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Abstract. Let ρ : Gal(Q/Q)→ GLn(Fp) be an n-dimensional mod p Galois representation.

If ρ is modular for a weight in a certain class, called p-minute, then we restrict the Fontaine-

Laffaille numbers of ρ; in other words, we specify the possibilities for the restriction of ρ to

inertia at p. Our result agrees with the Serre-type conjectures for GLn formulated by Ash,

Doud, Pollack, Sinnott, and Herzig; to our knowledge, this is the first unconditional evidence

for these conjectures for arbitrary n.

1. Introduction

Let p be a prime and let ρ : Gal(Q/Q) → GLn(Fp) be a mod p Galois representation.
There exists a notion of ρ being modular of a certain weight; see section 1.2. If n = 2,
then Serre’s well-known conjecture specified when ρ is modular, and, if so, of which weights.
Ash, Doud, Pollack, and Sinnott [AS], [ADP] have extended this conjecture by specifying
some modular weights of Galois representations of arbitrary dimension. Their work was
conceptually reformulated and extended by Herzig [Her] if ρ is tamely ramified at p; in this
case, he gives a set of weights that strictly contains theirs and conjectures that it is the
complete set of modular weights of ρ. We note that these conjectures were formulated using
a different generalization of the classical definition of modularity from the one we use, and
it has not been proved that the two definitions are equivalent; see section 1.4. In fact, the
compatibility of Theorem 1.2 with the conjectures may be seen as evidence for the equivalence
of the notions of modularity.

A Serre weight is an isomorphism class of irreducible Fp-representations of GLn(Fp). We
recall a description of these. An n-tuple λ = (a1, a2, . . . , an) ∈ Zn is called p-restricted if it
satisfies the following conditions:

• a1 ≥ a2 ≥ · · · ≥ an
• 0 ≤ ai − ai+1 ≤ p− 1 for all i = 1, . . . , n− 1

Let B ⊂ GLn and B− ⊂ GLn be the Borel subgroups of upper and lower triangular
matrices, respectively, and let T ⊂ B be the diagonal torus. We view them as algebraic
groups over Fp. Given a character λ : T → Gm, consider its restriction λ : T (Fp) → F∗p to
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Fp-points, which necessarily has the following form for some n-tuple (a1, . . . , an) ∈ Zn:
t1

t2
. . .

tn

 7→ ta1
1 t

a2
2 · · · t

an
n .

We will abusively write λ for the n-tuple (a1, . . . , an). We may consider λ as a character
of B− by means of the natural surjection B− → T . Let Fp(λ) denote a one-dimensional
Fp-vector space on which B− acts via λ. Let W (λ) = indGLn

B− Fp(λ) be the corresponding
algebraic Weyl module. Here we are taking the “algebraic induction” as in [Jan], I.3.3; it
consists of B−-invariant functions GLn → Fp(λ) that are morphisms of algebraic varieties.
Then W (λ) has a unique irreducible GLn-submodule of highest weight λ, which we denote
F (λ) or F (a1, . . . , an). Restricting to Fp-points, the construction λ 7→ F (λ) gives a bijective
correspondence between Serre weights and p-restricted n-tuples such that 0 ≤ an < p− 1.

Definition 1.1. Let λ = (a1, . . . , an) be a p-restricted n-tuple.

(1) The weight F (λ) is called p-small if a1 − an < p− n.
(2) F (λ) is called p-minute if it is p-small and a1 + a2 + · · ·+ an−1 − (n− 1)an < p− 1.

The aim of this paper is to restrict the p-minute weights of which a Galois representation
ρ : Gal(Q/Q) → GLn(Fp) can be modular. We will recall below that, for any integer x,
Fontaine and Laffaille constructed a fully faithful functor T∗

x from a certain category of
filtered modules, where the jumps in the filtration lie between x and x+p−2, to that of local
Galois representations. See [Bre] for an exposition of this theory. Let Gp ⊂ Gal(Q/Q) be a
decomposition subgroup at p, and let I ′p ⊂ Ip be the wild inertia and inertia subgroups inside
Gp, respectively. If ρ|Gp is in the essential image of such a functor T∗

x, then its Fontaine-
Laffaille numbers are the jumps in the filtration of a module giving rise to it. Our result is
the following:

Theorem 1.2. Suppose that ρ : Gal(Q/Q) → GLn(Fp) is modular of a p-minute weight
F (a1, . . . , an). Then ρ|Gp lies in the essential image of T∗

an
, and its Fontaine-Laffaille numbers

are contained in the set {ai + (n− i) : i = 1, 2, . . . , n}.

Remark 1.3. By Proposition 4.1, we can immediately restrict to the case when an = 0.

Observe that if λ is p-small, then the numbers ai + (n − i) for 1 ≤ i ≤ n are distinct and
lie in the range [an, an + p− 2].

From the definition of modularity in section 1.2 below, it will be clear that the proof of
Theorem 1.2 comes down to a study of the étale cohomology of a certain Shimura variety X.
We will use Faltings’ comparison theorem to relate this to the crystalline cohomology of a
crystal on the special fiber of X, and the crucial tool in the subsequent argument will be the
integral Bernstein-Gelfand-Gelfand resolution of Polo and Tilouine [PT]. This method has
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been applied by Mokrane and Tilouine [MT] to analyze the cohomology of Siegel modular
varieties, and by Dimitrov [Dim] to study that of Hilbert modular varieties. Our adaptation
of it to Shimura varieties owes much to their work, as will be apparent to the reader.

We have also applied these methods to the study of mod p representations of Gal(Q/F ),
for a totally real field F . We will report on this in a future article.

It is a pleasure to thank Mladen Dimitrov, Florian Herzig, Sug Woo Shin, Richard Taylor,
and Jacques Tilouine for useful conversations and correspondence, and Ron Livné for useful
conversations and for supporting this research. The author was supported by a Golda Meir
Postdoctoral Fellowship during the writing of this paper.

1.1. Fontaine-Laffaille numbers. Theorem 1.2 can be restated more explicitly as fol-
lows. The semisimplification ρ|ssIp of the restriction to Ip of any continuous representation
ρ : Gal(Q/Q) → GLn(Fp) factors through the tame inertia Ip/I ′p ' lim←−F∗pn . Since Ip/I ′p is
abelian, we see that ρ|ssIp is a sum of characters. Moreover, Gp/Ip acts by conjugation on the
tame inertia, with the topological generator Frobp acting by “raising to the p-th power.” It
follows that if a character appears in ρ|ssIp , then so do all of its Galois conjugates. Therefore,
there is a partition n1 + n2 + · · ·nr = n such that

ρ|ssIp ∼


B1

B2

. . .
Br

 ,

where Bl ∈ GLnl
(Fp) for each 1 ≤ l ≤ r, and there exists a character φl : Ip/I ′p → F∗p of level

nl (i.e. φl factors through the quotient F∗pnl and not through any smaller quotient) such that

Bl ∼


φl

φpl
. . .

φp
nl−1

l

 .

Now for each 1 ≤ l ≤ r, choose a fundamental character ψl : Ip/I ′p → F∗p of level nl; this
means that ψl is induced from an embedding of fields Fpnl ↪→ Fp. Then φl = ψbll for some
0 ≤ bl ≤ pnl − 2. We can write bl in base p as

bl =
nl−1∑
j=0

bljp
j ,

where 0 ≤ blj ≤ p− 1. Note that the set {blj : 0 ≤ j ≤ nl − 1} is independent of the choice of
ψl.



4 MICHAEL M. SCHEIN

If ρ|Gp is in the image of the Fontaine-Laffaille functor T∗
0, then the collection of n integers

{blj : 1 ≤ l ≤ r, 0 ≤ j ≤ nl − 1} is its set of Fontaine-Laffaille numbers, so that, in view of
Proposition 4.1, we see that Theorem 1.2 is equivalent to the following:

Theorem 1.2′. Suppose that ρ : Gal(Q/Q) → GLn(Fp) is modular of a p-minute weight
F (a1, . . . , an), with an = 0. Then there exists a partition n = n1 + · · ·+ nr such that ρ|Ip can
be written as above, where blj ∈ {ai+(n− i) : 1 ≤ i ≤ n} for all 1 ≤ l ≤ r and 0 ≤ j ≤ nl−1.

To make sense of Theorem 1.2 we must define what it means for ρ to be modular of a
weight λ = F (a1, . . . , an).

1.2. Modularity. Let E/Q be an imaginary quadratic extension in which p splits, and write
v and v for the places of E dividing p. Choose a division algebra D of degree n2 over E as in
[HT1] I.7; in particular, D is split at v. As there, we use D to define a reductive group Γ/Q (in
[HT1] it is denoted G) such that Γ(Qp) ' Q∗

p ×GLn(Ev). If U ⊂ Γ(A∞) is an open compact
subgroup, where A∞ denotes the finite adèles over Q, then we obtain a compact Shimura
variety XU/E of dimension n − 1 as in [HT1] III.1. Let Ov be the ring of integers of Ev;
its residue field is k = Fp. Set GL1

n(Ov) = ker(GLn(Ov) → GLn(k)), and let Up ⊂ Γ(A∞,p).
Now define

U = Q∗
p ×GLn(Ov)× Up

U1 = Q∗
p ×GL1

n(Ov)× Up.

If Up is sufficiently small in the sense of [HT1] III.1, then Kottwitz [Kot] proved that the
natural map XU1 → XU is a Galois cover with Galois group U/U1 ' GLn(k). Moreover,
these schemes have integral models over Ov, which are described in [HT1] III.4. We denote
the integral models of XU and XU1 by X and X1, respectively.

Let λ be an irreducible Fp-representation of GLn(k), and let Vλ be its underlying Fp-
vector space. Then we can define a mod p étale sheaf Fλ on XU in the usual manner.
Namely, if Y → XU is an étale cover, then the sections above it are locally constant functions
f : XU1 ×XU

Y → Vλ such that for all γ ∈ GLn(k) and any connected component C ∈
π0(XU1×XU

Y ) we have f(Cγ) = γ−1f(C). Similarly we can define a sheaf Fλ on the integral
model X. The étale cohomology H∗(XU ⊗ E,Fλ) carries an action of Gal(E/E).

Definition 1.4. Given ρ : Gal(Q/Q)→ GLn(Fp), let λ be a weight. We say that ρ is modular
of weight λ if there exist a quadratic imaginary extension E/Q, a division algebra D/E, and
a reductive group Γ/Q as above, such that ρ|Gal(E/E) appears in H∗(XU ⊗ E,Fλ).

Remark 1.5. The reader should not be disturbed that this definition only involves the re-
striction of ρ to the index two subgroup Gal(Q/E) ⊂ Gal(Q/Q). The conjectures of Ash et
al. and Herzig, as well as Serre-type conjectures in other settings and the Langlands philos-
ophy in general, suggest that the collection of modular weights of ρ should only depend on
local information at p, in other words on the restriction of ρ to a decomposition subgroup Gp
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at p. However, Gp ' Gal(Qp/Qp) = Gal(Ev/Ev), so we do not lose any local information by
restricting to Gal(Q/E).

In the rest of this paper we will compute the Fontaine-Laffaille numbers of H∗(XU⊗E,Fλ)
for any p-minute weight λ. We note that if ξ is an irreducible p-adic representation of GLn(k),
then a p-adic étale sheaf Fξ on XU can be defined similarly, and the Hodge-Tate numbers
of H∗(XU ⊗ E,Fξ) are computed on pp. 99-104 of [HT1]. The argument there follows the
same lines as ours, but is somewhat easier. It does not imply our results, however; if λ̄ is a
GLn(k)-action on a Zp-lattice lifting λ, the cohomology H∗(XU ⊗ E,Fλ̄) may have torsion.

1.3. Notation. We now establish notation that will accompany us for the rest of the paper.
Let G be the algebraic group GLn, and let B and T be the upper triangular Borel subgroup
and the diagonal torus, respectively. Let P ⊂ G be the standard parabolic subgroup with
blocks of size n− 1 and 1. In other words,

P =

{(
An−1 ∗

0 A1

)
:
An−1 ∈ GLn−1

A1 ∈ GL1

}
⊂ GLn.

Let NP be the unipotent radical of P ; this is the subgroup of the same form as P , where
An−1 and A1 are replaced with identity matrices of the appropriate size. Let P− be the
opposite parabolic, and let L = P ∩P− = GLn−1×GL1 be the corresponding Levi subgroup.
Denote by N and N−

P the unipotent radicals of B and P−, respectively.
As usual, the Lie algebra of each group is denoted by the appropriate lower-case Fraktur

letter. For instance, g and n−P are the Lie algebras of G and N−
P , respectively.

1.4. Comparison of our result with Herzig’s conjecture. Our motivation for proving
Theorem 1.2 was to make progress towards the conjectures of Ash-Doud-Pollack-Sinnott and
of Herzig. We remark that while in general Herzig gave a larger list of modular weights than
Ash et al., in the case of p-small weights the conjectures coincide.

We briefly compare Theorem 1.2 with the conjecture, in Herzig’s formulation. Let us
say that a p-small weight F (λ), where λ = (a1, a2, . . . , an), has property (∗) if the Galois
representations ρ : Gal(Q/Q) → GLn(Fp) which are tamely ramified at p and are predicted
by Herzig to be modular of this weight are precisely those with Fontaine-Laffaille numbers
{ai+n− i : 1 ≤ i ≤ n}. We will see below that p-small weights generically have property (∗),
in the sense that the proportion of p-small weights with property (∗) tends to 1 as p increases.

Note that Ash et al. and Herzig use a group-cohomological definition of the notion of ρ
being modular of a weight λ; see [AS], Conjecture 2.1 and [Her], Definition 6.3. For an integer
N , let Γ0(N) ⊂ SLn(Z) be the subgroup of matrices whose top row has the form (∗, 0, . . . , 0)
modulo N . If p divides N , then a weight F (λ), which is a GLn(Fp)-module by definition,
can be viewed as a Γ0(N)-module via reduction modulo p of matrices. Then ρ is said to
be modular of weight F (λ) if it is attached, in the sense of [AS], Definition 1.1, to a class
β ∈ H∗(Γ0(N ′), V ) for a suitable N ′, where the Γ0(N ′)-module V is isomorphic to F (λ) up
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to a twist. The cohomology class β is furthermore required to be an eigenvector for the Hecke
action defined in [AS]. If n = 2, then such classes correspond to Hecke modular eigenforms,
and ρ is attached to an eigenform if it arises from it by the Eichler-Shimura construction. In
this case it is well-known that ρ appears in the cohomology of an appropriate modular curve;
this formulation of modularity motivates Definition 1.4.

We believe that Definition 1.4 is equivalent to the notion of modularity of [AS] and that
the proof for modular curves can be modified to our case, but we have not established this.
Finally, note that Theorem 1.2 is actually a statement about automorphic representations for
the reductive group Γ/Q of section 1.2, and that Γ(Qp) 6' GLn(Qp). Yet for the rest of this
section, we suppose that the two notions of modularity are equivalent; we will then see that
Theorem 1.2 is compatible with the conjectures of Ash et al. and Herzig.

We will prove in section 4 that the Fontaine-Laffaille numbers of H = H∗(XU⊗E,Fλ), and
hence of any irreducible subquotient, lie in the set {ai + (n− i) : 1 ≤ i ≤ n}; this is Theorem
1.2. If one could show, for a p-minute weight F (λ) with property (∗), that all the elements of
this set appear as Fontaine-Laffaille numbers of a given subquotient ρ of H, then we would
show that F (λ) is a modular weight of a Galois representation ρ only if Herzig predicts it to
be a modular weight.

Observe that the hypotheses of Theorem 1.2 contain no restriction on the ramification of
ρ at p. Herzig’s conjecture depends only on ρ|ssIp , and it is expected that if ρ is not tamely
ramified at p, then its modular weights will be a subset of those that Herzig predicts. Theorem
1.2 conforms to this expectation.

Proposition 1.6 (Herzig). Let F = F (a1, a2, . . . , an) be a p-small weight.

(1) If n = 3, then F has property (∗).
(2) For all n ≥ 3 there exists a constant δn, independent of p, such that if δn < a1− an +

n− 1 < p− δn, then F has property (∗).

Proof. Recall that Herzig in [Her], 6.4 defines a p-adic representation V (ρ) of GLn(Fp) for
each Galois representation ρ that is tamely ramified at p. Let JH(V (ρ)) be the set of Jordan-
Hölder constituents of its reduction modulo p. The elements of this set are irreducible Fp-
representations of GLn(Fp), i.e. weights. Herzig defined a map R from the set of weights to
itself and conjectured that the regular modular weights of ρ are R(JH(V (ρ))). See [Her] for
the definition of regular weights; all p-small weights are regular.

If F (a1, . . . , an) is p-small, then its preimage under R consists of the single weight

F (an+(n−1)(p−1), an−1+1+(n−2)(p−1), . . . , an+1−i+i−1+(n−i)(p−1), . . . , a1+n−1).

Since this weight lies in the highest alcove of the p-restricted region, the only Weyl module
in which it appears as a Jordan-Hölder constituent is

W (an+(n−1)(p−1), an−1+1+(n−2)(p−1), . . . , an+1−i+i−1+(n−i)(p−1), . . . , a1+n−1).
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If n = 3, then it is easy to see from Lemma 7.6 of [Her] that V (ρ) contains this Weyl
module if and only if ρ has the Fontaine-Laffaille numbers claimed. This proves claim (1).
Claim (2) is precisely [Her], Proposition 6.25(b). �

2. Crystals

2.1. Definitions. We emphasize that the second and third sections of this paper closely
follow the method established by Mokrane and Tilouine in [MT].

Let k be a perfect field of characteristic p, W = W (k) its ring of Witt vectors, and let
R be a W -algebra. Its p-adic completion R̂ has an endomorphism Φ : R̂ → R̂ that lifts the
Frobenius endomorphism of R/pR. Let a ≥ 0 be an integer. We recall the definition of the
category MF∇,R[0,a] from section 2 of [Fal]. Its objects are quadruples (M,M i, φi,∇), where:

(1) M is a finitely generated p-torsion R-module equipped with a descending filtration by
finitely generated R-modules

M = M0 ⊃M1 ⊃ · · · ⊃Ma+1 = 0.

(2) The φi are R-linear maps φi : M i ⊗R,Φ R→M such that φi−1|M i = pφi.
(3) The integrable connection ∇ : M →M ⊗R ΩR/W satisfies

(a) ∇(M i) ⊂M i−1 ⊗R ΩR/W (Griffiths transversality).
(b) ∇ ◦ φi = (φi−1 ⊗R dΦ∗/p) ◦ ∇ as maps from M i ⊗R,Φ R to M ⊗R ΩR/W , i.e. the

φi are parallel with respect to ∇.

Morphisms inMF∇,R[0,a] are R-module homomorphisms compatible with the additional struc-
ture. In practice we will have k = Fp and W = Zp, and R will be a ring of sections OX0(U)
of the structure sheaf of the special fiber X0 = X ⊗Zp Fp. We will then suppress R from the
notation and view a crystal M ∈MF∇[0,a] as a quasi-coherent sheaf on X0.

2.2. The crystal associated to λ. Let λ = (a1, a2, . . . , an) be a p-minute weight with
an = 0. The aim of this section is to construct an OX0-module Vλ associated to λ whose
dual V∨λ will be an object of MF∇[0,a1]. For the most part we follow section 5 of [MT], but
our life is easier because X is compact. First, let (r, V ) be a Zp-representation of G. For
example, it could be the irreducible Zp-representation whose highest weight is the dominant
weight λ = (a1, . . . , an); we will abusively refer to its representation space as Vλ. As in [HT1]
III.4, X represents a certain moduli problem of abelian varieties. Let π : A → X be the
universal abelian variety, let Ω•A/X be its complex of relative differentials, and consider the
sheaf A = (R1π∗Ω•A/X)∨. It is canonically isomorphic to Lie A and is equipped with a Gauss-
Manin connection ∇ : A → A⊗OX

ΩX . We have a decomposition Lie A = Lie +A⊕ Lie −A,
and the moduli problem defining X forces Lie +A to have rank n over OX . Let A+ be
the corresponding direct summand of A. Note that ∇ restricts to a connection ∇ : A+ →
A+ ⊗OX

ΩX .
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Set T = Isom(O⊕nX ,A+). Since G acts on the left on O⊕nX in the obvious way, it acts on

the right on T . Let V = T
G
× V be the amalgamated product; this is T × V modulo the

equivalence relation (t, gv) = (tg, v).
We define an integrable connection on V as follows. For any scheme Y → X, let ψ ∈ T (Y ).

Then we have a diagram

O⊕nY
∇ψ- O⊕nY ⊗ Ω1

X

A+
Y

ψ

? ∇
- A+

Y ⊗ Ω1
X

ψ ⊗ 1

?

defining a map ∇ψ ∈ EndOY
(O⊕nY ) ⊗OX

ΩX . Moreover, ∇ψ is contained in g ⊗ ΩX . The
differential of r gives a map dr : g→ End(V ), whence we can define a connection on V ⊗OY :

∇V,ψ = (dr ⊗ 1OY
⊗OX

1ΩX
) ◦ ∇ψ ∈ End(V )⊗OY ⊗OX

ΩX .

Now set Y = T , and let ψ ∈ T (Y ) be the point corresponding to the identity map. Then ∇ψ
is a connection on T ×V . If g ∈ G, it is easy to see that ∇ψg = (g−1⊗ 1) ◦∇ψ ◦ g. Hence ∇ψ
descends to a connection ∇V on the amalgamated product V, and it retains the integrability
and quasi-nilpotence of the original Gauss-Manin connection ∇.

Let st denote the standard n-dimensional representation of G. Then we see that Vst =
(R1π∗Ω•A/X)∨, via the evaluation map on the amalgamated product. Define s = a1 + a2 +
· · ·+ an, and observe that the s-fold tensor product V ⊗s

st contains an irreducible G-module of
highest weight λ as a direct summand.

Similarly, let As be the s-fold fiber product A×X A×X · · · ×X A
πs→ X. We can see as in

Appendix II of [MT] that V∨λ is a direct summand of the coherent sheaf G = Rsπs,∗Ω•As/X .
Furthermore, the assumption that λ is p-minute implies that s < p−1. Therefore G is locally
free by [Ill], Corollaire 2.4.

If C• is a complex and j ∈ Z, let (C≥j)• denote the subcomplex such that

(C≥j)i =

Ci : i ≥ j

0 : i < j.

The Hodge filtration on G can now be defined by setting

FiljG = im
(
Rsπs,∗(Ω

≥j
As/X)• → G

)
.

Finally, we define the filtration on V∨λ by FiljV∨λ = V∨λ ∩FiljG. The only reason we require
λ to be p-minute, rather than just p-small, is that this hypothesis is needed to define the
Hodge filtration on V∨λ . We have thus obtained an OX -module with filtration and connection.
We pull it back to a sheaf on the special fiber X0, which we continue to denote V∨λ .
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2.3. The H-filtration. We would like to find a simpler way to compute the Hodge filtration.
Let H ∈ p be the element

H =


0 0

. . .
0

0 −1

 ,

i.e. the matrix with −1 in the bottom right corner and zeroes everywhere else. If P → GL(W )
is any Zp-representation of P , then by differentiating it we can realize H as an endomorphism
of W . Define a decreasing filtration on W by setting W i, for any integer i, to be the sum of
the generalized H-eigenspaces with eigenvalues at least i.

We will now produce a filtered vector bundle on X associated to W , following section
5.3.2 of [MT]. We put the standard H-filtration on O⊕nX = OX ⊗ Vst. Here (OnX)1 = 0 and
(OnX)−1 = (OnX), while (OnX)0 is a subsheaf of rank n−1. Then define TH = Isomfil(OnX ,A+)
to be the sheaf of isomorphisms compatible with the filtrations, where the filtration on the
right-hand side is the Hodge filtration defined above. Now let

W = T
P
×W

be the amalgamated product as before. This is a vector bundle on X. We will denote its
pull-back to the special fiber X0 by FP (W ).

If the elements of the H-filtration on W are P -invariant subspaces, then they induce an
H-filtration on FP (W ). Since H is not in the center of p, it is not true in general that
the H-filtration is P -invariant. However, if W = Vst is the standard representation, then
the filtration has only two steps, as above, and is manifestly P -invariant. The resulting
H-filtration on FP (Vst) induces one on FP (Vλ).

Given an H-filtration on FP (W ), we define the dual H-filtration on FP (W )∨ as follows.
Endow OX with the trivial filtration: Fil0(OX) = OX and Filj(OX) = 0 for j > 0. Then for
all i we set

FiljH(FP (W )∨) =
{
φ : FP (W )→ OX : φ(FiliHFP (W )) ⊂ Fili+jOX

}
.

Lemma 2.1. If V is the restriction to P of an irreducible G-representation of highest weight
λ, then the H-filtration on V∨λ coincides with the Hodge filtration.

Proof. Recall that V = Vst is the standard representation of G. Its H-filtration is the fol-
lowing: V 1

st = 0, whereas V 0
st is the P -invariant (n− 1)-dimensional subspace and V −1

st = Vst.
Hence the induced H-filtration on V∨st = FP (Vst)∨ is given by (V∨st)0 = V∨st, (V∨st)2 = 0, and
(V∨st)1 consists of the functions that annihilate (Vst)0. This can be seen to coincide with
π∗Ω1

A/X . Therefore the H-filtration on V∨st is identical to the classical Hodge filtration.
Both filtrations are compatible with tensor products, so they coincide on Rsπs,∗Ω•As/X and

hence on the direct summand V∨λ . �
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Lemma 2.2. If λ = (a1, . . . an) is a p-minute weight with an = 0, then the sheaf V∨λ , equipped
with the connection and filtration defined above, is an object of the category MF∇[0,a1].

Proof. The module Vλ has a basis consisting of weight vectors. A weight vector of weight
µ = (m1, . . . ,mn) is clearly an eigenvector for the H-action with eigenvalue µ(H) = −mn.
Since λ is a dominant weight, we have −a1 ≤ µ(H) ≤ 0 for all weights µ appearing in Vλ.
Hence the jumps of the filtration on V∨λ are in the required range.

The maps φj are then the obvious ones, and it can be checked as in [MT] that the axioms
defining MF∇[0,a1] are satisfied. �

In section 2 of [Fal], Faltings constructs a functor D from crystals in MF∇[0,p−2] to étale
sheaves on X ⊗ Ev. As in [FC], Theorem VI.6.2(iii), we have

Lemma 2.3. The crystal V∨λ constructed above is associated to the étale sheaf Fλ, in the
sense that D(V∨λ ) = Fλ.

3. The Bernstein-Gelfand-Gelfand complex

3.1. Weyl groups. Let {ε1, . . . , εn} be the standard basis of X(T ) = Hom(T,Gm), and
consider the root system R = {εi − εj : 1 ≤ i, j ≤ n} of G. The positive roots are R+ =
{εi − εj : 1 ≤ i < j ≤ n}, and the simple roots are {εi − εi+1 : 1 ≤ i ≤ n − 1}. The Weyl
group W of G is naturally identified with the symmetric group Sn; the reflection sεi−εi+1

corresponds to the transposition (i i+ 1). We view W as a Coxeter group in the generators
{(i i+ 1) : 1 ≤ i ≤ n− 1}, which allows us to define the length l(w) of w ∈ W as the length
of the shortest expression of w as a word in these generators.

Recall that L = GLn−1 ×GL1 is the Levi subgroup of the parabolic P . Its root system is
RL = {εi − εj : 1 ≤ i, j ≤ n− 1}. Let R+

L = R+ ∩RL.
Our basis ofX(T ) provides a natural identification ofX(T ) with n-tuples (a1, . . . , an) ∈ Zn.

Let X+ (resp. X+
L ) be the set of λ ∈ X(T ) such that 〈λ, α∨〉 ≥ 0 for all α ∈ R+ (resp. for all

α ∈ R+
L ). Then,

X+ = {(a1, . . . , an) : a1 ≥ a2 ≥ · · · ≥ an}

X+
L = {(a1, . . . , an) : a1 ≥ a2 ≥ · · · ≥ an−1} .

The Weyl group W acts on X(T ) by permuting the components:

w(a1, . . . , an) = (aw−1(1), . . . , aw−1(n)).

If ρ = (n− 1, n− 2, . . . , 1, 0) ∈ X+, then we define the usual dot Weyl action:

w · λ = w(λ+ ρ)− ρ

w · (a1, . . . , an) = (aw−1(1) + n− w−1(1)− (n− 1), . . . , aw−1(n) + n− w−1(n)).

Finally, define WL =
{
w ∈W : w(X+) ⊂ X+

L

}
, and set WL(i) = {w ∈WL : l(w) = i}.

Clearly WL consists of the cycles ci = (i n n− 1 · · · i+ 1) for 1 ≤ i ≤ n, and l(ci) = n− i.
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3.2. The BGG complex for distribution algebras. In this section we present the BGG
complex relevant to our problem. The necessary results were proved in greater generality by
Polo and Tilouine in [PT]; here we present their work in the special case we need.

Consider the Koszul complex

· · · → UZp(g)⊗Zp

2∧
Zp

g→ UZp(g)⊗Zp g→ Zp → 0.

Since g = p ⊕ n−P , we see that the Zp[p]-module g/p is a direct factor in g. If V is any
g-module, we obtain the following resolution of it by U(g)-modules:

U(g)⊗U(p)

 •∧
Zp

(g/p)⊗ V |p

→ V → 0.

If V = Vλ, we denote this complex by SZp
• (g, p, λ).

Now let Dist(G) and Dist(P ) be the distribution Zp-algebras over G and P , respectively.
Analogously to the above we have a complex

Dist(G)⊗Dist(P )

 •∧
Zp

(g/p)⊗ V |p

→ V → 0,

which we denote by S
Zp
• (G,P, λ) in the event that V = Vλ. If λ ∈ X+

L , then we define the
generalized Verma module

M
Zp

P (λ) = Dist(G)⊗Dist(P ) V
Zp

L (λ),

where V Zp

L (λ) is the Weyl module of L over Zp with highest weight λ. Finally observe that
n−P is abelian; hence, NP acts trivially on g/p. The hypotheses of Theorem D of [PT] are
therefore satisfied, and we obtain:

Proposition 3.1 (Polo-Tilouine). Let λ = (a1, . . . , an) be a p-small weight with an = 0. Then
the standard complex SZp

• (G,P, λ) contains the complex CZp
• (G,P, λ) as a direct summand,

where for each i ≥ 0,

C
Zp

i (G,P, λ) '
⊕

w∈WL(i)

M
Zp

P (w · λ).

3.3. The BGG complex for crystals. In this section we will derive a statement about the
cohomology of crystals from Proposition 3.1. We follow [MT]; see also [Dim] §5.3.

Recall that the Shimura variety X is defined over Ov = Zp. For every r ≥ 0, set Sr =
Spec (Zp/pr+1) and Xr = X × Sr. The category Cr of crystals over (X0/Sr)cris is equivalent
to that of locally free OXr -modules endowed with an integrable quasi-nilpotent connection.
Let L be Grothendieck’s linearization functor from the category of sheaves of OXr -modules
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to Cr. We emphasize that L is a covariant functor. If M is an OXr -module, then by the
crystalline Poincaré lemma (see, for instance, [BO] 6.13) it has an exact resolution

0→M→ L(M⊗OXr
Ω•Xr/Sr

).

Lemma 3.2. Let λ be a p-small weight with an = 0, and denote Mµ = FP (V Zp

L (µ)) for any
weight µ. The crystal V∨λ has the following resolution in the category Cr, for r ≥ 0:

0→ V∨λ → L(K0
λ)→ L(K1

λ)→ L(K2
λ)→ · · ·

where

Kiλ =
⊕

w∈WL(i)

M∨
w·λ.

Proof. The proof is analogous to that of Proposition 4 of [MT]. If W1 and W2 are P -modules
with p-small highest weights and Wi = FP (Wi), then as in [MT], Lemma 11 a morphism
Dist(G) ⊗Dist(P ) W1 → Dist(G) ⊗Dist(P ) W2 induces a PD differential operator W∨

2 → W∨
1 ,

which is an ordinary differential operator since the weights are p-small. Applying the lineariza-
tion functor, we get a morphism L(W∨

2 )→ L(W∨
1 ) of crystals in Cr. Hence from Proposition

3.1 we obtain a complex as follows:

0→ V∨λ → L(K0
λ)→ L(K1

λ)→ · · ·

Applying the same construction to the retraction of complexes SZp
• (G,P, λ)→ C

Zp
• (G,P, λ),

we obtain an injective map of complexes

L(K•λ) ↪→ L(V∨λ ⊗OXr
Ω•Xr/Sr

).

In fact, the image of this map is a direct summand. Since L(V∨λ ⊗OXr
Ω•Xr/Sr

) is an exact
resolution of V∨λ by the crystalline Poincaré lemma, it follows that L(K•λ) is also an exact
resolution of V∨λ . �

As in [MT] 5.3.4, the H-filtration of the complex K•λ is given by

Fill(Kiλ) =
⊕

w∈WL(i)

(w·λ)(H)≤−l

M∨
w·λ.

It follows from the much more general statement of [Ill], Corollaire 4.13 that the Hodge to
de Rham spectral sequence in this situation degenerates at E1.

Proposition 3.3. Let F (λ) be a p-minute weight with an = 0. The spectral sequence given
by the Hodge filtration

Ei,j1 =
⊕

w∈WL
−(w·λ)(H)=i

H i+j−l(w)(X0,Mw·λ)⇒ H i+j
dR (X0,Vλ)
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degenerates at E1:

griHj
dR(X0,Vλ) =

⊕
w∈WL
l(w)≤j

−(w·λ)(H)=i

Hj−l(w)(X0,Mw·λ).

4. The proof of Theorem 1.2

We are now ready to put together the results of the previous sections to prove Theorem
1.2. Before doing that, we prove the following result, which allows us to restrict to the case
of an = 0. This statement seems to be well-known, but since we have not found a reference
in the literature, we will give its proof.

Proposition 4.1. Let χ : Gal(Q/Q) → F∗p ⊂ F∗p be the mod p cyclotomic character, and let
b ∈ Z. Then a Galois representation ρ : Gal(Q/Q) → GLn(Fp) is modular of weight F (λ) if
and only if ρ⊗ χb is modular of weight detb⊗F (λ).

Proof. Let η = F (1, 1, . . . , 1) : GLn(Fp)→ F∗p be the one-dimensional representation given by
η(g) = det g. It is easy to see that Fλ⊗η = Fλ(1). Hence

Hm(XU ⊗ E,Fλ⊗η) ' Hm(XU ⊗ E,Fλ)⊗ χ|Gal(E/E)

as Gal(E/E)-modules. Alternatively, we can see this as follows:
Composing χ with the reciprocity map of global class field theory, we obtain a character

χ : (A∞)∗/Q∗ → F∗p; since this is a continuous map with finite image, it is locally constant.
We normalize the reciprocity map so that the geometric Frobenius Frob−1

l at a place l of Q
is the image of a uniformizer πl in Ql.

Let Γ1 ⊂ Γ be the subgroup denoted G1 in [HT1] I.7; it is the derived subgroup of Γ and
the kernel of the map ν : Γ → Gm. Let T denote the quotient Γ/Γ1. Then, by [Del] 2.5 the
map ν induces a bijection

π0(XU1) ' π0 (T (Q)\T (A∞)/ν(U1)) .

Decreasing Up at finitely many bad places if necessary, we may assume that ν(U1) ⊂ kerχ.
Hence we obtain a function χ : π0(XU1) → F∗p. The group Γ(A∞) acts on XU1 by right
multiplication, and hence g ∈ U/U1 = Gal(XU1/XU ) acts on π0(XU1) by multiplication by
ν(g) = det(g). Hence the function χ : π0(XU1) → F∗p induces a cohomology class cχ ∈
H0(XU ⊗ E,Fη).

Let w be a place of E dividing a rational prime that splits in E; note that the set of such
places has Dirichlet density 1 in E. Moreover, for almost all such w at which D splits, we
see from the congruence relation of [HT2], Proposition 4.2.6 that the geometric Frobenius
Frob−1

w acts on XU1 as a matrix in Γ(A∞) with determinant σ(πw)−1, where σ ∈ Gal(E/Q)
is non-trivial. Hence Frob−1

w acts on π0(XU1) by (Nw)−1 = χ(Frob−1
w ). Thus the Galois

representation generated by cχ is one-dimensional and isomorphic to the character χ|Gal(E/E)

by the Chebotarev density theorem.
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For a subspace V ⊂ Hm(XU ⊗E,Fλ), let V ∪ cχ = {v∪ cχ : v ∈ V } ⊂ Hm(XU ⊗E,Fλ⊗η).
If V ′ ⊂ V ⊂ Hm(XU ⊗ E,Fλ) are such that V/V ′ ' ρ|Gal(E/E), then it is easy to see that
(V ∪ cχ)/(V ′ ∪ cχ) ' (ρ⊗ χ)|Gal(E/E). �

Observe that if λ = (a1, . . . , an), then F (λ) = detan ⊗F (λ′), where λ′ = (a1−an, . . . , an−1−
an, 0). Also note that if ρ|Gp is in the image of T∗

x with Fontaine-Laffaille numbers b1, . . . , bn,
then (ρ ⊗ χb) is in the image of T∗

x+b with Fontaine-Laffaille numbers b1 + b, . . . , bn + b.
Therefore it suffices to prove Theorem 1.2 for p-minute weights F (λ) = F (a1, . . . , an) with
an = 0.

So let F (λ) be p-minute, where λ = (a1, . . . , an) and an = 0. Then, by Lemma 2.2, V∨λ is
an object of the category MF∇[0,a1]. Since the crystal V∨λ is associated to the étale sheaf Fλ
by Lemma 2.3, in the sense that Fλ = D(V∨λ ), and since a1 + (n− 1) < p− 1, the hypotheses
of Faltings’ comparison theorem (Theorem 5.3 of [Fal]) are satisfied. It follows that

D∗
cris(H

∗
ét(X ⊗Ov Ev,Fλ)) ' H∗

cris(X ⊗Ov Fp,V∨λ ).

Here D∗
cris is the functor defined by Fontaine from the category of crystalline Galois rep-

resentations to that of filtered modules. The Fontaine-Laffaille functor T∗
0 is an inverse of

D∗
cris. Moreover, the isomorphism above is compatible with the Galois actions and the fil-

trations on both sides. Recall that the jumps of the filtration on the left-hand side are the
Fontaine-Laffaille numbers of H∗

ét(X ⊗Ov Ev,Fλ), viewed as a Galois representation. Hence
they are the possible Fontaine-Laffaille numbers of the restriction to Gal(Qp/Qp) of a Galois
representation ρ : Gal(Q/Q)→ GLn(Fp) that is modular of weight F (λ).

But we can read off the jumps of the filtration on the right-hand side from Proposition
3.3. There it was proved that grkH∗(X ⊗Ov Fp,V∨λ ) 6= 0 only if there exists w ∈ WL such
that −(w · λ)(H) = k. We saw in section 3.1 that WL = {ci : 1 ≤ i ≤ n}. Moreover,
−(ci · λ)(H) = ai + (n− i). This completes the proof of Theorem 1.2.
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