M. SCHEIN AND AMIR SHOAN

ABSTRACT. We present a method for computing upper bounds on the systolic length of
certain Riemann surfaces uniformized by congruence subgroups of hyperbolic triangle
groups, admitting congruence Hurwitz curves as a special case. The uniformizing group
is realized as a Fuchsian group and a convenient finite generating set is computed. The
upper bound is derived from the traces of the generators. Some explicit computations,
including ones for non-arithmetic surfaces, are given.

1. INTRODUCTION

1.1. Overview. This article presents a method for using computations with quaternion
algebras over totally real fields to determine explicit upper bounds for the systolic lengths
of certain Riemann surfaces, namely the Galois-Belyi curves constructed by Clark and
Voight [2]. These are also referred to as triangular modular curves. The most celebrated
members of this family are the congruence Hurwitz curves. We generalize the treatment
in [11] of a family of Riemann surfaces related to the Bolza surface and extend the
methods of [11] to some non-arithmetic surfaces.

Let X be a compact Riemann surface. Our main object of interest, the systolic length
of X, is denoted sys(X) and is the minimal length of a non-contractible closed geodesic,
or systole, of X. Let H be the upper half plane with the usual hyperbolic metric. The
group SLa(R), via its quotient PSLy(R), acts on H by Mobius transformations. Every
hyperbolic Riemann surface arises as a quotient Xr = I'\H, where I' < PSLy(R) is a
discrete subgroup (i.e. a Fuchsian group) acting on H without fixed points. As we will
see in Section 1.2 below, bounding the systolic length sys(Xrt) amounts to finding an
upper bound for the minimal trace of a non-trivial element of I'.

If I is a non-arithmetic Fuchsian group, there is generally no natural construction of
congruence subgroups of I'. However, if I' = A(a,b,c) = (x,y)/(2® = y* = (zy)¢ = 1)
is a hyperbolic triangle group, then Clark and Voight [2] define congruence subgroups
I'(I) QT of finite index, where I runs over ideals of a Dedekind domain associated to T,
and describe the quotient I'/T'(I). If I' = A(2,3,7), then the Riemann surfaces Xp(py are
congruence Hurwitz curves. For all but finitely many triples (a, b, ¢), the group A(a, b, c)
is non-arithmetic.

To estimate sys(Xp( 1)), where I is a hyperbolic triangle group, we compute a finite
set of Schreier generators of I'(1). We then embed I'(I) into PSLa(R) explicitly and
consider the minimum among the traces of the images of the Schreier generators.
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A brief overview of the paper follows. Section 1.2 describes the connection between the
systolic length of Xt and the traces of elements of I'. Section 2 is an exposition of work
by previous authors, whose aim is to present the necessary background material in a form
useful for our applications. Some properties of triangle groups and of their congruence
subgroups are recalled. Proposition 2.2, which restates a result of Takeuchi [37], provides
an embedding ' < O!/{£1}, where O! is the group of elements of reduced norm one in
an explicit order O of an explicit quaternion algebra over a totally real field. The explicit
quaternion order of Proposition 2.5 realizes I' as a Fuchsian group when it is arithmetic.
This construction generalizes ones used, in special cases, in [11, 13] and is useful to us
in non-arithmetic cases as well. Proposition 2.10, using Macbeath’s classification [19]
of subgroups of PSLy(FF,;) and work of Clark and Voight [2], bounds the number of
normal subgroups of I' admitting certain finite quotients. These bounds simplify the
computations of Section 4 in some cases. Section 3 uses recent work of Cosac and
Déria [5] to prove (Theorem 3.1) that sys(Xp(j)) grows at least logarithmically with
respect to the genus of Xp(;) when at least two of a,b,c are odd. Section 4 presents
our method of computation and some examples. In particular, we consider congruence
subgroups for ideals of small norm in the arithmetic triangle groups A(2,3,7), A(2,3,8),
A(2,3,12), A(2,7,7), as well as in the non-arithmetic A(3,3,10). The first two of these
examples were previously considered by Katz, Schaps, and Vishne [12, 13] and by Katz,
Katz, the first author, and Vishne [11], respectively; we recover constructions from those
papers. Our upper bound is equal to the exact value of sys(Xp( 1)) in all cases, among
the examples considered, where this value is known.

1.2. Traces and geodesic lengths. If v € PSLy(R), then the trace tr~ is defined up
to sign, so the absolute value | tr v| makes sense; the same is true for the eigenvalues of .
If |tr~y| > 2, then ~ is called hyperbolic; in this case, a simple calculation shows that -
has no fixed points in the interior of H and two distinct fixed points on the boundary of
H. If the Fuchsian group I' < PSLy(R) is torsion-free, then there is a bijection between
conjugacy classes of hyperbolic elements of I' and closed geodesics of Xt. Indeed, if
~ € I is hyperbolic, the unique geodesic of H connecting the two fixed points of v is
called the axis of ~; clearly it is preserved by the action of . Fix a point P on the axis
of 7. The geodesic of H passing through P and P descends to a closed geodesic d, of
Xr. One checks that this construction is independent of the choice of P and depends
only on the conjugacy class of «. Clearly, any closed geodesic of Xt arises in this way.
Moreover, the length £(8,) of the geodesic &, satisfies e/®)/2 = |\, |, where \, is the
unique eigenvalue of v such that |\, > 1. It follows that

QCoshe(;S'Y) = e/O)/2 L eHON/Z = )| A7 = [ty

Hence, letting Hyp(T") denote the set of hyperbolic elements of ', we have

t
sys(Xr) = min_¢(6,) = min 2arcosh‘r2’y’.

y€Hyp(T) yEHyp(T")

Bounding the systolic length of Xt thus amounts to bounding the traces of hyperbolic
elements of the Fuchsian group I'. In particular, if IV < T, then sys(Xp/) > sys(Xp).
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2. TRIANGLE GROUPS

2.1. Definition. Suppose that a,b,c € Z U {00} satisfy 2 < a, b, c. The triangle group
A(a, b, c) is given by the presentation

(1) Aa,b,¢) = (z,y) /(2" = y* = (xy)° = 1).
The extended triangle group A(a, b, c) is defined as

0=yl = =ayz=—1,(-1)2=1
(2) A(a,b,c) = (z,y,2z,—1)/ ( 1 e Z(A(a,b,0)) ) .
Any permutation of a, b, ¢ in either presentation gives rise to an isomorphic group, so
we make the convention that 2 < a < b < ¢. The triple (a,b, ¢) is classified as spherical,
Euclidean, or hyperbolic if the quantity é + % + % is greater than, equal to, or less than
1, respectively. If (a,b,c) is a hyperbolic triple, then it has been known at least since
the 1930’s [26, §1] that there is an embedding ¢ : A(a, b, c) < SL2(R) determined by
B N G

— Sin a COS a

1 0 ! cos% sin% 1 0
0 t —sinf cos ¥ 0t )’

where t is a root of the quadratic equation
2 9 <coscos 3 tcost
sin 7 sin

~

—~~

<

~—
|

>t+l—0

the roots are real when (a,b,c) is hyperbolic. The induced embedding A(a,b,c) —
PSLy(R) realizes A(a,b,c) as a Fuchsian group. If b < oo, then Takeuchi [36, Propo-
sition 1] showed that any embedding of A(a,b,c) into SLy(R) is conjugate to ¢. In
particular, if I' < SLg(R) satisfies I' ~ A(a, b, ¢), then sys(Xr) depends only on the
triple (a,b,c).

Consider the full triangle group ﬁ(a b, c) generated by reflections across the sides of

T T
a’b’c

(4) Ala,bye) = (7,5,2) /(& =7 = 22 = (#)" = (72)" = (Z@)° = 1).

It is easy to see that A(a,b,c) embeds in A(a,b,c) as the subgroup of index two of
orientation-preserving transformations. An embedding is given by (z, vy, z) — (Zy,yz, ZT).

a triangle with angles It is well-known to have the presentation

2.2. Quaternion algebras. In a series of papers in the 1970’s [34, 35, 36, 37], Takeuchi
determined [36, Theorem 3] with computer assistance that there are precisely 85 triples
(a, b, c) for which A(a, b, ¢) is arithmetic. Moreover, he provided an explicit construction
of orders in quaternion algebras that realize this arithmeticity. In this section, we
give a brief overview of Takeuchi’s work, stated in the explicit form needed for our
computations. As is standard, for a field F' we denote by < > the F- algebra spanned
by {1,4,7,ij}, with multiplication determined by the relations i = z, j2 = y,ij = —ji.

If F is a totally real number field, then this algebra ramifies at an embedding v : F' — R
if and only if v(z) < 0 and v(y) < 0.

Let I' < SLy(R) be any discrete subgroup whose image in PSLy(R) has finite covol-
ume. Let FT be the field generated over Q by the traces of the elements of I'. Under
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the hypotheses above, Fr is a number field; by construction, it is equipped with a dis-
tinguished embedding vy : Fr < R. By Propositions 2 and 3 of [34], the Fp-vector
subspace FT[I'] C M(R) is a quaternion algebra over FT; if the traces of all elements of
I' are algebraic integers, then Op.[I'] is an order of Fr[I'].

We assume henceforth that 7 = (a, b, ¢) is a hyperbolic triple with b < co. If we take
I' = (A(7)) < SLa(R), where ¢ is the embedding of (3), then

Fr=Fr)=Q (cos g,cos %,cos %) .

We denote this field by F;. It is clear from [2, Remark 5.24] that the quaternion algebra
Br = Fr[['] = F,(a(r))[t(A(7))] has the presentations

(5) BT:<4COS2 (’;)—4,5>’

Fr
where s is any element of {a,b,c} and

T T T T T T
5:4(COSQ—+COS2—+COSQ—+2005—cos—cos——1).
a b c a c

Remark 2.1. Observe that 2cos 7 = (2, + (2;11, where (o, is a suitable primitive 2n-th
root of unity. Hence 2cos 7 is an algebraic integer. Consequently, § € Op,; this is the
reason for the factor of 4 in the definition of §. Note that vy(d) > 0 whenever 7 is
hyperbolic.

Moreover, for any m € N observe that cos ™ = T, (cos T), where T (z) € Z[]
is the Chebyshev polynomial of degree m. Similarly, if (m,n) = 1, then cos T can be
expressed as a polynomial in cos ©*. It follows that F. = Q (cos a mg“)
for any mg, my, m. satisfying (mgq,a) = (my, b) = (me,c) = 1. Here, and below, we omit

Mg T

mpyT
, COS —}=, €O

obvious adjustments of statements for the case ¢ = oc.

Proposition 2.2. Consider the elements « = 1-(z) and B = 1-(y) of By, where
x,y € A(1) are as in (2). Then {1,«,5,a8} is an Of,-basis of the order O, =
Op, [l(A(7))] € Br. Moreover, there exist elements i,j € B; providing the presenta-

2(my_
tion B; = <4COS%:)4’6>, for which

T 1.
a = Ccos— + =1
2
3 T COST Cosy +CosT 1
= oS

b2 (cos? (T) — 1) vt 4 (cos? (Z) —1) -

a
Proof. The first claim is established in the discussion preceding [2, Lemma 5.4]. The
second follows easily from [2, Remark 5.24], noting that the third element in the list
given there of elements of B, realizing the presentation above should read (A3, —4)8, +
()\Qa)\gb + 2/\20)511 — ()\%aAQb + AogAoe — 2/\2(,) in the notation of [2] O

Remark 2.3. By construction, the elements «, 8 € B; have reduced norm 1, inducing
embeddings A(7) < (O;)! and A(7) < (O;)!/{£1}; here O is the group of elements
of O, of reduced norm 1. Since vy(d) > 0, the quaternion algebra B, splits at the
distinguished embedding vo. Thus induces an embedding A(r) < (O;)' C (B,)! <
SLa2(R), which we denote &.
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Since the reduced traces of o, 3, and a8 are 2 cos 7, 2 cos 7, and —2 cos 7, respectively,
we verify that O; is integral. Indeed,
m  cosy tcostcost 1 cos T

T 1. cosy
c 2(c082§—1) Z+2‘7+4(c0s2§—1)2‘7'

We collect some facts about the order O;.

Proposition 2.4 ([2, Lemmas 5.4 and 5.5]). The discriminant of O. is the principal
Opr, -ideal generated by §. Let B < O be a prime ideal such that B|5. Then P|2abe.
Moreover, if the triple T = (a, b, c) is not of the form (mk,m(k+1),mk(k+ 1)) for any
m, k € N, then PB|abc.

Even if A(7) is arithmetic, the quaternion algebra B; need not be split at exactly one
infinite place of the totally real field F,. Define the subgroup A®)(7) < A(7) generated
by —1 and by the set {72 : v € A(7)}. This is a normal subgroup satisfying

1 : at least two ofa, b, care odd,
A1) /AP () ~ Z/27 :one of a, b, cis odd,
Z7)27 X ZJ]2Z : a,b,care all even or co.

Now repeat the previous construction for the group I' = t(A®) (7)) < SLy(R). By the
union of [35, Proposition 4] and [36, Proposition 5], the trace field is then

(6) E.=Q (0052 z, cos? E, cos? E, cos * cos - cos E) ,

a b c a b c
which we view as a subfield of R. Let A, denote the quaternion algebra E,[(A®)(7))].
Write Q, for the quaternion order Op, [t(A®)(7))] € A,. An explicit description of A,

and Q. is given by the following analogue of Proposition 2.2.

Proposition 2.5. Consider the elements y1 = 1-1(y?) and y2 = 1-1(2?) of A, where
y,z € A(T) are as in (2). Then {1,v1,7v2, 7172} is an Og, -basis of the order Q, =
Op, [L(AP)(1))] C A.. Moreover, there exist elements i, j € A, realizing the presentation

A~ <16 cos? 3 (cos2 (%) — 1) , 166 cos? 3 cos? z >

E;

and satisfying

= cos27r+i
"= b B
2 cos%’r—|—cos2§cos%ﬂ—i—cos%ﬂ—i—élcosgcos%cosg—1-1_ 1
Y2 = cos— + 5 1+ 5
c 2 (1 — cos? Tﬁ) 4(1 —cos? =L

Proof. All this is stated explicitly in [37, Proposition 2| (where ; and 72 are denoted
72 and ,yg , respectively) except for the expressions for 71 and 7, as linear combinations
of 1,4,7,15. These are obtained by inverting the explicit transformation given in the
proof of [37, Proposition 2| and observing the following identities, where ¢, ca, c3 are

)z'j.
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as in [37]:
2
c1 zitr W(y?) =cos %
2
2 :§tr (z%) =cos %T
1
c3 ==tru(y?2?)=1 — 2 cos? T geoscos TeosE —2cos? L. O
2 b a b c c

It is immediate that tr(Q,) € Op, . Therefore, A(T) is semi-arithmetic [29, Defi-
nition 3]. Takeuchi shows [36, Theorem 1] that A(7) is arithmetic if and only if the
finite-index subgroup A (1) is isomorphic to a finite-index subgroup of G(A., Q;), if
and only if A, ramifies at all infinite places of E; other than the distinguished one.

2.3. Congruence subgroups of triangle groups. As before, let 7 = (a,b,c) be
a hyperbolic triple with b < co. Let J < Op, be an ideal, and let J < Op. be
an ideal such that J N O, = J. Suppose that J is coprime to abc, by which we
mean that J is coprime to ab if ¢ = co. Moreover suppose that J is coprime to the
discriminant of O;; by Proposition 2.4, this is only an additional assumption if (a, b, c) =
(mk, m(k+1), mk(k+1) for some n, k € N. In this setup, Clark and Voight define a finite-
index congruence subgroup A(7;J) < A(7) as the kernel of an explicit homomorphism
U, : A(1) = PSLe(OF./3J) constructed in [2, §5]. If A(1) ~ G(B;,O;), then ¥ is
surjective. The significance of these groups is that if J = p is a prime of E, dividing a
rational prime p (in the case ¢ = oo one must also assume that (a, b, p) is a hyperbolic
triple), then the Riemann surface XZ(T;p) admits a Belyi map XRrp) = P!(C), namely
a non-constant morphism ramified at exactly three points, which is also a Galois cover.

If £ is a finite field and k'/k is the extension of degree two, then the homomor-
phism GLy(k) — PSLo (k') given by g — +g/+v/det g induces an embedding PGLy (k) <
PSLy(k'); note that every element of k is a square in k’. The finite quotient A(7)/A(7;p)
is described explicitly in [2, Theorem 9.1]:

Proposition 2.6 (Clark-Voight). Suppose that 7 = (a,b,c) and the prime p are as
above. Let p be a prime of E; dividing p, and let ky = Op,_/p be its residue field. Then

A(r)/A(r:p) PSLy(ky)  :p splits completely in the extension Fr/E;
T Tip) ~
PGLa(ky) : otherwise.

It is easy to see that F; is contained in the cyclotomic field Q((agpc), Where Cogpe is
a primitive 2abc-th root of unity. Hence F;/Q is an abelian Galois extension. There-
fore E,/Q is also Galois, and the quotient A(7)/A(7;p) is independent, up to iso-
morphism, of the choice of prime ideal p < Opf, dividing a rational prime p. Set
K(7;p) = A(7)/A(73p).

The area of a fundamental domain of A(7;J) is 27 (1 — 2 — 1 — 1) [A(7) : A(r;J)].
By the Gauss-Bonnet theorem, the genus of the Riemann surface XZ( J) is thus

T

[A() :2A<T; )] (1_ 1 % _ 1) ey

(7) Q(XZ(T;J)) =



SYSTOLIC LENGTH OF TRIANGULAR MODULAR CURVES 7

Remark 2.7. We will view K(7;p) = V,(A(7)) as a subgroup of PSLa(Op, /B), where
B is a prime of F; dividing p. From now on we will omit 7 from the notation and write
A and A(p) when this should not cause confusion.

2.4. Normal subgroups of A(7). Let 7 = (a,b,c) as before. We will be interested
below in classifying the normal subgroups H < A(7) satisfying

(8) A(r)/H ~ K(73p).

Let T(7; p) be the set of triples (y1,72,73) € K (7;p)? such that 7§ = 75 = 7§ = 117273 =
e and such that (y1,72,73) = K(7;p). The automorphism group Aut(K(7;p)) acts on
T'(7;p) in the obvious way. Each element (y1,72,73) € T(7;p) gives rise to a normal
subgroup H < A(r) satisfying (8), namely the kernel of the epimorphism v : A(7) —
K (7;p) determined by (z) = 71, %(y) = 2, where z,y € A(7) are generators as in (1).
Clearly two elements in the same orbit of the Aut(K (7;p))-action produce the same
normal subgroup, and every normal subgroup satisfying (8) arises in this way. Thus the
number of normal subgroups satisfying (8) is bounded by |T'(7;p)/Aut(K(7;p))|. This
quantity can be studied by means of the theory of Macbeath [19], as extended by Clark
and Voight [2]. We present here just enough to state the results we will use and refer
the reader to [19] and [2, §6-8] for details.

For any field k, let m : SLa(k) — PSLa(k) denote the natural projection. For any
n € N and any prime power ¢, define x(n, q) to be the number of conjugacy classes of
PSLy(F,) whose elements have order n.

Lemma 2.8. Let F, be a finite field of odd characteristic p, and let n € N be coprime
to p. Then k(n,q) = 0 if ¢> # 1mod 2n. Otherwise,

1 :n € {1,2}
k(n,q) = @ :n > 3odd
@ :n > 4even,

where @ is Euler’s totient function. The common trace of the elements in each conjugacy
class of PSLo(F,) with elements of order n has the form £(C+¢™1), where ¢ is a primitive
n-th root of unity if n is odd, and a primitive 2n-th root of unity if n is even.

Proof. Observe first that if ¢ # 1 mod 2n, then, under our hypotheses, n { [PSLa(F,)|
and hence r(n,q) = 0. Now let v € PSLy(F,) have order n, and let M € 7 !(y) C
SLa(F,). Then M is semisimple, and its eigenvalues are reciprocal primitive 2n-th roots
of unity if n is even and reciprocal primitive n-th or 2n-th roots of unity if n is odd. It
is a simple exercise to count the possible traces, up to sign. Since a semisimple element
of PSLy(F,) is determined up to conjugacy by its trace, this completes the proof. O

Consider a triple t = (t1,t2,t3) € Fg. We will refer to such objects as trace triples.
Let T'(t) be the set of triples (g1, g2, g3) € SLa(F,) such that g1g293 = e and tr g; = t; for
all i € {1,2,3}; note that we do not make any hypothesis here about the orders of the g;
or the subgroup of SLy(F,) generated by them. A fundamental result of Macbeath [19,
Theorem 1] is that T'(t) # @ for all trace triples t. Moreover, Macbeath classified trace
triples as follows. We say that t is commutative if there exists (g1, g2,93) € T(t) such
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that 7({g1, g2, 93)) is an abelian subgroup of PSLy(F,). Commutative trace triples are
easily identified in practice thanks to the following consequence of [19, Corollary 1].

Lemma 2.9 (Macbeath). Let t = (t1,to,t3) € Fg be a trace triple. Then t is commuta-
tive if and only if t2 + t3 + t% —titots —4 = 0.

Let g = (91,92, 93) € SL2(IF4)®. We associate to it the order triple o(g) € N? consisting
of the orders of the elements 7(g1),7(g2), 7(g3) € PSLa(F,), arranged in non-descending
order. A trace triple ¢ is called exceptional if there exists g € T'(¢) such that

o(g) € {(2,2,¢) : c>2}U
{(2,3,3),(2,3,4),(2,3,5),(2,5,5),(3,3,3),(3,3,5),(3,4,4),(3,5,5), (5,5,5) }.

If ¢ is not commutative, then o(g) is constant on all g € T'(t). We say that ¢ is projective
if, for all g € T'(t), the subgroup 7({g1, g2, 93)) < PSLa(IFy) is isomorphic to PSLa(k) or
PGLy (k) for some subfield k C F,. Macbeath [19, Theorem 4| proved that every trace
triple ¢ is commutative, exceptional, or projective.

Recall that the trace of an element of PSLy(F,) is only defined up to sign. Re-
flecting this and following [2, §8], we define a trace triple up to sign to be a triple
+t = (£t1, £to, tt3), where t1,t2,t3 € Fy. A triple (¢),t5,14) € Fg is called a lift of
+t if ¢; = +t; for all i € {1,2,3}, where the signs in each component may be taken
independently. We say that a trace triple up to sign is commutative or exceptional if
it has a lift with the corresponding property. Following the terminology of [2], we say
that £t is partly projective if it has a lift which is projective. Every trace triple up to
signs is commutative, exceptional, or partly projective [2, Lemma 8.9].

Let C = (C4, Cy, C3) be a triple of conjugacy classes of PSLy(F,;). Again following [2],
define X(C) to be the set of triples v = (y1,72,73) € PSL2(Fy)? such that v17273 = e,
that v; € C; for all ¢ € {1,2,3}, and that (y1,72,73) = K(7;p). The natural action
of Aut(K(7;p)) on triples of elements need not preserve ¥(C). However, we may still
define an equivalence relation on X(C) by v ~ 7" if there exists o € Aut(K(7;p)) such
that o(;) = 4/ for all i. Denote the set of equivalence classes by X(C)/Aut(K(7;p)).
Let o(C) be the triple of the common orders of the elements of C, Cs, and C3, arranged
in non-descending order, and let tr C' be the trace triple up to signs associated to C.
Let Fp(tr C) be the subextension of F,/F, generated by the components of tr C.

We are now ready to state a bound for the number of normal subgroups H < A(7) such
that A(7)/H ~ K(7;p); see [27, Theorem 1.6] for an overlapping result. Suppose that
K(7;p) < PSLy(F,) as in Remark 2.7. Let C(7;p) be the set of triples C = (C1, Co, C3)
of conjugacy classes of PSLy(FF,) such that 3(C) N T'(1;p) # @.

Proposition 2.10. Let 7 = (a,b,c), and let p > 2 be a rational prime. Suppose that
for every C € C(1;p) the associated trace triple up to signs tr C is partly projective and
not exceptional, and that it satisfies Fy = F,(tr C). Set Q(7;p) = {o(C) : C € C(7;p)}
and N (r;p) = {H < A(7) : A(1)/H ~ K(1;p)}. Then

NEpl< Y wld el grd.q)+ Y. 2k(d,q) k), q) k(d,q).
(a’ b, "y eQ(T;p) (a’ b, eQ(T;p)
a’=2 a’>2
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Proof. 1t is clear that

N(m:p)| < |T(;p)/Aw(K (m3p)) < > [S(C)/Aut(K (75p))],
Cec(rp)

where the first inequality follows from the discussion at the beginning of this section. The
second inequality need not be an equality since the action of Aut(K (7;p)) on T'(7;p) need
not preserve the sets (C) N T'(7;p). Our hypotheses ensure that [2, Proposition 8.10]
applies; from it we conclude that |X(C)/Aut(K(7;p))| = 1 if o(C) has a component
equal to 2 and |X(C)/Aut(K(7;p))| < 2 otherwise. This completes the proof. O

Remark 2.11. Since a'b/c|abe, it is clear that if p f abe, then the integers k(d’, q), k(V, q),
and (¢, q) appearing on the right-hand side of the conclusion of Proposition 2.10 may
be computed from the formula in Lemma 2.8. We also note that the prime p = 2
has been excluded from the discussion in this section only to streamline the exposition;
analogous results may be obtained in this case by analogous arguments.

3. SEMI-ARITHMETICITY

As mentioned above, only finitely many of the hyperbolic triangle groups A(r) are
arithmetic. However, A(7) is semi-arithmetic for all hyperbolic triples 7 in the sense
of [29, Definition 3]. In this section we apply a recent argument of Cosac and Déria [5,
Theorem 1.5] to obtain, in some cases, a lower bound on sys(XZ(T; J)) in terms of the
genus g(XZ( - J)), which is given explicitly by (7), and an invariant of an explicit quater-
nion algebra. We then discuss earlier work in the arithmetic case, where more precise
bounds are sometimes available.

Recall the quaternion algebra A, of Proposition 2.5. It is defined over the totally
real field E; of (6), which is the invariant trace field of A(7). Let 7, be the number of
infinite places of F, at which A, splits. Takeuchi [35, §3] proved that A(7) is arithmetic
if and only if r, = 1 and that this condition holds for exactly 85 triples 7. Nugent
and Voight [25] later showed that there are finitely many hyperbolic triples 7 satisfying
rr = N for any N € N and provided an algorithm for computing them.

Cohen and Wolfart [4, §2] observed that the triangle group A(7) admits a modu-
lar embedding. This means (cf. [29, Definition 4]) that there is an arithmetic lattice
A < PSLy(R)"", defined over E., a holomorphic map F : H — H'", and embeddings

®,..., P, : A(7) = PSLy(R), extending each of the embeddings E; < R at which A,
splits, such that the map ® = (®1,...,®,) : A(1) — PSLy(R)"" satisfies ®(A(7)) C A
and F(v(z)) = ®(7)(F(2)) for all ¥ € A(7) and z € H. The lattice A is commensurate
with a subgroup of an arithmetic lattice arising from a quaternion algebra, but it need
not in general be contained in such a lattice. More explicitly, Clark and Voight [2,
Proposition 5.13] construct an embedding A(7) — N4 _(Q,)/EX, where Q, C A, is the
order defined in Proposition 2.5; see also [29, Remark 3(ii)].

However, if at least two of the components of the triple 7 are odd, then the fields E, =
F: coincide, as do the quaternion algebras A, = B; and the orders Q. = O;; see (5) and
Proposition 2.2 for the definitions. In this case there is an embedding A(7) — QL/{+1}
as in Remark 2.3, and the congruence subgroups are A(7;.J) = A(7) N QL(J) for all
ideals J <t Op, coprime to 2abc, where QL(J) = {z € QL : # = 1mod JQ,}. Note that
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QL(J) embeds in Q/{41} by our assumptions on J. Then an argument of Cosac and
Déria obtains the following systolic bound.

Theorem 3.1. Let 7 = (a,b,c) be a hyperbolic triple with ¢ < co. Suppose that at least
two of a,b,c are odd. There exists a constant c; such that, for every ideal J < Op,
coprime to 2abc, the following holds:

4
9) sys(Xx(r.)) = 3 log g(Xx(r,p)) — r-

Proof. We follow the proof of [5, Theorem 1.5]. Let J = [];_; p5*, where p1,...,p, are

]

distinct prime ideals of Op_ that are coprime to 2abc. By the proof of [2, Proposition 9.7],

we have
(10) A(r)/A(r;J) ~ | [ PSLa(Op, /p§).
=1

Setting ¢; = N(p;) = |Og, /pi|, we obtain
(11)

o r _ A

A7) Alr J)] = [[IPSLa(Om, fo7)| = [ | F—5—— <[] & = N())*.

=1 =1 =1

Arguing as in the proof of [5, Theorem 1.5] and observing that we may take F to be the
family of all ideals J <1 O, coprime to 2abe, we conclude that if N(.J) > 287U then
4 4
5 (X)) = logvol(Xos()) — ¢ = - log N(J) —
T T
for constants ¢, ¢/ independent of J. Hence it follows from (7) and (11) that

4
sys(Xx(r,p) 2 3 log 9(Xx () — ¢

for all J <1 Op, coprime to 2abc such that N(J) > 2%~ and a constant ¢, independent
of J. Since there are only finitely many ideals J with N(J) < 2[F~Q  we obtain the
claim after possibly increasing c;. O

Remark 3.2. If 7 has at most one odd component, then the image of the embedding
j : A(T) = N4, (Q,)/EX is not in general contained in QL/{#1}. In this case a
straightforward modification of the proof of Theorem 3.1 establishes (9) for all ideals
J < Op. such that J is coprime to 2abc and j(A(r;J)) € QL/{#£1}. Tt would be
interesting to resolve whether Theorem 3.1 is valid for all hyperbolic triples.

Remark 3.3. In the case of arithmetic Fuchsian groups I', the result of Cosac and
Déria [5, Theorem 1.5] cited above recovers an earlier theorem of Katz, Schaps, and
Vishne [12, Theorem 1.5], which gave the bound sys(Xp()) > %g(XF(J)) —cr. Here T’
is commensurate with O!/{£1} for an order O in a quaternion algebra defined over a
totally real field I and split at exactly one infinite place, and I'(J) = I' 1 O!(J). This
generalized earlier work of Buser and Sarnak [1, (4.7)] in the case F' = Q. Makisumi [22,
Theorem 1.6] has shown that the coefficient % is the best possible in a result of this form.
See, for instance, [20] for details on arithmetic Fuchsian groups. Indeed, Theorem 3.1
in the case 7. = 1 was known to us before [5] appeared.
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To make effective use of Theorem 3.1, one needs some control over the constant c,.
For instance, when may one take c¢; = 07 Some sufficient conditions for this to hold are
given in [12, Theorem 1.10] and [11, Proposition 9.1] in arithmetic cases. The upper
bounds on sys(XZ(T; J)) obtained by the method of the following section can show that
one may not take ¢, = 0 for some specific triples 7.

4. COMPUTATIONS

4.1. Procedure. Let 7 = (a, b, c) be a hyperbolic triple, let A = A(7), and let p <t Op.
be a prime ideal such that the congruence subgroup A(p) is defined. Our aim is to bound
the systolic length of the compact Riemann surface XZ(p)- In fact, for any finite real
number M > 0, the set of numbers at most M that occur as lengths of closed geodesics
of XZ(p) could likely be computed by adapting the method used by Vogeler [38] in the
Hurwitz case 7 = (2,3, 7); see also earlier work [6, 15, 39] by undergraduate participants
of an REU at Rose-Hulman directed by S. A. Broughton.

We take a simpler but less precise approach that was introduced in [11] in the case of
T =(3,3,4). Recall from Section 1.2 that determining SYS(XZ(T;;J)) amounts to finding

min{{\tra(’y)\ iy € Z(T;P)} N (2700)}7

where v runs over all elements of the infinite group A(7;p), where ¥ € A(7) is a lift of
v, and € : A(T) <= SLa2(R) is some embedding; by work of Takeuchi mentioned above,
the result is independent of the choice of .

We restrict to a set of Schreier generators of A(7;p). This is a finite generating set
with some pleasant properties; details may be found in classical references on combina-
torial group theory such as [21, Theorem 2.9]. Among the generating sets of a subgroup
of a finitely presented group obtainable by available algorithms, the elements of a set of
Schreier generators are expressible as relatively short words in the generators o and f3
of A(7). Thus we may hope that the hyperbolic Schreier generators will have relatively
low traces. The minimal trace of a hyperbolic Schreier generator is our upper bound on
SYS(XZ(T;p))- Of course, it is possible that some other hyperbolic element of A(7) has a
lower trace than that of any of our Schreier generators. However, as mentioned in the
introduction, in all the examples that we have computed where sys(XZ(T;p)) is known,
it matches our bound.

The procedure behind our computations is presented below. We assume that p << O,
is prime as this streamlines the discussion of possible simplifications of the various steps
of the computation. However, the same procedure may be used to find upper bounds
on sys(Xz(T; J)) for composite ideals J; in this case the description of the quotient
A(7)/A(7; J) given in (10) should be used in Step 1 instead of Proposition 2.6.

Step 1: Identify subgroups H < A(7) such that A(7)/H ~ K(7;p).

If |[K(7;p)| is reasonably small, then Magma’s LowIndexNormalSubgroups routine
may be used. When K (7;p) = PSLy(F,) with ¢ > 3, it follows from the classification
of finite simple groups that K(7;p) is the unique simple group of order @;%D(qQ -1)
and so it is particularly easy to identify relevant subgroups H < A(r) from the output
of LowIndexNormalSubgroups.
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If | K (7;p)| is large, it is more efficient to generate random pairs of elements (z1, 22) €
K(7;p)? and select those for which (21, 22, (2122) ™) € T(7;p); recall that T(7;p) was
defined in Section 2.4. Such a pair gives rise to an epimorphism 1 : A(7) — K(7;p)
determined by ¥ (z) = 2z; and ¥ (y) = 2z2. Then we consider the kernel H = ker ¢.

Step 2: Compute a set of Schreier generators for H.

See [23, §4] and [31, §6] for algorithms computing Schreier generators. We have used
the implementation in Magma. This is by far the most time-consuming step of our
computations.

Step 3: Determine whether there is an ideal p < Op, dividing p such that H =
A(T;p), and identify p if so.

The most general method for doing this is as follows. Recall from Remark 2.3 that we
have an explicit embedding eq : A(7) < OL. Let Sy be the set of Schreier generators
of H computed in the previous step. For every s € Sg, we compute g¢(s) = ug + u1i +
uoj + usij, in terms of the presentation of B, given in Proposition 2.2. Set

-1

1 cos? cos 7 —cos %

0 0 1 _cosZcos ptcos T cos F+cos 7 cos T ug
vy 2 2(c0s2 gfl) 2(c0527§71) uy

= cos T

a
v2 0 0 0 4((:052 %—1) u2
’1)3 O 0 1 COS % U3

4(cos2 g—l) 4(0052 g—l)

Then the v; are the coefficients of €¢(s) with respect to the Fr-basis (1, «, 5, af) of B;.
If, for all s € Sy, we have vg = £1 mod*P and vy, v2,v3 € P for a prime ideal P <1 OF.
dividing p, then H < A(7;p) and hence H = A(7;p) as they are subgroups of A(7) of
the same index.

This step of the computation can often be simplified. For instance, the upper bound
on N(r;p) = {H 9 A(r) : A(t)/H ~ K(7;p)} obtained from Proposition 2.10 is some-
times equal to the number of prime ideals of Of_ dividing p. In this case, any subgroup
H obtained in Step 1 is necessarily a congruence subgroup, and testing just a few Schreier
generators will suffice to eliminate all p|p but one.

If, futhermore, OF, /B = OF. /p (or, equivalently, K(7;p) = PSLa(ky)), then we may
dispense with Schreier generators entirely in this step. Indeed, the explicit homomor-
phism ¥, : A(1) — PSL2(Op, /B), whose kernel is A(r;p), is given in [2, §5]. Here
B is a prime of F; dividing p. We know by [2, Proposition 5.23] that ¥,(z), ¥y(y),
and Wy ((zy) ') have traces £(2cos T) mod P, £(2 cos ) mod P, and +(2 cos £) mod B,
respectively. Then in Step 1 we search for an epimorphism v : A(7) — PSLa(ky) sat-
isfying these trace conditions and can conclude immediately that ker¢ = A(7;p). It is
still necessary to determine the Schreier generators of A(7;p) for the following step.

Step 4: Determine the minimal trace of a Schreier generator.

For every Schreier generator s € Sy, we compute |tre(§)|, where § € A(7) is a lifting
of s and € : A(7) — SL2(R) is some embedding. It is usually convenient to take ¢ to be

the explicit embedding of Remark 2.3. Our upper bound on sys(XZ( ) is then

i)

min {{\tra(é)] RS SZ(T;p)} N (2,00)} .
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Remark 4.1. Let g be the genus of XZ( rp)d recall that an explicit formula for g was
given in (7). In all cases where we have computed it, Reidemeister-Schreier rewriting
as implemented in Magma indeed produces the simplest presentation of A(7;p), with
2¢g generators and a single relation of length 4¢g in which each generator and its inverse

appear exactly once.

In the remainder of this section we consider some specific examples of the computa-
tions outlined above.

4.2. Hurwitz surfaces. A Hurwitz surface is a compact Riemann surface X of genus
g(X) with exactly 84(g(X) — 1) automorphisms, which is the maximal number possible
by a classical theorem of Hurwitz. These have been studied since 1879, when Klein
discovered his celebrated quadric of genus three, with 168 automorphisms. Together
with the theorem mentioned above, Hurwitz showed [10, §7] that a group of order
84(g — 1) is the automorphism group of some Riemann surface of genus g if and only
if it is a homomorphic image of the triangle group A(2,3,7). Thus the new Hurwitz
surfaces that have been discovered over the past century have amounted to constructions
of normal subgroups of A(2,3,7) of finite index; as a very incomplete sample of these
results, we mention the work of Sinkov [33], Macbeath [17, 18], Leech [14], Lehner
and Newman [16], and Cohen [3]. The construction of congruence subgroups of A(7)
discussed above, in the special case 7 = (2,3,7), recovers some, but not all, of this
previous work.

Set = 2cos % for brevity. If 7 = (2,3,7), then F; = E. = Q(u). This is a cubic field,
where y has minimal polynomial 23 — 22 — 22 + 1 over Q. Let (7 be a primitive seventh
root of unity such that —({7 + ¢ 1) = p. Then Q(p) is contained in the cyclotomic field
Q(¢7). In particular, Op, = Z[p]. We determine the decomposition of primes in Q(u).

Lemma 4.2. The prime 7 is totally ramified in Q(u). If p # 7 is a rational prime, then
p splits completely in Q(n) if p=+1mod7, and p is inert otherwise.

Proof. We rely on basic facts about cyclotomic fields; see, for instance, [24, §1.10]. The
only prime ramifying in Q({7) is 7, and it is totally ramified. Therefore the same is
true for the subfield Q(u). Now assume p # 7, let p be a prime of Q(p) dividing p, and
let B be a prime of Q({7) dividing p. Since Q(x)/Q is a cubic Galois subextension of
the sextic Galois extension Q((7)/Q, it is clear that p is completely split in Q(u) if and
only if the inertia degree is f(p/p) = 1, which in turn is equivalent to f(B/p) € {1,2}.
Otherwise, f(p/p) = 3 and p is inert in Q(x). Now f(*B/p) is the minimal f € N such
that p/ = 1mod7. Thus f(B/p) € {1,2} if and only if 7|(p?> — 1), which is equivalent
to p = +1lmod7. O

Since A(2,3,7) = Z(z)(2,3,7) is arithmetic [36, Theorem 3|, we have A(2,3,7) <
G(B-, ;) as a subgroup of finite index, where B; = <74FL273> and the order O, C B,

T

has Op_-basis {1, «, 8, af}, with o = % and 8 = % + bi— %z’j.

Remark 4.3. The construction given here as a special case of Takeuchi’s general theory is
equivalent to the “Hurwitz order” Qg studied by Katz, Schaps, and Vishne [13, (2.8)].
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Indeed, they denote n = 2 cos 27” = u? — 2. Observe that Q(u) = Q(n) by Remark 2.1

and that
—4, 47 =3 1,
. < Qw) > - <@<n>>
p(t) = (20—2)1j
e(i) = —(W—p—1)
is an isomorphism of quaternion algebras between our B, and the algebra denoted D
in [13]. Moreover, p(a) = g2 and ¢(3) = g3, where g2, g3 € D are as defined in [13, §4];

they arise from work of Elkies [7]. Since Qpy, is spanned by {1, g2, g3, 9293} over Z[u]
by [13, Theorem 4.2], we have ¢(O;) = Quu-

We have G(B;,0;) ~ A = A(2,3,7) [7, §4.4]. The order O, C B, is maximal and
splits at all finite places of Q(u) since the quaternion algebra B; does so. Hence for any
ideal I <t Op, = Z[u] we get a congruence subgroup A(I) <t A such that A/A(I) ~
PSL2(OF,./I). By [11, Proposition 9.1] we conclude that sys(XZ(I)) > %Q(XZ(I)) for
all but finitely many ideals I < Z[u]; indeed, Th = T> = & in the notation of [11] and
20 =64 < 84 = ﬁ. By [11, Remark 9.2] this inequality holds for all I such

Proposition 4.4. Let p be prime, and let H < A = A(2,3,7) be a normal subgroup.

Then
AJH ~ PSLy(F,) :p=0,£1mod7
PSLy(F,5) :p#0,£1mod7
if and only if H = A(p), where p < Z[u] is a prime dividing p.

Proof. One direction is clear by the previous paragraph and Lemma 4.2. The other
direction is contained in [19, Theorem 8] and historically was the first application of
Macbeath’s classification. We give the proof in some detail, as an illustration of the
machinery of Section 2.4, although it is essentially the same as the one in [19].

We first compute, using Magma’s LowIndexNormalSubgroups function, that there is
a unique normal subgroup H < A for which the quotient A/H is isomorphic to each of
PSLa(F7), PSLy(Fg), and PSLa(Fa7). These facts can also be proven without reliance
on a computer by a suitable modification of the arguments below, but we take the easier
path. Thus we may henceforth assume p ¢ {2,3,7}. It suffices to show that there are
at most three normal subgroups H < A satisfying A/H ~ PSLy(F,) if p splits in Q(u),
and at most one normal subgroup satisfying A/H ~ PSLy(F,s) if p is inert.

Let p be a place of Q(i) dividing p. Then K(7;p) = PSLa(F,), where ¢ = p if
p splits in Q(i) and ¢ = p3 otherwise. Let (y1,72,73) € T(7;p), in the notation of
Section 2.4. We claim that 71, 72, and <3 have order 2, 3, and 7, respectively, as
elements of PSLy(IF,). Indeed, otherwise one of the ; would be trivial, and consequently
the subgroup (71, 72,73) would be trivial, contradicting the definition of T'(7;p). Thus
Q(r;p) = {(2,3,7)}, in the notation of Proposition 2.10. Moreover, it follows from
Lemma 2.8 that try; = 0 and try, = +1, whereas tr 73 is one of :I:((H—C;l), i((?+§;2),
or £(¢ + ¢ 3), where (7 is a primitive seventh root of unity. Thus there are three
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potential trace triples up to sign associated to elements of T'(7; p). By Lemma 2.9, none
of them are commutative. Moreover, they are not exceptional, since for any lift ¢ of one
of them and any g € T'(t), we have o(g) = (2,3,7). Hence all three trace triples up to
signs are partly projective. It now follows from Proposition 2.10 and Lemma 2.8 that
©(3) (7)
4
Hence there are at most three subgroups H < A(7) satisfying A(7)/H ~ PSLy(F,).
It remains to show that there is only one such normal subgroup if p is inert in Q(u).

(12) IN(m5p)| < K(2,9) 5(3,9) K(7,q) = =3

In this case, let o(a) = o be the Frobenius automorphism of F, = F,s. The action of
o on matrix elements induces an automorphism of PSLy(F,). Observe that

{o(=(Gr+ G ). (F(G + ¢} = {HGF + ), =G+ 67
Thus, if the epimorphism ¢ : A(7) — PSLy(F,) corresponds to an element of T(7;p)
having one of the three possible trace triples up to signs, the epimorphisms ¢ o 1 and
02 o1, which have the same kernel, correspond to the other two trace triples up to
signs. Equivalently, a single orbit of the action of (¢) < Aut(K(7;p)) intersects X(C) N

T(7;p) for all three elements C € C(7;p). In either case, we see from the proof of
Proposition 2.10 that N (7;p)| = 1. O

We tabulate below our bounds on sys(Xz(;)) for all proper ideals I < Op, of norm
N(I) <100, to an accuracy of three decimal places. For all the prime ideals in this table,
Vogeler [38, Appendix C| has computed length spectra of the corresponding Riemann
surfaces. In all cases, the lowest trace identified by us corresponds to the smallest
geodesic length found by Vogeler. His tables are complete for lengths smaller than
14.49, so they determine the systolic length for surfaces X with sys(X) < 14.49. This is
evidence that our method provides a reasonable estimate for the systolic length sys(Xr).

We see as in (7) that g(Xx)) = w + 1 for all I < Z[p]. The Riemann
surface XZ( 1 of genus 3 corresponding to the ideal I of norm 7 in the first line of the
table is, of course, none other than the Klein quadric. The surface XZ((2)) of genus 7
was studied by Fricke [8] and more than sixty years later by Macbeath [18], who was
apparently unaware of Fricke’s work; see Serre’s letter [30] to Abhyankar for a more
modern perspective on this curve. If N is a natural number with a unique prime factor
p such that p splits or ramifies in Q(u) (i.e. p =0,4+1mod 7) and if (p')3| N for all prime
factors p’ # p of N, then there exist three ideals I <1 Z[u] of norm N(I) = N, giving
rise to three Hurwitz surfaces of the same genus; these are the Hurwitz triplets.

Not all normal subgroups of A arise as A(I) for some ideal I < Z[u]. The example
of lowest index is a pair of normal subgroups of index 1344 found by Sinkov [33]. They

are conjugate in the full triangle group A(2,3,7) of (4) and correspond to a single
chiral Riemann surface of genus % 4+ 1 =17. In this case, the lowest trace we obtain
is 11u% + 9 — 7, corresponding to the systolic length found by Vogeler. Cohen [3,
Theorem 2| described an infinite family of normal subgroups of A whose quotients are

not isomorphic to PSLa(Z[u]/I) for any ideal I <1 Z[u].

’ I ‘ N(I) H x = lowest observed trace ‘ 2arcosh 3 H g(XZ(I)) ‘ 3logg ‘
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(n+2) 7 2u +p—1 3.936 3| 1.465

(2) 8 4p® +4p — 2 5.796 7| 2.59

(2u+1) 13 4p® +4p—1 5.904 14| 3.519

(21 +3) 13 6% + 5u — 4 6.393 14| 3.519
(n—3) 13 Tu? +7u—4 6.888 14| 3.519

(3) 27 45u% + 36 — 25 10.451 118 | 6.361

(4p — 1) 29 1942 + 15p — 12 8.680 146 | 6.645
(31— 4) 29 49u% + 41p — 27 10.656 146 | 6.645
(p+3) 29 7312 + 60p — 40 11.442 146 | 6.645

(4p — 3) 41 33u% + 26 — 17 9.340 411 | 8.025
(Bu+1) 41 4902 + 40p — 26 10.648 411 | 8.025
(u—4) 41 1212 +97u — 67 12.432 411 | 8.025
(2u—5)| 43 4912 + 40p — 28 10.628 474 | 8.215
(3u+2) 43 5502 + 434 — 32 10.824 474 | 8.215
(5u—3)| 43 862 4 69y — 48 11.747 474 | 8.215
(n+2)2| 49 1052 + 844 — 58 12.147 687 | 8.710
(2)(p+2) 56 18442 + 148y — 102 13.272 1009 | 9.222
(22| 64 80u? 4 64 — 46 11.593 1537 | 9.783

(5 — 1) 71 12102 + 97u — 66 12.436 2131 | 10.219
(n+4) 71 13312 + 106p — 73 12.619 2131 | 10.219

(4p — 5) 71 15102 4 121 — 83 12.877 2131 | 10.219

(31 +5) 83 27612 + 2201 — 153 14.077 3404 | 10.844
(81— 3) 83 38442 + 308 — 213 14.742 3404 | 10.844

(51 — 8) 83 5201° + 416 — 289 15.346 3404 | 10.844

(1 +2)(p—3) 91 442 + 364 — 25 10.416 2185 | 10.252
(n+2)(2u+1) 91 882 4 T2 — 49 11.808 2185 | 10.252
(4 2)(2u + 3) 91 25612 + 2051 — 143 13.928 2185 | 10.252
(Bu—17) 97 3212 + 257 — 179 14.380 5433 | 11.467
(4p+ 3) 97 4124% + 331y — 228 14.884 5433 | 11.467

(T — 4) 97 T11p2 + 569u — 395 15.972 5433 | 11.467

4.3. (2,3,12) triangle surfaces. We next consider the case 7 = (a,b,c) = (2,3,12). A
Riemann surface X of genus g is called maximal if it is a local maximum for the function
sys(X) on the Teichmiiller space T,. The (2,3,12) triangle surfaces of genus 3 and 4
were shown to be maximal by Schmutz Schaller [28, §8], so this is a natural family in
which to search for surfaces with large systolic length.

In this section, write A for A(2,3,12). The complication of this case, in comparison
with the Hurwitz case considered in the previous section, is that now A is not contained
in O'/{£1} for any quaternion order O; only the subgroup A® s, Observe that

E. = Q(\/g) and F = Q(\/i7 \/g)
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Lemma 4.5. Let A = A(2,3,12), and let p > 5 be a rational prime. Then

PSLy(F,) :p=1,23mod24
K(7;p) = { PSLy(F,2) :p=5,7,17,19mod 24
PGLy(F,) :p=11,13mod24.

Proof. The claim follows from Proposition 2.6 and basic algebraic number theory.  [J

Proposition 4.6. Let p > 5 be a rational prime and suppose that H < A = A(2,3,12)
is a normal subgroup such that AJH ~ K(r;p). Then there exists a prime ideal p of
Z[V/3] dividing p such that H = A(p).

Proof. We will show that there exist at most two normal subgroups H <1 A satisfying
A/H ~ K(7;p) if p splits in Q(v/3) and at most one such subgroup H if p is inert in
Q(v/3). Since the congruence subgroups A(p) satisfy A/A(p) ~ K(7;p) by definition,
it follows that no other subgroups satisfy this condition.

Following the strategy of the proof of Proposition 4.4, consider (v1,7v2,73) € T(7;p).
Clearly the orders of 1,72, 7vs divide 2, 3, and 12, respectively. If one of these elements
were trivial, the three of them would generate a cyclic group, contradicting the assump-
tion that they generate K (7;p). Hence o(1) = 2 and o(y2) = 3. If o(y3) < 12, then the
non-solvable group K (7;p) would be a homomorphic image of A(2,2,3), A(2,3,4), or
A(2,3,6), which is absurd since these three groups are solvable; see [2, Example 2.4] and
the paragraph following it. Hence o(~y3) = 12. We have shown that Q(7;p) = {(2,3,12)}.

By Lemma 2.8, there are two conjugacy class triples C satisfying o(C) = (2, 3,12); the
corresponding trace triples up to signs are (0, +1, i(@4+§211)) and (0, £1, j:(@—k(;f)),
where (o4 is a primitive 24-th root of unity. These are not commutative, by Lemma 2.9,
and are not exceptional. It now follows from Proposition 2.10 that [N (7;p)| < 2.

It remains to show that if p is inert in Q(v/3), i.e. if p = £5mod 12, then |N(7;p)| = 1.
In this case, the Frobenius automorphism o € Gal([F,2/F,) interchanges 4 ((24 + Gab)
and +(¢5, + C2_45), and we proceed by the same argument as for the analogous case of
Proposition 4.4. O

Observe that A(2,3,12)3) ~ A(3,3,6). We read off from Proposition 2.5 that A, ~

<_(3’(1\J/%‘)/§> and that a Z[v/3]-basis of the order Q, is given by {1, 71, 72,7172}, where

R
"= 5

V3 2+4V3. i)

Yo = 7 + 6 1+ 5

Moreover, QL /{+1} ~ A(3,3,6); see the table on p. 208 of [37]. However, A(2,3,12)

is isomorphic to the larger group Qf /(E N QF), where QF < QX is the subgroup of

elements with totally positive reduced norm. Then Qf /(EX N QF) naturally contains
QL /{#1} as a subgroup of index two.

We tabulate the results of our computations for all prime ideals p <1 Z[v/3] such that
N(p) < 60. Note that if p € {2,3}, then p ramifies in Q(v/3) and also satisfies p|abe,
so that Proposition 4.6 is inapplicable to primes dividing p. However, it is still possible
to define congruence subgroups; see [2, Remark 5.24]. If py is the prime ideal dividing
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2, one finds explicitly that {g € QF : ¢ = 1modp2Q,} < QF corresponds to a normal
subgroup Hy < A such that the quotient A/Hs is a group of order 48 isomorphic to the
unique non-trivial extension of A4 by Z/47. This H is isomorphic to a surface group of
genus 3. Similarly, for the prime ideal dividing 3 one obtains a normal subgroup Hz < A
such that A/Hjz ~ Sy x Z/3Z and Hj is isomorphic to a surface group of genus 4. The
resulting Riemann surfaces of genera 3 and 4 are the maximal surfaces mentioned at the
beginning of this section. Their systolic lengths were computed by Schmutz Schaller [28]
and match our estimates.

One sees by explicit computation that Q; is a maximal order in A, and that the only
finite place at which A, ramifies is ps. It follows that both sides of the inequality in the
hypotheses of [11, Proposition 9.1] are equal to 12, and we are unable to conclude that
sys(Xgx(p)) > %g(XZ(p)) for any p; this depends on the coefficient of the second-order
term of the series appearing in the proof of [11, Proposition 9.1]. Nevertheless, from our
computational data this appears plausible.

’ p ‘ N(p) H x = lowest observed trace ‘ 2arcosh 5 H Q(XZ(p)) ‘ 3logg ‘
3
4

(1++/3) 2 4423 3.983 1.465
(v/3) 3 5+3V3 4.624 1.848
(1—-2V3) 11 31+19v3 8.314 56 | 5.367
(14 2v/3) 11 36 +21/3 8.563 56 | 5.367
(4—-3)| 13 35 4+ 20v/3 8.486 92 | 6.029
(4+V3)| 13 45+ 27+/3 9.038 92 | 6.029
(2 —3v/3) 23 71+ 40v/3 9.887 254 | 7.383
(24 3v/3) 23 96 + 55v/3 10.507 254 | 7.383
(5)| 25 (168 + 94v/3) cos =& 11.534 326 | 7.716
(7T+2v3)| 37 204 + 117/3 12.016 2110 | 10.206
(7—2v3)| 37 324 + 1873 12.947 2110 | 10.206
(1+4V3) | 47 (282 + 164+/3) cos 75 12.608 2163 | 10.239
(1—4V3) | 47 (378 + 2224/3) cos 5 13.204 2163 | 10.239
(7)| 49 341 4+ 196+/3 13.046 2451 | 10.406
(4—-5V3)| 59 564 + 325/3 14.054 8556 | 12.073
(4+5v3)| 59 1115 + 644+/3 15.420 8556 | 12.073

4.4. Bolza twins. Consider 7 = (2,3,8). Then F; = Q (cos §) and E; = Q(v/2). From

Proposition 2.5 we find that A, = <£D?\>§> and that the order Q, C A, is spanned over

ZIV?2] by {1,71,72, M2}, where 71 = (=1 +14) and v, = @ + %i + 1ij. It is
easy to see that Q. is the “Bolza order” defined in [11, §7]; this follows from noting
that 1 = a — 1 and 72 = (1 + v/2)a — 8, where a and 3 are as in [11]. Moreover

G(A;,Q;) ~ A® (1) ~ A(3,3,4) [11, §8]. Katz, Katz, the first author, and Vishne [11,
§14-16] previously computed bounds on sys(XZ(T@;p)), using the method of Section 4.1,
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for prime ideals p <1 Z[v/2] dividing a rational prime p that splits in Q(v/2). It is an
exercise in algebraic number theory to deduce the following from Proposition 2.6.

Proposition 4.7. Let 7 = (2,3,8) and 7 = (3,3,4). Let p be a prime ideal of Z[v/2]
dividing the rational prime p > 5. Then

PSLy(F,) :p==1, mod16
A(T)/A(1;p) ~ S PGLy(F,) :p==+7, modl6
PGLy(F,2) :p=+3,4+5mod 16

-~ — PSLy(IF p =41 d
A(T(2))/A(T(2)7p) { S 2( P) b , IO 8

PSLy(F,2) :p= =43, mod8.

Let p <1 Z[v/2] be a prime ideal dividing p > 5. Since A(7();p) = A(7;p) na® (1), it
follows by Proposition 4.7 that A(7(®);p) = A(7;p) exactly when p # +1mod 16. Thus
for half of the primes p splitting in Q(y/2) we have X5
of them XZ( ) is a non-trivial cover of XZ(T;p

The prime py = (v/2) does not fit into the framework of this paper. However, anal-
ogously to the previous section, it gives rise to a normal subgroup H; < Z(T(z)) of
index 24 such that A(7(?))/Hy ~ SLy(F3) and such that Hy is isomorphic to a surface
group of genus two. The Riemann surface Xp, is the Bolza surface, which is known
to be maximal. The four generators in our presentation of Hs all correspond to el-
ements of QL/{£1} of trace +2(1 + v/2), which give the true systolic length of the
Bolza surface [28, §5]. We observe in passing two other interesting normal subgroups
H;, Hy K Z(T(2)> of indices 48 and 96. They are isomorphic to surface groups of gen-
era 3 and 5, respectively, and neither appears to be a congruence subgroup. We have
A(r?)/Hy ~ (Z/AZ)* x 7./37, with Z/3Z acting faithfully, and the generators of Hj
correspond to traces £2(2 + v/2). Finally, A(1(??))/Hs ~ (Z/27) x Ay, with Ay acting
via its quotient Z/3Z. The generators of Hj correspond to traces +2(3 + 21/2). Note
that Schmutz Schaller [28, §7] discusses a maximal surface of genus 5 and systolic length
2 arcosh(3 + 2v/2).

) = XZ(T(Q);p), whereas for half

72 ) and may have larger systolic length.

4.5. (2,7,7) triangle surfaces. The case of 7 = (2,7,7) is interesting for at least two
reasons. First of all, the analogue of Propositions 4.4 and 4.6 fails. Secondly, A(2,7,7)
is not maximal among triangle groups, since it embeds in A(2, 3, 7) as a self-normalizing

subgroup of index nine [32, Theorem 2|. An explicit embedding is given by

FoAR 7,7 =)@, @Y) =1 = (@)@ (ay)") = A2,3,7)
2 = oz
Yo (ay)ty,

and its image is unique up to conjugation. In this situation, E; = F; = Q(cos %) is the
same field as in Section 4.2. Recall that we set u = 2cos 7. The presentation of the

quaternion algebra B; = A; given by Proposition 2.2 is <74(§(’5)74>. This is actually
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the same algebra as in Section 4.2, as evidenced by the isomorphism

<—4,2u2—4> <—4,u2—3>
pi{————) = (——
Q(w) Q(n)

o) = i

. Y]

o) = G- (-i+).
We work with the presentation of Section 4.2. The (image under  of) the order O, 7 7) is
the Z[u]-span of {1,a, 8/, af'}, fora = L and g/ = L (2p + pi + 2(p? — 1)5 + (u® — 1)ij).
It is easy to check that Oy 77) C O(2,37) and that O, 7 7) has discriminant (8). We have
0(12’777)/{:|:1} ~ Z(& 7,7). If 7 is either (2,3,7) or (2,7,7), it follows from the construc-
tion in [2, §5] that A(7;p) = {g € Ol : g = £1mod pO, }/{+£1}. Hence

A(2,7,7:p) = A(2,3,7,p) N A(2,7,7)

for all prime ideals p < Z[u] not dividing 2. In this case, XZ(2,7,7;p) is a cover of
degree nine of XZ(

of XX(2.7p
primes p. The last column gives the rank of our candidate for sys.(XZ(2 " 7.p)) in the

2.3,7.p)" and thus the length spectrum of XZ(Q 77:) is a subset of that

) The following table collects our estimates for SYS(XZ(2,7,7;p)) for some

length spectrum of XZ(2 3,7:p) B8 computed by Vogeler [38]. Where the entry in this
column is 1, we have certainly obtained the true value of sys(XZ(2 7 7.p)).

’ I ‘ N(I) H x = lowest observed trace ‘ 2arcosh § H Q(XZ(2,7,7;I)) ‘ ‘

(n+2) 7 9% + 8 — 4 7.358 193
(2) 8 4p? +4p —2 5.796 49 |1
(2u+1) 13 17p% +12p — 10 8.404 118 | 2
(2u + 3) 13 642 + 5 — 4 6.393 118 |1
(n—3) 13 8u? + Ty — 4 7.085 118 | 2
(3) 27 135u% + 108y — 74 12.652 1054 | 3
(4p—1)] 29 2231% + 180u — 124 13.658 1306 | 4
(Bu—4)| 29 4902 + 41p — 27 10.656 1306 | 1
(p+3) 29 732 + 60 — 40 11.442 1306 | 1

The case of p = (2), which divides the discriminant of O(y7 7, is exceptional. The
congruence subgroup A(2,3,7; (2)) corresponding to the Fricke-Macbeath curve of genus
7 is contained in (any embedding of) A(2,7,7) into A(2, 3, 7). Thus the Fricke-Macbeath

curve is a (2,7, 7)-triangle surface. However,
A2,7,7,(2) ={g € 0(1277’7) tg=+1mod 207 7)}

is a subgroup of index eight in A(2,3,7;(2)). Thus XX (2,7,7:(2)) 18 a cover of degree 8 of
the Fricke-Macbeath curve, although it has the same systolic length.

It follows from Proposition 2.10, by an argument that we have already seen in several
previous examples, that [N (7;p)| < 9 for all primes p € {2,7}. The smallest primes
that split in Q(u) are 13 and 29. For either p € {13,29}, we find nine normal subgroups



SYSTOLIC LENGTH OF TRIANGULAR MODULAR CURVES 21

H < A(2,7,7) such that A(2,7,7)/H ~ PSLy(F,), corresponding to the nine triples
C = (C1,C,C3) of conjugacy classes of PSLy(IF,) with o(C) = (2,7, 7); note that there
is only one possibility for C7, but three for Co and C3. In each case, the three subgroups
associated to triples C' with Cs = ('3 are the congruence subgroups arising from prime
ideals dividing p. The six remaining normal subgroups in each case are also isomorphic
to surface groups of genera 118 or 1306. They are not all conjugate in PSLo(R); note
that Theorems 5 and 6 of [9] tell us where to look for conjugating elements. However,
for all twelve of these groups, the lowest observed trace is 112 4+ 9u — 7, corresponding
to a systolic length of 7.609 ... This is precisely sys(Xgs), where S < A(2,3,7) is either
of Sinkov’s non-congruence normal subgroups of index 1344. Similarly, there are three
normal subgroups of A(2,7,7) with quotient isomorphic to PSLy(Fa7). One of them is
the congruence subgroup A(2,7,7;(3)). The other two are surface groups of genus 1054,
and the lowest observed trace is again 112 + 9 — 7. There are two non-congruence
normal subgroups H < A(2,7,7) with A(2,7,7)/H ~ PSL(Fg), whose lowest observed
trace is the same mysterious 112 4+ 94 — 7. While the pairwise intersections of all these
groups with the same lowest observed trace are small, a very disproportionate number of
the generators we use lie in these intersections. This may account for our computations.
We hope to return to this interesting phenomenon in future work.

4.6. (3,3,10) triangle surfaces. Finally, consider the triple 7 = (3,3,10). By [36,
Theorem 3], the triangle group A = A(7) is not arithmetic. We have F, = E, = Q(v),
where v = 2 cos {5 has minimal polynomial 2% — 522 4+ 5 over Q. This number field has
%

class number 1. The quaternion algebra B, = A, = < > splits at two of the

four infinite places of F. and the order O, C B; is spanned over Op_ by {1, «, 3, a3},
where o = % + % and 8 = % + 1+62”i — %zg By Theorem 3.1 we have sys(XZ(I)) >

2 log g(XZ(I)) — ¢ for all ideals I < Op, coprime to 30.
Lemma 4.8. Let 7 = (3,3,10) and let p > 7 be a rational prime. Then
PSLy(F,) :p=1,19mod 20
K(7;p) = ¢ PSLy(F,2) :p=9,11mod20
PSLy(Fpe) :p=3,7,13,17mod 20.

Proof. The claim follows from Proposition 2.6 and reasoning similar to the proof of
Lemma 4.2. O

We tabulate our bounds on Sys(XZ( 1)> for some prime ideals of Op_ . It is evident
from the table that there exist ideals for which sys(X% ) < % log g(X7xp)-

’ p ‘ N(p) H z = lowest observed trace ‘ 2arcosh 5 H Q(XZ(;J)) ‘ %logg ‘
19 21 + 12v — 1802 — 1013 9.002 400 | 3.994

)

) 19 24 + 10v — 2002 — 1003 9.173 400 | 3.994
(3 —v?—3v+1) 19 40 + 18v — 3202 — 1613 10.043 400 | 3.994

)

)

19 86 + 46v — 6412 — 3413 11.354 400 | 3.994
41 6+ 4v — T2 — 43 7.338 4019 | 5.533
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(v —3) 41 36 + 18y — 2702 — 1413 9.637 4019 | 5.533
(v3 —3v+3) 41 43 + 20v — 3202 — 1613 9.951 4019 | 5.533
(v+3)| 41| 243+ 1250 — 17802 — 9313 13.377 4019 | 5.533
(V3 +1v2 —2v —4) 59 74 + 36v — 57v? — 2913 11.147 11978 | 6.261
(13— —4v+1) 59 90 + 451 — 6602 — 3413 11.389 11978 | 6.261
(3 4+ 12 —4v —1) 59 || 301 + 156w — 218v2% — 11413 13.766 11978 | 6.261
(V3 — 1% —2u +4) 59 || 383 + 200v — 278v2 — 14613 14.257 11978 | 6.261
(3) 81| 259+ 1350 — 18912 — 9913 13.489 30997 | 6.894
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