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Abstract. Let F be a totally real field, p ≥ 3 a rational prime unramified in F , and p a place of
F over p. Let ρ : Gal(F/F ) → GL2(Fp) be a two-dimensional mod p Galois representation which
is assumed to be modular of some weight and whose restriction to a decomposition subgroup at p

is irreducible. We specify a set of weights, determined by the restriction of ρ to inertia at p, which
contains all the modular weights for ρ. This proves part of a conjecture of Diamond, Buzzard, and
Jarvis, which provides an analogue of Serre’s epsilon conjecture for Hilbert modular forms mod p.

1. Introduction

Let F be a totally real field. To a Hilbert modular eigenform on F one can attach a mod p Galois
representation ρ : Gal(F/F ) → GL2(Fp) (see [Car2] and [Tay]). For every embedding ι : F ↪→ R,
there is a corresponding complex conjugation cι ∈ Gal(F̄ /F ), and we call ρ : Gal(F/F )→ GL2(Fp)
totally odd if det(ρ(cι)) = −1 for all ι. There is a natural analogue of Serre’s conjecture:

Conjecture 1. Let ρ : Gal(F/F )→ GL2(Fp) be a continuous, irreducible, totally odd representa-
tion. Then ρ is modular.

Diamond, Buzzard, and Jarvis ([BDJ]) have formulated an analogue of the strong Serre conjec-
ture if p is unramified in F . This paper proves some cases of the “epsilon conjecture” in this context.
We note that the author in [Sch1] has extended the conjecture to the case where p ramifies, and
indicates there how to modify the argument of this paper to prove an analogous theorem in that
case. We use the notion of modularity of Definition 1.2, which also views weights from a somewhat
different perspective than the classical one of [F : Q]-tuples of integers.

Throughout this paper, we assume that p ≥ 3 is unramified in F , and fix a prime ideal p of F
dividing p. For any place v of F , we write Ov for the completion of OF at v and kv for the residue
field. Let the cardinality of kp be q = ps. Let Gp ⊂ Gal(F/F ) be a decomposition subgroup for p,
and Ip ⊂ Gp the inertia subgroup.

Definition 1.1. A weight is an irreducible Fp-representation of GL2(OF /p) =
∏

v|p GL2(kv).

By Prop. 1 of [BL], any weight has the form σ =
⊗

v|p σv, for

σv =
⊗

τ :kv ↪→Fp

(detwτ Symkτ−2k2
v)⊗τ Fp,

where 2 ≤ kτ ≤ p+ 1 and 0 ≤ wτ ≤ p− 1, and the wτ are not all p− 1.
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Let B be a quaternion algebra over F . We shall always assume that B is split at exactly
one real place of F and at all places over p. In other words, B ⊗ R ' M2(R) × H[F :Q]−1 and
B ⊗Qp 'M2(F ⊗Qp). Consider the reductive group G = ResF/Q(B∗) over Q. If F 6= Q, then for
an open compact subgroup U ⊂ G(A∞) we can define a compact Riemann surface

(1) MU (C) = G(Q)\G(A∞)× (C− R)/U.

This Riemann surface has a canonical model MU over F . As U varies, the Shimura curves MU/F
form an inverse system of smooth complete algebraic curves. They are not in general geometrically
connected. As in [BDJ], we let Pic0(MU ) denote the identity component of the relative Picard
scheme of MU/F , which parametrizes line bundles locally of degree zero. Then Pic0(MU ) is an
abelian variety over F .

We say that an open compact U ⊂ G(A∞) is of type (∗) if U = Up × Up, where Up = ker((B ⊗
Ẑ)∗p =

∏
v|p GL2(Ov) → GL2(OF /p)) and Up ⊂ G(A∞,p). Let V =

∏
v|p GL2(Ov) × Up. If Up is

sufficiently small as in section 3.1, then MU/MV is a Galois cover with group V/U = GL2(OF /p).
This gives an action of V/U on Pic0(MU ).

Definition 1.2. We say that a Galois representation ρ : Gal(F/F )→ GL2(Fp) is modular of weight
σ if there exists a quaternion algebra B over F , split at one real place and all places over p, such
that ρ is a Jordan-Hölder constituent of (Pic0(MU (G))[p] ⊗Fp

σ)GL2(OF /p) for an open compact

U ⊂ (D ⊗ Ẑ)∗ ⊂ G(A∞) of type (∗).

Given a continuous, irreducible, totally odd ρ : Gal(F/F ) → GL2(Fp), let W (ρ) be the set
of modular weights. Diamond, Buzzard, and Jarvis construct sets W ?

v (ρ) for each v|p, such that
W ?

v (ρ) depends only on ρ|Iv , and conjecture that W (ρ) =
{
σ =

⊗
v|p σv : σv ∈W ?

v (ρ)
}
.

If ρp : Gp → GL(V ) is any continuous two-dimensional Fp-representation, then the wild inertia
I ′p acts trivially on the semisimplification V ss of V ; see [Edi2] for a proof. Therefore, ρss|Ip factors
through the tame inertia It,p = Ip/I

′
p ' lim←−F∗pr , and the action of It,p is given by two characters

φ, φ′ : It,p → F∗p. Recall that a character µ : It,p → F∗p is said to be of level r if r is the smallest integer
such that µ factors through F∗pr . If µ is moreover induced by an embedding of fields Fpr ↪→ Fp,
then it is a fundamental character of level r; there are r of these. If ρ|Gp is irreducible, then we see
in Lemma 4.4 that φ and φ′ have level 2s and φ′ = φq.

In this case, W ?
p (ρ) is defined as follows. Let k′p be a quadratic extension of kp. Then each

embedding τ : kp ↪→ Fp has two liftings to embeddings τ ′ : k′p ↪→ Fp. For such an embedding τ

(resp. τ ′) let ψτ : It,p → F∗p (resp. ψτ ′) be the corresponding fundamental character of level s (resp.
level 2s).

Then [BDJ] defines σp =
⊗

τ (detwτ Symkτ−2k2
p) ⊗τ Fp ∈ W ?

p (ρ) if and only if for every τ it is
possible to label one of the two liftings τ̃ and the other one τ̃ ′ in such a way that

ρ|ssIp
∼
∏
τ

ψwτ
τ

( ∏
τ ψ

kτ−1
τ̃ 0

0
∏

τ ψ
kτ−1
τ̃ ′

)
.

The main theorem of this paper is essentially a proof of one direction of the conjecture of [BDJ]
in this case. Our result is slightly weaker than the conjecture. To state it, we introduce a set of
weights Wp(ρ) ⊃W ?

p (ρ), and the statement is:
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Theorem 1.3. Assume that p is unramified in F , and let ρ : Gal(F̄ /F ) → GL2(Fp) be such that
ρ|Gp is irreducible and ρ is modular for a weight of the form σp ⊗ (⊗β 6=pσβ). Then σp ∈Wp(ρ).

We define Wp(ρ) as follows. Let τ1, τ2, . . . , τs be a labeling of the embeddings kp ↪→ Fp such
that τi = τp

i+1 for all i ∈ Z/sZ. Similarly let σ1, . . . , σ2s be a labeling of the embeddings k′p ↪→ Fp

such that σj = σp
j+1 for all j ∈ Z/2sZ and such that the restriction of σj to kp is τπ(j), where

π : Z/2sZ→ Z/sZ is the natural projection. Write ψj for ψσj and kj for kτπ(j)
. Thus {ψτ̃i , ψτ̃ ′i

} =
{ψi, ψi+s}.

Now, let σp =
⊗

τ (detwτ Symkτ−2k2
p)⊗τ Fp as before. Then σp ∈Wp(ρ) if and only if we have

(2) ρ|Ip ∼
∏
τ

ψwτ
τ

( ∏
j∈Z/2sZ ψ

mj

j 0
0

∏
j∈Z/2sZ ψ

mj+s

j

)
,

such that for each j ∈ Z/2sZ one of the following two conditions holds:
(1) {mj ,mj+s} = {kj − 1, 0} (note these are unordered sets).
(2) {mj ,mj+s} = {kj − 2, 1}. Moreover, let α ∈ {j,m + j} be such that mα = 1. If
{mj+1,mj+1+s} = {kj+1 − 1, 0} (resp. {mj+1,mj+1+s} = {kj+1, 1}), then mα+1 = 0
(resp. mα+1 = 1). Furthermore, there is some l ∈ Z/sZ such that kl 6= p + 1, and one of
the following must hold:
(a) kj = p+ 1
(b) [kp : Fp] ≥ 3 and kt ∈ {p, p+ 1} for all j 6= t ∈ Z/sZ, and kt = p+ 1 for some t.

Clearly Wp(ρ) ⊃ W ?
p (ρ). Moreover, if 2 ≤ kτ ≤ p for all τ , then condition (ii) never holds and

σp ∈Wp(ρ) if and only if σp ∈W ?
p (ρ). Observe also that if s = 1 then Wp(ρ) = W ?

p (ρ) for all ρ.
If F = Q, then Theorem 1.3 is a result of Fontaine, proved in 1979 in letters to Serre. A proof

was published in [Edi1], and our argument follows a similar method, albeit with more technical
difficulties. From now on we assume [F : Q] > 1, which allows us to use the results of [Car1].

As this work was completed, T. Gee proved many cases of the conjecture of [BDJ] by completely
different methods [Gee2]. While his results apply more generally than ours, in the setting of this
paper they are a subset of ours, as they apply only to weights with 3 ≤ kτ ≤ p − 1 for all τ .
Moreover, our argument can be extended to prove an analogous statement when p is ramified in F
([Sch1], Theorem 3.4), whereas Gee’s techniques are inapplicable in that situation as the necessary
modularity lifting theorems are unavailable at present.

Fix a representation ρ : Gal(F/F )→ GL2(Fp) satisfying the hypotheses of Theorem 1.3, and fix
a suitable quaternion algebra B as in Definition 1.2. For every finite place v of F fix a uniformizer
πv ∈ Fv. We normalize the Artin reciprocity map so that uniformizers correspond to geometric
Frobenius elements, and we write Frobv for arithmetic Frobenius.

Unless stated otherwise, K will be the maximal unramified extension of Fp, and K ′/K the totally
ramified extension associated by class field theory to O∗p/(1+πpOp). Let D and D′ be the respective
valuation rings of K and K ′; D is the Witt vectors of kp. Let χ be the mod p cyclotomic character.

Our method is to construct a finite flat group scheme H/K such that Gal(K/K) ' Ip acts on
H(K) via the character φ. Suppose ρ is modular of weight σ. Choose a character θ : Γ0(p) → F∗p
(see section 2.1 for definitions of the notations in this paragraph) such that σp is a constituent of
Ind

GL2(kp)
Γ0(p) θ. Using θ we find an appropriate piece H̃ of Pic0(Mbal

U1(p))[p
∞] lifting H to D′. We

compute the action of Gal(K ′/K) on cot(H̃Fp
), and Raynaud’s theory of vector space schemes then
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gives us a collection of possible φ; this is precisely the collection of φ that are predicted by the
conjecture of [BDJ] for some constituent of IndGL2(kp)

Γ0(p) θ.
We then find the φ that appear in this way for all choices of θ such that σp is a constituent of

Ind
GL2(kp)
Γ0(p) θ; they are exactly the φ in our definition of Wp(ρ). Generically there are 2s choices for

θ, but if some of the parameters kτ of σp are p+1, there are fewer. This is the reason for condition
(ii) above, which makes our result weaker than the one conjectured in [BDJ].

It is a pleasure to thank Richard Taylor for his very patient advice, explanations, and encour-
agement, Fred Diamond for describing his conjectures to us and for several fruitful conversations,
and Kevin Buzzard for his comments on an earlier version of this work. This paper comes from
part of the author’s thesis [Sch2].

2. Shimura curves

2.1. Quaternionic Shimura curves. In this and the following two sections, we need not assume
that p is unramified in F . We begin by defining some compact open subgroups of G(A∞); we work
with the Shimura curves with these level structures. Consider the following subgroups of GL2(Op):

U0(p) = GL2(Op)

U0(p) =
{(

a b
c d

)
∈ GL2(Op) : c ∈ p

}
U1(p) =

{(
a b
c d

)
∈ GL2(Op) : d− 1, c ∈ p

}
U bal

1 (p) =
{(

a b
c d

)
∈ GL2(Op) : a− 1, c, d− 1 ∈ p

}
Un(p) =

{(
a b
c d

)
∈ GL2(Op) : a− 1, b, c, d− 1 ∈ pn

}
, n ≥ 1.

We will denote by Γ0(p) (resp. Γ1(p), Γbal
1 (p)) the projection of U0(p) (resp. U1(p), U bal

1 (p))
to GL2(kp). For H ⊂ G(A∞,p), we define K(n,H) = Un(p) × H. We introduce the notations
Mn,H = MK(0,H) and MU0(p),H = MU0(p)×H . The Shimura curves MU1(p),H and M bal

U1(p),H are
defined analogously. Finally, define U1(p) =

∏
p|p U1(p), and analogously for U1(p)bal. If the open

compact H ⊂ G(A∞,p) has the form H = Hp×Hp with Hp ⊂
∏

v|p,v 6=p GL2(Fv) and Hp ⊂ G(A∞,p),
then we write MU1(p),H for MU1(p)×Hp , and analogously for M bal

U1(p),H .
Choose an order O in the quaternion algebra B, and for every place v of F at which B splits,

fix a ring isomorphism B ⊗F Fv ' M2(Fv) such that O ⊗OF
Ov is sent to M2(Ov). Hence we get

isomorphisms (B ⊗ Fv)∗ ' GL2(Fv).
Let T ⊂ G be the torus T = ResF/QGm, and let ν : G → T be the reduced norm map.

Then ([Car1], 1.2) the set of connected components of MK(C) are in bijection with the set
T (Q)+\T (A∞)/ν(K), and ν induces the natural map MK → π0(MK). Here T (Q)+ denotes the
totally positive elements of F ∗, i. e. the ones which are mapped to R≥0 by each embedding F ↪→ R.

For every γ ∈ G(A∞) and every open compact U ⊂ G(A∞), the action of γ by multiplication on
the right induces an isomorphism MU (C) ∼→Mγ−1Uγ(C). This action comes from a right action of
G(A∞) on the projective system of F -schemes MU ([Car1], 1.1.2). Carayol proved that for suffi-
ciently small H (where “sufficiently small” depends on n), the group U0(p)/Un(p) = GL2(Op/p

n)
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acts freely on Mn,H ([Car1], 1.4.1.3). Also let GL2(Op/p
n) act from the right on (p−n/Op)2 by

v · g = g−1v, for g ∈ GL2(Op/p
n) and v ∈ (p−n/Op)2. Carayol defined an Op-module scheme En,H

over M0,H as follows:
En,H =

(
Mn,H × (p−n/Op)2

)
/GL2(Op/p

n).

Note that En,H is locally isomorphic to the constant Op-module (p−n/Op)2, in the étale topology.
If H is small enough that En,H and En+1,H are both defined, then En,H is the pn-torsion in En+1,H .
Also, the En,H are compatible with the maps M0,H′ →M0,H for subgroups H ′ ⊂ H.

If H is sufficiently small, the Shimura curve M0,H over F has a (unique) smooth and proper
integral model M0,H over O(p) = Op ∩ F ([Car1], 6.1). Furthermore, the En,H lift to finite flat
group schemes En,H of rank q2n on M0,H , which retain the properties of En,H listed above. Observe
that only finitely many of the En,H are defined for any given H.

Now let H be small enough that E1,H is defined on M0,H , and let S be any M0,H -scheme. The
pullback E1,H |S = E1,H ×M0,H

S is a finite locally free group scheme of rank q2 over S equipped
with an Op-action. For P ∈ E1,H(S), let [P ] be the image, viewed as a subscheme of E1,H |S , and let
IP be the ideal sheaf defining it. If J is a set of such sections, we write

∑
P∈J [P ] for the subscheme

of E1,H |S defined by the product
∏

P∈J IP of the ideal sheaves.

Definition 2.1. Let S be an M0,H -scheme.
(1) A balanced U1(p)-structure on S is a pair (P, P ′), such that there exists an fppf short exact

sequence of Op-modules on S:

0→ K → E1,H |S → K′ → 0

with K and K′ finite locally free group schemes of rank q, such that P ∈ K(S) and P ′ ∈
K′(S), and P (resp. P ′) generates K (resp. K′). By this we mean that

∑
α∈Op/p[αP

(′)] =
K(′).

(2) If H is small enough that En,H is defined, then a Drinfeld basis of level n on S is a homomor-
phism of Op-modules ϕ : (p−n/Op)2 → En|S such that the subscheme

∑
α∈(p−n/Op)2 [ϕ(α)] ⊂

En|S coincides with En|S .

Each of the following functors associates a set to an M0,H -scheme S.

M̃bal
U1(p),H : S 7→ {balanced U1(p)− structures on S}

M̃n,H : S 7→ {Drinfeld bases of level n on S}

Carayol showed that the functor M̃n,H is represented by a regular M0,H -scheme Mn,H which is
finite and flat over M0,H and such that Mn,H×M0,H

M0,H = Mn,H ([Car1], 7.4). Jarvis constructed
an integral model MU1(p),H of MU1(p),H , defined over Op; it is a regular scheme of dimension two,
finite and flat over M0,H . Unfortunately, this model does not have semistable reduction, as can be
seen from the description of its special fiber in [Jar2], 10.3. In the same way one can get an integral
model of M bal

U1(p),H , but it suffers from the same disadvantages.
Let F ′p/Fp be the totally ramified extension with Galois group k∗p , and let O′p be its ring of

integers. By using the idea of canonical structures from Chapter 9 of [KM], one can get a model
Mbal

U1(p),H of M bal
U1(p),H over Spec (Op) that factors through Spec (O′p) and does have semistable

reduction over Spec (O′p). Gee constructs such a curve in section 2 of [Gee1]; it is called Mbal.can
U1(p),H
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there. His argument follows Katz and Mazur and, though he works with unitary Shimura curves,
transfers word for word to our quaternionic case.

Finally we describe the special fiber of this scheme. If S is a scheme over M0,H ⊗Op kp, then we
have the absolute Frobenius morphism Φ : S → S, which acts by x 7→ xq on the underlying affine
rings. It induces the relative Frobenius F : S → S(q), where S(q) is the base change of S by Φ.

We will be concerned with the Frobenius map F : E1,H |S → E1,H |(q)S . We also have the Ver-
schiebung map V : E1,H |(q)S → E1,H |S , which is defined as the Cartier dual of:

F : (E1,H |S)∨ → ((E1,H |S)∨)(q) = (E1,H |(q)S ))∨.

For each geometric point x : Spec Fp →M0,H ⊗ kp we get a Op-module as follows. Choose any lift
y of x to a geometric point y : Spec Fp →M0 ⊗ kp. Here M0 is the projective limit of the M0,H ;
since the En,H are compatible, it carries a p-divisible group E∞. Now let E∞|x be the pullback
E∞ ×y Fp; this is independent of the choice of y. It is a divisible height 2 formal Op-module over
Fp. By Drinfeld’s classification, E∞|x is either Σ1 × Fp/Op or Σ2, where Σh is the unique formal
Op-module of height h. In the first case, we say that x is ordinary, and in the second that x is
supersingular. Carayol ([Car1] 9.4.3) showed that there is a positive finite number of supersingular
points. The following is essentially Theorem 2.18 of [Gee1].

Proposition 2.2. The special fiber of Mbal
U1(p),H consists of two smooth curves defined over kp,

which intersect transversally at the supersingular points. They are I, which parametrizes balanced
U1(p)-structures (P, P ′) where K(q) = kerV and E, which parametrizes structures with K = kerF .

2.2. Hecke correspondences. Recall that G(A∞) acts on the projective system of MU ’s by right
multiplication. For every γ ∈ G(A∞) we can define a Hecke correspondence [UγU ] on MU by the
following diagram.

(3)

MγUγ−1∩U

γ
- MU∩γ−1Uγ

MU

�

π 1

MU

π
2

-

Clearly these correspondences extend to the integral models MU . Now, let ∆ be a set of left
coset representatives of U/(γUγ−1 ∩ U). Then clearly the correspondence [UγU ] sends a class
xU ∈ MU (C) (here x ∈ G(Q)\G(A∞)× (C\R)) to the set {xδγU : δ ∈ ∆} ⊂ MU (C). It is easy to
see that this is independent of the choice of ∆. Now observe that:

[UγU ] =
∐
δ∈∆

δγU.

We find that the correspondence [UγU ] depends only on the double coset [UγU ], which justifies
the notation.

In practice we will always assume that U = Up×H, where Up is one of the groups Un(p), U0(p),
U1(p), or U bal

1 (p). Let v be a finite place of F at which B splits. For x ∈ GL2(Fv), we denote by
xv the element of G(A∞) which is trivial everywhere except at v, where it is x (recall that we have
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fixed an identification of (B ⊗ Fv)∗ with GL2(Fv)). Define the Hecke correspondences:

Tv(U) =
[
U

(
πv 0
0 1

)
v

U

]
Sv(U) =

[
U

(
πv 0
0 πv

)
v

U

]
Observe that the correspondence Sv is in fact an operator, since the element of G(A∞) in question

is central. If Up ⊃ U1(p) and α, β ∈ k∗p , then we define the diamond operator

〈α, β〉(U) =

[
U

(
α̃ 0
0 β̃

)
p

U

]

where α̃, β̃ ∈ O∗p are any lifts of α and β. Note that this is well-defined.
By decreasing the open compact U if necessary, we may assume that U is a product

∏
v Uv, with

Uv ∈ (B ⊗ Fv)∗. Let S be a finite collection of places of F containing all infinite places, all places
dividing p, all places where B ramifies, and all places v such that Uv 6= GL2(Ov). We define TU to
be the commutative Z-subalgebra of End(Pic0(MU )) generated by Tv(U) and Sv(U) for all v 6∈ S,
and T̃U to be the subalgebra generated by TU and 〈α, β〉(U) for all α, β ∈ k∗p . Clearly TU and T̃U

are finite free over Z.
Let T = TU1(p)×Hp and T̃ = T̃U1(p)×Hp . Then T surjects onto TU1(p)bal×H and TK(0,H), so we

can view T as acting via correspondences on MU1(p)bal,H and M0,H , and similarly for T̃.

2.3. An Eichler-Shimura relation. Let U ⊂ G(A∞) be one of the groups considered in section
2.2. Then the Hecke correspondences defined there commute with the Gal(F/F )-action on MU ,
and these induce commuting actions of T and of Gal(F/F ) on Pic0(MU ). In this section we prove
an Eichler-Shimura relation.

First we briefly recall some facts about special fibers; see [Car1], §9 for the details. Let F ab
p

and Fnr
p be the maximal abelian and maximal unramified extensions of Fp, respectively, and let

Fnr
p ⊂ Fn

p ⊂ F ab
p be the extension for which local class field theory identifies Gal(Fn

p /F
nr
p ) with

O∗p/(1 + πn
pOp). We denote by On

p the ring of integers of Fn
p . The action of the Weil group

W (F ab
p /Fp) on the ring On

p induces a right action of this group on the regular scheme Mn,H⊗On
p ,

the normalization of Mn,H ⊗Op On
p . Write Mn,H⊗Fp for the special fiber (Mn,H⊗On

p )⊗On
p

Fp. Let
M⊗Fp be the projective limit of these, with respect to both n and H; it has commuting actions of
W (F ab

p /Fp) and G(A∞).
Let ϕn : (p−n/Op)2 → En,H be the universal Drinfeld basis of level n on M⊗Fp, and An be a line

in the (Op/p
n)-module (p−n/Op)2, i.e. a rank 1 direct summand. Then let (Mn,H⊗Fp)An be the

closed smooth subscheme cut out by the condition ϕn|An = 0; these are precisely the irreducible
components of Mn,H⊗Fp. In particular, if An is always the line generated by (1, 0) ∈ (p−n/Op)2,
then the (Mn,H⊗Fp)An are clearly compatible, and the projective limit (M⊗Fp)A is stable under
the subgroup of G(A∞)×W (F ab

p /Fp) consisting of elements whose GL2(Fp)-component is an upper
triangular matrix. Denote the valuation of Fp by v.
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For w ∈ W (F ab
p /Fp), let [w] ∈ F ∗p be its image under the Artin reciprocity map. Then Carayol

proved ([Car1], 10.3) that elements of GL2(Fp)×W (F ab
p /Fp) of the form((

[w] ∗
0 1

)
, w

)
act on (M⊗Fp)A by the (v([w]−1))-th power of absolute Frobenius.

Remark 2.3. Let A′n be the subspace of (p−n/Op)2 generated by (0, 1). Then, by exactly the same
argument as in [Car1], 10.4 we can show that((

1 0
∗ [w]

)
, w

)
acts on (M⊗Fp)A′ by the (v([w]−1))-th power of absolute Frobenius; in particular, it stabilzes
points.

Now let Φ denote absolute Frobenius on (M⊗Fp)A, which acts as x 7→ xq on underlying affine
rings. By Carayol’s congruence relation, the action of Φ on (M⊗Fp)A is the same as that of((

π−1
p 0
0 1

)
,Frobp

)
.

Hence the same is true on cohomology H1((M⊗Fp)A,Ql) for any prime l 6= p, and so on
H1(M0,H⊗Fp,Ql) = H1((M⊗Fp)A,Ql)U0(p)×H . (Recall that only the upper triangular elements of
GL2(Fp) act on H1((M⊗Fp)A,Ql).) But note that Φ = Φ× Frobp, where Φ is absolute Frobenius
on M0,H ⊗Op kp and Frobp acts on Onr

p and hence Fp. Thus we have the following equality of
correspondences on H1(M0,H ⊗ Fp,Ql):

Φ× 1 =
(
π−1

p 0
0 1

)
.

The right action of G(A∞) on the projective system of Shimura curves MU induces a left action
on the injective system of H1(MU ⊗ Fp,Ql). By the diagram (3), we see that the operator [UγU ]
on cohomology is given by the following composition of morphisms, where tr is a trace map:

H1(MU ⊗ Fp,Ql)
tr← H1(MγUγ−1∩U ⊗ Fp,Ql)

γ∗← H1(MU∩γ−1Uγ ⊗ Fp,Ql)
π∗2← H1(MU ⊗ Fp,Ql)

Lemma 2.4. On H1(M0,H ⊗ Fp,Ql) we have the following relation of correspondences:

SpΦ2 − TpΦ + q = 0.

Proof. To simplify notation, let U = K(0,H) throughout this proof. Let γ ∈ G(A∞) be the element

which is
(
πp 0
0 1

)
at p and 1 elsewhere. For each α ∈ kp, choose an α̃ ∈ Op lifting it. Then:

UγU =
∐

α∈kp

(
πp α̃
0 1

)
U
∐(

1 0
0 πp

)
U.
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Thus, on H1(M0,H ⊗ Fp,Ql) we have that (SpΦ2 − TpΦ + q)x =(
π−1

p 0
0 πp

)∗
x−

∑
α∈kp

(
πp α̃
0 1

)∗(
π−1

p 0
0 1

)∗
x−

(
1 0
0 πp

)∗(
π−1

p 0
0 1

)∗
x+ qx =

(
π−1

p 0
0 πp

)∗
x− qx−

(
π−1

p 0
0 πp

)∗
x+ qx = 0

�

Remark 2.5. The action of Φ × 1 on H1(M0,H ⊗ Fp,Ql) or H1(M0,H ⊗O(p)
F ,Ql) corresponds

to the Galois action of geometric Frobenius: 1 × Frob−1
p . Hence SpFrob−2

p − TpFrob−1
p + q = 0.

Equivalently,
Frob2

p − (Np)−1TpFrobp + (Np)−1Sp = 0.

Proposition 2.6. Let v be a place of F such that v 6∈ S (see section 2.2 for the definition of S) and
v lies over a rational prime l 6= p which is unramified in F . Suppose also that B splits at all places of
F above l; clearly, almost all v satisfy these conditions. Then, the element Frob2

v−TvFrobv +NvSv

of T[Gal(F/F )] annihilates Pic0(MU )[p](F ).

Proof. We apply the previous lemma and remark with v in the role of p and p in the role of l. We
can do this as the only assumptions made about p in [Car1] were that p is unramified in F and that
B splits at all places of F above p. Since v 6∈ S, we have U = GL2(Ov)×U ′, where U ′ ⊂ G(A∞,v).
Recall that M0,H was defined as the unique (up to canonical isomorphism) extension of the F -
scheme M0,H to O(p) = F ∩Op. Similarly, there is an integral model M(v)

0,U ′ of MU over O(v). Then

by the previous remark we have the following relation on H1(M(v)
0,U ′ ⊗O(v)

F ,Qp):

Frob2
v − (Nv)−1TvFrobv + (Nv)−1Sv = 0.

Note that M0,H⊗F 'M(v)
0,U ′⊗F . Since H1(M0,H⊗F ,Zp) is the cohomology of a proper smooth

curve, it has no torsion and so injects into H1(M0,H ⊗F ,Qp). Hence the above relation holds there
as well. This group in turn surjects onto H1(M0,H⊗F ,Fp). Now, Pic0(MU )[p] = H1(M0,H⊗F ,µp),
and on this space the action of Frobv is twisted by (Nv) with respect to what we had earlier:

(Nv)−2Frob2
v − (Nv)−2TvFrobv + (Nv)−1Sv = 0.

This completes the proof. �

2.4. A geometric Galois action. Let D,K,D′,K ′ be as defined in the introduction; note that
K ′ and D′ are F 1

p and O1
p, respectively. Each σ ∈ Gal(K ′/K) induces an automorphism id ×

Spec (σ) of M1,H⊗D′ and hence of the normalization M1,H⊗DD
′ and of its special fiber M1,H⊗Fp.

Similarly we get an automorphism of Mbal
U1(p),H⊗Fp, i.e. of the special fiber of the normalization of

Mbal
U1(p),H ⊗O′

p
D′. Recall that this latter scheme has two smooth components, which we denoted

by I and E.
Let j : Gal(K ′/K) → O∗p/(1 + p) be the isomorphism induced by the Artin reciprocity map.

Then we have the following analogue of [Gro], Prop. 7.2:

Proposition 2.7. Let σ ∈ Gal(K ′/K). Then σ acts on I and E by 〈j(σ)−1, 1〉 and 〈1, j(σ)−1〉,
respectively.
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Proof. Let ϕ : (p−1/Op)2 → E1|T be a Drinfeld basis of level 1 on a M0,H -scheme T . It induces
a U1(p)bal-structure as follows: P = ϕ(0, 1), and P ′ is the image in E1|T /〈P 〉 of ϕ(1, 0). This
morphism of moduli problems is represented by the map M1,H →Mbal

U1(p),H . In the notation of the
previous section, (M1,H⊗Fp)A′ is the subscheme defined by the condition φ1|A′

1
= 0. It clearly maps

to the E component of Mbal
U1(p),H⊗Fp; indeed, if ϕ is zero on A′1, then in the corresponding U1(p)bal-

structure 〈P 〉 is connected and so is kerF . Similarly, (M1,H⊗Fp)A′ lands on the I component.
Now by [Car1], 10.3 and Remark 2.3 the actions of σ on (M⊗Fp)A and (M⊗Fp)A′ are identical,

respectively, to those of (
j(σ)−1 0

0 1

)
and

(
1 0
0 j(σ)−1

)
.

Hence σ acts on I as 〈j(σ)−1, 1〉 and on E as 〈1, j(σ)−1〉. �

Remark 2.8. This proposition can also be proved by passing to Carayol’s unitary Shimura varieties
M′

U , which have a modular description. There one can carry out a similar argument to [Gro],
Proposition 7.2. One uses the results of [Kas], 3.4 to define the analogue of the operator wζ .

Let J be the Néron model over D′ of the curve Pic0(M bal
U1(p),H)×K K ′. Then Pic0(Mbal

U1(p),H⊗D
′)

is isomorphic to the identity component J0 of J by [BLR1], 9.5/4.
The right action of Gal(K ′/K) on M bal

U1(p),H ×K K ′, and hence on Mbal
U1(p),H⊗D

′, that we just
studied induces a left action of the same group on Pic0(Mbal

U1(p),H⊗D
′). Similarly, we have a right

action of Gal(K ′/K) on Pic0(M bal
U1(p),H) ×K K ′ and hence on its Néron model. By the above

isomorphism, this induces a right action on Pic0(Mbal
U1(p),H⊗D

′).

Lemma 2.9. Let σ ∈ Gal(K ′/K). Then the right action of σ on Pic0(Mbal
U1(p),H⊗D

′) is identical
to the left action of σ−1.

Proof. For any regular curve X/K, there are two actions of Gal(K ′/K) on Pic0(X ×K K ′): the
obvious left action, and the right action coming from the isomorphism Pic0(X×KK

′) ' Pic0(X)×K

K ′. By the universal property of the Picard functor, the right action of σ on Pic0(X ×K K ′) is
identical to the left action of σ−1, and the lemma follows immediately. �

3. Mod p Hilbert modular forms

3.1. Mod p Hilbert modular forms. From here on we assume that p is unramified in F . We first
describe a general construction for lisse étale mod p sheaves associated to modular representations;
cf. the p-adic sheaves of [Car2], 2.1.3 and [HT], III.2.

Consider a compact open U ⊂ G(A∞), and let U ⊃ U1 ⊃ U2 ⊃ . . . be a sequence of subgroups
such that for each n, MUn → MU is a finite étale Galois cover. Set G = lim←−Gal(MUn/MU ). Let
η : G→ GL(W ) be a representation of G on an Fp-vector space W , and suppose that η is defined
over a finite field F ⊂ Fp.

We define a lisse étale sheaf Fη on MU as follows. Since η has finite image, it factors through
Gal(MUN

/MU ) for some N . The sections of Fη over an étale cover Y →MU will be the functions

f : π0(MUN
×MU

Y )→W
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such that for all γ ∈ Gal(MUN
/MU ) and all C ∈ π0(MUN

×MU
Y ) the following relation holds:

f(Cγ) = η(γ)−1f(C).

In particular, if MV → MU is a finite étale Galois cover and η is an Fp-representation of
Gal(MV /MU ), then this construction produces a lisse étale sheaf Fη on MU .

Lemma 3.1. For Hp sufficiently small, the finite étale cover MU1(p),H → M0,H is Galois with
Galois group GL2(OF /p).

Proof. By [Car1], 1.4.1.1, with the observation that it suffices to vary Hp in that argument, for Hp

sufficiently small M1,H → M0,H is a Galois cover with Galois group K(0,H)/K(1,H)(K(0,H) ∩
Z(Q)). Shrinking Hp if necessary, we can assume (Z(Q) ∩K(0,H))p ⊂ O∗F . By [Che], Théorème
1, there exists a rational integer a such that (a, p) = 1 and O∗F ∩ (1 + aOF ) ⊂ 1 + pOF . Now
for all v 6∈ S, we require that Hv ⊂ {g ∈ GL2(Ov) : g ≡ I2 mod πordv(a)

v }. Then we have
(Z(Q) ∩K(0,H))p ⊂ U1(p). Repeating this process for all places of F dividing p, we obtain the
lemma. �

Assume from now on that Hp is sufficiently small to satisfy the previous lemma. Then for any
modular representation ξ : GL2(OF /p)→ GL(Wξ) we obtain by the construction above a lisse étale
mod p sheaf Fξ on M0,H .

Definition 3.2. Let σ be a weight. A mod p Hilbert modular class of weight σ is an element of
H1(M0,H ⊗ F ,Fσ).

3.2. Hecke operators on cohomology. The Hecke correspondences on MU introducted in Sec-
tion 2.2 induce Hecke operators on the spaces H1(MU ⊗F ,Fσ). We will study them in this section.
Set F = Fσ. The induced operator [UxU ] on cohomology is the composition of three maps:

(4) H i(MU ⊗ F ,F)→ H i(MxUx−1∩U ⊗ F , x∗F)→ H i(MxUx−1∩U ⊗ F ,F)→ H i(MU ⊗ F ,F).

The leftmost map is pullback by x, and the rightmost map is the trace. To give an explicit
description of the map in the middle, we will construct the relevant map of sheaves x∗F → F on
MxUx−1∩U . By adjointness of x∗ and x∗, this corresponds to a map F → x∗F on MU .

Now let Y →MU be an étale cover. To construct our map

(5) F(Y )→ x∗F(Y ) = F(Y ×MU ,x MxUx−1∩U ),

choose normal subgroups W ⊂ U and W ′ ⊂ xUx−1 ∩U such that W and W ′ trivialize F . In other
words, Gal(MW /MU ) (resp. Gal(MW ′/MxUx−1∩U )) acts on Λ/p via σ. It is easy to see that we can
suppose W ′ ⊂ xWx−1. Then we read off from the definition of the sheaf F that

F(Y ) =
{
f : π0(Y ×MU

MW )→ Λ/p : ∀C ∈ π0,∀γ ∈ U, f(Cγ) = σ(γ)−1f(C)
}

and

F(Y ×MU ,x MxUx−1∩U ) ={
F : π0(Y ×MU ,x MW ′)→ Λ/p : ∀C ∈ π0,∀γ′ ∈ xUx−1 ∩ U,F (Cγ′) = σ(γ′)−1F (C)

}
.

Observe that the conjugation map x : MW ′ →Mx−1W ′x →MW induces a map on the base changes:

x : Y ×MU ,x MW ′ → Y ×MU
MW .

Then the map in (5) is f 7→ Ff , where Ff (C) = xf(Cx).
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3.3. Eisenstein ideals. We generalize the notion of Eisenstein ideals to F as in [Jar1]. Let d ⊂ OF

be an integral ideal, and set Ad = {a ∈ (A∞F )∗ : a− 1 ∈ d}. The Artin reciprocity map induces an
isomorphism between Cl(d) = A∗F /F ∗Ad(F ∗∞)0 and Gal(Fd/F ), where Fd is the narrow ray class
field associated to d. If v is a place of F , we will say that v ≡ 1 (mod d) if πv ∈ F ∗Ad; observe that
this definition is independent of the choice of uniformizer πv.

Definition 3.3. If m ⊂ T is a maximal ideal, we will say that m is Eisenstein if there exists an
integral ideal d ⊂ OF such that for almost all places v of F such that v ≡ 1 (mod d), we have
Tv − 2 ∈ m and Sv − 1 ∈ m.

Let m ⊂ T be a maximal ideal. If there exists a representation Gal(F/F )→ GL2(Fp) such that
for almost all places v of F , the characteristic polynomial of the action of Frobv is x2−Tvx+NvSv,
then we will denote it by ρm.

Proposition 3.4. Let m ⊂ T be a maximal ideal such that H1(MU ⊗F ,Fσ)m 6= 0 for some weight
σ. Suppose ρm exists. Then ρm is reducible if and only if m is Eisenstein.

Proof. In the case F = Q, this is Proposition 2 of [DT], and the proof is essentially the same. See
also the comments in section 3 of [Jar1]. Let ρm be reducible. Then its semisimplification has the
form χ⊕χ−1 det ρm for some character χ of Gal(F/F ), hence of Gal(F/F )ab. Let c be the conductor
of χ. Then for almost all v ≡ 1 (mod c), we have Tv ≡ trρ ≡ 1 +NvSv (mod m). Observe that the
Artin reciprocity map identifies π0(MU ) ' (A∞F )∗/F+ν(U) with a finite quotient of Gal(F/F )ab.
Hence π0(MU ) is a quotient of Cl(d) for some integral ideal d ⊂ OF ; see [Neu] VI.1.8 for a proof
of this fact. From the description of the action of the Hecke operators in section 3.2, it is clear
that if v ≡ 1 (mod d) and v does not divide p, then Sv acts like the identity on H1(MU ⊗ F ,Fσ),
whence Sv − 1 ∈ AnnTH

1(MU ⊗ F ,Fσ) ⊂ m. Now choose d′ such that the narrow ray class field
Fd′ contains Fcd(µp). Then for almost all v ≡ 1 (mod d′) we see that Sv − 1 ∈ m and Tv − 2 ∈ m
(since Nv ≡ 1 (mod p)).

The argument in the converse direction is identical to that in [DT]. �

Proposition 3.5. Let A = H0(MU ⊗ F ,Fξ) for a sheaf Fξ as above. Let m ⊂ T be a maximal
ideal such that m contains p and Am 6= 0. Then m is Eisenstein.

Proof. This is analogous to the proof of Lemma 3 in [DT]. Consider A as a T[Gal(F/F )]-
representation. It is clear from the construction of Fσ that the action of Gal(F/F ) on the semisim-
plification of A⊗Fp factors through π0(MU ) ' (A∞F )∗/F+ν(U), hence through Cl(d), where d is as
in the proof of Proposition 3.4. Therefore, Frobv − 1 is nilpotent on A for all v ≡ 1 (mod d). From
the Eichler-Shimura relation (Proposition 2.6) we know that Tv − 2 = (Frobv − 1)(1 − Frob−1

v );
since the two factors commute, Tv − 2 is also nilpotent on A.

From the description of the Hecke operators in section 3.2 we see that Sv = 1 on A for all v ≡ 1
(mod d) such that v - p. If Am 6= 0, then Ann(A) ⊂ m, whence Tv − 2 ∈ m and Sv − 1 ∈ m for v as
above. �

Remark 3.6. Observe that the same result holds for A = H2(MU ⊗ F ,Fξ) by Poincaré duality.

3.4. Lifting forms to “weight 2”. Suppose that σp is an irreducible constituent of ξ = Ind
GL2(kp)
Γ0(p) θ,

for a one-dimensional representation θ : Γ0(p) → F∗p. Indeed such a θ can always be found; gener-
ically there are 2s of them. Let I = {τ1, τ2, . . . , τs} be the set of embeddings kp ↪→ Fp. We will
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assume they are labeled so that τi−1 = τp
i for i ∈ Z/sZ, and we will write wi and ki for wτi and kτi ,

respectively. Denote the set of all subsets of I by P(I). If S ∈ P(I), let νS be the characteristic
function of S(p):

νS(τi) =

{
1 : τi+1 ∈ S
0 : τi+1 6∈ S

Lemma 3.7. Let θ : Γ0(p)→ Fp be a character of the form(
a b
0 d

)
7→

∏
i∈Z/sZ

τi(d)ki−2.

Then the irreducible constituents of the Fp-representation Ind
GL2(kp)
Γ0(p) θ are the following, where S

runs over P(I):(⊗
τ∈S

Symkτ−3+νS(τ)k2
p ⊗τ Fp

)⊗⊗
τ 6∈S

detkτ−2+νS(τ) Symp+1−kτ−νS(τ)k2
p ⊗τ Fp

 .

Here we have defined Sym−1k2
p = 0.

This is Proposition 1.1 of [Dia]; the proof is a computation with Brauer characters. The unique
irreducible submodule and quotient correspond to S = I and S = ∅, respectively; since we do not
use this fact in the paper, we do not prove it, but explicit maps can be found in [Sch2].

Remark 3.8. By twisting everything in Lemma 3.7 with characters
∏

τ τ(detwτ ) : GL2(kp) → F∗p,
we obtain the constituents of IndGL2(kp)

Γ0(p) θ for all characters θ : Γ0(p)→ Fp. Observe that every σp

appears as a constituent of some θ, and generically of 2s θ’s.

Definition 3.9. We will call σp untwisted if it is a constituent of IndGL2(kp)
Γ0(p) θ for some character

θ : Γ0(p)→ F∗p of the form

θ :
(
a b
0 d

)
7→

∏
τ :kp↪→Fp

τ(d)kτ−2.

We will also call characters θ of this form untwisted. Often we restrict to the case of untwisted σp,
then use Corollary 3.21 to extend our results to the general case.

Let ξ = Ind
GL2(kp)
Γ0(p) θ. Since we are considering representations over Fp of a group (GL2(kp))

whose order is divisible by p, Maschke’s theorem fails, and σp need not be a direct summand of ξ.
However, there exists a composition series of submodules

0 = W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Wm = ξ

such that for some labeling {σ1, . . . , σm} of the irreducible constituents of ξ, we have Wi/Wi−1 ' σi.

Definition 3.10. We call a Hecke eigenclass f ∈ H1(M0,H ⊗ F ,Fσ) non-Eisenstein if the corre-
sponding maximal ideal m ⊂ T is non-Eisenstein.

Lemma 3.11. Let σ = σp ⊗ σp be a weight. (Here σp consists of the components of σ away from
p.) Let f ∈ H1(M0,H ⊗ F̄ ,Fσ) be a non-Eisenstein Hecke eigenclass. There exists an eigenclass
f ′ ∈ H1(M0,H ⊗ F̄ ,Fξ⊗σp) with the same system of eigenvalues.
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Proof. First of all, we drop the σp from the notation; this will lead to no confusion. Then f ∈
H1(M0,H ⊗ F̄ ,Fσ)m 6= 0. Recall that {Wi} is our filtration on Ind

GL2(kp)
Γ0(p) θ. For some 1 ≤ i ≤ m

we have an exact sequence of representations

0→Wi−1 →Wi → σp → 0

Consider the following segment of the long exact cohomology sequence:

H1(M0,H ⊗ F ,FWi)m → H1(M0,H ⊗ F ,Fσ)m → H2(M0,H ⊗ F ,FWi−1)m.

By the remark after Proposition 3.5 the rightmost term is trivial. Since everything here clearly
respects the action of T, we can lift f to an element of H1(M0,H ⊗ F ,FWi)m with the same
eigenvalues. Now we consider the sequence

0→Wi →Wi+1 →Wi+1/Wi → 0

and see that H1(M0,H ⊗ F ,FWi)m embeds in H1(M0,H ⊗ F ,FWi+1)m. Iterating this argument, we
see that it embeds in H1(M0,H ⊗ F ,Fξ)m. �

For any place v|p, let 1v be the trivial representation of GL2(kv), and let 1 =
⊗

v|p 1v be the
trivial weight; this corresponds to kτ = 2 and wτ = 0 for all τ .

Lemma 3.12. Suppose that σ = σp ⊗ σp with σp untwisted, and let f ∈ H1(M0,H ⊗ F ,Fσ) be a
non-Eisenstein eigenclass. There exists an eigenclass f ∈ H1(MU1(p),H ⊗F ,F1p⊗σp) with the same
system of eigenvalues.

Proof. By Lemma 3.11 we can lift f to f ′ ∈ H1(M0,H ⊗ F ,Fξ⊗σp). Let B =
∏r

i=2 GL2(Opi), and
recall that ξ⊗σp = Ind

GL2(kp)B
Γ0(p)B (θ⊗σp). Consider the finite étale Galois cover π : MU0(p),H →M0,H ;

it is then a general fact from étale cohomology that for any lisse étale sheaf F , we have H i(M0,H ⊗
F , π∗F) = H i(MU0(p),H ⊗ F ,F). Hence H1(M0,H ⊗ F ,Fξ⊗σp) = H1(M0,H ⊗ F , π∗Fθ⊗σp) =
H1(MU0(p),H ⊗ F ,Fθ⊗σp). Statements of this form should be considered analogues of Shapiro’s
lemma in group cohomology.

Now observe that η : MU1(p),H → MU0(p),H is a Galois covering with group G1,0 ' k∗p . Indeed,
since ν(U1(p)) = ν(U0(p)) we see that MU1(p),H and MU0(p),H have the same number of connected
components, and each component of MU1(p),H is a Galois cover of the corresponding component of
MU0(p),H . It is a standard result that H1(MU0(p),H ⊗ F̄ ,Fθ⊗σp) ' H1(MU1(p),H ⊗ F̄ , η∗Fθ⊗σp)G1,0 .

Finally we observe that η∗Fθ⊗σp = Fθ|Γ1(p)⊗σp . Indeed, we have Fθ⊗σp ' η∗η
∗FG1,0

θ⊗σp . Now
η∗Fθ|Γ1(p)⊗σp = F

Ind
Γ0(p)

Γ1(p)
θ|Γ1(p)⊗σp

, and the G1,0-invariants of this sheaf clearly agree on stalks with

Fθ⊗σp . But we assumed θ to be untwisted, and so θ vanishes on Γ1(p). Therefore, f indeed lifts to
H1(MU1(p),H⊗F ,F1p⊗σp), and all of these manipulations are compatible with the Hecke action. �

Remark 3.13. By exactly the same argument, we see that for arbitrary σp, f ∈ H1(M0,H ⊗ F ,Fσ)
can be lifted to an eigenform in H1(M bal

U1(p),H ⊗ F ,F1p⊗σp). This time, σp is a constituent of θ of
the form

θ :
(
a b
0 d

)
7→
∏
τ

τ(ad)wτ τ(d)kτ−2

and one has to go up to Γbal
1 (p) for θ to vanish.
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Since F1 is the constant sheaf Fp, we can consider all the places above p at once in this argument
to obtain the following:

Proposition 3.14. Let σ be a weight such that for each v|p, the v-component σv is untwisted. Then
a non-Eisenstein eigenclass f ∈ H1(M0,H⊗F ,Fσ) can be lifted to an eigenclass f ∈ H1(MU1(p),H⊗
F ,Fp) with the same eigenvalues. For arbitrary σ, f can be lifted to H1(M bal

U1(p),H ⊗ F ,Fp).

3.5. Action of the diamond operators. While the diamond operators act trivially on MU0(p),H ,
this is not true on MU1(p),H and M bal

U1(p),H .

Lemma 3.15. Let f ∈ H1(M bal
U1(p),H ⊗F ,F1p⊗σp) be a lift of a class from H1(M0,H ⊗F ,Fσ) as in

the remark above. Recall that we have a fixed character θ : Γ0(p)→ F∗p such that σp is a constituent

of IndGL2(kp)
Γ0(p) θ. Let α, β ∈ k∗p. Then

〈α, β〉f = θ−1

((
α 0
0 β

))
f.

Proof. For some liftings α̃, β̃ ∈ O∗p of α, β, let γ ∈ G(A∞) be the element such that γv = 1 for all
v 6= p, and

γp =
(
α̃ 0
0 β̃

)
.

From the description of the Hecke operators in section 3.2 we see that the operator 〈α, β〉 on co-
homology is induced by a map of sheaves FFp⊗σp → γ∗FFp⊗σp which sends a section f ∈ FFp⊗σp(Y )
to a section Ff , where Ff (C) = γf(Cγ).

Since f comes from a section of the sheaf Fθ⊗σp on MU0(p),H , we see that f(Cγ) = θ−1(γ)f(C).
On the other hand, GL2(Fp) acts trivially on the underlying space of 1p⊗σp. Thus the map above
is simply multiplication by θ−1(γ) =

∏
τ τ(αβ)−wτ τ(β)2−kτ . �

3.6. Galois representations.

Theorem 3.16. Let f ∈ H1(M0,H × F̄ ,Fσ) be a Hilbert modular class which is an eigenvector
of the Hecke algebra T, and suppose the associated maximal ideal m ⊂ T is non-Eisenstein. Let
av ∈ Fp and bv ∈ Fp denote the eigenvalues of Tv and Sv, respectively, for places v where these
operators exist. Then there is a representation ρf : Gal(F̄ /F )→ GL2(Fp) such that if v is a place
of F such that Hv = GL2(Ov) (note that this criterion implies v 6 |p and is satisfied by almost all
v), then ρf is unramified at v, and

• trρf (Frobv) = av

• det ρf (Frobv) = Nv · bv.

Proof. We only sketch the proof. In section 3.4 we showed that f can be lifted to a Hilbert modular
eigenclass f̃ ∈ H1(M bal

U1(p),H × F̄ ,Fp) with the same system of eigenvalues. Since the constant sheaf
Fp corresponds to (the restriction to

∏
p|p Γbal

1 (p) of) the trivial one-dimensional weight, our claim
is analogous to the classical result that a modular form of weight k and level N can be lifted to a
form of weight 2 and level Np; see, for instance, [Gro] §9.

Since H1(M bal
U1(p),H ⊗F ,Fp) = H1(M bal

U1(p),H ⊗F ,D)⊗D Fp, by the Deligne-Serre lemma (Lemme
6.11 of [DS]) there exists f ′ ∈ H1(M bal

U1(p),H ⊗F ,D
′), for some discrete valuation ring D′ ⊃ D, such
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that the Hecke eigenvalues of f̃ and f ′ have the same image in the residue field Fp. Clearly f ′ can
be viewed as an element of H1(M bal

U1(p),H ⊗ F ,Qp).

Recall we have a fixed isomorphism Qp
∼→ C. In Hida’s notation, the constant sheaf Qp is the

p-adic sheaf L(n, v,C) for n = v = 0 (which corresponds to k = 2t and w = t, where t is the vector
(1, . . . , 1)). By [Hid], Theorem 6.2, we have

H1(M bal
U1(p),H ⊗ F ,Qp) ' S2t,t,∅(U1(p)bal ×H,C)⊕ S2t,t,I(U1(p)bal ×H,C).

Here the two components on the right hand side are spaces of functions f : G(Q)\G(A)→ C satis-
fying certain congruence properties, as defined on pp. 303-4 of [Hid]. Now by the Jacquet-Langlands
theorem, there is a classical Hilbert eigenform of parallel weight 2 with the same eigenvalues as our
eigenform f ∈ S2t,t,J(U1(p)bal×H,C), and for these one constructs Galois representations with the
required properties as in [Car2] and [Tay]. �

3.7. Modularity. We will now see that modularity in the sense of Definition 1.2 implies modularity
in the intuitive sense that for a modular ρ there exists some mod p Hilbert modular eigenclass f
such that ρ ' ρf .

First we define a “diamond operator” map as follows. Map (A∞F )∗ to (T/m)∗ by sending an adele
a to [UγaU ]. Here γa ∈ G(A∞) is defined as follows: for any place v of F , set (γa)v = av1v, where
1v is the identity of (D ⊗ Fv)∗. Observe that if a ∈ F ∗, then γa ∈ G(Q) and γa is in the center of
G(A∞), so a is in the kernel of our map. Composing with the Artin reciprocity map we obtain a
“diamond operator” map:

〈·〉 : Gal(F̄ /F ) → (T/m)∗

Frobv 7→ S−1
v

Proposition 3.17. Suppose that ρ : Gal(F/F ) → GL2(Fp) is irreducible, continuous, totally odd,
and modular of weight σ (in the sense of Definition 1.2). Then there exists f ∈ H1(M0,H ×F ,Fσ)
such that ρ ' ρf .

Proof. Consider the Fp-vector space V = (Pic0(M1,H)[p] ⊗ σ)GL2(OF /p), as a representation of the
group Gal(F/F ). We know that, for an appropriate H, ρ is a subrepresentation. Furthermore, V
has an action of T that commutes with the Gal(F̄ /F )-action. This makes V into a T/p-module.
Since T is finite free over Z, we see that T/p =

⊕
m T/mnm , where m ranges over all maximal ideas

of T containing (p) and nm ∈ Z. Let Vm = V ⊗T T/m. Then V =
⊕

m Vm.
Since this decomposition of V respects the Gal(F̄ /F )-module structure and ρ is irreducible, we

find that ρ appears in Vm for some maximal ideal m ⊂ T. In particular, Vm 6= 0. Also, there is
a canonical isomorphism Pic0(M1,H)[p∞] ' H1

ét(M1,H ,Zp(1)) which is compatible with the Galois
and Hecke actions. Taking p-torsion, we see that Pic0(M1,H)[p] ' H1(M1,H ⊗ F ,µp). Therefore,
we have a Hecke-equivariant (but not Galois-equivariant!) isomorphism:

Vm ' (H1(M1,H ⊗ F ,µp)⊗ σ)GL2(OF /p)
m ' H1(M0,H ⊗ F ,Fσ)m.

Indeed, we will show that (H0(M1,H ⊗ F ,µp) ⊗ σ)GL2(OF /p) ' H0(M0,H ⊗ F ,Fσ), and by the
Hochschild-Serre spectral sequence we will get a similar map for H1 with Eisenstein kernel and
cokernel. Now, (H0(M1,H ⊗ F ,µp)⊗ σ) consists of locally constant functions f : (M1,H)F → Wσ,
and g ∈ GL2(OF /p) acts by (gf)(C) = σ(g)(f(Cg)). Hence the GL2(OF /p)-invariants are the
functions satisfying f(Cg) = σ−1(g)f(C), which are precisely the global sections of Fσ on M0,H .
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By the Eichler-Shimura relation of Proposition 2.6, for almost all places v of F we have the
following congruence on V and Vm:

(6) Frob2
v − TvFrobv + (Nv)Sv ≡ 0 mod m.

Let α, β ∈ Fp be the roots of the polynomialX2−TvX+(Nv)Sv, where we consider the coefficients
as elements of T/m ⊂ Fp. Consider a Jordan-Hölder decomposition of the (T/m)[Gal(F̄ /F )]-
module Vm. Let W be a constituent corresponding to ρ. Let λ1, λ2, . . . , λdim W be the roots of the
characteristic polynomial of Frobv on W . Clearly each λi is either α or β.

Let χ̃ = χ〈·〉−1, where χ is the mod p cyclotomic character. Observe that χ̃(Frobv) = (Nv)Sv =
αβ for v satisfying (6). Hence, the roots of the characteristic polynomial of Frobv acting on the
(T/m)[Gal(F̄ /F )]-module W∨⊗ χ̃ are precisely λ−1

i αβ; note that this quantity is equal to β (resp.
α) if λi = α (resp. λi = β). Finally we see that the characteristic polynomial of Frobv acting on
W ⊕W∨χ̃ is (X2 − TvX + (Nv)Sv)dim W . Hence ρm exists, and by the Brauer-Nesbitt theorem:

W ⊕W∨χ̃ ' (ρm)dim W .

Since ρ is irreducible, we have that ρ ' W and dimW = 2. Hence ρ ' ρm. In particular, ρm is
irreducible, so by Proposition 3.4 m is non-Eisenstein. Let 0 6= f ∈ H1(M0,H ⊗F ,Fσ)m; this space
is non-zero since ρ is a constituent. Then by Theorem 3.16 ρf exists and is isomorphic to ρ. �

Remark 3.18. For f ∈ H1(M0,H ⊗ F ,Fσ), observe that ρf does not necessarily appear in the
Gal(F/F )-representation H1(M0,H ⊗ F ,Fσ). Indeed, from the characteristic polynomial of Frobv

on H1(M0,H ⊗F ,Fσ) in Remark 2.5 we find that ρf ⊗χ appears in H1(M0,H ⊗F ,Fσ), where χ is
the cyclotomic character.

Proposition 3.19. Let 〈·〉 : Gal(F/F )→ F∗p be the map defined above. Then (det ρ) = χ〈·〉−1.

Proof. It suffices to verify the relation for uniformizers πv at almost all finite places v of F ; note
that the choice of πv corresponds via the reciprocity map to (the inverse of) a choice of Frobv ∈
Gal(F̄ /F ). But (det ρ)(π−1

v ) = det ρ(Frobv) = (Nv)Sv = 〈πv〉χ−1(πv). �

3.8. Twisting by the determinant. Let η =
⊗

v|p

(⊗
τ :kv ↪→Fp

detwτ ⊗τFp

)
be a one-dimensional

weight. We will show that twisting a weight by η simply twists the possible modular representations
by a certain character. This will allow us to consider weights “up to twist” in section 5.

Let χ′η :
∏

v|p k
∗
v → F∗p be the character given by χ′η|kv =

∏
τ :kv ↪→Fp

τ−wτ . Then χ′η lifts to
a character on

∏
v O∗v and hence to one on O∗F . By Théorème 1 of [Che], there is an a ∈ Z

such that (p, a) = 1 and O∗F ∩ (1 + aOF ) lies in the kernel of χ′η. Let O∗F,+ be the subgroup of
totally positive elements of O∗F . The character (χ′η)

−1 : O∗F,+/(O∗F,+ ∩ (1 + aOF ))→ F∗p extends to∏
v|aO∗v/(1 + π

ordv(a)
v Ov), and this in turn lifts to a character χ′′η :

∏
v|aO∗v → F∗p. For x ∈ Ô∗F , let

xa = (xv)v|a ∈
∏

v|aO∗v . We now define a character χη : Ô∗F /O∗F,+ → F∗p, by χη(x) = χ′η(xp)χ′′η(xa).
Clearly χη is trivial on O∗F,+ and coincides with χ′η on

∏
v|pO∗v .

Finally, observe that Ô∗F /O∗F,+ ⊂ A∗F /F ∗(F ∗∞)0 is dense. Then χη extends to this larger group,
and we view it via the reciprocity map as a character χη : Gal(F/F )→ F∗p.

Let V = K(0,H) ∩ Z(Q). Decreasing Hp if necessary at the places dividing a, we may assume
that ν(V ) ⊂ kerχη. Now H0(M0,H⊗F ,Fη) =

{
f : (A∞F )∗/F ∗ν(V )→ Λ/p : f(Cγ) = η(γ)−1f(C)

}
.
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Thus χη ∈ H0(M0,H⊗F ,Fη). Furthermore, the cup product f 7→ f∪χη provides a map H1(M0,H⊗
F ,Fσ)→ H1(M0,H ⊗ F ,Fσ⊗η).

Proposition 3.20. If f is a Hecke eigenform corresponding to the Galois representation ρ, then
f ∪ χη is also a Hecke eigenform, and the corresponding Galois representation is ρ⊗ χ−1

η .

Proof. We study the action of T on χη. Suppose v 6∈ S and let γv ∈ G(A∞) be the element with
Tv = [K(1,H)γvK(1,H)]. As in (4), Tv acts on H1(M0,H ⊗ F ,Fσ⊗η) via the composition of three
maps. The middle map, or rather the corresponding map of sheaves Fσ⊗η → (γv)∗Fσ⊗η on M0,H ,
sends f ∪ χη to Ff∪χη , where Ff∪χη(C) = γvf(Cγv) ⊗ χη(Cγv) = γvf(Cγv) ⊗ χη(πv)χη(C). The
third map is the trace, and since we can find a set of coset representatives of γvK(1,H)γ−1

v in
K(1,H) that lie in the kernel of the reduced norm ν, we see that Tv(f ∪ χη) = Tvf ∪ χη(πv)χη =
λ(Tv)χη(πv)(f ∪ χη). Similarly, Sv(f ∪ χη) = λ(Sv)χη(πv)2(f ∪ χη).

Therefore, f ∪χη is a Hecke eigenform. If ρ′ is the Galois representation corresponding to f ∪χη,
then for all v 6∈ S,

trρ′(Frobv) = λ(Tv)χη(πv) = λ(Tv)χ−1
η (π−1

v ) = tr(ρ⊗ χ−1
η )(Frobv)

det ρ′(Frobv) = λ(Sv)χη(πv)2 = λ(Sv)χ−1
η (π−1

v )2 = det(ρ⊗ χ−1
η )(Frobv).

Thus ρ′ = ρ⊗ χ−1
η . �

Recall that for a Galois representation ρ, we denoted by W (ρ) the set of modular weights.

Corollary 3.21. W (ρ⊗ χ−1
η ) = {σ ⊗ η : σ ∈W (ρ)}.

4. Finite flat group schemes

4.1. Review of vector space schemes. In this section we collect, without proof, facts about
vector space schemes from [Ray] and section 5 of [Edi1]. Note that [Edi1] mostly treats the case
e = p− 1, but the same arguments work to give the results stated here.

Let F be a finite field with w = pr elements, where p is prime and r ≥ 1. An F-vector space
scheme over a scheme S is a commutative group scheme G over S equipped with a homomorphism
F→ EndS(G).

Let D be a mixed characteristic strictly henselian discrete valuation ring with residue field k of
characteristic p. Recall that strictly henselian means that k is separably closed. We will denote
its field of fractions by K. Let v : D → Z be the valuation and e = v(p). Suppose that the base
scheme S is a D-scheme.

Since D contains the (w−1)th roots of unity, there are w−1 characters χ : F∗ → µw−1(D) ⊂ D∗.
We write I for the augmentation ideal sheaf of G: OG = OS ⊕ I. For each character χ : F∗ → D∗

as above, we define the subsheaf

Iχ = {f ∈ I : ∀a ∈ F∗, a∗(f) = χ(a)f}

Here a∗ is the endomorphism of OG corresponding to scalar multiplication by a on G. It is easy to
see that I = ⊕χIχ.

Definition 4.1. We will say, following [Ray], that the F-vector space schemeG/S satisfies condition
(∗∗) if all w − 1 sheaves Iχ are invertible.
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In the sequel we consider only schemes satisfying condition (∗∗). If S is an integral scheme with
fraction field of characteristic 0 and G/S is finite and locally free of rank w, then by [Ray], 1.2.2.
G satisfies (∗∗).

A character χ : F∗ → µw−1(D) ⊂ D∗ is called fundamental if, when we define χ(0) = 0, the
composition F χ→ D → k is a ring homomorphism. Clearly there are r fundamental characters.
Pick one of them and call it χ0. Then all of them are χi = χpi

0 , where i ∈ Z/rZ.
Let G/K be any F-vector space scheme satisfying condition (∗∗). For all i let Xi be a generator

of Iχi . Since any character χ : F∗ → D∗ has the form χ = χα0
0 χα1

1 · · ·χ
αr−1

r−1 for 0 ≤ αi ≤ p− 1, it is
easy to see that G is determined by r equations, one for each i ∈ Z/rZ:

(7) Xp
i = δiXi+1, δi ∈ K∗.

The map (δ0, δ1, . . . , δr−1) 7→ (v(δ0), v(δ1), . . . , v(δr−1)) gives a bijection between isomorphism
classes of such F-vector space schemes over K and the set Zr/Λ, where

Λ = Z(p, 0, . . . , 0,−1)⊕ Z(−1, p, 0, 0, . . . , 0)⊕ · · · ⊕ Z(0, . . . , 0,−1, p).

Observe that the set

{(a0, . . . , ar−1) ∈ Zr : 0 ≤ ai ≤ p− 1, ai not all p− 1}
therefore corresponds bijectively with the isomorphism classes of G/K.

Similarly, an F-vector space scheme G/D satisfying the condition (∗∗) is given by equations of
the form (7), where this time δi ∈ D and 0 ≤ v(δi) ≤ e. The second condition is necessary to
define the group structure on G, i.e. to ensure that the inversion map is defined over D. The map
(δ0, δ1, . . . , δr−1) 7→ (v(δ0), v(δ1), . . . , v(δr−1)) is a bijection between the set of isomorphism classes
of G/D and the set

{(a0, . . . , ar−1) ∈ Zr|0 ≤ ai ≤ e} .
If e ≥ p − 1, this tells us that every F-vector space scheme G/K satisfying the condition (∗∗)

can be extended to D. However, if e > p− 1 such extensions are not unique.
Now we specialize to our usual case of D = W (kp) and K = Fnr

p . Then D is a complete discrete
valuation ring with e = 1 (since p was unramified in F ) and residue field Fp. Let D′ and K ′ be
as defined in the introduction, let v′ be their valuation, and observe that D′ is a strictly henselian
discrete valuation ring with e′ = ps − 1.

Let G/K be an F-vector space scheme given by equations Xp
i = δiXi+1, and set ai = v(δi).

We can assume that 0 ≤ ai ≤ p − 1. The pull-back GK′ = G ×K Spec K ′ is described by the
same equations, with the δi now considered as elements of (K ′)∗. We have v′(δi) = (ps − 1)v(δi) =
(ps−1)ai for all i. Consider an extension GD′ of GK′ to D′; as we remarked above, it is not unique
if s > 1. If GD′ is given by the equations (X ′

i)
p = δ′iX

′
i+1, set a′i = v′(δ′i). We have 0 ≤ a′i ≤ ps − 1.

Now we study two Galois actions. First consider the action of Gal(K/K) on G(K); it determines
G as a finite group scheme by the equivalence of categories in [Wat], §6.3-4. Define the character ψi :
µw−1(K)→ F∗ as the inverse of χi, for all i ∈ Z/rZ. Upon eliminating the variables X1, . . . , Xr−1

from the equations (7), we find that
Xw

0 = δX0,

where δ = δpr−1

0 δpr−2

1 · · · δr−1. Then G(K̄) can be identified with the solutions in K̄ of the above
equation. If a ∈ F∗, then multiplication by a on G(K̄) corresponds to multiplication by χ0(a) on
these solutions. For x ∈ G(K̄), clearly G(K̄) = {ζx : ζ ∈ µw−1(K)}, so every element of Gal(K/K)
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acts on G(K) by multiplication by some ζ ∈ µw−1(K), which corresponds as above to multiplication
by some a ∈ F∗. Thus the action of Gal(K/K) is given by a character Gal(K/K) → F∗. Since
the only element of F∗ of p-power order is the identity, the wild inertia acts trivially. As the tame
ramification of K/K is identified with lim←−µpn−1(K), the action is in fact given by a character
φ : µw−1(K)→ F∗. Furthermore,

(8) φ = ψ
ar−1

0 ψa0
1 · · ·ψ

ar−2

r−1 .

Let σ ∈ Gal(K ′/K); it induces automorphisms σ both of Spec K ′ and of Spec D′. Denote by
g(σ) the automorphism idG × σ of G ×K K ′ by g(σ); it lifts to GD′ . We can now restrict to
the special fiber to get an action of Gal(K ′/K) on GFp

= GD′ ×D′ Fp and hence on cot(Fp), the
cotangent space to GFp

at 0. This space has the presentation

(9) cot(GFp
) =

⊕
i∈Z/rZ,a′i−1>0

Fp · dX ′
i.

One can define invariants bi for each i ∈ Z/rZ such that g(σ) acts on the generator dX ′
i, when

it exists, by multiplication by (the image in the residue field Fp of) is(σ)−bi . Here if Kn, with
valuation vn, is the totally ramified extension of K of degree pn − 1, then in : Gal(Kn/K) ∼→
µpn−1(D) is defined as in [Ray], §3.1 by requiring that for all σ ∈ Gal(Kn/K) and x ∈ Kn there
exists u ∈ K ′ with v′(u) ≥ 1 such that σ(x) = x(in(σ))vn(x)(1 + u). This gives the isomorphism
It,p

∼→ lim←−n
µpn−1(K). The invariants ai and bi are related by the following fundamental equation,

for all i ∈ Z/rZ:

(10) a′i = bi+1 − pbi + (ps − 1)ai.

4.2. Torsion points on Pic0(MU1(p)bal,H). We are finally ready to begin the proof of Theorem
1.3. Let ρ : Gal(F̄ /F ) → GL2(Fp) be modular of weight σ and suppose that ρ|Gp is irreducible.
Suppose that σ is untwisted. We will see that this assumption involves no essential loss of generality.
It implies that there exists a map θ : Γ0(p)→ F∗p of the form

(11) θ :
(
a b
0 d

)
7→

∏
τ :kp↪→Fp

τ(d)kτ−2

such that σ is a Jordan-Hölder constituent of IndGL2(kp)
Γ0(p) θ. Suppose that θ is non-trivial , i.e. that

the kτ are not all 2 and not all p+ 1. The case of θ = 1, which is easier, will be treated separately
in section 5.4.

By Proposition 3.17 there exists a non-Eisenstein maximal ideal m ⊂ T and a Hilbert modular
eigenform f ∈ H1(M0,H × F ,Fσ)m such that ρ ' ρf . Then by Proposition 3.14 there exists
f̃ ∈ H1(Mbal

U1(p),H × F ,Fp)m with the same Hecke eigenvalues as f . By Lemma 3.15, this f̃ is an

eigenvector for the Hecke algebra T̃ defined in section 2.2 and determines a map λ : T̃→ Fp, which
sends each Hecke operator to the corresponding eigenvalue. In particular, for every α, β ∈ k∗p we
have λ(〈α, β〉) =

∏
τ :kp↪→Fp

τ(β)2−kτ . Clearly, the kernel of λ is a maximal ideal m̃ ⊂ T̃ containing

m, and λ induces an embedding of fields T̃/m̃ ⊂ Fp. Set F = T̃/m̃. Increasing F if necessary, we
may assume that GL2(F) contains the image of ρ.



WEIGHTS OF GALOIS REPRESENTATIONS 21

Since T̃ ⊂ End(Pic0(Mbal
U1(p),H)), T̃ is a free Z-module of finite rank and F is a finite field. Also,

we have T̃p = T̃⊗Z Zp = T̃m̃× T̃′, where T̃′ is the product of the localizations of T̃ at all the other
maximal ideals above p. Now let ε, ε′ ∈ T̃p be idempotents such that εT̃p = T̃m̃, ε′T̃p = T̃′, and
ε+ ε′ = 1. Consider the element η = 1

q−1

∑
α∈k∗p

〈α, α〉 ∈ T̃p. Clearly η2 = η and η′ = 1− η is also
an idempotent with ηη′ = 0. Since the θ is non-trivial, we see that λ(η) = 0, so η ∈ m̃. But η is an
idempotent, so in fact η ∈ m̃n for all n ≥ 1, whence εη = 0. Thus, εη′ = ε(1− η) = ε.

Recall from section 2 that M bal
U1(p),H has semistable reduction over the field F ′p, where F ′p/Fp is

a totally ramified extension with Galois group k∗p . Note that K ′ = F ′pF
nr
p . Let J be the Néron

model over D′ of the Jacobian of M bal
U1(p),H , and denote its special fiber by J = J ×D′ Fp. The

identity component J0 of J is isomorphic to Pic0(Mbal
U1(p),H/D

′); see [BLR1], 9.5/4. Recall that we
denoted the irreducible components of its special fiber by I and E. By [BLR1] 9.2/8, the pullbacks
of invertible sheaves from Mbal

U1(p),H ⊗D′ Fp to I and E give an exact sequence:

(12) 0→ T → J
0 → JI ⊕ JE → 0

where JI and JE are the Jacobians of I and E, respectively, and T is a torus consisting of divisors
of degree 0 supported on the (finitely many) supersingular points.

Now consider the p-divisible group J0[p∞] = (J0[pn])n over D′. Observe that the J0[pn] are
quasi-finite and flat over D′. Since J0[p∞] is a T̃⊗ Zp-module, it decomposes as

J0[p∞] = εJ0[p∞]⊕ ε′J0[p∞] = G⊕G′,

where we have defined the p-divisible groups G and G′ by Gn = εJ0[pn] and G′n = ε′J0[pn].
Similarly there is a decomposition J0[p∞] = ηJ0[p∞]⊕ η′J0[p∞].

Observe that ηG = ηεJ0[p∞] = 0. Recall that a geometric point of Mbal
U1(p),H ⊗ Fp has the

form (x, P, P ′), where x is the geometric point of M0,H ⊗ Fp lying below and (P, P ′) is a U1(p)bal-
structure at x. It is easy to see from [Car1], 7.5 that the diamond operator 〈α, β〉 sends (x, P, P ′)
to (x, β−1P, α−1P ′). Indeed, the group GL2(Op) acts on the right on Drinfeld bases of level 1 via
its quotient GL2(kp) as follows: (ϕg)((x, y)) = ϕ((x, y)g−1), for g ∈ GL2(kp). In particular, 〈α, β〉
stabilizes the supersingular points.

Let J0[p∞]f = (J0[pn]f )n be the finite part of J0[p∞], i.e. the maximal subscheme which is finite
over D′; see [SGA], IX, 5.1. Since the diamond operators 〈α, β〉, and hence η, act trivially on the
torus T ⊂ J̄ , it follows by [SGA], IX 5.5.8 that they act trivially on the quotient J0[p∞]/J0[p∞]f .
But ηG = 0, whence G ⊂ J0[p∞]f and all the Gn are finite over D′.

Now we consider special fibers. Let G = G ×D′ Fp = εJ
0[p∞]. Taking p∞-torsion of the exact

sequence (12) yields the following exact sequence of p-divisible groups over Fp:

0→ T [p∞]→ J
0[p∞]→ JI [p∞]⊕ JE [p∞]→ 0.

All these maps are compatible with the action of η and η′. Thus we get an exact sequence

0→ η′T [p∞] ι→ η′J̄0[p∞] π→ η′(JI [p∞]⊕ JE [p∞])→ 0.

The only part of the exactness that is not obvious is that ker(π) ⊂ im(ι). If g ∈ J̄0[p∞] is such that
π(η′g) = 0, then there is t ∈ T [p∞] such that ι(t) = η′g. But then ι(η′t) = η′ι(t) = (η′)2g = η′g,
proving the required exactness. Since η acts trivially on T , we have η′T = 0. Hence π is an
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isomorphism. From the description above of the action of the 〈α, β〉, we see that they preserve the
decomposition JI ⊕ JE , and hence so do η and η′. Thus we obtain an isomorphism

η′J̄0[p∞] ∼→ η′(JI [p∞]⊕ JE [p∞]) = η′JI [p∞]⊕ η′JE [p∞].

Since εη′ = ε, we conclude that:

Lemma 4.2. With the notations as above, we have a decomposition

G = εη′J̄0[p∞] ' εJI [p∞]⊕ εJE [p∞] = GI ⊕GE .

Here the last equality is a definition; note that GI and GE are not defined as special fibers of group
schemes over D′.

4.3. Relation between G and ρ. Consider the space F2 endowed with a Gal(F/F )-action given
by ρ : Gal(F/F ) → GL2(F). This corresponds to a finite affine (étale) group scheme W over F ,
such that W (F ) = F2 (see the construction in [Sha], §3). Clearly W is an F-vector space scheme.

Lemma 4.3. There is an integer d > 0 such that G[m]K′ is isomorphic to d copies of WK′ =
W ×F K

′.

Proof. By Theorem 1 of [BLR2], G[m]K′(F ) is isomorphic to d copies of WK′(F ) as F[Gal(F/F )]-
modules. Indeed, as we saw in the proof of Proposition 3.17, for almost all places v of F the
characteristic polynomial of ρ(Frobv) is X2− λ(Tv)X +Nvλ(Sv). By the Eichler-Shimura relation
of Proposition 2.6, Frobv satisfies the same polynomial on Pic0(M bal

U1(p),H)(F ), hence on G[m]K′ .
Hence the hypotheses of [BLR2], Thm. 1 hold by the Chebotarev density theorem.

Now, G[m]K′ and
⊕d

i=1WK′ are group schemes over a field of characteristic zero, hence étale,
and have the same action of Gal(K/K ′), so they must be isomorphic. �

4.4. Further decompositions. As we mentioned in the introduction (see [Edi2] for a proof),
the pro-p group I ′p lies in the kernel of (ρ|Gp)ss. Hence (ρ)ss|Ip factors through the tame inertia
It,p = Ip/I

′
p and is given by two characters φ, φ′ : It,p → F∗p.

Lemma 4.4. If ρ|Gp is irreducible then φ and φ′ are of level 2s, with φq = φ′ and (φ′)q = φ.

Proof. Since Ip � Gp, I ′p � Ip, and It,p is abelian, we see that Gp/Ip acts on It,p by conjugation.
Observe that Gp/Ip ' Gal(Fnr

p /Fp) is topologically generated by the element Φ which lifts the
automorphism x 7→ xq of the residue field kp of Fnr

p .
Now let σ ∈ It,p = lim←−Gal(Kn/F

nr
p ). If π is any uniformizer of Kn, then σ(π) = in(σ)π and:

ΦσΦ−1(π) = Φ(in(σ)Φ−1(π)) = (in(σ))qπ.

Hence the representation ρ′ : It,p → GL2(Fp) defined by ρ′(σ) = ρ(ΦσΦ−1) acts by the characters
φq and (φ′)q. Therefore {φ, φ′} = {φq, (φ′)q}, and since q = ps one of the following holds:

(1) The characters φ and φ′ are of level s. In this case, the action of Gp preserves the “φ-
eigenspace” of V , and so ρ|Gp is reducible.

(2) The characters φ and φ′ are of level 2s, with φ′ = φq and φ = (φ′)q. Then ρ|Gp is irreducible.

Since we assumed that ρ|Gp was irreducible, we must be in the second case. �
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Thus under the hypotheses of Theorem 1.3, φ and φ′ are both of level 2s (and not of level s).
Let F′ be an extension of F containing Fp2s . Then we have a decomposition WK ⊗F F′ = Wφ⊕Wφ′ .

The left-hand side is the F′-vector space scheme corresponding to the Gal(K/K)-module (F)2⊗F
F′ with the Gal(K/K)-action given by ρss|Ip . We define Wφ and Wφ′ analogously; Gal(K̄/K) = Ip
acts on them via the characters φ and φ′, respectively. Furthermore, let Hφ and Hφ′ be the one-
dimensional Fp2s-vector space schemes over K corresponding to the characters φ and φ′. Then,

Wφ =
r⊕

k=1

Hφ,

where r = [F′ : F], and there is an analogous decomposition of Wφ′ . These clearly base change to
direct sum decompositions over K ′. From the above and Lemma 4.3 it follows that

G[m̃]K′ ⊗F F′ =
⊕

1≤j≤d
1≤k≤r

(Hφ,j,k)K′ ⊕ (Hφ′,j,k)K′ .

Here the Hφ,j,k and Hφ′,j,k are copies of Hφ and Hφ′ , respectively. It follows from [Ray], 1.2.2
that they satisfy the condition (∗∗) as Fp2s-vector space schemes. Since the absolute ramification
degree of D′ is ps − 1 ≥ p − 1, we know from Section 4.1 that all the vector space schemes in the
above displayed formula extend to D′. If s > 1, these extensions are not unique.

Lemma 4.5. Let H1,H2, . . . ,H2dr be any labeling of the set {(Hφ,j,k)K′ , (Hφ′,j,k)K′ : 1 ≤ j ≤ d, 1 ≤
k ≤ r}. Then G[m̃]⊗F F′, as an Fp2s-vector space scheme over D′, has a filtration:

G[m̃]⊗F F′ = V0 ⊃ V1 ⊃ · · · ⊃ V2dr = 0

such that for every 1 ≤ i ≤ 2dr, the quotient H̃i = Vi−1/Vi is an Fp2s-vector space scheme over D′

extending Hi. Furthermore, the action of Gal(K ′/K) preserves this filtration.

Proof. The image of the generic fiber G[m̃]K′ = G[m̃] ×D′ K ′ in G[m̃] is a dense open subset. Let
Q =

⊕2dr
i=2Hi be the direct sum of all the components of G[m̃]K′ except for H1, and let V1 be the

closure of its image in G[m̃]. This is clearly preserved by the continuous action of Gal(K ′/K); note
that all the Hi are defined over K. By [Sha] §3, there exists a quotient group scheme V0/V1, which
is flat and finite over D′, and its generic fiber is clearly isomorphic to H1. Iterating this process,
we construct all the elements of the filtration. �

Taking special fibers, we get a filtration of schemes over D′/mD′D′ = Fp:

(13) G[m̃]⊗ F′ = V 0 ⊃ V̄1 ⊃ · · · ⊃ V 2dr = 0.

Observe that V 2dr−1 is the special fiber of the vector space scheme V2dr−1 over D′, whose generic
fiber is in turn (H2dr)K′ . This is the setup of the end of section 4.1; cot(V 2dr−1) is what we would
call cot((H2dr)Fp

) in the notation of that section. Thus, cot((H2dr)Fp
) embeds into cot(G).

5. Proof of Theorem 1.3

5.1. Numerology of vector space schemes. We now suppose, without loss of generality, that
in our chosen labeling H1, . . . ,H2dr of the components of G[m̃]K′ the last component H2dr is one
of the Hφ,j,k. This is an Fp2s-vector space scheme satisfying (∗∗), on which Gal(K̄/K) = Ip acts
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by the character φ. The vector space scheme H̃2dr = V2dr−1 extends H2dr to D′. We drop the
subscript and write H for H2dr.

Let σ0, σ1, . . . , σ2s−1 be the embeddings of Fp2s into Fp, labeled so that σp
i = σi−1 and the

restriction of σi to Fps is τπ(i), where π : Z/2sZ → Z/sZ is the natural projection. Then let
ψi : It,p → F∗p be the fundamental character of level 2s corresponding to σi, and let χi : F∗p2s → D∗

be the inverse mapping of ψi. Note that χp
i = χi+1, and we have precisely the setup of Section 4.1.

Now let a0, a1, . . . , a2s−1 be parameters corresponding to H, as defined in Section 4.1, and recall
that φ = ψ

a2s−1

0 ψa0
1 · · ·ψ

a2s−2

2s−1 . Similarly define a′i and bi, for i ∈ Z/2sZ.

Suppose that ρ is modular for a weight σ = σp ⊗ σp which is a constituent of IndGL2(kp)
Γ0(p) θ for a

non-trivial character θ : Γ0(p)→ F∗p of the form

(14) θ :
(
a b
0 d

)
7→

∏
τ :kp↪→Fp

τ(ad)wτ τ(d)kτ−2.

Lemma 5.1. As before, we write kj for kτj . Then,

φφ′ =
∏

i∈Z/2sZ

ψ
2wπ(i)+kπ(i)−1

i .

Proof. Clearly, φφ′ is a character of level s and factors through Gal(K ′/K). If χ−1
η : Gal(F/F )→ F∗p

is as in Corollary 3.21, then observe that χ−1
η |It,p =

∏
i ψ

wi
i . Hence it suffices to consider the case

that wi = 0 for all i.
This follows from Proposition 3.19. Let σ ∈ Gal(K/K), and suppose its image in Gal(K ′/K)

corresponds to j(σ) ∈ O∗p/(1 + p) by the Artin reciprocity map. We identify j(σ) with its image in
k∗p . Since Op contains the (q− 1)-st roots of unity, we can identify O∗p/(1 + p) with µq−1(D). Then
by Proposition 3.19 and Lemma 3.15 the following holds in F∗ ⊂ F∗p:

φ(σ)φ′(σ) = det ρ(σ) = 〈σ〉−1χ(σ) = λ(〈j(σ)−1〉)Nkp/Fp
(j(σ))−1 =∏

τ :kp↪→Fp

τ(j(σ))kτ−2τ(j(σ))−1 =
∏

τ :kp↪→Fp

τ(j(σ))kτ−1 =
∏

i∈Z/2sZ

σi(j(σ))kπ(i)−1 =
∏

i∈Z/2sZ

ψi(σ)kπ(i)−1.

The last equality is true because the maps j : Gal(K ′/K) → O∗p/(1 + p) and is : Gal(K ′/K) →
µq−1(D) are the same by Proposition 3 of [Ser] (note that in that article the Artin reciprocity map
is normalized so that uniformizers correspond to arithmetic Frobenius elements). �

Lemma 5.2. The cotangent space cot(HFp
) does not vanish.

Proof. Suppose that cot(HFp
) = 0. We claim that HFp

is étale as a finite group scheme over Fp. It
suffices to prove étaleness at the origin; by translation this will imply étaleness at any Fp-point of
HFp

, and this is enough since the étale locus is open. Let O be the complete local ring of HFp
at

the origin, and let n be its maximal ideal. Since the cotangent space at the origin vanishes, n = n2.
But

⋂
n nn = 0 since O is noetherian, so n = 0. Thus O is a finite field extension of Fp, hence it is

Fp itself. This establishes that HFp
is étale.

Recall that a group scheme over D′ is étale if and only if its special fiber is étale. Thus V2dr−1

is étale, so as a D′-scheme it is a direct sum of a finite number of copies of Spec D′; all finite étale
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schemes over the strictly henselian ring D′ are of this form ([Mil], I.4). Therefore, the generic fiber
HK′ = V2dr−1×D′ K ′ is a constant scheme over K ′. Obviously, Gal(K/K ′) acts trivially on H(K),
and hence φ is a character of level s, giving a contradiction. �

For each j ∈ Z/sZ, let cj = kj − 2 + p(kj−1 − 2) + · · · + ps−1(kj+1 − 2). Since θ is non-trivial,
0 < cj < ps − 1. We often write ki and ci instead of kπ(i) and cπ(i), for i ∈ Z/2sZ.

We temporarily return to the assumption that θ is untwisted.

Lemma 5.3. Suppose that σp is a constituent of IndGL2(kp)
Γ0(p) θ for a character θ : Γ0(p)→ F∗p of the

form of (11). Then for all i ∈ Z/2sZ, we have bi ∈ {0, cπ(i)} (mod ps − 1).

Proof. By Proposition 2.7 and Lemma 2.9, we see that Gal(K ′/K) acts on JI and JE , and hence
on cot(GI) and cot(GE), by 〈j(σ)−1, 1〉−1 = 〈j(σ), 1〉 and 〈1, j(σ)−1〉−1 = 〈1, j(σ)〉, respectively.

Recall the description of cot(HFp
) from the end of the previous section. In particular, we see from

(13) that cot(HFp
) ⊂ cot(G[m]). Since cot(HFp

) 6= 0 by Lemma 5.2, there must be some i ∈ Z/2sZ
such that a′i−1 > 0 and dX ′

i is a non-trivial element of cot(HFp
). Now, cot(G[m]) = cot(GI [m]) ⊕

cot(GE [m]). By Lemma 3.15, in F∗ we have 〈j(σ), 1〉 = 1 and 〈1, j(σ)〉 =
∏

τ :kp↪→Fp
τ(j(σ))2−kτ ;

observe that these are in fact contained in F∗p2s . As we saw above, the maps j and is are the same.
Thus, σ can act on dX ′

i either by the character 1 or by:

χi

 ∏
j∈Z/sZ

τj(is(σ))2−kj

 = χi(τπ(i)(is(σ))−cπ(i)) = is(σ)−cπ(i) .

But we know from the discussion preceding (9) that σ acts on dX ′
i by is(σ)−bi . Thus we have

shown that if a′i−1 > 0, then bi ∈ {0, ci} (mod ps − 1), and there exists at least one such i. Now, if
a′i−1 = 0, then by the fundamental equation (10) we have bi ≡ pbi−1 (mod ps− 1). The observation
that ci ≡ pci−1 (mod ps − 1) completes the proof of the lemma. �

We now apply (10) to determine the ai and hence φ. Our analysis splits into four cases.
Case 1. bi = 0, bi+1 = ci+1. In this case, (10) tells us that

a′i − (ps − 1)ai = bi+1 − pbi = ci+1.

Recall from Section 4.1 that since our bi’s are only defined modulo ps − 1, we can only determine
the set of ai’s modulo the lattice Λ. However, different sets of ai equivalent modulo Λ give the
same character φ, so this is enough for us. On the other hand, we know that 0 ≤ a′i ≤ ps − 1. The
latter condition implies that a′i = ci+1 and ai = 0.

Case 2. bi = ci, bi+1 = 0. This time we see from (10) that:

a′i − (ps − 1)ai = −pci = −ps(ki+1 − 2)− ps−1(ki+2 − 2)− · · · − p(ki − 2) =
−(ps − 1)(ki+1 − 2)− [ps−1(ki+2 − 2) + · · ·+ p(ki − 2) + (ki+1 − 2)] =
[ps−1(p+ 1− ki+2) + · · ·+ p(p+ 1− ki) + (p+ 1− ki+1)]− (ps − 1)(ki+1 − 1)

Let β be the bracketed quantity in the bottom line of the displayed expression. Observe that
0 < β < ps − 1. We must have a′i = β and ai = ki+1 − 1.
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Case 3. bi = 0, bi+1 = 0. From (10) we have a′i − (ps − 1)ai = 0, which admits two solutions:

a′i = 0 ai = 0
a′i = ps − 1 ai = 1

Case 4. bi = ci, bi+1 = ci+1. In this case we have:

a′i − (ps − 1)ai = bi+1 − pbi = ci+1 − pci = −(ps − 1)(ki+1 − 2).

Therefore, there are again two possibilities in all cases, namely

a′i = 0 ai = ki+1 − 2
a′i = ps − 1 ai = ki+1 − 1

The following lemma shows that we may assume without loss of generality that {bi, bi+s} =
{0, cπ(i)} for each i; this assumption will not change the set of possible characters φ that we obtain.
We will write the collections of ai’s as vectors: a = (a0, a1, . . . , a2s−1), and similarly for the bi’s.
We say that a is associated to b if these collections of ai and bi satisfy (10) for each i.

Lemma 5.4. Let a and b be as above. Then bi ∈ {0, ci} for each i, and a is associated to b. There
exists b̂ = {b̂0, . . . , b̂2s−1} such that {b̂i, b̂i+s} = {0, ci} for each i and a vector â associated to b̂
such that a− â ∈ Λ.

Proof. We prove this by brute force; see [Sch1], Lemma 3.2 for a more conceptual, but essentially
equivalent, argument. Let µi = ai + ai+s − (ki+1 − 1). By Lemma 5.1, µ = (µ0, . . . , µ2s−1) ∈ Λ.
Furthermore, the computations above show that, for all i, |µi| ≤ ki+1− 1 ≤ p. Hence each µi must
be one of 0, ±1, ±(p− 1), or ±p.

Case 1. Assume first that {bi, bi+s} = {0, ci} holds for at least one index i. If it is true for
all i, we are done. Otherwise, for some i we have {bi+1, bi+s+1} = {0, ci+1}, whereas {bi, bi+s} is
{0, 0} or {ci, ci}. We will construct a vector b̃ such that {b̃k, b̃k+s} = {0, ck} for all k such that
{bk, bk+s} = {0, ck} and {b̃i, b̃i+s} = {0, ci}, and an ã associated to b̃ such that a− ã ∈ Λ. Iterating
this process, we can construct b̂ and â as required.

One considers a number of cases; we give an example of one. Assume that bi+1 = 0 and
bi+s+1 = ci+1, and consider the case bi = bi+s = 0. Then ai ∈ {0, 1} and ai+s = 0. Observe that
µi+1 ∈ {−1, 0, 1}, and hence µi ∈ {0,±p}. Hence either ki+1 = 2 and ai = 1, or ki+1 = p + 1 and
ai = 0.

Suppose that bi−1 = ci−1. Then ai−1 = ki − 1. Define b̃k = bk for k 6= i and b̃i = ci. Define
ãk = ak for k 6= i, i − 1. If ai = 1, let ãi−1 = ki − 1 and ãi = 1 = ki+1 − 1; then ã = a. If ai = 0,
let ãi = p = ki+1 − 1 and ãi−1 = ki − 2; clearly a− ã ∈ Λ. In either case, ã is associated to b̃.

Case 2. Now suppose that bi = bi+s for all i. Observe that for some i one of the following
holds, since otherwise φ would be a character of level s: either bi = bi+s = bi+1 = bi+s+1 = 0, ai =
0, ai+s = 1 or bi = bi+s = ci, bi+1 = bi+s+1 = ci+1, ai = ki+1 − 1, ai+s = ki+1 − 2.

Let µ = µi+s+pµi−1+ · · ·+ps−1µi+1. Since µk = µk+s, µ ∈ Λ implies (1+ps)µ ≡ 0 mod p2s−1,
whence µ ≡ 0 mod ps−1. Also observe that a− â ∈ Λ if and only if α = (ai+s− âi+s)+p(ai+s−1−
âi+s−1) + · · ·+ p2s−1(ai+s+1 − âi+s+1) ≡ 0 mod p2s − 1.

If µ = 0, then for k ∈ {i + s + 1, i + s + 2, . . . , i + 2s − 1, i} we set b̂k = bk and for the
remaining k we switch: if bk = 0 (resp. bk = ck), then b̂k = ck (resp. b̂k = 0). Then define
âk = ak for k ∈ {i + s + 1, . . . , i + 2s − 1}, âk = (kk+1 − 1) − ak for k ∈ {i + 1, . . . , i + s − 1},
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and (âi, âi+s) = (0, ki+1 − 1) (resp. (âi, âi+s) = (ki+1, 0)) if ai = 0 (resp. ai = ki+1 − 1). The
construction for µ 6= 0 is similar. �

We will now assume that {bi, bi+s} = {0, ci} for all i. In this situation, the condition µ ∈ Λ
implies that µ = 0, so we have ai + ai+s = ki+1 − 1 for all i.

Proposition 5.5. Let ρ : Gal(F̄ /F )→ GL2(Fp) be such that ρ|Gp is irreducible and ρ is modular of

weight σ such that σp is a constituent of IndGL2(kp)
Γ0(p) θ, where θ : Γ0(p)→ F∗p as in (11) is untwisted

and non-trivial. Then there exists a subset S ⊂ I and a labeling {τ̃ , τ̃ ′} of the two liftings of
τ : kp ↪→ Fp to Fp2s for each τ , such that

(15) ρ|It,p ∼
(
φ 0
0 φ′

)
.

where φ′ = φq and

φ =
∏
τ∈S

ψ
kτ−2+νS(τ)
τ̃

∏
τ 6∈S

ψp
τ̃ψ

kτ−2+νS(τ)
τ̃ ′ .

Proof. Let Φ(θ) be the set of all characters φ of the form in the above statement. Any φ ∈ Φ(θ)
is specified by the data (S, εj), where S ⊂ I and for each j ∈ Z/sZ, εj is a bijection of sets
εj : π−1(j) = {j, j + s} → {ψτ̃j , ψτ̃ ′j

} (think of the elements of the latter set as symbols). As
usual, we write εi instead of επ(i) for i ∈ Z/2sZ. Conversely, such data give rise to the character
φ =

∏
i∈Z/2sZ ψ

mi
i , where

mi =


ki − 2 + νS(τi) : τi ∈ S, εi(i) = ψτ̃i

0 : τi ∈ S, εi(i) = ψτ̃ ′i

p : τi 6∈ S, εi(i) = ψτ̃i

ki − 2 + νS(τi) : τi 6∈ S, εi(i) = ψτ̃ ′i

It is clear that every φ ∈ Φ(θ) is described in this way, although different data may produce the
same φ. The bijections εi correspond to the choice of which of σi, σi+s is τ̃i and which is τ̃ ′i .

Similarly, let Ω(θ) be the set of φ satisfying the conditions imposed by (10) via the computations
above. Any φ ∈ Ω(θ) is specified by the data (S′, δj), where S′ ⊂ I and for each j ∈ Z/sZ, δj is a
bijection of sets δj : π−1(j) = {j, j+s} → {0, cj−1}. Such data give rise to φ = ψ

a2s−1

0 ψa0
1 · · ·ψ

a2s−2

2s−1 ,
where the ai are determined by the following rules:

ai−1 =



0 : δi(i) = 0, δi+1(i+ 1) = ci

ki − 1 : δi(i) = ci−1, δi+1(i+ 1) = 0
0 : δi(i) = δi+1(i+ 1) = 0, τi+1 ∈ S′

1 : δi(i) = δi+1(i+ 1) = 0, τi+1 6∈ S′

ki − 1 : δi(i) = ci−1, δi+1(i+ 1) = ci, τi+1 ∈ S′

ki − 2 : δi(i) = ci−1, δi+1(i+ 1) = ci, τi+1 6∈ S′

In other words, δi(i) = 0 and δi(i) = ci−1 correspond to bi−1 = 0 and bi−1 = ci−1, respectively, and
S′ decides which of the two options we choose in Cases 3 and 4. By virtue of Lemma 5.4 and the
remark after it, each φ ∈ Ω(θ) may be described (perhaps not uniquely) in this way.
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Now, let λi : {ψτ̃i , ψτ̃ ′i
} → {ci−1, 0} be the bijection which sends ψτ̃i to ci−1 and ψτ̃ ′i

to 0. Let µi

be the other bijection between the same sets. Consider the map ω : Φ(θ)→ Ω(θ) which sends the
data (S, εi) to the data ω(S, εi) = (S′, δi), where S′ = S and

δi =

{
λi ◦ εi : τi ∈ S
µi ◦ εi : τi 6∈ S

Obviously ω gives a bijection between data defining elements of Φ(θ) and data defining elements
of Ω(θ). One verifies that (S, εi) and ω(S, εi) give rise to the same φ, and hence Φ(θ) = Ω(θ). �

Remark 5.6. The statement of Proposition 5.5 has the same form as that of Theorem 1.3, which we
wish to prove. If 3 ≤ kτ ≤ p for all τ , then by Lemma 3.7 IndGL2(kp)

Γ0(p) θ has a non-zero irreducible
constituent for every S ⊂ I. It is easy to see that the union of the sets of φ’s predicted by the
conjecture of [BDJ] for all of these constituents is precisely Φ(θ). Thus, Proposition 5.5 is the “best
possible result.” On the other hand, if kτ = 2 or kτ = p+ 1 for some τ , then for some S we do not
get a constituent, and Φ(θ) is larger than the set predicted by the conjecture.

Corollary 5.7. Retain the hypotheses of Proposition 5.5, except that σp is now a constituent of
Ind

GL2(kp)
Γ0(p) θ for an arbitrary θ : Γ0(p)→ F∗p as in (14). Then there is a subset S ⊂ I and a labeling

{τ̃ , τ̃ ′} of the two liftings of τ : kp ↪→ Fp to Fp2s for each τ , such that ρ|Ip has the form (15), with

(16) φ =
∏
τ

ψwτ
τ̃ ψwτ

τ̃ ′

∏
τ∈S

ψ
kτ−2+νS(τ)
τ̃

∏
τ 6∈S

ψp
τ̃ψ

kτ−2+νS(τ)
τ̃ ′

 .

Proof. This is almost immediate from Proposition 5.5. Indeed, suppose that ρ is modular of weight
σ = σp ⊗ σp, with σp as in the statement. Let η be a one-dimensional weight such that ηp =
⊗τ (det−wτ ⊗τFp). By Corollary 3.21, ρ is modular of weight σ if and only if ρ⊗ χ−1

η is modular of

weight σ ⊗ η. Also, σp ⊗ ηp is a constituent of IndGL2(kp)
Γ0(p) θ̃, where

θ̃ :
(
a b
0 d

)
7→

∏
j∈Z/sZ

τj(d)kj−2.

Proposition 5.5 applies to ρ ⊗ χ−1
η . The Artin reciprocity map identifies (Ip)ab with O∗Fp

, on
which χη acts by

∏
τ ψ

wτ
τ =

∏
τ (ψτ̃ψτ̃ ′)wτ . Hence ρ = (ρ⊗ χ−1

η )⊗ χη has the required form. �

As before, we denote by Φ(θ) the set of all characters φ of the form (16). For any σp, let Θ(σp)
be the set of θ : Γ0(p)→ F∗p such that σp is an irreducible constituent of IndGL2(kp)

Γ0(p) θ. The previous
argument shows that if the statement of Theorem 1.3 holds for some weight σ, then it holds for
σ ⊗ η if η is any one-dimensional weight. Thus we assume from now on that σ = σp ⊗ σp, where

σp =
⊗

i∈Z/sZ

(Symki−2k2
p ⊗τi Fp).

It is easy to see that Θ(σp) contains some θ factoring through the determinant if and only if the kτ

are all 2 or all p+ 1.



WEIGHTS OF GALOIS REPRESENTATIONS 29

5.2. The cases s = 1 and s = 2 and the general method. Suppose that s = 1, i.e. kp = Fp;
for instance, this will happen if p is completely split in F . In this case I = {τ} is a singleton, and
σp = Symk−2k2

p ⊗ Fp, with k 6= 2, p + 1. In this case Theorem 1.3 is immediate from Proposition
5.5.

Now assume s ≥ 2. The proofs in the several cases below all use the strategy outlined below.
Let Φ(σ) be the set of characters φ that appear in (ρ|It,p)ss for some Galois representation ρ which
is modular of weight σ and such that ρ|Gp is irreducible. We observe that Φ(σ) ⊂

⋂
θ∈Θ(σp) Φ(θ)

and proceed to compute this intersection; it will essentially be our bound on Φ(σ).
By Lemma 3.7, for each S ⊂ I there is at most one θS such that σp is the S-constituent of

Ind
GL2(kp)
Γ0(p) θ. Indeed, θS does not exist if and only if there is some i ∈ Z/sZ such that ki = p + 1

and one of the following two conditions holds: either τi ∈ S and τi+1 6∈ S, or τi 6∈ S and τi+1 ∈ S.
Otherwise θS exists and is the following:

θS :
(
a b
0 d

)
7→
∏
τ∈S

τ(ad)p−1τ(d)kτ−1−νS(τ)
∏
τ 6∈S

τ(ad)kτ−2τ(d)p+1−kτ−νS(τ).

By assumption the kτ are not all 2 and not all p+1. Then if θS exists, it does not factor through
the determinant, and by Corollary 5.7 Φ(θS) consists of the following, where T runs over P(I):
(17)∏
τ∈T
τ∈S

ψ
kτ+p−1−νS(τ)
τ̃ ψ

p−νT (τ)
τ̃ ′

∏
τ∈T
τ 6∈S

ψ
p−νS(τ)
τ̃ ψ

kτ−1−νT (τ)
τ̃ ′

∏
τ 6∈T
τ∈S

ψ
p−νT (τ)
τ̃ ψ

kτ−1−νS(τ)
τ̃ ′

∏
τ 6∈T
τ 6∈S

ψ
kτ−1−νT (τ)
τ̃ ψ

−νS(τ)
τ̃ ′

Remark 5.8. Observe that
⋂

S Φ(θS) contains all φ of the form
∏

τ ψ
kτ−1
τ̃ ψ0

τ̃ ′ ; here the intersection
is over all S such that θS exists. Indeed, for each such S consider T = S. The corresponding φ are∏

τ∈S

ψ
kτ+p−1−νS(τ)
τ̃ ψ

p−νS(τ)
τ̃ ′

∏
τ 6∈S

ψ
kτ−1−νS(τ)
τ̃ ψ

−νS(τ)
τ̃ ′ =

∏
τ∈S

ψkτ−1
τ̃ ψ0

τ̃ ′

∏
τ 6∈S

ψkτ−1
τ̃ ψ0

τ̃ ′ .

By (17), Φ(θI) consists of all φ of the form
∏

τ∈T ψ
kτ−2+νT (τ)
τ̃ ψ0

τ̃ ′
∏

τ 6∈T ψ
kτ−2+νT (τ)
τ̃ ψp

τ̃ ′ . Hence
if φ ∈

⋂
S Φ(θS), then in particular φ ∈ Φ(θI) and so φ =

∏
j∈Z/2sZ ψ

mj

j , where for each j the set
{mj ,mj+s} is either {kj − 1, 0} or {kj − 2, 1}. In the latter case, if α ∈ {j, j + s} is such that
mα = 1, then if {mj+1,mj+1+s} = {kj+1 − 1, 0} (resp. {mj+1,mj+1+s} = {kj+1 − 2, 1}), we see
that mα+1 = 0 (resp. mα+1 = 1).

Now suppose s = 2. We resolve this case by explicit computation. Let I = {τ1, τ2} and suppose
that k1 and k2 are not both 2 and not both p+ 1. We just saw that

⋂
S Φ(θS) contains all φ of the

form ψk1−1
τ̃1

ψ0
τ̃ ′1
ψk2−1

τ̃2
ψ0

τ̃ ′2
. Suppose first that 2 ≤ k1, k2 ≤ p. Then θS exists for all S, and by (17):

Φ(θI) =
{
ψk1−1

τ̃1
ψ0

τ̃ ′1
ψk2−1

τ̃2
ψ0

τ̃ ′2
, ψk1−2

τ̃1
ψ0

τ̃ ′1
ψk2−1

τ̃2
ψp

τ̃ ′2
, ψk1−1

τ̃1
ψp

τ̃ ′1
ψk2−2

τ̃2
ψ0

τ̃ ′2
, ψk1−2

τ̃1
ψp

τ̃ ′1
ψk2−2

τ̃2
ψp

τ̃ ′2

}
where T runs over P(I), and {τ̃1, τ̃ ′1} and {τ̃2, τ̃ ′2} run over labelings of {σ1, σ3} and {σ0, σ2},
respectively. Similarly,

Φ(θ{τ1}) =
{
ψk1+p−1

τ̃1
ψp−1

τ̃ ′1
ψk2−2

τ̃2
ψp−1

τ̃ ′2
, ψk1−1

τ̃1
ψ0

τ̃ ′1
ψk2−1

τ̃2
ψ0

τ̃ ′2
, ψk1−1

τ̃1
ψp−1

τ̃ ′1
ψk2−1

τ̃2
ψp−1

τ̃ ′2
, ψk1−1

τ̃1
ψp

τ̃ ′1
ψk2−1

τ̃2
ψ−1

τ̃ ′2

}
.

It is now clear that Φ(σ) ⊂
⋂

S Φ(θS) = Φ(θI) ∩ Φ(θ{τ1}) =
{
ψk1−1

τ̃1
ψ0

τ̃ ′1
ψk2−1

τ̃2
ψ0

τ̃ ′2

}
, as desired.
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Now suppose k1 = p + 1. Then θS exists only if S = I or S = ∅. It is easy to see from (17)
that Φ(θ∅) = Φ(θI). Hence

⋂
S Φ(θS) = Φ(θI), which is larger than we want. The following result,

whose proof is independent of everything we have done here, is Corollary 8.4 of [Sch2].

Proposition 5.9. Let θ : Γ0(p) → F∗p, and let ρ : Gal(F/F ) → GL2(Fp) be such that ρ|Gp

is irreducible and ρ is modular of weight σp ⊗ σp, where σp is an irreducible quotient of V =
Ind

GL2(kp)
Γ0(p) θ, i.e. the constituent corresponding to S = ∅ in the notation of Lemma 3.7. Then there

exists a constituent σ′p 6= σp of V such that ρ is modular of weight σ′p ⊗ σp.

Hence if ρ is modular of weight σp ⊗ σp, where σp = (Symp−1k2
p ⊗τ1 Fp) ⊗ (Symk2−2k2

p ⊗τ2 Fp),

then it is also modular of weight σ′p⊗σp, where σ′p is one of the other constituents of IndGL2(kp)
Γ0(p) θ∅.

By Lemma 3.7, there are only two possibilities for σ′p:

(detp−1 Sym0k2
p ⊗τ1 Fp)⊗ (detk2−2 Symp+1−k2k2

p ⊗τ2 Fp)

(Symp−2k2
p ⊗τ1 Fp)⊗ (detk2−1 Symp−k2k2

p ⊗τ2 Fp)

If k2 6= 2, then all exponents of symmetric powers in these weights are strictly less than p− 1, so
we know that Theorem 1.3 holds for them. Thus φ must have either the form

∏
ψp−1

τ̃1
ψp

τ̃ ′1
ψk2−2

τ̃2
ψp

τ̃ ′2

or the form
∏
ψp−1

τ̃1
ψ0

τ̃ ′1
ψk2−1

τ̃2
ψ0

τ̃ ′2
and it is easy to see that once we get these characters into the

form of the statement of Theorem 1.3, we cannot have {m2,m4} = {k2 − 2, 1}. If k2 = 2, then
{k2 − 2, 1} = {k2 − 1, 0}.

Remark 5.10. This proves Theorem 1.3 when s = 2 and k1, k2 are not both 2 or p + 1. Observe
that the method of intersecting the Φ(θS) broke down when k1 = p + 1, and we had to rely on
Proposition 5.9. A similar problem occurs in general when kl ∈ {p, p + 1} for all l 6= j, when we
are trying to rule out {mj ,mj+s} = {kj − 2, 1}. This is the reason for the condition (2b) in the
definition of Wp(ρ).

5.3. The general case.

Proposition 5.11. Suppose that 2 ≤ kτ ≤ p for all τ , and that the kτ are not all 2. Then the
statement of Theorem 1.3 holds for σ.

Proof. We may assume s ≥ 3. As before, we compute
⋂

S Φ(θS). Since kτ 6= p+1 for all τ , it follows
that θS exists for all S ⊂ I. By Remark 5.8,

⋂
S Φ(θS) contains all φ of the form

∏
τ ψ

kτ−1
τ̃ ψ0

τ̃ ′ . We
claim it contains nothing else. Indeed, suppose that φ =

∏
j ψ

mj

j ∈
⋂

S Φ(θS) is a character not of
this form. Then φ ∈ Φ(θI), so there is some i such that ki 6= 2 and {mi,mi+s} = {ki − 2, 1}.

Let S = {τi}. We assert that φ 6∈ Φ(θS), which will contradict φ ∈
⋂

θ∈Θ(σp) Φ(θ). For every
T ⊂ I, we claim φ is not one of the elements of Φ(θS) corresponding to T in (17) above. These are:

φ =
∏
τ∈T
τ 6=τi

ψ
kτ−1−νT (τ)
τ̃ ψ

p−νS(τ)
τ̃ ′

∏
τ 6∈T
τ 6=τi

ψ
kτ−1−νT (τ)
τ̃ ψ

−νS(τ)
τ̃ ′ ×

ψ
ki+p−1
τ̃i

ψ
p−νT (τi)
τ̃ ′i

: τi ∈ T
ψki−1

τ̃i
ψ

p−νT (τi)
τ̃ ′i

: τi 6∈ T

Suppose that τ̃i = σα, where α ∈ {i, i + s}. There is a unique way to write φ such that all
the exponents are between 0 and p − 1. It is clear that this redistribution of exponents can cause
the residue mod p of each exponent to change by at most one. Since 3 ≤ ki ≤ p and νS(τ) = 0
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for τ 6= τi−1, we see that we must have τi−1 6∈ T and τ̃ ′i−1 = σα+s−1, and that the exponents of
ψα+1, ψα+2, . . . , ψα+s−2 in the displayed expression above must all be 0. This can only happen if for
all k ∈ {i+1, . . . , i+s−2} (note this set is non-empty since s > 2) we have τk 6∈ T . So in particular
νT (τi) = 0, whence the exponent of ψα+s is p. But ψ−1

α+s−1ψ
p
α+s = 1, so after the redistribution of

exponents, the exponent of ψα will not decrease after all. Hence φ 6∈ Φ(θS). �

Finally we consider the general case, where 2 ≤ ki ≤ p+ 1 for all i, but the ki are not all p+ 1
and not all 2. Suppose that φ ∈ Φ(θI), but φ does not have the form

∏
τ ψ

kτ−1
τ̃ ψ0

τ̃ ′ . As we saw
above, there is some τi such that {mi,mi+s} = {ki − 2, 1}. Suppose ki 6= p + 1. Now there may
be more than one way to “redistribute” the exponents of φ, since we allow exponents to be p. If
ki−1 6= p + 1, then set S = {τi}. Then θS exists and the previous argument works to show that
φ 6∈ Φ(θS).

Alternatively, suppose that there exists some 1 ≤ m ≤ s − 1 such that ki−m 6= p, p + 1. Then
we may set S = {τi−m+1, . . . , τi−1, τi} and use a variant of the above argument. Observe that θS

exists, and Φ(θS) consists of:

φ =
∏
τ∈T
τ 6∈S

ψ
kτ−1−νT (τ)
τ̃ ψ

p−νS(τ)
τ̃ ′

∏
τ 6∈T
τ 6∈S

ψ
kτ−1−νT (τ)
τ̃ ψ

−νS(τ)
τ̃ ′ ×

∏
τ∈T

τ∈S\{τi}

ψkτ+p−2
τ̃ ψ

p−νT (τ)
τ̃ ′

∏
τ 6∈T

τ∈S\{τi}

ψkτ−2
τ̃ ′ ψ

p−νT (τ)
τ̃ ′ ×

ψ
ki+p−1
τ̃i

ψ
p−νT (τi)
τ̃ ′i

: τi ∈ T
ψki−1

τ̃i
ψ

p−νT (τi)
τ̃ ′i

: τi 6∈ T

As above, let τ̃i = σα, and we see that we must have σα+s−m = τ̃ ′i−m (with exponent −1 in the
above expression) and that all the exponents between them, i.e. the exponents of σα+1, . . . , σα+s−m−1

must be 0. When we redistribute exponents to bring φ into the form of (2), if the exponent of σα

turns into mα = kτ − 2, then the exponent −1 of σα+s−m will turn into p− 1. But then p− 1 must
be either ki−m− 1 or ki−m− 2, whence ki−m is either p or p+ 1, which we assumed not to happen.
Hence φ 6∈ Φ(θS).

The only case that has not been treated (for non-trivial θ) is when ki 6= p+1, but kj ∈ {p, p+1}
for all j 6= i. This is the reason for condition (2b) in the statement of Theorem 1.3.

5.4. The case of trivial θ. Let 1 : Γ0(p)→ F∗p be the trivial character. Then we see from Lemma

3.7 that the GL2(kp)-module IndGL2(kp)
Γ0(p) 1 has only two Jordan-Hölder constituents:

0→
⊗
τ∈I

Sym0k2
p ⊗τ Fp → Ind

GL2(kp)
Γ0(p) 1→

⊗
τ∈I

Symp−1k2
p ⊗τ Fp → 0.

We write σp and σ′p for the submodule and quotient above, respectively. Suppose that ρ :
Gal(F/F ) → GL2(Fp) is modular of weight σ = σp ⊗ σp, where σp is as above. The argument is
similar to the one for non-trivial θ, but is much easier. There exists an eigenclass f ∈ H1(M0,H ⊗
F ,Fp)m corresponding to ρ, where m ⊂ T is the appropriate maximal ideal. As before, we have
Tp = Tm ×T′; let ε be an idempotent such that εTp = Tm.

Recall that M0,H has good reduction. Let J be the Néron model over D of Pic0(M0,H). Define
a p-divisible group G/D by Gn = J0[pn]; the Gn are finite and flat. Then we see as in Lemma 4.3
that G[m]K is isomorphic to some number of copies of WK = W ×F K, where W is the T/m-vector



32 MICHAEL M. SCHEIN

space scheme over F corresponding to ρss. We find a Fp2s-vector space subscheme V ⊂ G[m]⊗F F′

satisfying condition (∗∗), such that Gal(K/K) acts on VK by the character φ.
Clearly Gal(K ′/K) acts trivially on Pic0(M0,H) ⊗ D and hence on the special fiber of G[m]D′

and on its cotangent space. Thus bi = 0 for all i. But then ai ∈ {0, 1} for all i, and from Lemma
5.1 we see that (φφq)|Ip = χ|Ip . Hence φ must have the form φ =

∏
τ ψ

1
τ̃ψ

0
τ̃ ′ .

Now suppose that ρ is modular of weight σ′ = σ′p⊗ (σ′)p, where σ′ is as defined above. It follows
from Proposition 5.9 that ρ is also modular of weight σp ⊗ (σ′)p, and so φ must be of the form
above. But this is equivalent to φ having the form φ =

∏
τ ψ

p
τ̃ψ

0
τ̃ ′ .

The proof of Theorem 1.3 is now complete.
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