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Abstract

We study a family of fermionic extensions of the Camassa-Holm equation. Within
this family we identify three interesting classes: (a) equations, which are inher-
ently hamiltonian, describing geodesic flow with respect to an H'! metric on the
group of superconformal transformations in two dimensions, (b) equations which
are hamiltonian with respect to a different hamiltonian structure and (c) super-
symmetric equations. Classes (a) and (b) have no intersection, but the intersec-
tion of classes (a) and (c) gives a system with interesting integrability properties.
We demonstrate the Painlevé property for some simple but nontrivial reductions

of this system, and also discuss peakon-type solutions.



I Introduction

Recently there has been substantial interest in the Camassa-Holm (CH) equation [1, 2]:
Up — Vlggy = KUy — 3Uly + V(UWlgey + 2Uplyy) - (1)

This equation has been proposed as a model for shallow water waves. It is believed to be
integrable, having bihamiltonian structure, as was first observed by Fokas and Fuchssteiner
[3] 12 years prior to Camassa and Holm’s work. Due to the nonlinear dispersion term, .,
it exhibits more general wave phenomena than other integrable water wave equations such
as KdV. In particular, when x = 0 it admits a class of nonanalytic weak solutions known as

peakons, as well as finite time blow-up of classical solutions [1].

Geometrically, the relationship of CH to KdV is rather deeper: Both are regularisations
of the Euler equation for a one dimensional compressible fluid (Monge or inviscid Burgers
equation),

Uy = —3UUy . (2)

A solution to this equation describes a geodesic on the group of diffeomorphisms of the circle
Diff(S') [4] with respect to a right-invariant metric induced by an L? norm, [wu?dx , on the
associated Lie algebra. If the group is centrally extended to the Bott-Virasoro group, the
KdV equation arises [5, 6, 7, 8]. On the other hand, if the metric is changed to one induced
by an H' norm, [(u?*+4vu?)dz , the CH equation arises [9, 10, 11]. Both these ‘deformations’

have a regularising effect on solutions of (2), which exhibit discontinuous shocks.

Thus KdV and CH arise in a unified geometric setting; both are geodesic flows which are
integrable systems. (Here, and henceforth in this paper, when we refer to a “geodesic flow”
we mean the evolutionary PDE which can be formally associated — in the manner we will
see in section II — with any inner product on the Lie algebra of a diffeomorphism group, and
which, at least in the cases mentioned above, is known to describe geodesic flow, in the usual
sense of the phrase, with respect to the correpsonding right-invariant metric on the group.
In the case of a general inner product, the existence of the corresponding geodesic flow, in
the usual sense of the phrase, is highly non-trivial.) The following important question arises:
What features of the underlying geometry give rise to integrability? In general, geodesic flows
are not integrable: the Euler equation for fluid flow in more than one spatial dimension is
an example [4]. Indeed, for the latter, Arnold has suggested a relationship between negative
sectional curvatures and non-predictability of the flow. We feel that it ought to be possible to
identify some other geometric property that “causes” integrability. In a remarkable recent

paper [12], Fringer and Holm have shown that certain features usually considered to be
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hallmarks of integrable systems, such as elastic scattering and asymptotic sorting according
to height, in fact appear in geodesic flows on Diff(S1) with respect to a large class of metrics.
Thus, there may well be a hierarchy of geometric structures corresponding to various degrees

of integrability.

One further example of an integrable bihamiltonian system arising as a geodesic flow has
been discussed by Ovsienko and Khesin [5]. Using the superconformal group with an L2
type metric, they obtained the so-called kuperKdV system of Kupershmidt [13]. This is a
fermionic extension of KdV: it describes evolution of functions valued in (the odd or even
parts of ) a grassmann algebra. In fact, as we will see below, taking a general L* type metric
on the superconformal group gives rise to a one parameter family of fermionic extensions of
KdV, which includes not only kuperKdV, but also the superKdV system of Mathieu and
Manin-Radul [14, 15]. The latter is integrable: it has only a single hamiltonian structure,
but unlike kuperKdV it is supersymmetric, a property which is widely believed to contribute
to integrability. It remains a mystery as to why, of the one parameter family of geodesic
flows associated with L? type metrics on the superconformal group, only two specific choices

of the parameter give rise to integrable systems.

The main purpose of this paper is to investigate geodesic flows obtained from H' type
norms on the superconformal group; more generally we consider the following family of

fermionic extensions of CH:

U — VUggt = R1lUg + RoUggy + ﬁluu:c + /62u:cuxx + /63uuxxx + 71659696 + 726966969090 + 735590969090

§t — paxt = 018 + 02800z + €1ULE + €Sy + P1USzre + P2USr + P3UZSe + PaUGLS -
(3)
Here u(z,t) and {(z,t) are fields valued, respectively, in the even and odd parts of a grass-
mann algebra, and {v, u, k1, K2, B1, B2, B3, 71, V2, 13, 01, 02, €1, €2, p1, P2, P3, P4} are parame-
ters. By rescaling u and £ it is possible to set ;= — 3 and ;=2 (assuming that they are
nonzero), and we shall do this throughout. In addition it is possible to eliminate up to two

further parameters by rescaling the coordinates ., t.

We derive three interesting classes of systems of the form (3). In section 2, we consider
geodesic flows on the superconformal group with an H' type metric; the resulting systems
have a natural hamiltonian structure, or more precisely, since the fields are grassmann algebra
valued, a graded hamiltonian structure. In section 3 we identify a class of systems having
a different hamiltonian structure. Unfortunately the latter has no intersection with the
class of section 2, so there does not seem to be a bihamiltonian fermionic extension of CH.

In section 4 we consider systems of the form (3) that are invariant under supersymmetry



transformations between u and &. This class has nontrivial intersections with both the classes
of sections 2 and 3. In particular there is a unique supersymmetric geodesic flow which is a
candidate for being a new integrable system. We call this equation superCH. In section 5 we
show that two reductions of superCH have the Painlevé property, which is positive evidence
for integrability. In section 6 we look for peakon-type solutions of superCH; as for CH,
multipeakon solutions arise from the solutions of a system of ODEs, but the integrability of

this unfortunately remains unclear.

SuperCH is a supersymmetric geodesic flow whose bosonic part is integrable. While in
this paper we do not fully establish integrability of superCH, we regard it as an interesting
test case to determine whether in general supersymmetric geodesic flows with integrable

bosonic parts must be integrable.

A trivial integrable CH system of the form (3), which is not incorporated in the classes
of sections 2,3, and 4, and which we shall not discuss further, is the odd linearisation of the
bosonic CH system (1)

Up — Vlggy = Klg — 3Uly + V(Ullgre + 2Uptiyy)

gt - ngmt = Hgm - 3(5“)90 + V(gumcgc + uggcmc + 2(£mugc>m> .

(4)

Replacing w by w+ % and considering the limit v — 0, kK — oo, with vk = 3, yields the
system
u = —3Uly + Upay

This trivial fermionic extension of KdV has appeared often in the literature (see e.g. [14]).

()

II Geodesic flows on the superconformal group

An inner product (.,.) on a Lie algebra g determines a right (or a left) invariant metric on
the corresponding Lie group GG. The equation of geodesic motion on G with respect to this

metric is determined as follows [4]. Define a bilinear operator B : g x g — g by
(vwyv) = (w.BUY) . VvV Weg. (6)
Then geodesics are determined by solutions of the “geodesic flow”

Ut = B(Uv U) ) (7)



In our case, g is the NSR superconformal algebra, consisting of triples (u(x),(z),a), where

u is a bosonic field, ¢ is a fermionic field and a is a constant. The Lie bracket is given by

(w,¢,a), (v,9,0)]

= (uvx—umv—i—%@w, Uy — U — P U+ 5PV, /dx(cluwvwx+02uvx+clgom¢x+%gm/1)) ,
(8)

where ¢, c; are constants. On this algebra, an H' type inner product is given by
<(u, ,a), (v, b)> = /d:c (uv + VU, 4+ apdy p + a,mpxqb) +ab
= /d:c (udopv+p Ay ) + ab 9)
where
Ao = 1-v8 , A = a0 —pds) (10)

and p,v,« are further constants, all assumed nonzero. (See [5] for the definition of the
natural fermionic extension of the standard L? inner product, to which the above reduces if
p = v = 0. The natural fermionic extension of the standard H' inner product is constructed,
as for pure bosonic systems, by taking the sum of the L? inner product for the functions
involved with the L? inner product for the derivatives of the functions involved.) Writing
U=(u,p,a), V=(v,9,b), we find B(U,V) = (By, B1,0), where

AoBy(U, V) = — (2va0u + vAouy + St A + %wAlgom) + a(c1Vpge — C2U;) an
ABi(U V) = = (3usip + i, + 300A0u) + alcrthse — $9) .

The geodesic flows are therefore conveniently written in the form
AQ Uy = AO Bo(U, U)
A(] Yt = Al Bl(U, U) (12)
ay — 0.

Writing ¢ = A, , where ) is a constant satisfying \? = % , this yields the system

U — VUt = R1Ug + RolUgpy — BUUI + V(uuxxx + 2“96”:0:0) + 2651‘1‘ + %gxgxxx ) ( )
13
gt - ,ué-xxt = Z_;Cé-x + %é-xxw - %ng - (1 + i)ugm + ,uué-xmv + %uuxé-xx + iumpgw .
Here k1, ko are independent parameters determined by a, ¢y, co . This is evidently a 5 param-

eter class of systems of type (3).



Setting ¢ to zero in (13) yields the CH result of [9, 10, 11]. If instead we choose p, v to
vanish, the H' norm becomes an L? norm; then choosing x; to be zero and rescaling ks to

1 we obtain the following 1 parameter fermionic extension of KdV:

U = Upgy — WUy + 264

(14)
& = égmmm - %U;pf - (1 + i)uﬁm .

Modulo rescalings, the superKdV of Mathieu and Manin-Radul is obtained by taking o = 1.
The kuperKdV system arises by taking o = i , the choice made in [5]. Other values of the

parameters give systems which are not believed to be integrable (see however [16]).

III Hamiltonian equations

Like KdV, CH has bihamiltonian structure, and this accounts for its integrability. We might
hope that for some choices of parameters the system (13) should also have a bihamiltonian
structure. One hamiltonian structure follows automatically from the geometric origins of

the system [4]. Explicitly, introducing new variables, m = u — vu,, and n =& — u&,,, (13)

my OHo
()7 () X

o _ <m2a§ + K10y — Oym — M, 3021 + 10, )
2 —0,m — 00, (54 k02) — &m

takes the form

where

(16)
and the hamiltonian functional is given succinctly by the H! inner product on the algebra,

Hy = 3 (U, U) = 4 [do (w2 vl + (68 + neats)) (17)

This generalises the so-called second Hamiltonian structure of KAV and its fermionic exten-

6H2 OH2 are

sions [13, 14]. Checking (15) is straightforward: the Euler-Lagrange derivatives 72, %

defined by
OHo 0Ho

5H2:/dx (5—5 +5—5>, (18)

57’[2 _ 45

from which it follows immediately that 67-{2 = u and .-

To investigate the possibility of systems amongst (13) having another hamiltonian form,

my 66%
S (19)
Ur: o

we look at systems of the form



where

P _ (&(1;&%) _%(10_@)) , (20)

Here €, is a constant and H; is a functional generalising the KAV first Hamiltonian,
H, = /d:r (—%u?’ — Buul — 2ul + Gu’ 4+ DL + Bl

This is the most general functional of this type, up to rescalings of u and £. Since dm=(1 —
v0?)su, we have (1 —v0?)2h = T “and similarly (1 — p0?)24 = 24 Thus equations

ou on 43
(19) take the simple form

— oH
Ut — VUggt = ax (5—;)

= RilUy + RolUgpy — guum + 63(2umuxx + uuxwx) + 2£§mp + 72£x£xmv + 73££mvxx

gt - ,ué-xxt = € (%)
= Jlgm + U2£xwx + € (uxé- + ngm) + e (273 - 72)u£:v:vw + %61 (273 - 72)u$§$$
+%€1 (473 — 2)uzals + %51737%9&5 . (22)

This is a 10 parameter class of systems of the form (3). Comparing with (13), we see that the

only bihamiltonian systems occur when {pu=r=03="y=73=0, ;= — %,

which is equivalent to (13) with {u=v=0, a:i} , 1.e. the kuperKdV system. Thus, no new

o1=K1, 0a=4Ks},

bihamiltonian systems arise.

We note that the systems (22) can be obtained from a Lagrangian. Introducing a potential

f defined by u=f,, they are Euler-Lagrange equations for the functional
L= [dr (He = vl ft S~ )bt 32+ Bl + 12— 31

_‘e’—;ffx - Z_lzggxxx - 2fx§§:c + (73 - 72)fx€x§:c:c — ’ygfxffxxx) . (23)

IV  Supersymmetric equations

Define a fermionic superfield ®(x,9) = s +Yu and superderivative D = a% + 190, , where
s is a nonzero parameter and ¢ is an odd coordinate. The most general superfield equation

having component content of the form (3) is the 8 parameter system,
(1-vD")®, = K D*®+ 5, D°0 — 20D + (4 — 3) DOD*® + (%+03;) DODP
~BODT + (Bs+ 252 ) D2OD P + (By—f3+2252 ) D*OD'D | (24)
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where {v, s, k1, Ko, 02, O3, 72,73} are parameters. The component equations are,

Uy — VUggt = K1Ug + Rolggy — 3uux + ﬁquux:{: + /63uuxxx + 2551}:{: + 725:(:5:0:0:0 + 73555(::0:0:(: )

gt - ngmt = ngac + H2£xwx - S%Uxf + (s% - 3) uﬁx + (Z_g + 53) ugmmm

+ (62 - 63 + “/28—2“/3) umgmc + (%5_2“/2 + 63) umcgac - Z_gummmg : (25)

These systems are by construction invariant under the supersymmetry transformations

ou = 18, 06 = — (26)

where 7 is an odd parameter. The superKdV limit, namely {v, (s, 83,72, 73, k1} all zero,
yields, modulo rescalings, the one-parameter family of systems studied by Mathieu [14].

By comparing (25) and (22) it is straightforward to extract systems which are both
supersymmetric and have hamiltonian form (19),(20). Taking s*=2 in (25), {v=p, 01=k,

O9=ks, e=—1} in (22), and {(=203, B3 = —373} in both, we obtain the systems,
Uy — VUggt = K1Ug + RoUggy — Buux + (72 - 273)<2umumv + uummm)

gt - Vgxxt - K’lgsc + /’{'251‘:{::{: - uxg - 2“5:0 + (72 - 273) ugxxx

‘l'% (72 - 273) u:chx + % (72 - 473) uxxgx - %73”:(;:0:05 . (27)

These may be expressed in superfield form (24) with the above choice of parameters. The

manifestly supersymmetric hamiltonian form is given by

o e 5,;\{1 - 4
Mt_le s M—@-I/D@, (28)
with
P, = D(1—vDY, (29)

Hi = [dedy (30D® — $D*0D'® — 1o(DD)?

+1730(D*®)? + L(qp — 295) (D)’ D'®) . (30)
Since the KdV reduction of (27) (with k1 = 72 = 73 = 0) is not believed to be integrable,
we have not explored this class of systems further.

In a similar fashion, we may look for choices of parameter sets for which the geodesic

flows of section 2 are also supersymmetric. Comparing (13) with (25), we see that the choice
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{p=v, a=1, kK1=0} in the former and {szzg, Go=2v, [B3=v, 72:%”, v3=k1=0} in the

latter, yields the two-parameter system of supersymmetric geodesic flows:
Ut — VUggt = KRoUggy — guum + 2£§mp + V(uuxmv + quumm) + %gxé-xmv )

We shall call this system, with k=0 and v#0, the supersymmetric Camassa-Holm equation
(superCH). The system (31) reduces to superKdV, upon setting v to zero, and to CH, upon

setting & to zero and translating u.

Not surprisingly, the systems (31) arise as geodesic flows precisely when the metric (9)
on the NSR superconformal algebra is supersymmetric. Then, the calculations of section 2
can be performed using superfields. Specifically, writing U = u + 9¢ and V = v + 9, the
bracket (8) takes the form

[(u, a), (V, b)} = (Z/{D2V — VDU + 1DUDY , ¢ / dzdd D2Z/ID3V) (32)
and the inner product (9) may be written
(U.a), (V.b)) = / ded9 (UD™'V + vDUDV) + ab. (33)

The superspace bilinear operator B is given by E((L{ va), (V, b)) = (BO,O), where By

satisfies

(1-vDYD™'By = c1aD*V—-3D*V(1-vD") DU~ LDV(1-vD" U -V (1-vD*)DU . (34)
Writing cia=k2 and U = DP, the geodesic flows (U, a;) = B((Z/{, a), (U, a)) yield
(1-vD"®; = Kk D°®—3(PD*®+DOD*®)+v (D®D6<I>+§D2<I>D5<I>+3D3<I>D4<I>). (35)

We thus recover the subsystem of (24) having component content (31). Equation (35) has

superfield hamiltonian formulation,

& M, B .
M,=Py 5t . M=0-vD', (36)
with
Py = kD’ —1DMD — D*M — MD? (37)
Ho = 1{((D9,0), (D®,0)) = } /dxdz? DM | (38)



V Painlevé integrability of superCH systems

In this section we investigate, in more detail, the supersymmetric geodesic flow (31) with
v=1 and ko =0,
my = —2mu, —um, + 2né + §nm§$ , m = U— Uy, ,
(39)

We shall consider the two simplest possible choices for the grassmann algebra in which the
fields are valued, viz. algebras with one or two odd generators. Taking the algebra to be
finite dimensional is a very convenient tool for preliminary investigations of systems with
grassmann algebra-valued fields. Manton [17] recently studied some simple supersymmetric
classical mechanical systems in this way and he introduced the term ‘deconstruction’ to
denote a component expansion in a grassmann algebra basis. In [18] we investigate fermionic

extensions of KdV in a similar fashion.

V-i First deconstruction of superCH

We first consider the superCH system (39) with fields taking values in the simplest grassmann
algebra with basis {1, 7}, where 7 is a single fermionic generator. In this case the fermionic
fields may be expressed as £ = 7&;, n = 711 , where & and 7, are standard (i.e. commuting,
c-number) functions, as are u and m in this simple case. Since 72 = 0, the fermionic bilinear
terms do not contribute and we are left with the system

my = —2mu, — umy , m = U— Ugy

(40)

me = —3mu, — sméy — uni, m = & — Eiaa -

Further analysis is simplified by changing coordinates as described in [19]. Writing m=p?,

the first equation of (40) takes the form p, = (—pu), , which suggests new coordinates o, ¥

defined via

dyo = pdx — pudt , dy, =dt, (41)
or dually, via

o _ .9 o _ o 0

oz — Payy v ot = 8y — PUpy - (42)

Implementing this coordinate change and eliminating the functions v and &; , the remaining

equations for p and ¢ = n; are:

P = ol + D)+ P = 2% — =0, 43)
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5+ 2 Ry 42

+3<m7 PP y)g = 0. (44)
p p

Here the dot and prime denote differentiations with respect to y; and y, respectively. We

note: (a) thanks to supersymmetry (26), if p is a solution of (43), then g=p? is a solution of

(44); and (b) under the substitution ¢ = p*?r , (44) takes the substantially simpler form

. /2 " 1 . 3
r//+<p——p———>r—gr'—£r:0. (45)

The system (43),(44) passes the WTC' Painlevé test.

Proof: Equation (43) is a rescaled version of the Associated Camassa-Holm equation of
[19]. Consideration of solutions with p(yo,21) ~ po(Yo,y1)P(yo,y1)" near ¢(yo,y1) = 0,
for some n # 0, yields n = —2 or n = 1 as the possible leading orders of Laurent series
solutions. We need to perform the WTC Painlevé test [20] for both these types of series.
The first type, namely, Laurent series solutions exhibiting double poles on the singular

manifold ¢(yo, y1) = 0, have already been considered in [21]. These take the form
;.
209

=5

where ¢, po, ps are arbitrary functions of yg, y1, and

—%+m+n@+m&+”w (46)

_1 2. ;2 , 12 oo J e ol 1y o2
b= it (ot d - (676 2080 40" ) p,
Y IR/ TRy Y
~(#98"-¢'38" ~ 90" 3"+ 34")) . (47)
We have, at present, no explanation of the remarkable symmetry of these expressions under

interchange of the independent variables. The second type of solutions have a simple zero

on the singular manifold ¢(yo,y1) = 0. They take the form
¢
p=t—+p20” +p3d’+ ..., (48)
¢
where ¢, po, p3 are arbitrary functions. The verification of the consistency of both these types

of expansions is straightforward. This completes the WTC test for equation (43).

It remains to look at the equation (44). Although linear in ¢, it is not automatically
Painlevé. The movable poles and zeros in p give rise to movable poles in the coefficient

functions of the linear equation for ¢, and we need to examine the resulting singularities of
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q. If p has a pole on ¢=0, then near ¢=0 we have p ~ 2(;;¢//¢2, and equation (44) takes

the form

(66 . (36 . (40" . (1166 ((;)) _
q+(¢+...)q+<¢+...)q +(¢2+...)q+< e —|—...)q+ O pe qg=0.

Thus the equation has a solution with ¢ ~ ¢" if n(n—1)(n—2)+9n(n—1)+15n = 0, giving

n=—4,—2,0. It follows that in the case when p is given by the series (46), no inconsistencies

will arise near the double poles of p if (44) has a series solution of the form

do Q1 Q2 g3
QZE+E+E+E+Q4+‘” (49)

with qo, g2, g4 arbitrary. The consistency of such a solution can easilly be verified using a

symbolic manipulator. Using MAPLE we find that

" /
20 qo — ¢ g
n=——p " (50)
¢
The explicit expression for ¢z is too lengthy to be given here.

Suppose now that p has a zero on ¢=0. Near this, p ~ +¢/ gb, and equation (44) has the

structure

/ . 2 /e 12
q"'— (%4‘) q— (%—l—) q”+(3¢%+...) q+(1222¢+...) q/—<12§:3 ¢+...> g=0.

Thus (44) has a solution with ¢ ~ ¢" if n(n—1)(n—2)—3n(n—1)+3n—12 = 0, giving

n:%, 2,4. The appearance of a half-integer here is not considered a violation of the Painlevé

test (see e.g. [22]). The half integer value of n gives rise to a series solution of (44), near a
zero of p, of the form

3 5 7
q=qd2 + o2 + @d? + ... (51)

with go arbitrary, and ¢, go, . . . determined by ¢y (and the arbitrary functions arising in the
series (48) for p). The two integer values of n tell us that we need to check the consistency

of solutions of (44) taking the form

q=Qod” + Q19> + Q20" + . .. (52)

with two arbitrary functions QJg and )5. This is indeed consistent; using MAPLE we obtain

O = £20Qu— — (26°Go 12060 +00@y 1405 Q) . (9)
3676
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with the choice of + depending on the choice in (48). The general solution of (44) near a
zero of p, with three arbitrary functions, is a linear combination of the series (51) and (52).
Thus the system (43),(44) passes the WTC test. a

The WTC test is evidence for the complete integrability of the system (43),(44). This in

turn suggests that superCH indeed has some integrable content.

V-ii Second deconstruction of superCH

We now consider the system (39) with fields taking values in a grassmann algebra with two

anticommuting fermionic generators, 7, 7». Expanding in the basis {1, 7,7, 1172},

u = u + nnru, §="ni + né,
(54)

m o= my + TiTamy, 1 = T + T2l ,

where the functions wug, w1, mg, my, &1, &2, 1m1, M2 are all standard, we obtain the system:
Mot = —2MoUoz — UoMoz Mo = Uo — Uozz (55)
_ _3 1 _ _
Nie = _§u0xnz - §m0§zx — UoNiz n, = gz - gwcx ) 1= 1a 2 ) (56)
my = —2myuoy — 2Moliy — UgMiy — UMy

+2(mé — m2&1) + 2 (Naor — Mabia) my = U1 — Ulgy - (57)

Supersymmetry (26) tells us that given a solution g, mg of (55), we can solve the remaining
equations by taking & = oyug, 1 = aymg (i=1,2), u; = Pug, and my = Pmg,, where

a1, (g, B are arbitrary constants.

We handle the system (55)-(57) following the procedure of the previous section. Writing

mo=p? and changing coordinates to vy, y1, the system can be written:

1\ Y\
uy = (5) : Uy = p2—p<5> : (58)

31 27‘7;’ 31:D Qﬁi / )
g; = p4 - p3 ) é-l = _'_p < p3 — p2 ; 1= 17 2 ) (59)
M . . / .
m ) 8(71m2 — 1am) 4(mna — nym)
e - —(2 itz YL
my = uy — p(puy) . (60)

Applying the WTC Painlevé test to this is a mammoth task, so instead we consider the

Galilean-invariant reduction and apply the Painlevé test at this level. The Galilean-invariant
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reduction is obtained, as usual, by restricting all functions to depend on the single variable
z=yp—vy; alone. Evidently the first equations of both (58) and (60) can be integrated once

immediately. Then eliminating ug from (58), & from (59) and m; from (60), we obtain,

(ﬂ)' _ pr,a 1 (61)

p v p p*’

op’ 1lp 5¢; 4 13p? 3p) (2p 3cr, 3 | p?
Z{// . ﬁm{/ + (_p_ﬁ_|__2_|_ p2 ) ng—ﬁ <_p_£+_+p_> n; =0, i=1,2, (62)
2p v p p 2p p

" p/ , 2p ]_ o 4 / /
ul o+ Eul + (7 _ ]? w = dy+ E(Uﬂb - 772771) ) (63)

where ¢;,d; are integration constants. The equation for p(z) may be integrated again after

multiplying both sides by p’/p; this gives
p?=1=2c1p+ cop® — 2p° (64)

where ¢ is another integration constant. This equation is well known in KdV theory. Its

general solution can be written in terms of the Weierstrass g-function,
p(z) = —2vp(z2) + %czv , (65)

where the periods of p are determined by the coefficients ¢y, ¢, v. Using (64), the coefficients
in (62) can be simplified. Further, we know from supersymmetry that this equation has a
solution 7; = p?. Substituting 1, = p?¢; the equation becomes a second order equation for
I

3p 3p 3 Co -
" " _ - it =0 =12. 66
% +2pq2+< 20 2p2+2 % T (96)

Supersymmetry (26) allows a reduction of the order of (63) as well. It implies that u; = p'/p ,
n;=p? is a solution. So, writing wu;=rp'/p , n;=p?¢; in (63) yields a first order equation for
!/

T

4p* 1\ 7 P
r + (ch - 5) e E(dl +4p(a1dy — @ed))) - (67)

Multiplying by the integrating factor p”?/p and integrating, we obtain
p
r = o <d1p +dy+4 / (0195 — @201 )y’ dz> , (68)

where dj is a further constant of integration.

Thus the Galilean-invariant reduction of the second deconstruction of superCH takes the
form of the three equations (64),(66),(68), to which we now apply the Painlevé test. All

substitutions hitherto have been ones which do not interfere with the test. Equation (64)
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has movable double poles and movable simple zeros. Near a double pole at zj, the series

solution contains only even powers of (z — zy),

2v v 12¢) — v , 2+ v —18cicy A
o cav QY _ b _ (69
P(2) CoaE 6 T G 21 G ) e (69)
and near a simple zero at zg,
p(z) = £(z2—2) — %cl(z —2)? & %cz(z — )3 — ﬁ(% +eie)(z—2) 4. ... (70)

At both the zeros and poles of p, equation (66), which is just a linear third order ODE;,
has regular singular points. Checking Painlevé property for this reduces to doing the neces-
sary Frobenius-Fuchs analysis at these regular singular points to check that no logarithmic
singularities in the solutions ¢; arise. Finally, equation (68) gives an explicit formula for r
involving two quadratures. Here the necessary analysis involves wrtiting series expansions
for the integrands near the zeros and poles of p, and checking for the absence of 1/(z — zp)
terms, which would give rise to logarithms on integration. We do not present all these cal-
culations in detail; with the aid of a symbolic manipulator they are quite straightforward.
We conclude that the Galilean-invariant reduction of the second deconstruction of superCH

has the Painlevé property.

We note, in conclusion, that two of the equations we have encountered are interesting

variants of the Lamé equation: In (66), the substitution ¢/ = p~3/*h; yields

7
h 43 p_2_ a h; = 1

and similarly, on writing u; = p~'/2k , the homogeneous part of (63) takes the form,

po (3P 3\, _
k:+<v ol LI (72)

By the arguments above, the latter is integrable by quadratures.

VI Superpeakon solutions

As mentioned in the introduction, one of the intriguing features of the CH equation is the
existence of peakon solutions. One would hope that superCH shares this property. However,
peakon solutions are weak solutions, with a discontinuity in the first derivative; and the action
of supersymmetry on such functions, for a general underlying grassmann algebra, yields

objects which are not regular enough to be considered as weak solutions. So, CH peakon
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solutions do not admit a general supersymmetrisation. The above argument does not hold in
the first deconstruction, because if there is only one fermionic generator, the supersymmetry
transformation (26) does not involve an z-derivative. So such supersymmetrised peakon
solutions of the superCH system (39) do exist if the fields are restricted to take values in a

grassmann algebra with only one fermionic generator.

Consider the equations (40) of the first deconstruction. Supersymmetry implies that if
(u,m) is a solution of the first equation in (40), then & = cu, 7 = cm (where ¢ is a
constant) gives a solution of the second equation. Thus, for example, the speed v travelling-
wave peakon solution of CH, u = vexp(—|r — vt|), can be supersymmetrised, as can any
multipeakon solution. In fact, there also exist more general superpeakons. The superposition

ansatz

™=

u,t) = ) pi(t) exp(=[zr —a¢(t)]) (73)

1

<.
Il

™=

Sz, 1) = ) rilt) exp(=|z —q(t)]) (74)

1

<.
I

gives a solution of the system (40) provided the functions ¢;(t),p;(t),r:(t) (i = 1,...,N)
satisfy the ODE system

™ =

qit = Dj eXP(—\q@' - Qj|) (75)
j=1
N

b = Z/ sen(q; — q;) pip; exp(—|a — q;l) (76)
j=1
1 N

Ty = 2 Z/ Sgﬂ(%’ - QJ) (Pﬂ"j +pj7”z') GXP(—|Qi - QJD ) (77)

<
Il
—

where the primed sums range over values of j # i. Equations (75) and (76) are the condi-
tions which determine u of the form (73) to be a multipeakon solution of CH. They describe
geodesic motion on an N-dimensional surface with coordinates ¢; [1] and form an integrable
hamiltonian system [23]. The further equations (77) are linear equations for the functions
r; . Clearly, taking the r; = c¢p; for some constant ¢ gives a solution, these being the super-
symmetrised multipeakon solutions discussed before. More general solutions certainly exist.
Since the system (75)—(76) is integrable, integrability of the additional N linear equations
(77) depends on the existence of N—1 independent conserved quantities depending on the
;. We have not settled this question in general, but we note that >, r; is a conserved
quantity, just as the total momentum Y%, p; is also conserved. This suffices for integrabil-

ity when N=2, in which case the remaining equation for r;—r, can be integrated explicitly.
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Note that unlike the existence of the superpeakons which arise in virtue of supersymmetry
transformations of CH peakons, the existence of this extra conserved quantity depends crit-
ically on the coefficients of the 7, evolution equation in (40). Even if the full superpeakon
system (77) proves not to be fully integrable, the geodesy and supersymmetry conditions

have certainly picked out an equation with some integrability properties (c.f. [12]).

VII Outlook

In this paper we have examined fermionic extensions of the Camassa-Holm equation. In par-
ticular we have identified the superCH system (39), which, for low dimensional grassmann
algebras displays some integrability properties and has peakon type solutions. Further in-

vestigation is needed to determine whether the superCH system is fully integrable.

Our work provides a further instance of integrability properties arising in the context of
geodesic flows on a group manifold, and in particular provides some evidence that super-

symmetric geodesic flows whose bosonic part is integrable must also be integrable.

We note in closing that the KP (and superKP) systems have yet to be presented as
geodesic flows. If such a presentation exists, it would have a bearing on the question of
whether there is a KP-type higher dimensional generalisation of Camassa-Holm (arising in

a way similar to that in which KP generalises KdV).
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