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Abstract. Let F be a totally real field and p ≥ 3 a prime. If ρ : Gal(F/F ) → GL2(Fp) is

continuous, semisimple, totally odd, and tamely ramified at all places of F dividing p, then we

formulate a conjecture specifying the weights for which ρ is modular. This extends the conjecture

of Diamond, Buzzard, and Jarvis, which required p to be unramified in F . We also prove a theorem

that verifies one half of the conjecture in many cases and use Dembélé’s computations of Hilbert

modular forms over Q(
√

5) to provide evidence in support of the conjecture.

1. Introduction

Let F be a totally real field and p ≥ 3 a rational prime. For any place v of F , we write Ov for
the completion of OF at v and kv for the residue field. Let pOF =

∏
v|p v

ev be the factorization of
p into prime ideals of F , so that ev is the ramification index of Fv over Qp. The purpose of this
paper is to formulate, and prove some cases of, a Serre-type “epsilon conjecture” for mod p Hilbert
modular forms over F . Previously this has been done only in the case of p unramified in F , i.e.
ev = 1 for all v|p.

Definition 1.1. A (Serre) weight is an irreducible Fp-representation of the group GL2(OF /p) =∏
v|p GL2(OF /v

ev).

Any irreducible mod p representation of GL2(OF /v
ev) factors through the natural surjection

GL2(OF /v
ev)→ GL2(kv); indeed, the kernel is a p-group and hence acts trivially (see [Edi2] for a

proof of this). By Proposition 1 of [BL], the irreducible Fp-representations of GL2(kv) are:

σv =
⊗

τ :kv ↪→Fp

(detwτ Symkτ−2k2
v)⊗kv ,τ Fp,

where 2 ≤ kτ ≤ p + 1 and 0 ≤ wτ ≤ p − 1, and the wτ are not all p − 1. Let Γ =
∏

v|p GL2(kv).
Then the irreducible Fp-representations of Γ are σ = ⊗v|pσv with σv as above, and every weight
factors through Γ. We call the irreducible Fp-representations of GL2(kv) Serre weights at v.

Buzzard, Diamond, and Jarvis in [BDJ] formulated a Serre-type conjecture for Hilbert modular
forms in the case where p is unramified in F . We would like to have a conjecture in the general
case. We may assume that F 6= Q, as otherwise the conjecture is well-known (and mostly proved!).
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Given a continuous, irreducible, totally odd Galois representation ρ : Gal(F/F ) → GL2(Fp),
let W (ρ) denote the set of weights for which it is modular; we explain below what is meant by
“modular.” For each v|p we will construct a set W ?

v (ρ) of Serre weights at v and conjecture that

W (ρ) =

σ =
⊗
v|p

σv : ∀v, σv ∈W ?
v (ρ)

 .

This allows us to treat each v|p separately.
In the next section we will state the conjecture in two equivalent forms, very much in the spirit

of Florian Herzig’s reformulation of the [BDJ] conjecture. The proof that they are equivalent
(Theorems 2.4 and 2.5) relies heavily on Herzig’s ideas in [Her], §14. In the third section we
prove a theorem towards our conjecture; it shows, in many cases when the restriction of ρ to a
decomposition group at a place v|p is irreducible, that the v-component of any modular weight
does indeed lie in W ?

v (ρ). This statement, Theorem 3.4, generalizes the main result of [Sch] and
is proved by a similar argument; it was proved before the conjecture was formulated and played
an important role in motivating it. Finally, in the last section we use Dembélé’s computations of
Hilbert modular forms over Q(

√
5) and their weights to obtain some computational evidence in

support of the conjecture.
The author is grateful to Richard Taylor for encouraging him to study this question and for many

enlightening conversations, to Lassina Dembélé for making available the results of his computations
of Hilbert modular forms over Q(

√
5) and for performing new ones, and to Fred Diamond for useful

conversations.

2. A conjecture

First we introduce the notion of modularity. Let D be a quaternion algebra over F which is
split at exactly one real place of F and at all places over p. Let G = ResF/Q(D∗) be the associated
reductive group; for an open compact subgroup U ⊂ G(A∞) we have a Shimura curve MU/F whose
complex points are

MU (C) = G(Q)\G(A∞)× (C− R)/U.

The MU are not in general geometrically connected. Let the abelian variety Pic0(MU )/F be the
identity component of the relative Picard scheme of MU , which parametrizes line bundles locally
of degree zero.

Let U ′ = ker((D ⊗ Ẑ)∗p =
∏

v|p GL2(Ov) → GL2(OF /p)), and let U ′′ = ker(
∏

v|p GL2(Ov) →∏
v|p GL2(kv)). Clearly U ′ ⊂ U ′′. We say that an open compact U ⊂ G(A∞) is of type (∗) if

U = U ′ × Up, where Up ⊂ G(A∞,p). Let V =
∏

v|p GL2(Ov)× Up. If Up is sufficiently small as in
section 3.1 of [Sch], then MU/MV is a Galois cover with group V/U = GL2(OF /p). Hence we have
an action of V/U on Pic0(MU ).

Definition 2.1. An irreducible Galois representation ρ : Gal(F/F )→ GL2(Fp) is modular of weight
σ if there exists a quaternion algebra D/F as above and an open compact U ⊂ (D⊗ Ẑ)∗ ⊂ G(A∞)
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of type (∗), such that (Pic0(MU )[p]⊗Fp
σ)GL2(OF /p) = (Pic0(MU ′′×Up)[p]⊗Fp

σ)Γ has ρ as a Jordan-
Hölder constituent.

Fix a place p|p of F ; we will now define W ?
p (ρ). Choose a decomposition subgroup Gp ⊂

Gal(F/F ) at p, and let Ip and I ′p be the corresponding inertia and wild inertia subgroups. Denote
by It,p = Ip/I

′
p the tame inertia, and let the residue field kp have cardinality q = ps.

We will state our conjecture in the language of Herzig’s reformulation of the [BDJ] conjecture.
Let I be the set of embeddings kp ↪→ Fp, and as in [Sch], let τ0, . . . , τs−1 be a labeling of its elements
such that τj−1 = τp

j for all j ∈ Z/sZ. Similarly, let k′p be a quadratic extension of kp and fix a
labeling σ0, . . . , σ2s−1 of the embeddings k′p ↪→ Fp such that σi−1 = σp

i for all i ∈ Z/2sZ and such
that σi|kp = τπ(i), where π : Z/2sZ → Z/sZ is the natural projection. Given such an embedding
τ ∈ I (resp. σ : k′p ↪→ Fp), let λτ : It,p ' lim←−F∗pn → Fp (resp. ψσ : It,p → Fp) be the corresponding
fundamental character of level s (resp. 2s). Often we write λj , ψi for λτj , ψσi . Note that Herzig’s
convention is ψi+1 = ψp

i ; the reader should bear this in mind when comparing our work with his.
If b =

∑s−1
j=0 wjp

s−j and a− b =
∑s−1

j=0(kj − 2)ps−j for 0 ≤ wj ≤ p− 1 and 2 ≤ kj ≤ p+ 1, then
we denote

F (a, b) =
⊗

j∈Z/sZ

(detwj Symkj−2k2
p)⊗kp,τj

Fp.

Of course this notation comes from the theory of Weyl modules, but for the purposes of this article
we may take the expression above as a definition.

Given ρ|Ip , we first associate to it a characteristic zero representation of GL2(kp) as in [Her], Def.
14.1. Here I(χ1, χ2) are the usual principal series, while the Θ(ξ), for ξ : k′p ↪→ Fp, are the cuspidal
representations (see, for instance, [DL]).

Definition 2.2. (1) If ρ|Ip ∼

( ∏
j∈Z/sZ λ

mj

j 0
0

∏
j λ

nj

j

)
, then Vp(ρ) = I(

∏
τ

mj

j ,
∏
τ

nj

j ).

(2) If ρ|Ip ∼

( ∏
i∈Z/2sZ ψ

mi
i 0

0
∏

i ψ
mi+s

i

)∏
j∈Z/sZ λ

wj

j , then Vp(ρ) = Θ(
∏
σmi

i )⊗
∏

j τ
wj

j .

Since Vp(ρ) can be realized over Zp, we may consider its reduction modulo p, denoted Vp(ρ).
For any representation V , we write JH(V ) for the set of its Jordan-Hölder constituents. The sets
JH(Vp(ρ)) are computed in [Dia].

In Lemma 3.1 we compute the determinant of ρ|Ip , and hence the central character of any
modular weight. If e ≥ p, we conjecture that all weights with this central character are modular.
Indeed, this is suggested by the fact that we already conjecture this “maximal” set of weights when
e = p − 1, as can be seen from Theorems 2.4 and 2.5, and by the observation that the number of
conjectured modular weights increases with e for e ≤ p− 1.

Let Yp be the set of Serre weights at p. If e ≤ p − 1, let δ ∈ ∆ = [0, e − 1]I be a vector whose
components are choices of an integer 0 ≤ δτ ≤ e − 1 for each τ ∈ I. Given δ, we will define a
multi-valued function Rδ

p : Yp → Yp for which we conjecture the following:



4 MICHAEL M. SCHEIN

Conjecture 1. Let ρ : Gal(F/F )→ GL2(Fp) be continuous, irreducible, totally odd, and tame at
p. Then

(1) W ?
p (ρ) =

⋃
δ∈∆Rδ

p(JH(Vp(ρ))) if e ≤ p− 1.

(2) W ?
p (ρ) =

{
F (a, b) : det ρ|Ip = λ

a+b+
Ps−1

j=0 epj

0

}
if e ≥ p.

We will now assume e ≤ p − 1, fix δ ∈ ∆, and construct the map Rδ
p. Given F (a, b), define

α(j) = p+1− kj ∈ [0, p− 1] for every j ∈ Z/sZ. Define xj to be the integer such that α(j)+xjp ∈
[1 + 2δj − (e− 1), p+ 2δj − (e− 1)]. Under the assumption that e ≤ p− 1, we have xj ∈ {−1, 0, 1}
for all j. We say that F (a, b) is a δ-regular Serre weight at p if the xj are all zero. If F (a, b) is not
δ-regular, then for every j ∈ Z/sZ we define θj = xj+n, where n is the smallest positive integer
such that xj+n 6= 0.

Suppose first that F (a, b) is a δ-regular Serre weight. Then we define

Rδ
p(F (a, b)) =

{
F (c, d) :

c ≡ b−
∑s−1

j=0(1 + δj)ps−j mod ps − 1

d ≡ a−
∑s−1

j=0(e− 1− δj)ps−j mod ps − 1

}
.

If F (a, b) is irregular, things become more complicated. We define a collection Sδ(F (a, b)) of
subsets of Z/sZ as follows. Let S ⊂ Z/sZ. Then S ∈ Sδ(F (a, b)) if and only if for every j ∈ S the
following two conditions hold:

(1) One of the following two conditions holds:
(a) xj = −1 or α(j) ∈ [2δj− (e−1), p−1+2δj− (e−1)]∩ [0, p−1], and there is an integer

n ≥ 0 such that xj+m = 1 + 2δj+m − (e− 1) for 1 ≤ m ≤ n (if any such m exists) and
xj+n+1 = 1.

(b) xj = 1 or α(j) ∈ [2 + 2δj − (e − 1), p + 1 + 2δj − (e − 1)] ∩ [0, p − 1], and there is an
n ≥ 0 such that xj+m = p+ 2δj+m − (e− 1) for all 1 ≤ m ≤ n and xj+n+1 = −1.

(2) In either of the cases above, j +m 6∈ S for 1 ≤ m ≤ n.

We emphasize that Sδ(F (a, b)) depends only on a− b. Finally, writing F = F (a, b), we can give
the general definition:

Rδ
p(F ) =

{
F (c, d) :

c ≡ b+
∑

j∈S θjp
s−j −

∑s−1
j=0(1 + δj)ps−j mod ps − 1

d ≡ a−
∑s−1

j=0(e− 1− δj)ps−j −
∑

j∈S θjps−j mod ps − 1
: S ∈ Sδ(F )

}
.

Lemma 2.3 ([Her], Lemma 14.3). If ρ is of level 2s, then σp =
⊗

τ∈I(detwτ Symkτ−2k2
p) ⊗kp,τ Fp

is a Jordan-Hölder constituent of Vp(ρ) if and only if for each τ ∈ I there is a labeling {τ̃ , τ̃ ′} of its
two lifts to k′p such that

ρ|Ip ∼
∏
τ

λwτ+kτ−2
τ

( ∏
τ ψ

p+1−kτ

τ̃ 0
0

∏
τ ψ

p+1−kτ

τ̃ ′

)
.
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Theorem 2.4. Suppose that ρ|Ip is of level 2s. Then W ?
p (ρ) consists precisely of those Serre weights

at p

σp =
⊗
τ∈I

(detwτ Symkτ−2k2
p)⊗kp,τ Fp (1)

such that for each τ ∈ I there exists a labeling {τ̃ , τ̃ ′} of its two lifts to k′p and an integer 0 ≤ δτ ≤
e− 1 such that

ρ|Ip ∼
∏
τ∈I

λwτ
τ

( ∏
τ ψ

kτ−1+δτ
τ̃ ψe−1−δτ

τ̃ ′ 0
0

∏
τ ψ

e−1−δτ
τ̃ ψkτ−1+δτ

τ̃ ′

)
.

Proof. If e ≥ p the theorem is evident, so we assume from now on that e ≤ p − 1. Let Lδ
p(ρ) be

the set of weights satisfying the condition in the statement above for a given δ. We claim that
Rδ

p(JH(Vp(ρ))) = Lδ
p(ρ) for every choice of δ.

Fix δ, and suppose that F = F (a, b) is a Jordan-Hölder constituent of Vp(ρ). Without loss of
generality, we may assume that b = 0, and we write a =

∑s−1
j=0 ajp

j with 0 ≤ aj ≤ p − 1. Set
α(j) = p− 1− aj . Then by Lemma 2.3 we have

ρ|Ip ∼
∏

j∈Z/sZ

λ
aj

j

( ∏
i∈J ψ

α(i)
i 0

0
∏

i∈Jc ψ
α(i)
i

)
= (2)

∏
j∈Z/sZ

λ
aj+p−e+δj

j

( ∏
i∈J ψ

α(i)+e−1−δi

i ψe−1−δi
i+s 0

0
∏

i∈Jc ψ
α(i)+e−1−δj

i ψ
e−1−δj

i+s

)
,

where J ⊂ Z/2sZ is a subset such that |J | = s and π(J) = Z/sZ and we write α(i) for α(π(i))
and δi for δπ(i). Our goal now is to write

∏
i∈J ψ

α(i)
i in the form η

∏
i∈J ψ

β(i)
i , where β(i) ∈

[1 + 2δi − (e− 1), p+ 2δi − (e− 1)] and η is a character of level s; from such an expression we will
read off a weight in Lδ

p(ρ).

Observe first that such an expression is unique if it exists. Indeed, suppose that η
∏

J ψ
β(i)
i and

η′
∏

J ψ
β(i)′

i are two such expressions. Then ψ =
∏

i∈J ψ
β(i)−β(i)′

i is a character of level s, whence

ψ1−ps
=
∏
i∈J

ψ
β(i)−β(i)′

i ψ
β(i)′−β(i)
i+s = 1.

Since |β(i)− β(i)′| ≤ p− 1 for all i ∈ J , it is evident that we must have β(i) = β(i)′ for all i.
Two issues must be dealt with in obtaining the desired expression. First, J is not specified

uniquely by (2). Indeed, if α(j) = 0 for some j ∈ Z/sZ, then we can choose either of the elements
of π−1(j) to lie in J . In this case, Vp(ρ) has fewer constituents than usual, but the ambiguity in
J allows us to produce several modular weights from each constituent. Second, the α(j) need not
lie in the range [1 + 2δj − (e− 1), p + 2δj − (e− 1)], so we must “carry” exponents. If e = 1, this
problem occurs only when α(j) = 0, which is exactly when the first problem arises. In general we
do not have this coincidence, whence the relative complexity of our construction to the analogous
one in [Her], §14. If e = 1, then the argument below reduces precisely to Herzig’s argument.
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For each j ∈ Z/sZ, let xj ∈ Z be such that α(j) + xjp ∈ [1 + 2δj − (e− 1), p+ 2δj − (e− 1)]. For
instance, if e = 1, then xj = 1 if α(j) = 0 and xj = 0 otherwise. Observe that if e ≤ p − 1, then
xj ∈ {−1, 0, 1}; moreover, α(j) + xj(p− 1) also lies in the specified range.

As in [Her], we consider an interval in Z/sZ to be a sequence [[j, n]] = {j, j + 1, . . . , n}. The
predecessor of [[j, n]] is j − 1 (these correspond, of course, to Herzig’s successors; the difference is
a consequence of our opposite conventions). The terminus of [[j, n]] is n. We define Lδ as the set
of all pairs (α, I), where α : Z/sZ→ [0, p− 1] is a map, I is a collection of disjoint intervals, each
labeled with a sign, and the following axioms are satisfied. For each j ∈ Z/sZ, given α, we can
formally define xj as above. If j − 1 is the predecessor of an interval and n is its terminus, and
xn 6= 0, then define zj−1 = xn. Otherwise it will follow from the third axiom that n+ 1 ∈

⋃
I and

we define zj−1 = zn. Thus zj = ±1. Finally, let C± = {j ∈ Z/sZ : xj = ±1}. The axioms are:

(1) For each interval I ∈ I, either I ⊂ C+ ∪ {j : α(j) = 1 + 2δj − (e − 1)} or I ⊂ C− ∪ {j :
α(j) = p+ 2δj − (e− 1)}.

(2) If j ∈
⋃
I and α(j) 6= 0, then j is the terminus of its interval.

(3) If j ∈
⋃
I, then α(j) ∈ {1 + 2δj − (e− 1), p+ 2δj − (e− 1)} if and only if j is the terminus

of an I-interval and the predecessor of a negative I-interval.
(4) If j 6∈

⋃
I and xj 6= 0, then j + 1 ∈

⋃
I.

(5) If a positive I-interval has predecessor j, then either j lies in an I-interval and satisfies
zj 6= xj , or j does not lie in any interval and α(j) ∈ [1−zj +2δj−(e−1), p−zj +2δj−(e−1)].

(6) If a negative I-interval I has predecessor j, then either j lies in an I-interval and satisfies
zj = xj , or j lies in an I-interval and α(j) = 1 + 2δj − (e − 1) (resp. p + 2δj − (e − 1)) if
zj = 1 (resp. zj = −1), or else j does not lie in any interval and α(j) ∈ [1 + zj + 2δj − (e−
1), p+ zj + 2δj − (e− 1)].

Similarly, letMδ be the set of pairs (β, I), where I as before is a collection of signed intervals and
β : Z/sZ→ Z is a map such that for every j ∈ Z/sZ, we have β(j) ∈ [1+2δj−(e−1), p+2δj−(e−1)].
Let yj be the integer such that β(j)− yjp ∈ [0, p− 1]. Let D± = {j ∈ Z/sZ : yj = ±1}. If j is the
predecessor of an interval, let uj be the number defined in the same way as zj , but with xj replaced
by yj in the definition. We require that (β, I) satisfy the following axioms:

(1) For each interval I ∈ I, either I ⊂ D+ ∪ {j : β(j) = p− 1} or I ⊂ D−.
(2) The set of termini of I-intervals is D+ ∪D−.
(3) If a positive I-interval has predecessor j, then either j lies in an I-interval and satisfies

uj 6= yj , or j does not lie in any interval and β(j) ∈ [uj , p− 1 + uj ].
(4) If a negative I-interval has predecessor j, then either j lies in an I-interval and satisfies

uj = yj , or j does not lie in any interval and β(j) ∈ [−uj , p− 1− uj ].

There is a bijection ξ : Lδ →Mδ which can be written down as follows. Like Herzig, we represent
the function α by the string of numbers α(0), α(1), . . . , α(s− 1). We underline each I-interval and
put its sign after its last entry. Pairs (β, I) are written similarly. Then ξ acts as follows, where j is
always the predecessor of the last interval, in the third line k is the predecessor of the first interval,



WEIGHTS IN SERRE’S CONJECTURE FOR HILBERT MODULAR FORMS 7

and we assume xj = 0 in the second line and xj 6= 0, xk 6= 0 in the third:

x′, (0, . . . , 0, )x± 7→ x′ ± zj , (zj(p− 1), . . . , zj(p− 1), )x+ zjp±

y′, (0 . . . 0, )y,±(0 . . . 0, )y′′− 7→ y′ ± zj , (zj(p− 1) . . . zj(p− 1)), y + zj(p− 1),
±
(zj(p− 1) . . . ,

−

w′, (0 . . . 0)w,±(0 . . . 0)w′′±′ 7→ w′ ± zk, (zk(p− 1), . . . ), w ± zkp±′ zj±(zj(p− 1), . . . ), w′′ + zjp±′

All other entries are unchanged by ξ. The reader may verify that ξ is indeed a bijection between
Lδ and Mδ. It does not affect the collection I of signed intervals. We will prove below (Lemma
2.6) that if S ⊂ Z/sZ, then S ∈ Sδ(F (a, 0)) if and only if S is the set of predecessors of positive
intervals in I for some (α, I) ∈ Lδ (hence for some (β, I) ∈ Mδ), where α is derived from a as
above.

Given S ∈ Sδ(F ), let (α, I) ∈ Lδ be such that S is the set of predecessors of positive intervals.
Let J+ (resp. J−) be the elements of J whose projections to Z/sZ are predecessors of positive
(resp. negative) intervals, and similarly for Jc. Let Ĩ be the collection of intervals in Z/2sZ that
project to I-intervals, and let J0 be the elements of J that do not lie in any Ĩ-intervals. Then as
in [Her] we observe that

∏
i∈J ψ

α(i)
i = χ

∏
i∈J+∪Jc

+
ψ−zi

i , where

χ =
∏
i∈J+

ψ
α(i)+zi

i

∏
J0\(J+∪J−)

ψ
α(i)
i

∏
J−

ψ
α(i)−zi

i

∏
i−1∈J−∩Jc

+
[[i,n]]∈Ĩ

(ψp−1
i ψp−1

i+1 · · ·ψ
p
n)zi−1

∏
J\(J+∪J−∪J0)

ψ
α(i)
i

and it is not hard to see that in this expression, one of every pair {ψi, ψi+s} appears with exponent
zero and the other appears with exponent in the range [1 + 2δj − (e− 1), p+ 2δj − (e− 1)]. Hence

ρ|Ip ∼
∏

j∈Z/sZ

λ
aj+p−e+δj

j

(
χ1 0
0 χ2

)∏
j∈S

λ
−zj

j ,

where each ψi, i ∈ Z/2sZ, appears with exponent e−1−δi in one of χ1, χ2 and with some exponent
β(i) = βπ(i) in the range [1 + δj , p + δj ] in the other. From such an expression we can read off a
weight F (A,B) ∈ Lp(ρ).

Now, from (2) we see that det ρ|Ip =
∏

j∈Z/sZ λ
aj

j = λ
Ps−1

m=0 as−jpj

0 . Let 1S : I → {0, 1} be the
characteristic function of S. Then from the displayed expressions above we find that

det ρ|Ip =
∏

j∈Z/sZ

λ
2aj−(e−1)+δj+βj

j

∏
j∈S

λ
−2zj

j = λ
Ps−1

m=0(2a−m−(e−1)+δ−m+β−m−2·1S(−m)z−m)pj

0 .

Hence, noting that for j ∈ S we have wj = zj , we find that

B ≡ a+
s−1∑
m=0

(δj − (e− 1))ps−j −
∑
j∈S

wjp
s−j mod ps − 1

A ≡
∑
j∈S

wjp
s−j −

s−1∑
j=0

(δj + 1)ps−j mod ps − 1
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It remains to check that any other weight F (Ã, B̃) satisfying the same congruences is also con-
tained in Lδ

p(ρ). The only cases when more than one weight satisfies such a congruence are the
pairs F (b, b), F (ps − 1 + b, b) for some b. But then it is obvious from the definition of Lδ

p(ρ) that
one of these weights is contained there if and only if the other one is. Hence we have shown that
Rδ

p(F ) ⊂ Lδ
p(ρ).

Conversely, suppose that F (a, b) ∈ Lδ
p(ρ). We may assume without loss of generality that b = 0,

and as usual write a =
∑s−1

j=0 ajp
s−j . Then,

ρ|Ip ∼

( ∏
i∈L ψ

β(i)
i 0

0
∏

i∈Lc ψ
β(i)
i

) ∏
i∈Z/2sZ

ψe−1−δi
i ,

where L ⊂ Z/2sZ is mapped bijectively to Z/sZ by π and β(i) = aπ(i) + 1 + 2δi − (e − 1) ∈
[1 + 2δi − (e − 1), p + 2δi − (e − 1)]. Let yi be an integer such that β(i) − yip ∈ [0, p − 1]; under
our assumptions on e, we have yi ∈ {−1, 0, 1}. Let D± = {i ∈ Z/2sZ : yi = ±1}. We now define a
collection I of intervals in bijection with D+ ∪D− as follows. If i ∈ D+ and i ∈ L (resp. i ∈ Lc),
choose n such that [[n, i]] ⊂ L (resp. Lc) and β(m) = p− 1 for all m ∈ [[n, i]]\{i}, and such that n
is minimal for this property (i.e. n− 1 will not work). Then [[n, i]] is the interval corresponding to
i, and we let it be negative if and only if yn−1 = 1 or yn−1 = 0 and n− 1 ∈ L (resp. Lc).

Similarly, if i ∈ D−, then the corresponding interval is [[i]]. It is negative if and only if yi−1 = −1
or yi−1 ∈ {1 + 2δi−1 − (e− 1), p+ 2δi−1 − (e− 1), p− 1}.

It is easy to see that (β, I) ∈Mδ. Let L+, L−, L0 be defined as before, and let S = L+ ∪Lc
+ be

the set of predecessors of positive intervals. We invert the previous construction to find that

ρ|Ip ∼

(
χ1 0
0 χ2

) ∏
j∈Z/sZ

λ
e−1−δj

j

∏
j∈S

λ
uj

j ,

where

χ1 =
∏

i∈L+

ψ
β(i)−ui

i

β(i)∏
L0\(L+∪L−)

∏
L−

ψ
β(i)+ui

i

∏
i−1∈L−∪Lc

+
[[i,n]]∈Ĩ

(ψp−1
i · · ·ψp

n)−ui−1
∏

L\(L+∪L−∪L0)

ψ
β(i)
i ,

and χ2 is the same but with the roles of L and Lc reversed. Each ψi appears with non-zero exponent
in at most one of χ1, χ2, and this exponent always lies in the range [1, p−1]. Thus we have obtained
an expression of the form

ρ|Ip ∼

( ∏
i∈L ψ

α(i)
i 0

0
∏

i∈Lc ψ
α(i)
i

) ∏
j∈Z/sZ

λ
e−1−δj

j

∏
j∈S

λ
uj

j .
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Using Lemma 2.3 we can read off a weight F (A,B) ∈ JH(Vp(ρ)). Moreover, clearly (α, I) =
ξ−1(β, I), whence S ∈ Sδ(F (A,B)). Comparing two expressions for det ρ|Ip as before, we find that

s−1∑
j=0

(aj + e)ps−j ≡
s−1∑
j=0

(α(j) + 2[(e− 1− δj) + 1S(j)uj ])ps−j mod ps − 1.

Clearly uj = wj for j ∈ S. Also we see that

B ≡
s−1∑
j=0

(e− 1− δj + 1S(j)uj + α(j))ps−j ≡
s−1∑
j=0

(aj + 1 + δj)ps−j −
∑
j∈S

ujp
s−j mod ps − 1

A ≡
s−1∑
j=0

(e− 1− δj + 1S(j)uj)ps−j mod ps − 1

Hence, F (a, b) ∈ Rδ
p(F (A,B)). This completes the proof that Rδ

p(JH(Vp(ρ))) = Lδ
p(ρ). �

A very similar argument establishes an analogous statement in the level s case:

Theorem 2.5. Suppose that ρ|Ip is of level s and, as always, tame at p. Then W ?
p (ρ) consists

precisely of the Serre weights at p as in (1) for which there exist a set J ⊂ I and an integer
0 ≤ δτ ≤ e− 1 for each τ ∈ I such that

ρ|Ip ∼
∏
τ∈I

λwτ
τ

( ∏
τ∈J λ

kτ−1+δτ
τ

∏
τ 6∈J λ

e−1−δτ
τ 0

0
∏

τ∈J λ
e−1−δτ
τ

∏
τ 6∈J λ

kτ−1+δτ
τ

)
.

Finally we establish a lemma that was needed in the proof of Theorem 2.4.

Lemma 2.6. Let α : Z/sZ→ [0, p− 1] be a function, and let S ⊂ Z/sZ. Then S ∈ S(F (a, b)) for
some (hence all) weights F (a, b) such that a − b =

∑s−1
j=0(p − 1 − α(j))ps−j if and only if S is the

set of predecessors of positive I-intervals for some (α, I) ∈ Lδ.

Proof. It is easy to see from the axioms of Lδ that the set of predecessors of positive intervals of
any (α, I) lies in Sδ(F (a, b)).

Conversely, suppose S ∈ Sδ(F (a, b)); we will construct an appropriate I. We let j ∈
⋃
I if and

only if there exists n ≥ 0 such that xj+n+1 = 0 and for all 1 ≤ m ≤ n we have j+m 6∈ S and either
xj+m = 1 + 2δj+m − (e − 1) for all m or xj+m = p + 2δj+m − (e − 1) for all m. We let j ∈

⋃
I

be the terminus of an I-interval if and only if j + 1 6∈
⋃
I, or if j + 1 ∈

⋃
I and α(j) 6= 0, or

α(j) = 0 ∈ {1 + 2δj − (e− 1), p+ 2δj − (e− 1)}. This specifies I, and we define an I-interval to be
positive if and only if its predecessor is contained in S. The reader may verify that (α, I) ∈ Lδ. �

3. A theorem towards the conjecture

As before, let I be the set of embeddings τ : kp ↪→ Fp. Suppose the Galois representation
ρ : Gal(F/F )→ GL2(Fp) is modular of a weight σ whose p-component is

σp =
⊗
τ∈I

(detwτ Symkτ−2k2
p)⊗kp,τ Fp. (3)
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Suppose that the restriction of ρ to the decomposition subgroup Gp is irreducible. Then as in [Sch]
we have

ρ|ssIp
∼

(
φ 0
0 φq

)
,

where φ : It,p = Ip/I
′
p → F∗p is a character of level 2s. Let K be the maximal unramified extension

of Fp, and let K ′/K be the totally ramified extension such that Gal(K ′/K) ' k∗p .
The present argument is very similar to the one in [Sch], so we refer the reader to that article

and only indicate the differences. In particular, the first four sections of [Sch] do not depend on the
assumption that p is unramified in F , so they hold in our case as well. Suppose that ρ is modular
of weight σ = σp ⊗ (⊗v 6=pσv) and that σp is a Jordan-Hölder constituent of IndGL2(kp)

B θ, where
B ⊂ GL2(kp) is the subgroup of upper triangular matrices and θ : B → F∗p is given by

θ :

(
a b

0 d

)
7→

∏
τ :kp↪→Fp

τ(ad)wτ τ(d)kτ−2. (4)

Lemma 3.1. Write kj for kτj . Then,

φq+1 =
∏

i∈Z/2sZ

ψ
2wπ(i)+kπ(i)−2+e

i .

Proof. By [Sch], Prop. 3.19, for all σ ∈ Gal(F/F ) we have det ρ(σ) = χ(σ)〈σ〉−1, where χ is the
mod p cyclotomic character and 〈·〉 is the diamond operator map. If σ ∈ Gal(K/K) = Ip, suppose
its image in Gal(K ′/K) is sent by the Artin reciprocity map to j(σ) ∈ O∗p/(1 + p). Then we have

φq+1(σ) = det ρ(σ) = χ(σ)〈σ〉−1 =
∏

τ :kp↪→Fp

τ(j(σ))kτ−2τ(j(σ))e =
∏

i∈Z/2sZ

ψi(σ)kπ(i)−2+e,

just as in the proof of [Sch], Lemma 5.1. �

Assume from now on that e ≤ p− 1. Let µ ∈ Zs be the vector whose components are given by
µi = ai + ai+s − (ki+1 − 2 + e). By the previous lemma µ lies in the lattice

Λ = Z(p, 0, . . . , 0,−1)⊕ Z(−1, p, 0, . . . , 0)⊕ · · · ⊕ Z(0, . . . , 0,−1, p).

By [Sch], Corollary 3.21, we may assume that wτ = 0 for all τ . For j ∈ Z/sZ, let cj =
kj − 2 + p(kj−1− 2) + · · ·+ ps−1(kj+1− 2). Assume first that θ is non-trivial; then 0 < cj < ps− 1.
Let H be an Fp2s-vector space scheme over D′ defined just as in [Sch]; it satisfies the condition (∗∗)
of [Ray]. Let ai, a′i, and bi, for i ∈ Z/2sZ, be parameters defined as in [Edi1], §5 or [Sch], 4.1. The
relevant facts about them are that 0 ≤ a′i ≤ e(ps − 1), that bi ∈ {cπ(i), 0} (just as in [Sch], Lemma
5.3), and that they satisfy the relation

a′i = bi+1 − pbi + (ps − 1)ai. (5)

We apply this relation to determine the ai. As in section 5.1 of [Sch], we consider four cases:
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Case 1. bi = 0, bi+1 = ci+1. Then by (5) we have

a′i − (ps − 1)ai = bi+1 − pbi = ci+1.

By virtue of the bound on a′i, this equation admits e solutions:

a′i = ci+1 ai = 0

a′i = ci+1 + ps − 1 ai = 1

. . . . . .

a′i = ci+1 + (e− 1)(ps − 1) ai = e− 1

Case 2. bi = ci, bi+1 = 0. Then (5) says that

a′i − (ps − 1)ai = −pci = β − (ps − 1)(ki+1 − 1),

where β = (p+ 1− ki+1) + p(p+ 1− ki) + · · ·+ ps−1(p+ 1− ki+2). Since 0 < β < ps − 1, we again
have e solutions:

a′i = β ai = ki+1 − 1

a′i = β + ps − 1 ai = ki+1

. . . . . .

a′i = β + (e− 1)(ps − 1) ai = ki+1 − 1 + (e− 1)

Case 3. bi = 0, bi+1 = 0. Then a′i − (ps − 1)ai = 0, which has e+ 1 solutions:

a′i = 0 ai = 0

a′i = ps − 1 ai = 1

. . . . . .

a′i = e(ps − 1) ai = e

Case 4. bi = ci, bi+1 = ci+1. Then a′i − (ps − 1)ai = ci+1 − pci = −(ps − 1)(ki+1 − 2), and there
are e+ 1 solutions:

a′i = 0 ai = ki+1 − 2

a′i = ps − 1 ai = ki+1 − 1

. . . . . .

a′i = e(ps − 1) ai = ki+1 − 2 + e

Lemma 3.2. We may assume without loss of generality that {bi, bi+s} = {0, ci} for each i ∈ Z/2sZ.

Proof. We sketch the proof, using the notions and notations of [Sch] without comment. Recall
that H ⊂ Pic0(Mbal

U1(p),U )[p∞], where U ⊂ G(A∞,p) is an appropriate open compact subgroup
and Mbal

U1(p),U → Spec D′ is the semistable model of a Shimura curve as described there and in
[Gee], Thm. 2.18. As in [Gee], Mbal

U1(p),U represents the functor that associates to an L∗1,U -scheme
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S the collection of canonical balanced U1(p)-structures on S. The scheme Mbal
U1(p),U carries an

“Atkin-Lehner” automorphism w that sends a canonical balanced U1(p)-structure (P, P ′,K,K′) to
a structure (Q,Q′,L,L′), where L is a lifting of K′ to E1,U |S and Q′ is the image of P in L′. The
map w interchanges the two components I and E of the special fiber of Mbal

U1(p),U .
By the arguments of [Car] §10 we see that Frobp preserves H ⊕ w(H). Hence w(H) is an Fp2s-

vector space scheme over D′ lifting the vector space scheme Hφq over K on which Gal(K/K) acts
via the character φq. Let w(H) be defined by the parameters aw

i , (a′i)
w, bwi . Then aw

i = ai+s and
as in [Sch], Lemma 5.3, we see that bwi = 0 (resp. bwi = ci) if bi = ci (resp. bi = 0).

Now, in all the subscripts of the parameters defining w(H), replace i by i + s. We get an
Fp2s-vector space scheme H̃, defined by parameters ãi, ã′i, b̃i, where ãi = ai and

b̃i =

{
ci : bi+s = 0

0 : bi+s = ci

Let N+ ⊂ Z/2sZ (resp. N−) be the set of i such that bi = bi+s = ci (resp. bi = bi+s = 0), and
let N = N+ ∩ N−. Suppose first that N 6= Z/2sZ. Then there exists an i such that i ∈ N but
i + 1 6∈ N . Suppose that i ∈ N− (the case i ∈ N+ is very similar), and let n ≥ 0 be the largest
integer such that i− n′ ∈ N− for all 0 ≤ n′ ≤ n. It is easy to see that if α ∈ {i, i+ s} is such that
bα−n−1 = cα−n−1, then we can switch bi−n′ to ci−n′ and still obtain the same set of ai’s as possible
solutions. Note that the existence of H̃ guarantees that the ai−n′ are in the range where this is
possible. Iterating this procedure proves the lemma.

Finally suppose that N = Z/2sZ. Since φ is a character of level 2s, there is some i such that
ai 6= ai+s. We leave it as an exercise to the reader to show that, after possible replacing i with
i + s, for all 0 ≤ n′ ≤ s − 1, if bi−n′ = 0 (resp. bi−n′ = ci−n′) we may change it to ci−n′ (resp. to
0), and still obtain the same set of ai’s as possible solutions. �

From the definition of µ we see that −e ≤ µi ≤ e for all i and that for some i we have
−(e− 1) ≤ µi ≤ e− 1. Since µ ∈ Λ, this implies µ = 0. Thus ai + ai+s = ki+1 − 2 + e for all i.

Proposition 3.3. Let ρ : Gal(F/F ) → GL2(Fp) be such that ρ|Gp is irreducible and ρ is modular

of weight σ such that σp is a constituent of IndGL2(kp)
B θ, where θ : B → Fp is non-trivial and has

the form of (4) above. Then there exists a subset S ⊂ I and a labeling {τ̃ , τ̃ ′} of the two liftings of
τ : kp ↪→ Fp to Fp2s for each τ , such that

ρ|It,p ∼

(
φ 0
0 φq

)
,

where for each τ : kp ↪→ Fp there is an integer 0 ≤ δτ ≤ e− 1 such that

φ =
∏
τ∈I

(ψτ̃ψτ̃ ′)wτ
∏
τ∈S

ψ
kτ−2+δτ+νS(τ)
τ̃ ψe−1−δτ

τ̃ ′

∏
τ 6∈S

ψp+e−1−δτ

τ̃ ψ
kτ−2+δτ+νS(τ)
τ̃ ′ .
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Proof. This is analogous to Proposition 5.6 and Corollary 5.8 of [Sch]. As in that paper, we reduce
to the case of wτ = 0 for all τ ∈ I. Let Φ(θ) be the set of all φ of the form in the statement.
Any φ ∈ Φ(θ) is specified by the data (S, εj , δj), where S ⊂ I and for any j ∈ Z/jZ we have a
bijection of two-element sets εj : π−1(j) = {j, j + s} → {ψτ̃j , ψτ̃ ′j

} and an integer 0 ≤ δj ≤ e − 1.
The character corresponding to (S, εj , δj) is φ =

∏
i∈Z/2sZ ψ

mi
i , where

mi =


ki − 2 + νS(τi) + δi : τi ∈ S, εi(i) = ψτ̃i

e− 1− δi : τi ∈ S, εi(i) = ψτ̃ ′i

p+ e− 1− δi : τi 6∈ S, εi(i) = ψτ̃i

ki − 2 + νS(τi) + δi : τi 6∈ S, εi(i) = ψτ̃ ′i

.

Here we make the usual abuse of notation: τi = τπ(i), δi = δπ(i) = δτi , etc. Clearly every φ ∈ Φ(θ)
is described in this way, although possibly not uniquely.

Let Ωe(θ) be the set of all φ satisfying all the conditions emerging from the computations earlier
in this section. Any φ ∈ Ωe(θ) is specified by the data (S′, rj , δ′j), where S′ ⊂ I and for every
j ∈ Z/sZ we have a bijection rj : {j, j + s} → {0, cj} and an integer 0 ≤ δ′j ≤ e − 1. The
corresponding character is φ =

∏
i∈Z/2sZ ψ

ai−1

i , where

ai−1 =



e− 1− δ′i : ri(i) = 0, ri+1(i+ 1) = ci

ki − 1 + δ′i : ri(i) = ci−1, ri+1(i+ 1) = 0

e− 1− δ′i : ri(i) = ri+1(i+ 1) = 0, τi+1 ∈ S′

e− δ′i : ri(i) = ri+1(i+ 1) = 0, τi+1 6∈ S′

ki − 1 + δ′i : ri(i) = ci−1, ri+1(i+ 1) = ci, τi+1 ∈ S′

ki − 2 + δ′i : ri(i) = ci−1, ri+1(i+ 1) = ci, τi+1 6∈ S′

.

Again it is easy to see that every φ ∈ Ωe(θ) is described (non-uniquely) in this way. Here ri(i) = 0
and ri(i) = ci−1 correspond to bi−1 = 0 and bi−1 = ci−1, respectively, and S′ accounts for the extra
possibilities in Cases 3 and 4. As in [Sch], Prop. 5.6 one constructs a bijection between these two
collections of data and deduces that Φ(θ) = Ωe(θ). �

Theorem 3.4. Suppose that e < p − 1 and let ρ : Gal(F/F ) → GL2(Fp) be such that ρ|Gp is
irreducible and ρ is modular of weight σ, where σp, written as in (3), satisfies kτ − 2 + e ≤ p − 1
for all τ . Then there exists a labeling {τ̃ , τ̃ ′} of the two liftings of τ : kp ↪→ Fp to Fp2s for each τ ,
such that

ρ|It,p ∼

(
φ 0
0 φq

)
,

where for each τ : kp ↪→ Fp there is an integer 0 ≤ δτ ≤ e− 1 such that

φ =
∏
τ∈I

(ψτ̃ψτ̃ ′)wτ
∏
τ∈I

ψkτ−1+δτ
τ̃ ψe−1−δτ

τ̃ ′ .
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Proof. As in [Sch] we may assume that wτ = 0 for all τ . Assume first that kτ 6= 2 for some τ .
Denote by Θ(σp) the set of all characters θ : B → F∗p such that σp is a constituent of IndGL2(kp)

B θ;
all these characters θ are non-trivial. The elements of Θ(σp) are the following, where T runs over
all T ⊂ I:

θT :

(
a b

0 d

)
7→
∏
τ∈T

τ(ad)p−1τ(d)kτ−1−νT (τ)
∏
τ 6∈T

τ(ad)kτ−2τ(d)p+1−kτ−νT (τ).

If ρ is modular of a weight whose p-component is σp, then φ ∈
⋂

θ∈Θ(σp) Φ(θ), and we will
compute this intersection. If s = 1, then the desired result is immediate from Proposition 3.3 by
considering Φ(θI). Otherwise, suppose that φ ∈

⋂
θ∈Θ(σp) Φ(θ), but φ is not of the form specified

in the statement of the theorem. Since φ ∈ Φ(θI), it is easy to see that φ =
∏

j∈Z/2sZ ψ
mj

j where
{mi,mi+s} = {εi, ki − 2 + e − εi}, where 0 ≤ εi ≤ e and for some i we have εi = e. Moreover, we
may assume that ki > e+1, since otherwise {ki−2, e} = {ki−2+e−εi, εi} for some 0 ≤ εi ≤ e−1.

If s ≥ 2, then the elements of Φ(θT={τi}) are the following, as S runs over the subsets of I and
each δτ runs over {0, 1, . . . , e− 1}:∏

τ∈S
τ 6=τi

ψ
kτ−2+e−δτ−νS(τ)
τ̃ ψ

p+δτ−νT (τ)
τ̃ ′

∏
τ 6∈S
τ 6=τi

ψ
kτ−2+e−δτ−νS(τ)
τ̃ ψ

δτ−νT (τ)
τ̃ ′

×

ψ
ki+p−1+δi
τ̃i

ψ
p+e−1−δi−νS(τi)
τ̃ ′i

: τi ∈ S

ψki−1+δi
τ̃i

ψ
p+e−1−δi−νS(τi)
τ̃ ′i

: τi 6∈ S

Dividing this by the expression for φ found above, we see that for some S ⊂ I we have

1 =
∏
τ∈S
τ 6=τi

ψ
ετ−δτ−νS(τ)

kτ−2+e−δτ−ετ−νS(τ)

τ̃ ψ
p+δτ−ετ−νT (τ)

p+δτ−kτ +2−e+ετ

τ̃ ′

∏
τ 6∈S
τ 6=τi

ψ
ετ−δτ−νS(τ)

kτ−2+e−δτ−ετ−νS(τ)

τ̃ ψ
δτ−ετ−νT (τ)

δτ−kτ +2−e+ετ
τ̃ ′

×

ψ
p+1+δi

p+ki−1−e+δi
τ̃i

ψ
p−1−δi−νS(τi)

p+1+e−ki−δi−νS(τi)

τ̃ ′i
: τi ∈ S

ψ
1+δi

ki−1−e+δi
τ̃i

ψ
p−1−δi−νS(τi)

p+1+e−ki−δi−νS(τi)

τ̃ ′i
: τi 6∈ S

Here for each pair ψτ̃ , ψτ̃ ′ we choose either the top or the bottom exponent in both cases. If
we rewrite this expression as

∏
i∈Z/2sZ ψ

ri
i , then we must have (r0, . . . , r2s−1) ∈ Λ. Under our

hypotheses, all these exponents lie in the range [−(p − 1), 2p − 2]. However, they cannot all be
−(p−1), nor can they all be 2p−2, and hence the only possible values of the ri are −1, 0, p−1, and
p. Consider now the exponent rτ̃i of ψτ̃i . Since 1 ≤ 1+δi ≤ p−2 and 1 ≤ ki−1−e+δi ≤ p−2 (recall
ki > e+ 1), we see that rτ̃i cannot take any of the allowed values, whence we cannot have τi 6∈ S.
But similarly τi ∈ S is impossible. We obtain a contradiction, which proves that φ 6∈

⋂
θ∈Θ(σp) Φ(θ).

Finally, suppose kτ = 2 for all τ . In this case (recall wτ = 0 for all τ) the only θ such that σp

is a constituent of IndGL2(kp)
B θ is the trivial character ([Dia], Prop. 1.1). Just as in [Sch], 5.4., we

construct an Fp2s-vector space scheme V such that Gal(K/K) acts on VK by the character φ. Let
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ai, a
′
i, bi be the parameters associated to V . As in [Sch] we see that bi = 0 for all i; hence, by (5),

each ai can take any value between 0 and e. Our claim now follows from Lemma 3.1. �

Remark 3.5. As in [Sch] §5, it is possible to relax the hypothesis that kτ − 2 + e ≤ p − 1 for all
τ , at the price of obtaining a somewhat weaker result. In this case, the set

⋂
θ∈Θ(σp) Φ(θ) will be

larger than the conjectured set of φ’s for representations modular of a weight with p-component
σp. However, we can still assert that φ ∈

⋂
θ∈Θ(σp) Φ(θ).

4. Examples

Let F = Q(
√

5). Let p = 5; then (p) = p2 in F , where p = ((5 +
√

5)/2), and kp = F5. Thus we
have e = 2 and s = 1. The weights in this situation are detw Symk−2F5 ⊗ F5 = F (w + k − 2, w),
where 2 ≤ k ≤ 6 and 0 ≤ w ≤ 3. All our examples rely on Lassina Dembélé’s computations of
Hilbert modular forms (see [Dem]), which so far exist only for Q(

√
5). For each Hilbert modular

form, Dembélé computes the list of weights for which the associated mod 5 Galois representation
ρ is modular. He also provides evidence for (but does not actually compute) the projective image
of ρss; clearly ρ is reducible if and only if this projective image is cyclic.

We have used Magma to find (elliptic) modular newforms f with integer coefficients. Then ρf |Ip

is described by classical theorems of Deligne and Fontaine. We search for the base change of f to
F in Dembélé’s tables and obtain the weights for which ρf |Gal(F/F ) is modular. In all examples
that we have computed the results are, fortunately, consistent with Conjecture 1.

4.1. Non-ordinary forms. If f is non-ordinary at 5 and has weight 2 ≤ k ≤ 6, then ρf is tame
at 5. By a result of Fontaine (see [Edi1], Thm. 2.6),

ρ|I5 ∼

(
ψk−1 0

0 ψ5(k−1)

)
,

where ψ is a fundamental character of level 2. From the description of the isomorphism between
It,p and lim←−F∗pn (see, for instance, [Sch], 4.1) we see that

ρ|Ip ∼

(
ψ2(k−1) 0

0 ψ10(k−1)

)
.

The weights predicted by our conjecture are the following:

F (0, 0), F (3, 1), F (4, 0), F (5, 3), k = 2, 6

F (1, 1), F (4, 2), F (5, 1), F (6, 4), k = 5

F (2, 0), F (3, 3), F (4, 2), F (7, 3), k = 3

F (0, 0), F (3, 1), F (4, 0), k = 4

Here are some of the computational results. Observe that the form with k = 4 gives a tame
example of level 1, where the associated local Galois representation at p is scalar. In this case
the global mod 5 Galois representation is reducible; hence this is not a counterexample to the
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conjecture, even though we obtain only two weights. The other representations in the list are
irreducible.

weight level q-expansion of f modular weights of ρf |Gal(F/F )

2 14 q − q2 − 2q3 + q4 + 2q6 + q7 +O(q8) F (0, 0), F (3, 1), F (5, 3), F (4, 0)
3 7 q − 3q2 + 5q4 − 7q7 +O(q8) F (3, 3), F (2, 0), F (4, 2), F (7, 3)
3 8 q − 2q2 − 2q3 + 4q4 + 4q6 +O(q8) F (3, 3), F (2, 0), F (4, 2), F (7, 3)
4 9 q − 8q4 + 20q7 − 70q13 +O(q16) F (0, 0), F (4, 0)
6 14 q + 4q2 + 8q3 + 16q4 + 10q5 + 32q6 +O(q7) F (0, 0), F (3, 1), F (5, 3), F (4, 0)

4.2. Ordinary forms. Elliptic modular newforms which are ordinary at 5 are much more plentiful
than non-ordinary ones. In this case, ρf |Gal(F/F ) is not in general tame at p, and it is natural to
expect that even when ρf |Gal(F/F ) is irreducible, the modular weights will be only a subset of those
which are modular for the semisimplification. If f has weight 2 ≤ k ≤ 6, then by a theorem of
Deligne (see [Edi1], Thm. 2.5),

ρf |Ip ∼

(
ψ2(k−1) ∗

0 1

)
,

where ψ is a fundamental character of level 1. If ρf is tame, then Conjecture 1 predicts the following
sets of weights:

F (0, 0), F (2, 2), F (3, 1), F (5, 3), F (4, 0), F (6, 2), k = 2, 4, 6

F (3, 3), F (2, 0), F (7, 3), k = 3, 5

For most of the forms we found, Dembélé’s computations suggest that the global Galois repre-
sentation is reducible. We found only three irreducible examples, which are compatible with the
conjecture:

wt. level q-expansion of f modular weights

4 8 q − 4q3 − 2q5 + 24q7 +O(q9) F (0, 0), F (4, 0)
6 8 q + 20q3 − 74q5 +O(q7) F (4, 0)
6 9 q + 6q2 + 4q4 − 6q5 +O(q7) F (4, 0)

In the examples where the global Galois representation appears to be reducible, we can still
apply our conjecture to ρf |Ip to obtain a set W ?

p (ρf ). The computed modular weights always lie
inside this set.
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wt. level q-expansion of f modular weights

2 8 q + 2q2 + 2q3 + 4q4 + 4q5 + 4q6 +O(q7) F (3, 1), F (5, 3)
2 9 q − 3q2 + 7q4 − 6q5 +O(q7) F (3, 1), F (5, 3)
3 3 q + 3q2 + 9q3 + 13q4 + 24q5 + 27q6 +O(q7) F (3, 3), F (7, 3)
3 4 q + 4q2 + 8q3 + 16q4 + 26q5 + 32q6 +O(q7) F (3, 3), F (2, 0), F (7, 3)
3 7 q + 5q2 + 8q3 + 21q4 + 24q5 + 40q6 +O(q7) F (3, 3), F (7, 3)
3 8 q + 4q2 + 10q3 + 16q4 + 24q5 + 40q6 +O(q7) F (3, 3), F (7, 3)
4 6 q − 2q2 − 3q3 + 4q4 + 6q5 + 6q6 +O(q7) F (2, 2), F (6, 2)
4 8 q − 4q3 − 2q5 + 24q7 +O(q9) F (0, 0), F (4, 0)
4 8 q + 8q2 + 26q3 + 64q4 + 124q5 + 208q6 +O(q7) F (3, 1), F (5, 3)
4 9 q − 9q2 + 73q4 − 126q5 +O(q7) F (3, 1), F (5, 3)
5 4 q − 4q2 + 16q4 − 14q5 +O(q8) F (3, 3), F (2, 0), F (7, 3)
5 7 q + 17q2 + 80q3 + 273q4 + 624q5 + 1360q6 +O(q7) F (3, 3), F (7, 3)
5 8 q + 16q2 + 82q3 + 256q4 + 624q5 + 1312q6 +O(q7) F (3, 3), F (7, 3)
6 8 q + 20q3 − 74q5 +O(q7) F (4, 0)
6 8 q + 32q2 + 242q3 + 1024q4 + 3124q5 + 7744q6 +O(q7) F (3, 1), F (5, 3)
6 9 q + 6q2 + 4q4 − 6q5 +O(q7) F (4, 0)
6 9 q − 33q2 + 1057q4 − 3126q5 +O(q7) F (3, 1), F (5, 3)
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