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Abstract. We examine the precise structure of the loop algebra of ‘dressing’ symmetries of
the Principal Chiral Model, and discuss a new infinite set of abelian symmetries of the field
equations which preserve a symplectic form on the space of solutions.

1. The symmetries of the classical two-dimensional Principal Chiral Model, one of the
original toy models for nonabelian gauge theories, have been intensively studied for over 15
years. Since the symmetry algebras are infinite dimensional, requiring their preservation at
the quantum level provides strong constraints on the quantum theory. In particular, it has
been suspected that an investigation of their representation theory would yield some clue
about the bound state spectrum of nonabelian gauge theories. The aims of this paper are
(a) to explain the rather subtle structure of the celebrated loop algebra of hidden symmetries
of PCM, summarising the important points of our longer paper [1], and (b) to discuss some
new abelian symmetries of the model. We will show that the latter symmetries preserve a
certain natural symplectic form on the space of solutions, which leads us to expect them to
be of central importance for an algebraic quantization of the theory. Recently there has been
a renewed effort to understand the symmetries of PCM because of their suggested relevance
for string theory [2].

2. The classical two-dimensional PCM is the differential equation

∂−(g−1∂+g) + ∂+(g−1∂−g) = 0 , (1)

where g is a mapping from two-dimensional Minkowski space to U(N). The algebraic structure
of the hidden symmetry transformations associated with the infinite set of non-local conserved
currents [3, 4] of the PCM was first discussed by Dolan [5], who determined the algebra

[Ja

r , Jb

s ] =
∑

c

fab

c Jc

r+s , r, s ≥ 0 , (2)

where fab
c are structure constants of the Lie algebra of U(N) in a basis {T a}; [T a, T b] =

∑

c fab
c T c. By using, for the infinite set, a compact generating function form of transformation,

g 7→ g
(

I − Y (x, λ)TY −1(x, λ)
)

, (3)

Dolan’s inductive arguments were streamlined in [6], allowing a direct verification of the
closure of the commutation relations (2) on the fields g. Here T is a constant infinitesimal
antihermitian matrix and Y (x, λ) satisfies the PCM Lax-pair [3, 7],

(

∂± +
1

1 ± λ
A±

)

Y = 0 , A± = g−1∂±g , (4)
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in virtue of which (3) may easily be shown to generate symmetries of equation (1). Y is

singular on the Riemann sphere only at λ = ±1 and satisfies the reality/boundary conditions

Y †(λ∗) = Y −1(λ) , Y (x, λ = ∞) = I , Y (x, λ = 0) = g−1 , Y (x0, λ) = I , (5)

where x0 is some fixed point.

A contour integral representation of the transformation (3) is obtained in [1], correspond-

ing to similar representations in the literature (see, for example, [2, 9]):

g 7→ g

(

I −
1

2πi

∫

C

Y (x, λ′)ǫ(λ′)Y −1(x, λ′)

λ′
dλ′

)

, (6)

where the contour C is the union of two contours C± around λ = ±1 (such that λ = 0 remains

outside both of them). If the Lie-algebra-valued infinitesimal parameter of the transformation

ǫ(λ) is taken to be proportional to λrT a, r ∈ Z, the integral may be evaluated (for r < 0 by

deforming C to a contour around 0; for r > 0 to a contour around ∞; and for r = 0 to a pair

of contours around 0 and ∞) and an algebra of symmetries

[Ja

r , Jb

s ] =
∑

c

fab

c Jc

r+s , r, s ∈ Z , (7)

may be identified, verifying the determination of these commutation relations by [8]. A

careful consideration of the symmetries (6) shows, however, that finding the commutation

relations (7) is not sufficient to identify the symmetry algebra with the standard loop algebra.

In particular:

a) Whereas for the standard loop algebra we require that the infinite sum
∑

αraJ
a
r should be

admitted if and only if
∑

αraλ
rT a is convergent for |λ| = 1, (thus defining a map from the

unit circle into the Lie algebra of U(N)), the infinite linear combinations of the Ja
r allowed in

our case are entirely different.

b) There are transformations of the form (6) which cannot be expressed as linear combinations

of the Ja
r .

c) Possibly most importantly, in the algebra associated with the transformations (6), the

elements Ja
r with r < 0 are in fact in the closure of the linear span of the transformations

{Ja
r ; r ≥ 0}. This means that the elements with Ja

r with r < 0 are not strictly linearly

independent of those with r ≥ 0.

3. Let G− (resp. G+) be the group of smooth maps from C to U(N) which are the

boundaries of maps analytic inside (resp. outside) C , i.e. analytic in the region {|λ − 1| <

δ}∪{|λ+1| < δ} (resp. {|λ−1| > δ}∩{|λ+1| > δ}), where δ < 1 is some radius. We denote

the corresponding Lie algebra G− (resp. G+). Y satisfying (4) clearly takes values in G+ .

The symmetry algebra associated with nontrivial transformations of the form (6) is G− ,

a nonstandard loop algebra. This is explained fully in [1], but essentially it is because we

clearly can take ǫ(λ) in (6) to be an arbitrary infinitesimal element of G− ; taking it to be an

infinitesimal element of G+ gives a trivial transformation.

Choosing ǫ(λ) ∈ G− , the natural way to expand it is in a Taylor series in λ + 1 (or

alternatively in λ − 1). Taking ǫ(λ) to be proportional to (λ + 1)nT a, for n ≥ 0, we define a

set of transformations {Ka
n} satisfying the algebra

[Ka

n,Kb

m] =
∑

c

fab

c Kc

n+m , n,m ≥ 0 . (8)
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The transformations Ja
r satisfying the relations (7) are obtained in terms of the Ka

n by con-

sidering the expansion of λr in powers of λ + 1 (valid in |λ + 1| < δ). This gives

Ja

r =
r
∑

n=0

(−1)n+r

(

r

n

)

Ka

n , r ≥ 0 , (9a)

Ja

r =
∞
∑

n=0

(−1)r
(

n − r − 1
−r − 1

)

Ka

n , r < 0 . (9b)

Standard formulae for sums of binomial coefficients may be used to verify that the commu-

tation relations (8) ⇒ (7). Just as the J ’s for non-negative r can be expressed as finite sums

of the K’s, the latter can likewise be expanded as a finite linear combination of the former:

Ka

n =
n
∑

r=0

(

n

r

)

Ja

r . (10)

When we substitute (10) into the right hand side of (9b), we find that we cannot reorder the

summations to express this infinite sum as a linear combination of the Ja
r ’s with r ≥ 0. In

other words, if in the standard loop algebra we define elements Ka
n via (10), the infinite sum

on the RHS of (9b) is not in the algebra, while it is in the nonstandard loop algebra G− .

In general, infinite linear combinations of the K’s cannot be written as linear combina-

tions of the Ja
r . Elements of G− can however be approximated (to arbitrary accuracy) by

finite sums of the Ja
r , r ≥ 0, as required by Runge’s theorem (see, for example, [10]). This

notwithstanding, the elements Ja
r are not a spanning set for the algebra G− , as they are

for the standard loop algebra; the spanning set for the algebra G− is the set {Ka
n}. To see

immediately that the elements {Ja
r } are not a spanning set for the algebra G− , one need only

consider an element of G− proportional to ln λ, defined with a cut from 0 to ∞ along half

of the imaginary axis.

4. We now describe some new PCM symmetries. The PCM potentials A± satisfy the

equations of motion

∂∓A± = ±1

2
[A+, A−] . (11)

These imply that the eigenvalues of A+ (resp. A−) are independent of x− (resp. x+). In

other words, A+ and A− are similarity transformations of diagonal antihermitean matrices

A(x+) and B(x−) respectively,

A+ = s0(x
+, x−)A(x+)s−1

0 (x+, x−) ,

A− = s̃0(x
+, x−)B(x−)s̃−1

0 (x+, x−) ,
(12)

where s0, s̃0 are U(N)-valued fields. The construction of [1] produced solutions of this form,

with A,B free fields and s0, s̃0 satisfying certain equations; the equations for s0 are

∂+s0s
−1
0 = [t, A+] ,

∂−s0s
−1
0 = 1

2
(s0Bs−1

0 − A−) ,
(13)

where t, an auxiliary Lie-algebra-valued field, satisfies

∂−t = 1

4
(s0Bs−1

0 − A−) + 1

2
[t, A−] . (14)

The latter equation is sufficient for the consistency of the system (13).
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Now, if f(x+) is an arbitrary infinitesimal diagonal antihermitean matrix depending only
on x+, the transformation

g 7→ g
(

I + s0f(x+)s−1
0

)

(15)

is a symmetry of the PCM. To prove this we note that under an arbitrary infinitesimal

transformation of the form g 7→ g(I + Φ), where Φ takes values in the Lie-algebra, we

have A± 7→ A± + D±Φ, where D± denotes the covaraint derivative defined by D±Φ =

∂±Φ + [A±,Φ]. It is straightforward to check that Φ = s0f(x+)s−1
0 satisfies ∂−D+Φ +

∂+D−Φ = 2∂−∂+Φ+[A+, ∂−Φ]+[A−, ∂+Φ] = 0 in virtue of (11,13,14) and therefore generates

a symmetry. A cumbersome calculation shows that these new symmetries form an infinite-

dimensional abelian algebra; this calculation is made redundant by the considerations of [1].

5. When considering symmetries of classical equations of a field theory, special importance

is attached to symmetries (vector fields on the space of solutions) which preserve a symplectic

form on the space of solutions. As noted above, associated with any solution of the PCM is

a gauge potential with components A±. On the space of gauge potentials on a two-manifold

there is a natural symplectic structure [11],

ω =

∫

Tr (δA ∧ δA) =

∫

dx+dx− Tr (δA+ ∧ δA−) . (16)

This symplectic form plays a central role in Chern-Simons theory [12]; see for example [13].

We consider the pullback of this symplectic form to the space of solutions of the PCM. This

has also been considered in [14].

The symplectic form ω is known to be gauge invariant. Moreover, the potentials satisfying

(11) are pure-gauge; so, in particular, all symmetries of the equations are gauge transforma-

tions. This seems to mean that all symmetry transformations must leave the symplectic form

invariant, implying that it is totally degenerate (i.e. zero). This is an incorrect argument,

however. PCM solutions form a subset of all pure gauge potentials and gauge transformations

which are genuine PCM symmetries are field-dependent, whereas the invariance of ω is under

field-independent gauge transformations.

Let us consider the symplectic form ω on a space on which the x+ coordinate is compacti-

fied, and x− ∈ [a, b]. An infinitesimal transformation of PCM solutions given by g 7→ g(I +Φ)

corresponds to the vector field

V = (D+Φ)
δ

δA+

+ (D−Φ)
δ

δA−
(17)

on the space of potentials, and we have

iV ω =

∫

dx+dx− Tr ((D+Φ)δA− − (D−Φ)δA+) . (18)

Integrating by parts, and using the fact that all PCM potentials have zero curvature, which

means that D+δA− − D−δA+ = 0, we obtain

iV ω =

∫

dx+ Tr(ΦδA+)

∣

∣

∣

∣

x−=a

x−=b

. (19)

Using the first equation of (12) to write A+ in terms of s0 and A, this yields

iV ω =

∫

dx+ Tr
(

s−1
0 Φs0δA + [A, s−1

0 Φs0]s
−1
0 δs0

)

∣

∣

∣

∣

x−=a

x−=b

. (20)
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For the new PCM symmetries described in section 4, we have Φ = s0f(x+)s−1
0 , where

[f,A] = 0, and f is field independent. It follows that for such symmetries we have iV ω =
δ
∫

dx+Tr (f(x+)A(x+)), implying that δ(iV ω) = 0, i.e. the symplectic form is preserved
under these symmetries.

The new PCM symmetries of section 4 thus preserve a symplectic form. The loop algebra
symmetries are not believed to have such a property (see, e.g., [15]). Our symplectic structure
on the space of PCM solutions is not the standard one. Usually the symplectic form is derived
from a Lagrangian, and the standard PCM Lagrangian does not give the above symplectic
form. If, however, in the Lagragian approach, one of the light-cone coordinates is regarded as
‘time’, the symplectic forms coincide. (This refers to the standard Lagrangian for the PCM,
not the so-called ‘dual’ formulation [7].) Although this choice appears not to be a ‘physical’
one, we have some hopes that the new symmetries described in this letter, as well as the
other constructions of [1], will shed some light on algebraic quantization of the PCM.
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