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Abstract Based on a novel point of view on 1-dimensional Gaussian quadrature,
we present a new approach to d-dimensional cubature formulae. It is well known
that the nodes of 1-dimensional Gaussian quadrature can be computed as eigen-
values of the so-called Jacobi matrix. The d-dimensional analog is that cubature
nodes can be obtained from the eigenvalues of certain mutually commuting matri-
ces. These are obtained by extending (adding rows and columns to) certain non-
commuting matrices A1, . . . , Ad , related to the coordinate operators x1, . . . , xd ,
in Rd . We prove a correspondence between cubature formulae and “commuting
extensions” of A1, . . . , Ad , satisfying a compatibility condition which, in appro-
priate coordinates, constrains certain blocks in the extended matrices to be zero.
Thus, the problem of finding cubature formulae can be transformed to the prob-
lem of computing (and then simultaneously diagonalizing) commuting extensions.
We give a general discussion of existence and of the expected size of commuting
extensions and briefly describe our attempts at computing them.
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1 Introduction

One of the most elegant topics in numerical analysis is the theory of Gaussian
quadrature [7]. Unfortunately this theory is limited to one dimension, and although
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something is known about generalizations to multiple dimensions (see [3] for a
survey article and many references), at the moment there are many more ques-
tions than answers. The aim of this paper is to present a new approach to cubature
rules (“cubature” seems to be the name given to the generalization of quadrature
to arbitrary dimension). In classical, one-dimensional Gaussian quadrature, the
most widely used method for computing cubature nodes and weights, developed
about 35 years ago [11], involves solving the eigenproblem for a certain tridiagonal
matrix (see [15] for a recent “basis independent” discussion of this). Our proposed
method for computing d-dimensional cubature formulae involves the construction
of d matrices (with tridiagonal block structure in suitable bases), extending these,
in a manner we will explain below, to a set of commuting matrices, and then solv-
ing the simultaneous eigenproblem for these commuting matrices. An important
step in this process, which follows very naturally from a new approach we pres-
ent to one-dimensional Gaussian quadrature, is the need to construct commuting
extensions of a set of matrices. We say the N × N matrices Ã1, Ã2, . . . , Ãd are
N ×N commuting extensions of the n×n matrices A1, A2, . . . , Ad (here N ≥ n)
if the top left n × n block in Ãi is Ai , for each i = 1, 2, . . . , d, and the matrices
Ã1, Ã2, . . . , Ãd pairwise commute.

The idea of commuting extensions is very natural, but we do not find any such
notion in the linear algebra or numerical linear algebra literature. Since we hope
this idea will find other applications, the first few sections in this paper explore
the subject without reference to cubature rules. Section 2 covers basic theory and
briefly mentions a couple of simple algorithms for computing commuting exten-
sions, with which we currently have very limited success. Section 3 discusses
commuting extensions when the matrices Ai take a special form, relevant for the
study of cubature rules.

In section 4 we turn to the theory of cubature rules. Subsection 4.1 contains
a novel approach to one dimensional Gaussian quadrature, based upon the prop-
erties of a certain operator, its eigenvalues and eigenfunctions. This serves as the
model for all the subsequent discussion. In subsection 4.2 we consider the natural
extension of this approach to multiple dimensions, and prove the central results
of the paper, giving an equivalence between odd degree, positive weight cuba-
ture rules and commuting extensions (satisying a compatibility condition that will
be explained in the sequel) of a certain set of matrices. Subsection 4.3 includes
some simple consequences of this relationship. One of the key results in the the-
ory of cubature rules, a lower bound on the number of nodes needed for an odd
degree cubature rule, originating in the work of Möller [13], follows from a general
result in the theory of commuting extensions (theorem 2). Similarly a simple result
on the spectra of commuting extensions (theorem 6) gives interesting constraints
on the nodes in positive weight cubature rules, which we believe have hitherto
been overlooked even in one dimension. Section 4.3 also briefly mentions our
attempts to actually apply the commuting extension approach for computing nodes
and weights. Our achievements are rather limited, nevertheless they validate our
approach, and even give a few new cubature formulae. Section 5 contains a list of
open questions.

In the final stages of preparing this manuscript we learned that the connection
between cubature nodes and common eigenvalues of commuting extensions has
been noticed by Y. Xu. Xu’s observations appear in a much wider discussion con-
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necting cubature nodes with zeros of quasi-orthogonal multivariable polynomials
[20], [23]. It seems however that the possibility of constructing cubature formulae
via commuting extensions has been largely ignored by scientists working in this
field. Apart from bringing this approach to the attention of a broader audience and
proposing it as a potentially valuable tool to compute new formulae, our work
presents a novel and exceedingly simple proof of the correspondence between
cubature nodes and joint eigenvalues of commuting extensions.

We close this introduction by mentioning that one of the oldest continuing
applications of Gaussian quadrature is in quantum mechanics, where it is used,
in the so-called “DVR method” for the computation of matrix elements of non-
exactly solvable Hamiltonians (see [10] for early references and [16] for recent
reviews). This paper was born out of an attempt to extend the DVR method to
higher dimensions; other, recent progress on this subject has been made by Dawes
and Carrington [8]. Another interesting perspective on DVR can be found in the
paper [12].

2 Commuting Extensions

In this section we present the basic theory of commuting extensions.

Definition 1 We say the N × N matrices Ã1, Ã2, . . . , Ãd are N × N commuting
extensions of the n×n matrices A1, A2, . . . , Ad (here N ≥ n) if the top left n×n

block in Ãi is Ai , for each i = 1, 2, . . . , d, and the matrices Ã1, Ã2, . . . , Ãd

pairwise commute.

Theorem 1 Any set of matrices admits commuting extensions.

Proof We construct explicit commuting extensions of the n × n matrices A1, A2,
. . . , Ad . Take

Ã1 =




A1 A2 A3 . . . Ad

Ad A1 A2 . . . Ad−1
Ad−1 Ad A1 . . . Ad−2

...
...

...
...

A2 A3 A4 . . . A1




, Ã2 =




A2 A3 A4 . . . A1
A1 A2 A3 . . . Ad

Ad A1 A2 . . . Ad−1
...

...
...

...
A3 A4 A5 . . . A2




, etc. (1)

Such matrices are known as “block circulants”; in [6] it is proven that block circ-
ulants commute. ��

Theorem 1 establishes the existence of commuting extensions, but it is natural
to ask what is the smallest possible dimension for commuting extensions of a given
set of matrices. To this end we have the following result:

Theorem 2 If N ×N commuting extensions of the n×n matrices A1, A2, . . . , Ad

exist, then

N ≥ n + 1

2
maxi,j rank([Ai, Aj ]) . (2)
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Proof Suppose Ã1, Ã2, . . . , Ãd are N × N commuting extensions of the n × n
matrices A1, A2, . . . , Ad . Write

Ãi =
(

Ai ai

bi αi

)
, (3)

where the matrices ai, bi, αi have sizes n×(N −n), (N −n)×n, (N −n)×(N −n)
respectively. The top left n×n block of the equation [Ãi, Ãj ] = 0 gives the require-
ment

[Ai, Aj ] + aibj − ajbi = 0 . (4)

Since the matrices ai and bi do not have rank exceeding (N − n), neither do prod-
ucts of the form aibj , and the matrices aibj −ajbi can have rank at most 2(N −n).
Thus (4) can hold only if for each i, j we have

rank([Ai, Aj ]) ≤ 2(N − n) , (5)

and the theorem follows directly. ��
Unfortunately there is a large gap between the lower bound on N from theorem

2 and the N in the existence proof of theorem 1. In practice, it seems that the lower
bound of theorem 2 is rarely attained, and the N of theorem 1 is much too big. As
we shall see in section 4, theorem 2 gives rise to a well known lower bound on the
number of points needed for a cubature formula, and in that context also the bound
can rarely be attained.

In addition to not knowing, in general, any way to rigorously predict the lowest
dimension for commuting extensions of a given set of matrices, we also currently
have no way of determining how many distinct families of commuting extensions
of a given dimension exist. By a family we mean a set of commuting extensions
related by conjugation as described in the following obvious result:

Theorem 3 If the matrices Ã1, Ã2, . . . , Ãd are N × N commuting extensions
of the n × n matrices A1, A2, . . . , Ad , then so are the matrices Ũ Ã1Ũ

−1, Ũ Ã2

Ũ−1, . . . , Ũ ÃdŨ−1, where Ũ is any matrix of the form

Ũ =
(

In×n 0n×(N−n)

0(N−n)×n U

)
(6)

with U an invertible (N − n) × (N − n) matrix.
To proceed further, and at least get some idea of the size needed for commuting

extensions, we have to resort to parameter counting. From here on we restrict to
the case where the matrices Ai and Ãi are symmetric, i.e. the case of symmetric
commuting extensions of a set of symmetric matrices. Note that except when d = 2
the existence construction of theorem 1 does not guarantee symmetric commuting
extensions. Neither is it clear that the lowest dimension commuting extensions of
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a set of symmetric matrices need necessarily be symmetric. But because the case
of symmetric commuting extensions of symmetric matrices is relevant for cubature
rules, we restrict our attention to this.

If the matrices Ãi are symmetric then we can write

Ãi =
(

Ai ai

aT
i αi

)
(7)

where ai is n × (N − n) and αi is (N − n) × (N − n) and symmetric. Thus the
number of free parameters we have in choosing the extensions of the Ai is

d

(
n(N − n) + 1

2
(N − n)(N − n + 1)

)
= 1

2
d(N − n)(N + n + 1) . (8)

Let us assume that at least one of the Ãi , say Ã1, has distinct eigenvalues. Then
all matrices that commute with Ã1 also commute amongst themselves, and we
just need to check that [Ã1, Ãi] = 0 for i = 2, . . . , d. Since the commutator of
symmetric matrices is automatically antisymmetric, we have

1

2
N(N − 1)(d − 1) (9)

equations to satisfy. We cannot, however, directly compare the number of parame-
ters from (8) with the number of equations from (9), as from theorem 3 we learn that
(except when N = n + 1) commuting extensions exist in families. For symmetric
commuting extensions the matrices U (and thus Ũ ) in theorem 3 are restricted to
be orthogonal. So symmetric commuting extensions occur in families with 1

2 (N −
n)(N − n − 1) parameters, and the number of parameters in choosing extensions
should exceed the number of equations from (9) by at least this amount. Thus we
need

1

2
d(N − n)(N + n + 1) ≥ 1

2
N(N − 1)(d − 1) + 1

2
(N − n)(N − n − 1) . (10)

A little rearranging of this inequality gives the condition

N − n ≥ n(n − 1)(d − 1)

2(n + d)
= d − 1

2
n − d2 − 1

2
+ d(d2 − 1)

2n
+ o

(
1

n

)
, (11)

where the o
( 1

n

)
term is equal to d2(1−d2)

2n(d+n)
. If N satisfies this condition we expect

to find N × N symmetric commuting extensions. For comparison, in the explicit
commuting extensions of theorem 1 (which, however, were not symmetric) we had
N − n = (d − 1)n; we can clearly expect to do much better than this.

On occasions it seems that parameter counting can be misleading. As an exam-
ple consider the case of d = 2. From theorem 2 we have N −n ≥ 1

2 rank([A1, A2])
(note that since the commutator of two symmetric matrices is antisymmetric, its
rank is always even). The parameter counting argument tells us that we should
expect

N − n ≥ n(n − 1)

2(n + 2)
. (12)
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Assuming [A1, A2] of maximal rank we have

1

2
rank([A1, A2]) =

( n
2 n even

n−1
2 n odd

)
. (13)

So by theorem 2

N − n ≥
( n

2 n even
n−1

2 n odd

)
. (14)

We see that when d = 2 and [A1, A2] is of maximal rank the inequality from
parameter counting is actually weaker than the rigorous one from theorem 2. Thus
in this case the parameter counting argument is certainly flawed. But this seems
to be rather exceptional; in general it appears that when it is consistent with the
lower bound of theorem 2, parameter counting gives a better idea of the size we
should expect for commuting extensions. In particular the following theorem holds.

Theorem 4 For n > 5 there exist symmetric n × n matrices A1, A2 with rank
([A1, A2]) = 2 and no (n + 1) × (n + 1) symmetric commuting extensions.

The technical details of the proof are omitted. For such matrices the lower bound
of theorem 2 can not be attained, at least with symmetric extensions.

Note on index conventions: In discussion of commuting extensions we start with
d matrices of size n × n which we extend to size N × N . For clarity, in most of
this paper we adhere to the following index conventions:

Indices i, j, k etc. run from 1 to d.
Indices a, b, c etc. run from 1 to n
Indices α, β, γ etc. run from 1 to N .

The results up to here all concern the existence and size of commuting extensions.
For the purpose of finding commuting extensions we will use the following:

Theorem 5 The n × n symmetric matrices A1, A2, . . . , Ad admit N × N sym-
metric commuting extensions if and only if there exist N × N diagonal matrices
�1, �2, . . . , �d and an n × N matrix Q with orthonormal rows such that

Ai = Q�iQ
T . (15)

Proof From the extensions to �i, Q: If we can find N ×N symmetric commuting
extensions Ã1, Ã2, . . . , Ãd , then we can find diagonal matrices �1, �2, . . . , �d

and an N × N orthogonal matrix Q̃ such that

Ãi = Q̃�iQ̃
T . (16)

The matrix Q in the theorem is comprised of just the first n rows of Q̃.
From �i, Q to the extensions: A matrix Q as described in the theorem can

always be extended, by the addition of N − n orthonormal rows, to an N × N

orthogonal matrix Q̃. (In fact this can be done in many ways, corresponding to
the freedom described in Theorem 3.) Once Q̃ has been constructed the matrices
Ãi = Q̃�iQ̃

T are N × N symmetric commuting extensions of the Ai . ��
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Note The matrix Q in theorem 5 satisfies QQT = In×n.
It is of interest to understand how the spectra of commuting extensions (i.e. the

entries of the matrices �i in Theorem 5) are related to the spectra of the original
matrices Ai . The following is a first result in this direction. It is a simple conse-
quence of the Sturmian separation theorem [18], but we offer a direct proof too.

Theorem 6 Let Ã be an N × N symmetric extension of the n × n (symmetric)
matrix A. Then the smallest eigenvalue of Ã is less than or equal to the smallest
eigenvalue of A, and the largest eigenvalue of Ã is greater than or equal to the
largest eigenvalue of A.

Proof It is well known that for any m × m symmetric matrix M the smallest and
largest eigenvalues are given by

min
x �=0

xT Mx

xT x
, max

x �=0

xT Mx

xT x
, (17)

respectively, where x is a vector with m entries. The proof follows then from the
following inequalities

min
x �=0

xT Ãx

xT x
≤ min

y �=0

yT Ay

yT y
, max

x �=0

xT Ãx

xT x
≥ max

y �=0

yT Ay

yT y
. (18)

��
We now briefly discuss our attempts to compute commuting extensions. The

most obvious approach is simply to treat the unknown entries in the extended
matrices Ãi as variables, and to consider the conditions [Ãi , Ãj ] = 0 as equa-
tions in these variables. In the generic case (generically we should expect the Ãi

to have distinct eigenvalues) it will be sufficient to look at the equations just for
one particular value of i. If N − n > 1, then by theorem 3 we expect continuous
families of extensions, this freedom can be exploited to fix some of the variables.
The system of equations we obtain will be quadratic in the unknown variables. We
have done some initial experiments with this approach in the case d = 2, attempt-
ing to solve the system of quadratic equations 1) by integrating the gradient flow
v′ = −∇||[Ã1(v), Ã2(v)]||2 (here v denotes the variables added to form the com-
muting extensions), and 2) using Newton’s method. The results are very varied;
for some pairs of moderate-sized matrices there is reasonable convergence, but in
other cases there are signs of extreme ill-conditioning (very low gradients in the
case of gradient flow, almost singular Jacobian in Newton’s method). Some of the
cubature related results mentioned in the sequel were obtained by integration of
the gradient flow with Frobenius norm of the commutator; a detailed description of
these calculations can be found in [9]. Another approach we have tried for finding
the Ãi uses successive Jacobi rotations applied to Q̃ together with an appropriate
update of {�i} so that in each step S = ∑d

i=1 ‖Ai − Q�iQ
T ‖2 is minimized

(Q̃, Q, � are as in theorem 5). This method also exhibits severe slowing down
for large Ai .

It is clear from our results that a lot more work is necessary on the topic of
computing commuting extensions.



486 I. Degani et al.

3 A Special Case Of Commuting Extensions

We turn to consideration of a special case of commuting extensions that turns out
to be relevant for cubature formula. It is characterized by 2 conditions: First, the
symmetric n × n matrices Ai for which we wish to find commuting extensions are
block tridiagonal

Ai =




αi1 ai1 0 . . . 0 0
aT
i1 αi2 ai2 . . . 0 0
0 aT

i2 αi3 . . . 0 0
...

...
...

...
...

0 0 0 . . . αi(r−1) ai(r−1)

0 0 0 . . . aT
i(r−1) αir




. (19)

Here αi1, αi2, . . . , αir are symmetric square matrices of sizes n1 × n1, n2 ×
n2, . . . , nr × nr respectively, where n1 + n2 + . . . + nr = n. The matrices
ai1, ai2, . . . , ai(r−1) are of size n1 ×n2, n2 ×n3, . . . , nr−1 ×nr respectively. The
second condition we impose is that the commutator matrices [Ai, Aj ] all vanish
except for a single block in the bottom right hand corner, of size nr × nr .

Let us seek symmetric commuting extensions with the matrices Ãi , of size
N × N , also taking tridiagonal block form, that is

Ãi =




αi1 ai1 0 . . . 0 0 0
aT
i1 αi2 ai2 . . . 0 0 0
0 aT

i2 αi3 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . αi(r−1) ai(r−1) 0
0 0 0 . . . aT

i(r−1) αir ai

0 0 0 . . . 0 aT
i αi




, (20)

where the new blocks αi are of size (N − n) × (N − n) and are symmetric, and
the ai are of size nr × (N − n).

The questions we wish to ask are (1) what are the equations that the new blocks
αi, ai have to satisfy? and (2) how large need N be for us to have a hope that such
extensions exist? As in section 2, we assume that Ã1 has distinct eigenvalues, so
we need only check that Ã1 commutes with the d − 1 matrices Ã2, . . . , Ãd and
this guarantees that all the Ãi mutually commute. A brief calculation, using the
fact that the commutators [A1, Ai] are zero except for a single block, gives the
following conditions:

a1(r−1)ai − ai(r−1)a1 = 0
aT

1(r−1)ai(r−1) − aT
i(r−1)a1(r−1) + α1rαir − αirα1r + a1a

T
i − aia

T
1 = 0

α1rai − αira1 + a1αi − aiα1 = 0
aT

1 ai − aT
i a1 + α1αi − αiα1 = 0




i = 2, . . . , d . (21)
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Of these four equations for each i, the first is of size nr−1 × (N −n), the second is
of size nr × nr and antisymmetric, the third is of size nr × (N − n) and the fourth
is of size (N − n) × (N − n) and antisymmetric. Thus there is a total of

(d − 1)

(
nr−1(N − n) + 1

2
nr(nr − 1)

+nr(N − n) + 1

2
(N − n)(N − n − 1)

)
(22)

equations to be satisfied. The number of variables available in the ai and αi is

d

(
nr(N − n) + 1

2
(N − n)(N − n + 1)

)
. (23)

The system of equations (21), has an invariance

ai → aig , αi → gT αig , i = 1, . . . , r (24)

where g is an (N −n)×(N −n) orthogonal matrix. Thus it is not sufficient that the
number of variables simply exceed the number of equations to be solved, it must
exceed the number of equations to be solved by at least 1

2 (N − n)(N − n − 1) to
give a full family of solutions. Thus we can expect solutions provided:

d

(
nr(N − n) + 1

2
(N − n)(N − n + 1)

)
≥ 1

2
(N − n)(N − n − 1)

+(d − 1)

(
nr−1(N − n) + 1

2
nr(nr − 1)

+nr(N − n) + 1

2
(N − n)(N − n − 1)

)
(25)

Simplifying this gives

N − n ≥ nr(nr − 1)

2
(

nr+d
d−1 − nr−1

) , (26)

where we have made the assumption that the denominator on the right hand side
is positive.

Note the right hand side in (26) does not depend on the total dimension, n, of
the matrices Ai , but just on nr−1 and nr . Thus the size of the extensions needed in
this special case may well be substantially smaller than in general. The application
to cubature of this special form of commuting extensions will become clear in
section 4.3.

4 Cubature Formulae and Commuting Extensions

Much of the contents of this section, with some additions, are also discussed in [9].
In section 4.1 we give a novel presentation on the subject of Gaussian quadrature;
in section 4.2 this is extended to the case of multidimensional cubature. Section
4.3 discusses some practical aspects and consequences of the results of 4.2.
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4.1 A Novel Approach to Gaussian Quadrature

In Gaussian quadrature we wish to find q + 1 nodes x0, . . . , xq and q + 1 weights
w0, . . . , wq such that the quadrature rule

∫
�

w(x)f (x)dx ≈
q∑

i=0

wif (xi) (27)

is exact whenever f (x) is a polynomial of degree at most 2q + 1. Here � is
some interval or union of intervals and w(x) ≥ 0 is a suitable weight function.
Throughout this paper we only consider quadrature and cubature rules with posi-
tive weights, i.e. wi > 0.

Note In this subsection there is no mention of commuting extensions so we allow
ourselves to break our index conventions. In this subsection alone indices i, j, k
run from 0 to q.

Denote by Pq the space of polynomials of degree at most q with the inner
product

〈a|b〉 =
∫

�

w(x)a(x)b(x)dx , ∀a, b ∈ Pq . (28)

Let �q be the projector from Pq+1 onto Pq parallel to its orthogonal complement
P⊥

q i.e. the obvious orthogonal projection onto Pq with respect to the inner product
above. We define the operator χ : Pq → Pq by χp = �qxp for all p ∈ Pq . Since
χ is self adjoint there is an orthonormal basis of Pq consisting of eigenfunctions
{ui} of χ , χui = �iui . Associated with χ there is a symmetric bilinear form X on
Pq defined by X(a, b) = 〈a|χb〉, or equivalently

X(a, b) =
∫

�

w(x)a(x)xb(x) dx , ∀a, b ∈ Pq . (29)

X is diagonalised in the basis {ui}, X(ui, uj ) = �iδij .
We prove below that the eigenvalues {�i} of χ provide nodes for a Gaussian

quadrature formula of degree 2q + 1. Our treatment is the reverse of the classical
presentation of Gaussian quadrature [7], [11], see the explanation after theorem 8.

We need the following remarkable lemma:

Lemma 1 (The δ lemma) Let p be an arbitrary polynomial in Pq+1. Then

〈p|ui〉 = 〈1|ui〉p(�i) , (30)

i.e. the inner product of p with ui is determined, up to normalization, by evaluation
of p at �i .

Note In this lemma p is allowed to be in Pq+1.

Proof We prove recursively for j that

〈xj |ui〉 = 〈1|ui〉�j
i , j = 0, . . . , q + 1 . (31)

For j = 0 the statement is trivial. For j > 0,

〈xj |ui〉 = 〈χxj−1|ui〉 = 〈xj−1|χui〉 = �i〈xj−1|ui〉 . (32)

This provides the recursive step proving (31), the full result follows by linearity. ��
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χ is an approximation of the operator x and this lemma shows that {ui}, the ei-
genfunctions of χ , share with δ functions, which are “eigenfunctions” of x, the
property that projection of a function on either is done by its evaluation at the
appropriate eigenvalue. This similarity is the reason for the name we give to the δ
lemma.

With this lemma it is almost immediate to prove the main result of this subsec-
tion:

Theorem 7 Let f be a polynomial of degree at most 2q + 1. Then

∫
�

w(x)f (x)dx =
q∑

i=0

〈1|ui〉2f (�i) , (33)

i.e. the quadrature rule

∫
�

w(x)f (x)dx ≈
q∑

i=0

〈1|ui〉2f (�i) (34)

is exact of degree 2q + 1.

Proof Again we prove the result for f (x) = xj , j = 0, . . . , 2q + 1, the full result
follows by linearity. For j ≥ 1, choose integers n1, n2 between 0 and q such that
j = n1 + n2 + 1. We then have

∫
�

w(x)xjdx = X(xn1, xn2) = X

(
q∑

k=0

〈xn1 |uk〉uk,

q∑
i=0

〈xn2 |ui〉ui

)

=
q∑

i=0

〈1|ui〉2�
j
i . (35)

In the last step we have used the δ lemma twice.
For j = 0 observe that
∫

�

w(x)dx = 〈1|1〉 =
〈

q∑
k=0

〈1|uk〉uk

∣∣∣∣∣
q∑

i=0

〈1|ui〉ui

〉
=

q∑
i=0

〈1|ui〉2 , (36)

by the orthonormality of the ui . ��
Theorem 7 relates the spectrum of χ to the nodes of Gaussian quadrature. It

is in fact easy to prove other facts in the theory of Gaussian quadrature using our
approach. For example, to see that none of the weights vanish just take p = ui in
the δ lemma. To see that when � is a single interval [a, b] the nodes must be in its
interior just observe that

b − �i =
∫ b

a

w(x)(b − x)ui(x)2 dx > 0,

a − �i =
∫ b

a

w(x)(a − x)ui(x)2 dx < 0 . (37)

We also obtain the following widely known characterization of the nodes:
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Theorem 8 The nodes �i are roots of any nontrivial degree q + 1 polynomial
orthogonal to Pq .

Proof Let p be a nontrivial degree q + 1 polynomial orthogonal to Pq . Then
using the δ lemma, 0 = 〈p|ui〉 = 〈1|ui〉p(�i). Since 〈1|ui〉 is nonzero, this gives
p(�i) = 0. ��

Our presentation on Gaussian quadrature is the reverse of that in [7], [11]. The
starting point in [7], [11] is that the nodes in degree 2q +1 Gaussian quadrature are
roots of the degree q + 1 polynomial p from theorem 8; it is then shown that the
eigenvalues of a matrix representation of χ are equal to these. Here we have gone
in the other direction; without a priori assumption of the existence of a Gaussian
quadrature formula, we have shown that the eigenvalues of χ are quadrature nodes
and as a consequence of the δ lemma we also obtain the fact that they are roots of
the degree q + 1 polynomial p from theorem 8.

As we shall see in the next subsection, our approach to Gaussian quadrature
allows a generalization to higher dimensions. However, in the generalization of
the δ lemma the polynomial p is restricted to Pq , not Pq+1. This means that the-
orem 8 cannot be easily generalized to multi dimensions. The characterization of
cubature nodes as roots of polynomials requires elaborate analysis, see [20], [22].
However the characterization of nodes as eigenvalues is naturally obtained from
our approach, as we now set out to show.

4.2 Generalization to Cubature

We denote by Pq the n =
(

d + q
d

)
dimensional vector space of polynomi-

als in d variables x1, . . . , xd of total degree up to q (total degree is defined by
degree(xm1

1 x
m2
2 . . . x

md

d ) = m1 + m2 + . . . + md ).
An N -point d-dimensional cubature formula

∫
�

w(x)f (x)ddx ≈
N∑

α=1

wαf (xα) (38)

is said to be of degree D if it is exact whenever f (x) is a polynomial of total degree
at most D and non-exact for at least one polynomial of total degree D + 1. Here
� is a suitable region in Rd and w(x) ≥ 0 a suitable weight function. The weights
wα are assumed positive.

We supply Pq with the inner product

〈a|b〉 =
∫

�

w(x)a(x)b(x) ddx , ∀ a, b ∈ Pq , (39)

and define �q , the orthogonal projection operator from Pq+1 onto Pq with respect
to the above inner product, in the obvious way. We can then define d self adjoint
operators χ1, . . . , χd on Pq by

χip = �qxip , ∀p ∈ Pq , (40)
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with related symmetric bilinear forms Xi : Pq × Pq → R,

Xi(a, b) = 〈a|χib〉 =
∫

�

w(x)a(x)xib(x) ddx ∀a, b ∈ Pq . (41)

Generally [χi, χj ] �= 0 so we can not find a basis of Pq in which all the χi are
simultaneously diagonalised, and we do not have a direct analog of the one-dimen-
sional case in which the eigenvalues of the single operator χ served as quadrature
nodes. We shall show, however, that there is a correspondence between cubature
rules and spectra of certain commuting extensions of matrix representations of the
operators χ1, . . . , χd . As a first step towards this we prove the following:

Theorem 9 Let the n×n matrices A1, . . . , Ad be the representations of the oper-
ators χ1, . . . , χd in an arbitrary orthonormal basis {ea} of Pq (so (Ai)ab =
〈ea|χieb〉). Suppose that for the region � and weight function w(x) we have a
degree 2q +1, N point cubature rule with positive weights. Then there exist N ×N
symmetric commuting extensions of A1, . . . , Ad .

Proof Suppose the cubature rule takes the form

∫
�

w(x)f (x)ddx ≈
N∑

α=1

wαf (xα) . (42)

Then, since all integrands are of degree at most 2q + 1, we have

δab = 〈ea|eb〉 =
∫

�

w(x)ea(x)eb(x)ddx =
N∑

α=1

wαea(xα)eb(xα) , (43)

(Ai)ab = 〈ea|χieb〉 =
∫

�

w(x)ea(x)xieb(x)ddx

=
N∑

α=1

wαea(xα)(xα)ieb(xα) . (44)

Define the n × N matrix Q by

Qaα = √
wαea(xα) , (45)

and N × N diagonal matrices �1 . . . , �d with diagonal entries (�i)αα = �iα ,

�iα = (xα)i . (46)

Equations (43)–(44) read

In×n = QQT , Ai = Q�iQ
T . (47)

Using theorem 5 in section 2 we conclude that A1, . . . , Ad have N ×N symmetric
commuting extensions. ��
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It is natural to ask whether the matrix commuting extensions of theorem 9 are
representations of commuting extensions of the operators {χi} in some N dimen-
sional space of functions V which includes Pq as a subspace. In other words, is
it possible to extend the basis {ea} of Pq to an orthonormal basis of V by adding
N − n orthonormal functions en+1, . . . , eN in such a way that the N × N matri-
ces (Ãi)α,β = 〈eα|xieβ〉 = ∫

�
w(x)eα(x)xieβ(x) ddx commute? Unfortunately,

in all but the simplest cases, we could not find, nor prove the existence of, such
functions en+1, . . . , eN . The answer may be possibly based on Xu’s construction
of interpolating multi dimensional polynomials [20], [21]. However, even though
we can not view the matrix commuting extensions of theorem 9 as representations
of operator extensions of the χi , they do satisfy a certain compatibility condition
with the χi which we prove in theorem 10.

Let us introduce the N dimensional vector space V (= RN), with the stan-
dard inner product, whose elements we denote in bold face. Pq is mapped to
a subspace of V by the inclusion operator ι : Pq → V which is defined by
ιe1 = e1, . . . , ιen = en, where {ea} are the first n members of the standard basis of
V . Extend {ea} to an orthonormal basis {eα} of V by adding any orthonormal basis
{en+1, . . . , eN} of the orthogonal complement of span({ea}) in V . Even though our
attempts to extend Pq with functions failed, now we are extending with N -tuples.
Define the obvious projection operator π : V → Pq by πe1 = e1, . . . , πen = en,
πen+1 = . . . = πeN = 0 ∈ Pq ; clearly πι = I , the identity operator on Pq .

Recall that the essential step in the proof of theorem 5 is extension of Q to
an N × N orthonormal matrix Q̃ by appending any N − n orthonormal rows.
In this way Ã1, . . . , Ãd , N × N symmetric commuting extensions of the Ai are
constructed in theorem 9, where Ãi = Q̃�iQ̃

T . Since the Ã1, . . . , Ãd mutually
commute and are symmetric, there exist N orthonormal common eigenvectors
uα ∈ V , such that Ãiuα = �iαuα . The matrices Ãi are given in the basis {eα} and
Q̃ is the transformation between this basis and the eigenvector basis {uα}. Note that
the rows of Q̃ give the coordinates of the vectors {eα} in the basis {uα}, hence the
extension of Q to Q̃ by adding arbitrary N −n orthonormal rows is nothing but the
extension of {ea} to {eα} the orthonormal basis of V described above. The reader
is reminded that at present we are assuming the existence of a cubature formula
hence the eigenvalues �iα are defined in (46). We can now state:

Theorem 10 The commuting extensions of theorem 9, {Ãi}, satisfy the following
compatibility condition with the operators {χi},

Ãi ιp = ιxip = ιχip, ∀p ∈ Pq−1 , (48)

where Pq−1 is regarded in the natural way as a subspace of Pq .

Note Applying π to (48) gives πÃiιp = χip, for p ∈ Pq−1, which is automatic
as Ãi is an extension of Ai . However, (48) contains more information than this,
and is not true for an arbitrary extension of Ai .

Proof We first prove that for any p ∈ Pq and any eigenvector uα ,

〈ιp|uα〉 = √
wαp(xα) , (49)
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where wα , xα , are the weights and nodes of the cubature formula whose existence
is assumed in theorem 9. We already noted that the rows of Q̃ from the proof of
theorem 9 give the coordinates of the N vectors eα in the basis {uα}, in partic-
ular the rows of Q give the coordinates of ea = ιea , a = 1, . . . , n. Recall that
Qaα = √

wαea(xα), thus (49) is proven for basis elements ea ∈ Pq . The proof for
general p ∈ Pq follows by linearity.

We now expand the left hand side of (48) in the basis {uα}. For any p ∈ Pq−1

〈Ãi ιp|uα〉 = �iα〈ιp|uα〉 = �iα
√

wαp(xα) = √
wα(xα)ip(xα) , (50)

using (49) and (46) respectively in the last two steps. To expand the right hand side
of (48) note that xip = χip ∈ Pq for all p ∈ Pq−1. Invoking (49) again we obtain

〈ιxip|uα〉 = √
wα(xα)ip(xα) , (51)

which completes the proof. ��
Note that taking p = 1 in (49) gives wα = 〈ι1|uα〉2. In theorem 9 we saw that the
eigenvalues of the commuting extensions are related to cubature nodes, here we
obtain a relation between the weights and common eigenvectors.

We shall see in section 4.3 that with an appropriate choice of basis the compat-
ibility condition of theorem 10 implies that the commuting extensions have certain
off-diagonal zero blocks; in particular this special structure aids computation of
commuting extensions.

The obvious question to ask at this stage is whether there is a converse of
theorems 9 and 10. That is, suppose we have Ã1, . . . , Ãd , N × N symmetric
commuting extensions of A1, . . . , Ad , which satisfy the compatibility condition
Ãi ιp = ιχip = ιxip, ∀p ∈ Pq−1 . Can we build a cubature rule, without a priori
assumption of its existence, using the eigenvalues and eigenvectors of Ã1, . . . , Ãd?
In theorem 11 we give an affirmative answer to this. The treatment follows the pre-
sentation on Gaussian quadrature from section 4.1; in particular we start with a
δ lemma. Note that given the commuting matrices Ãi we can find their diagonal
representations �i , but we do not assume in advance any connection of the �i with
cubature nodes.

Lemma 2 (The multidimensional δ lemma) Suppose the commuting extensions
satisfy the compatibility condition Ãi ιp̀ = ιxi p̀ = ιχip̀ for all i = 1, . . . , d, and
for all p̀ ∈ Pq−1. Then, for any p ∈ Pq

〈ιp|uα〉 = 〈ι1|uα〉 p(λα) , (52)

where the points λα ∈ Rd have entries (�1α, . . . , �dα), all eigenvalues of Ã1,

. . . , Ãd , satisfying Aiuα = �iαuα .

Proof We prove (52) for monomials p = x
m1
1 x

m2
2 . . . x

md

d . For p = 1 the statement
is trivial. For any other monomial p ∈ Pq we can write p = xip̀, where p̀ ∈ Pq−1.
Then

〈ιp|uα〉 = 〈ιxi p̀|uα〉 = 〈Ãi ιp̀|uα〉 = 〈ιp̀|Ãiuα〉 = �iα 〈ιp̀|uα〉 . (53)

Here the compatibility condition was used in the second step. Repeated application
of (53) completes the proof for monomial p; the full result follows by linearity. ��
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Note Recall that we do not know how to relate V to a space of polynomials (or other
functions) in a way which gives commuting extensions of the operators χ1, . . . , χd .
In particular, we can not interpret the eigenvectors uα as polynomials (or other
functions). Thus our present state of understanding allows us to view the uα as “δ
vectors” in V and not as δ functions, which was possible in the 1-dimensional case.
Moreover we can not identify Pq+1 with a subspace of V . Hence, in contrast to the
one dimensional case, we restrict p ∈ Pq in the multidimensional δ lemma thereby
losing the immediate connection between cubature nodes and roots of polynomials
in P⊥

q . Again, Xu’s work [20], [21] may provide a key to this problem.
We are now fully prepared for the converse statement to theorems 9 and 10:

Theorem 11 Let A1, . . . , Ad be the representation of the operators χ1, . . . , χd in
an orthonormal basis {ea} of Pq . Let Ã1, . . . , Ãd be N ×N symmetric commuting
extensions of A1, . . . , Ad satisfying the compatibility condition Ãi ιp = ιxip =
ιχip for all p ∈ Pq−1. Then for every polynomial f in P2q+1

∫
�

w(x)f (x)ddx =
N∑

α=1

〈ι1|uα〉2f (λα) . (54)

Here the uα are joint eigenvectors of Ã1, . . . , Ãd , satisfying Aiuα = �iαuα , and
the points λα ∈ Rd have entries (�1α, . . . , �dα).

Proof Recall the symmetric bilinear forms Xi on Pq defined in (41). Given the
commuting extensions, we can introduce symmetric bilinear forms X̃i on V defined
by X̃i(u, v) = 〈u|Ãiv〉. Since the Ãi are extensions of the Ai we have X(p1, p2) =
X̃i(ιp1, ιp2) for all p1, p2 in Pq . The X̃i are simultaneously diagonalized in the
basis {uα}, X̃i(uα, uβ) = �iαδαβ .

It is sufficient to prove the statement of the theorem for monomials. For f = 1
we have

∫
�

w(x)ddx = 〈1|1〉 = 〈ι1|ι1〉 =
〈

N∑
α=1

〈ι1|uα〉uα

∣∣∣∣∣∣
N∑

β=1

〈ι1|uβ〉uβ

〉
=

N∑
α=1

〈ι1|uα〉2,

(55)

by the orthonormality of the uα . Note that in the second expression in (55) the
inner product is taken in Pq , in subsequent expressions it is taken in V .

Any other monomial in P2q+1 can be written in the form f = xif1f2 for some
monomials f1, f2 ∈ Pq and some i. Note that use of the multidimensional δ lemma
is possible since we assume the Ãi satisfy the compatibility condition, and so

∫
�

w(x)f (x)ddx =
∫

�

w(x)f1(x)xif2(x) ddx = Xi(f1, f2)

= X̃i(ιf1, ιf2) = X̃i




N∑
α=1

〈ιf1|uα〉uα,

N∑
β=1

〈ιf2|uβ〉uβ



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=
N∑

α=1

�iα〈ιf1|uα〉〈ιf2|uα〉 =
N∑

α=1

〈ι1|uα〉2�iαf1(λα)f2(λα)

=
N∑

α=1

〈ι1|uα〉2f (λα) . (56)

Thus (54) is proven for monomial f ; the full result follows by linearity. ��
Theorems 9,10,11 give the main result of this paper, that N point, odd order

cubature formulae with positive weights are equivalent to symmetric commuting
extensions, satisfying the compatibility condition, of matrix representations of the
operators χ1, . . . , χd .

4.3 Discussion and Consequences

Our findings suggest a computational approach to the derivation of cubature formu-
lae. If appropriate commuting extensions are numerically found their simultaneous
diagonalisation will give the cubature rule in (54). To numerically obtain the matri-
ces {Ai} we introduce an orthonormal basis of Pq consisting of an orthonormal
basis of P0 (a constant function e1 with ‖e1‖ = √〈e1|e1〉 = 1), extended to one of

P1, extended to one of P2 etc., i.e. a basis {ea}, a = 1, . . . , n =
(

d + q
d

)
, such

that

e1 is an orthonormal basis of P0
e1, . . . , ed+1 is an orthonormal basis of P1
e1, . . . , e 1

2 (d+1)(d+2) is an orthonormal basis of P2

etc.

(57)

Such a basis can be obtained from the monomials {xm1
1 . . . x

md

d }, m1 + . . . +
md ≤ q, by the Gram-Schmidt procedure. Note that all basis elements ea of degree
m or more are orthogonal to Pm−1. This choice of basis and the fact that {Ai}
represent the operators {χi} imply that the Ai have tridiagonal block form as in
(19), with q + 1 blocks on the diagonal. In the notation of section 3, n1 = 1
and for m = 2, 3, . . . , q + 1, nm = dimPm−1 − dimPm−2 (n1 = 1, n2 = d,
n3 = d(d + 1)/2 etc). Moreover, the commutator of any pair of Ai’s is zero apart

from a single block of size

(
q + d − 1

d − 1

)
×
(

q + d − 1
d − 1

)
in the bottom right hand

corner (note

(
q + d − 1

d − 1

)
= nq+1 = dimPq − dimPq−1). The compatibility con-

dition, together with the fact that en+1, . . . , eN are orthogonal to ιPq , imply that
the bottom left (N −n)×dim(Pq−1) block of Ãi is zero and by symmetry so is the
corresponding block in the upper right. Thus the commuting extensions {Ãi} we
seek are precisely those in tridiagonal block form as in section 3, and finding them
is equivalent to solving the system of equations (21). Note also that since our first
basis element e1 is a constant polynomial the cubature weights are obtained from

the first entries of the eigenvectors uα , wα = 〈ι1|uα〉2 = 1
e2

1
〈ιe1|uα〉2 =

(
(uα)1

e1

)2
.
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In the case d = 2, we note that the matrices A1, A2 have nr−1 = q and
nr = q + 1 in the notation of section 3, and thus from (26), which is based on
counting degrees of freedom, the expected size of the commuting extensions is

N ≥ n + q(q + 1)

6
. (58)

Using n = dimPq = 1
2 (q + 1)(q + 2) we obtain

N ≥ (2q + 2)(2q + 3)

6
= 1

3
dimP2q+1 . (59)

This is exactly the number of nodes we expect from counting degrees of freedom
in a 2-dimensional cubature formula of degree 2q + 1 .

For d > 2 the Ai have a more subtle structure that requires refinement of the
discussion leading to equation (26). However, the equivalence of cubature formu-
lae and commuting extensions (satisfying the compatibility condition) allows us
to estimate N by easily counting degrees of freedom in a general d-dimensional
cubature formula of degree 2q + 1. Thus,

N ≥ 1

d + 1
dimP2q+1 . (60)

We emphasize again that such calculations are not rigorous and the inequalities
obtained in this way can serve only as recomendations for the choice of N , indeed
certain cubature formulas with fewer points are known.

Before going on we present two theoretical consequences of the equivalence
between cubature formulae and commuting extensions.

Theorem 12 Let N be the number of nodes in a degree 2q + 1, d-dimensional
positive weight cubature rule. Then

N ≥
(

d + q
d

)
+ 1

2
maxi,j rank([Ai, Aj ]) , (61)

where A1, . . . , Ad are the matrix representations of the operators χ1, . . . , χd

on Pq .

Proof By theorem 9 an N point cubature rule gives N ×N commuting extensions
of the matrices Ai . By theorem 2, section 2, the size of such extensions is at least
dimPq + 1

2 maxi,j rank([Ai, Aj ]). ��
Notes (1) As mentioned in the introduction, theorem 12 has its origins in the work

of Möller [13].A statement of the result in a form that clearly corresponds to our
statement can be found in [4], which cites [14] and [19]. Our proof, however,
is a substantial simplification.

(2) It is informative to compare the lower bound of theorem 12 with estimates
based on parameter counting. As a consequence of our previous remarks on the
block structure of [Ai, Aj ]

rank([Ai, Aj ]) ≤
(

d − 1 + q
d − 1

)
= d

d + q

(
d + q

d

)
, (62)
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so the second term in (61) is typically a small fraction of the first term. Conse-
quently for large q the right hand side of (61) is much smaller than the number
of nodes we expect from counting degrees of freedom in a degree 2q + 1,
d-dimensional cubature formula, which is

⌈
1

d + 1

(
d + 2q + 1

d

)⌉
. (63)

This comparison indicates why the lower bound on the number of points needed
for a cubature formula is rarely attained.

Theorem 13 Let A1, . . . , Ad be matrix representations of χ1, . . . , χd . In any
degree 2q + 1, d-dimensional, positive weight cubature rule, and for each i, there
is a node xα with (xα)i less than or equal to the smallest eigenvalue of Ai , and a
node xβ with (xβ)i greater than or equal to the largest eigenvalue of Ai .

Proof By theorem 9 a cubature rule of degree 2q + 1 gives commuting extensions
of the matrices Ai with the nodes composed of the eigenvalues of the extended
matrices. By theorem 6 in section 2 the smallest/largest eigenvalue of the extended
matrices is less/greater than or equal to the smallest/largest eigenvalue of the matri-
ces before extension. ��
Note As far as we are aware this theorem is not even known for d = 1. For d = 1
the theorem says that any N -point, positive weight, degree 2q + 1 quadrature rule
must have a node less/greater than or equal to the smallest/largest Gaussian quad-
rature node. Thus Gaussian quadrature has the property that the span of the nodes
is the smallest possible, amongst all positive weight quadrature rules, with any
number of points, that are exact to the same degree.

Xu has earlier recognized the possibility of calculating cubature formulae via
solving a system of equations similiar to (21), equations (7.1.6)–(7.1.9) in [20].
However equations (21) may be easier to use, partly because they are quadratic
whereas Xu’s equations are quartic.

Our efforts to construct cubature formulae via commuting extensions yielded
an algorithm for calculating general Radon type formulae (i.e.7 node, degree 5,
cubature rules for two variable integrals with general �, w(x1, x2)). Several Radon
formulas for non standard domains were found. In [9], we describe the calcula-
tion via commuting extensions of several new formulae of degrees 13, 15, 17 for
� = R2, w(x1, x2) = exp(−x2

1 − x2
2 ). It seems that our degree 17 formula has the

least number of nodes of all known formulae (as listed in [5]).
In all our calculations the simultaneous diagonalization was easily done using

the algorithm from [1].

5 Summary and open questions

The central results of this paper are theorems 9,10,11, which prove the equivalence
of cubature formulae and commuting extensions satisfying the compatibility con-
dition (equivalent in an appropriate basis to requiring certain zero blocks in the
extension matrices). This raises the questions of existence and methods of com-
putation for commuting extensions. Our knowledge of the theory of commuting
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extensions is summarized by theorems 1 to 6, and in the end of section 2 we have
briefly described our initial attempts at their computation.

There is clearly enormous potential for further work here. In the context of our
main topic, the connection between cubature formulae and commuting extensions,
there is one open issue mentioned several times in section 5: We have not yet
presented an interpretation of the vector space V , on which the commuting exten-
sions act, as a space of functions (or maybe even polynomials). For numerical
work in quantum mechanics it would be a major advantage if we could construct
finite dimensional function spaces containing the space of all polynomials of a
given degree as a subspace, on which the natural projections of the operators xi

commute. The existence (or nonexistence) of such spaces is a topic we hope to
investigate. Possible connections with Xu’s work [20], [21] were indicated, see
also [2].

Another question left open in our work is that we have not given an existence
proof of cubature formulae from the commuting extension viewpoint. Although
theorem 1 in section 2 guarantees the existence of commuting extensions of an
arbitrary set of matrices, it does not guarantee extensions in the form required
for application of theorem 11. An existence proof for commuting extensions of
this form would provide an alternative approach to Tchakaloff’s theorem [17] that
guarantees (for any suitable domain � and weight function w(x)) the existence of
positive weight cubature rules that are exact for certain sets of functions.

The numerical question of computing cubature formulae is now subsumed
under the more general question of computing commuting extensions; likewise
the open sore that there is no good way to predict the minimal number of points
needed for a cubature rule is now subsumed under the question of finding the
minimal dimension for commuting extensions. There are a number of points in
the theory of commuting extensions which we feel may be improved, for example,
existence of symmetric commuting extensions for symmetric matrices may well be
provable, but we suspect the question of minimal dimension is extremely difficult.
Fortunately, just because it is difficult theoretically does not mean answers cannot
be found numerically, and we are hopeful that good algorithms can be devised that
find commuting extensions of a given dimension, if they exist. The determining
equations are linear and quadratic, and although there surely will be ill-condition-
ing in certain cases, it is hard to see why this should be so in general. Our attempts
to compute commuting extensions numerically are at an initial and tentative stage;
there is much more that can be tried here.

Another aspect to be considered in construction of cubature formulae/commut-
ing extensions is symmetry in the domain � and weight w(x). This will clearly
influence the matrices Ai , which represent the natural projections of the operators
xi , and should be respected in construction of the extensions Ãi , see also [2].

We hope very much that more applications will emerge for the notion of com-
muting extensions. The idea that noncommutativity can be resolved by introducing
extra dimensions is a very natural one. In fact, we suspect that, more than the ranks
or the norms of commutators, the size of minimal commuting extensions is prob-
ably the best measure of how noncommuting a set of matrices is.

The minimal size issue appears in other settings too. For example, given a set
of m × n matrices Ai we can ask what is the smallest N such that there exist an
m×N matrix U and an n×N matrix V , both with orthonormal rows, and N ×N
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diagonal matrices �i , such that Ai = U�iV
T . In our context, this provides a

natural generalization of the singular value decomposition of a single matrix, in
the same way that (26) provides the generalization of diagonalization of a single
symmetric matrix.

Acknowledgements We thank Jonathan Beck, Harry Dym, Yair Goldfarb, Gene Golub, Chen
Greif, Ronny Hadani, David Kessler and Steve Shnider for suggestions and comments at various
stages of this work.

References

1. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simultaneous diago-
nalization. SIAM J.Matrix Anal. and Appl. 14 927–949 (1993); Cardoso, J-F., Souloumiac,
A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. and Appl. 17
161–164 (1996)

2. Cargo, M.C., Littlejohn, R.G.: Multidimensional DVRs from incomplete quadrature
formulas. CIMMS-IPAM Workshop, Molecular Modeling and Computation: Perspec-
tives and Challenges, November 2002 http://www.cimms.caltech.edu/ work-
shops.html

3. Cools, R.: Constructing cubature formulae: the science behind the art. Acta Numerica 1–54
(1997)

4. Cools, R., Mysovskikh, I.P., Schmid, H.J.: Cubature formulae and orthogonal polynomials.
J.Comp.Appl.Math. 127 121–152 (2001)

5. Cools, R.: An encylcopaedia of cubature formulas. J.Complexity. 19 445–453 (2003),
http://www.cs.kuleuven.ac.be/∼nines/research/ecf/ecf.html

6. Davis, P.J.: Circulant Matrices. Wiley, 1979
7. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, 1984
8. Dawes, R., Carrington Jr, T.: A multidimensional discrete variable representation basis ob-

tained by simultaneous diagonalization. J.Chem.Phys 121 726–736 (2004)
9. Degani, I.: PhD Thesis, submitted August 2004 to the Feinberg Graduate School, Weizmann

Institute of Science, revised and accepted February 2005
10. Dickinson, A.S., Certain, P.R.: Calculation of matrix elements for one-dimensional quantum

mechanical problems. J.Chem.Phys. 49 4209–4211 (1968); Harris, D.O., Engerholm, G.G.,
Gwinn, W.D.: Calculation of matrix elements for one-dimensional quantum mechanical
problems and the application to anharmonic oscillators. J.Chem.Phys. 43 151 (1965)

11. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23 221–
230 (1969); Gautschi, W.: On the construction of Gaussian quadrature rules from modified
moments. Math.Comp. 24 245–260 (1970); Sack, R.A., Donovan, A.F.: An algorithm for
Gaussian quadrature given modified moments. Numer.Math. 18 465–478 (1972)

12. Littlejohn, R.G., Cargo, M., Carrington Jr, T., Mitchell, K.A., Poirier, B.: A general frame-
work for discrete variable representation basis sets. J.Chem.Phys. 116 8691–8703 (2002)

13. Möller, H.M.: Kubaturformeln mit minimaler Knotenzahl. Numer.Math. 25 185–200 (1976)
14. Möller, H.M.: Lower Bounds for the number of nodes in cubature formulae. In: G. Häm-

merlin (Ed.) Numerische Integration International Series of Numerical Mathematics, 45,
Birkhäuser, Basel 221–230 (1979)

15. Schiff, J., Degani, I.: Gaussian quadrature without orthogonal polynomials. preprint
16. Tannor, D.J.: Introduction to Quantum Mechanics: A Time Dependent Perspective. Uni-

versity Science Press, Sausalito (2004); Light, J.C., Carrington, T.: Discrete-variable rep-
resentations and their utilization. In: I.Prigogine and S.A.Rice (Ed.), Advances in chemical
physics 114 (2000)

17. Tchakaloff, V.: Formules de cubatures méchaniques à coefficients non negatifs. Bull. Sci.
Math. 81 123–134 (1957); Davis, P.J.: A construction of nonnegative approximate quadra-
tures. Math. Comp. 21 578–582 (1967)

18. Weisstein, E.W.: Sturmian Separation Theorem. from MathWorld - A Wolfram web resource
http://mathworld.wolfram.com/SturmianSeparationTheorem.html

19. Xu,Y.: Block Jacobi matrices and zeros of multivariate orthogonal polynomials. Trans.Amer.
Math. Soc. 342 855–866 (1994)



500 I. Degani et al.

20. Xu, Y.: Common zeros of polynomials in several variables and higher dimensional quadra-
ture. Pitman research notes in mathematics, Longman, Essex (1994)

21. Xu, Y.: Polynomial interpolation in several variables, cubature formulae, and ideals.
Adv.Comp.Math. 12 363–376 (2000)

22. Xu, Y.: Cubature Formulae and Polynomial Ideals. Adv.App.Math. 23 211–233
23. Xu, Y.: On Orthogonal Polynomials in Several Variables. Fields Inst.Comm. 14 247–270

(1997)


