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ABSTRACT Keywords

In this paper we consider a common form of the English auction Discrete bids, English auction, optimal auction design.
that is widely used in online Internet auctions. THiscrete bid

auction requires that the bidders may only submit bids which meet General Terms

some predetermined discrete bid levels and, thus, there exists a

minimal increment with which a bidder may raise the current price. Algorithms, Design, Economics, Theory

In contrast, the academic literature of optimal auction design deals

almost solely withcontinuous bid auctions, and, as a result, there 1. INTRODUCTION

is little practical guidance as to how an auctioneer, who is seeking
to maximise his revenue, should determine the number and value
of these discrete bid levels. Consequently, in current online auc-
tions, a fixed bid increment is commonly implemented, despite this
having been shown to be optimal in only limited cases.

Given this background, in this paper, our aim is to provide the
optimal auction design for an English auction with discrete bid
levels. To this end, we derive an expression that relates the ex-
pected revenue of the auction, to the actual discrete bid levels im-
plemented, the number of bidders participating, and the distribution

from which the bidders draw their private independent valuations. literature on tion theor mes that the bid increment i n
We use this expression to derive numerical and analytical SOIUtionsti:usuus Zg d ?huucs ?)i d d:rcs), )r/ngss:ub?r']sit e?(treriel srr?a?l ir?cre rsn (e:gts-
for the optimal bid levels in the general case. To compare these re-. y y

sults with previous work, we apply these solutions to an example, In Order to_ C.)Utb'd the current hlghe_st b!dd_er. As .SUCh’ the liter-
where bidders’ valuations are drawn from a uniform distribution, 2tUre implicitly makes two assumptions: (i) that bidders have no

In this case, we prove that when there are more than two bidders, atlme constraints, and (ii) that bidding is not costly. However, the

decreasing bid increment is optimal and we show that the optimal prevalence of discrete bid levels within online auctions contradicts
reserve price of the auction increases as the number of bidders in-bOth these assumptions. Specifically, the use of discrete bid levels

creases. Finally, we compare the properties of an auction in which radically reduces the number of bids submitted during the course

optimal bid levels are used, to the standard auction approach whichOf.the auction (bgcause the price INCreases t.o the expected closing
implements a fixed bid increment. In so doing, we show that the price of the auction through much larger bid increments) and thus

optimal bid levels result in improvements in the revenue, duration :ieo(:]u(c::(e):ts(:gg]lz?riélr:)eirg?(?rtr;h:”a(?fcttfl]%n[}:rl(tiec:sip:l?](tjstg? tﬁg”l?#g:ia'
and allocative efficiency of the auction. state of the auction. In addition to these effects, the introduction of
discrete bid levels causes many well known results from the contin-
uous bid auction literature to fail. For example, the bidders within
Categories and Subject Descriptors the auction no longer have a dominant bidding strategy [11] and, as
the item is no longer guaranteed to be allocated to the bidder with
the highest valuation, thRevenue Equivalence Theorem no longer
applies [4].

To rectify this ommission, our aim is to provide the revenue max-
imising design for an English auction with discrete bid levels. Now,

Online Internet auctions continue to attract many customers, and
currently sell goods worth over $30 billion annually. Now, at this
time, over 80% of these online auctions implement a single proto-
col; the open ascending price or English auction [5]. Under this
protocol, the auctioneer announces that an item is for sale, fixes the
opening bid and then allows bidders to increase the bid by a fixed
discrete amount. The auction proceeds until no bidder is willing
to further increase the bid and the item is awarded to the current
highest bidder in exchange of its bid’s payment.

In contrast to these actual implementations, most of the academic

1.2.11 Distributed Atrtificial Intelligence ]: Intelligent agents

Permission to make digital or hard copies of all or part of thknfor in our case, th_is optimal auc_tion design involves determining_both
personal or classroom use is granted without fee providatidbpies are the reserve price of the auction and the number and distribution of
not made or distributed for profit or commercial advantage aatidbpies the discrete bid levels. Previous work in this area has addressed this

bear this notice and the full citation on the first page. Toyoofherwise, to question in a number of very limited cases. For example, Rothkopf
republish, to pgft onfservers or to redistribute to listguies prior specific  anq Hastard considered several cases where the number of bidders
permission and/or a tee. . . .

EC'05, June 5-8, 2005, Vancouver, British Columbia, Canada. and the number of discrete bid levels was restricted to two [8].

Copyright 2005 ACM 1-59593-049-3/05/000655.00. In the case of two bidders with valuations that are independently
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drawn from a uniform distribution, they showed that it was optimal 2. RELATED WORK

to use afixed bid increment with evenly spaced bid levels [8]. HOW- The problem of optimal auction design has been studied extensively
ever, it has proved difficult to generalize these results and thus for oy the case of auctions with continuous bid increments [7, 6]. In
instances with a larger numbers of bidders, whose valuations areg;ch auctions, thRevenue Equivalence Theorem states that all fea-
drawn from arbitrary distributions, there is no guidance available. sjpje efficient auctions generate the same revenue, thus the interest-
This lack of guidance means that most online auctions implement jng design question concerns the reserve price of the auction (i.e.
discrete bid levels with a fixed bid increment, despite the limited jn continuous English auctions, the price at which the bidding com-
applicability of this result. mences). In general, setting a reserve price increases the revenue
_Thus, against this background, we derive general results that in- of the auction and, thus, optimal auction design is concerned with
dicate how the discrete bid levels should be set in order to maximise finding the reserve price that maximises the expected revenue of the
the revenue of the auctioneer. Specifically, we extend the state ofactioneer. For example, in the case of bidders’ valuations drawn
the artin this area in four key ways: from a uniform distribution in the range, 7], this work shows that
the reserve price of the auction should be thex(v,7/2) and is
thus independent of the number of bidders in the auction [7].

In contrast to the literature of continuous bid auctions, the case
of discrete bid levels has received little attention, although some
preliminary works exists. Much of this work is based on the as-
sumption that there is a fixed bid increment and thus the price of
the auction ascends in fixed size steps [10, 4, 11, 2, 1].

In more detatil, Yamey first considered this scenario and com-
mented that such bidding rules appear to have the effect of speed-
ing up the auction proceedings and hence reduce the costs of both

2 We demonstrate how this exoression is used to determine thethe auctioneer and the bidders [10]. He concluded that if the fixed
: p bid increment is small, the expected revenue of the auction will

optimal bid levels and how these levels can be calculated nu- approximate the second highest price.

Harstad, we consioier an example case where bidders’ valua—pr'.ce sealet_:l bl_d auction where bidders’ mdependen_t valu_atlons were
tions are drawn independently from a common uniform dis- unlfg_rm_lydlst_rlbL_lted [4]. He shqwed thatasymmetrlc_gnlque Nash
tribution. For such cases, we prove that when there are more equilibrium blddm.g. strategy exists a_nd that t.hls eqL_nIlbrlum con-
than two bidd i ’ i ithin th " q verges to the equilibrium of the continuous bid auction, as the bid
insr;)i(\jlvicr)lcrlemzrr?t %aééiilrazllg%(\jlvtlhulg th:ir?tue i\l/grt’):thgnezis(’j— increment reducgs to zero. In adgjitio'n, he showed that the expected
levels decreases with each bid level. For the first time, we are revenue of the _dlscrete .b'd au_ctlon Is always Iess_, than that of t_he
) ' equivalent continuous bid auction. Thus, the auctioneer has an in-

gglcerég::lscﬁtlﬁz b?ég:en da%tr'(;ﬂlyninn(:bnel:rgft;'i%ﬁlé%erlf\gntg'fso ; centive to make the bid increments as small as possible, assuming
P Y that the time and communication costs of the bidding can be ig-
any number of bidders. nored

Yu again considered auctions with fixed bid increments, but stud-
serve price for auctions with a finite number of discrete bid I;.g esaeccho?]fdth?ifcoeu;gggang%aéﬁ'?gﬁ Ségcg:ibhhgjgzgﬁgﬁﬁeaéid'
levels is dependent on the number of bidders participating tenain Chw?e’s result, she s’howgd that in each of the auctior{ ro-
in the auction. Moreover, we show that this reserve price tocol 9 tri ' trat ilibri ists. Specifi FI)I
should increase as this number of bidders increases and we oco> & SYMMENIC pure stralegy equiiionum exists. speciically,
show how this result is calculated for any bidders’ valuation n_o_domlnant strategy was |Qentlf|ed for _the Engllsh_protoqc_)l. .Ad'
distribution. dltlonally, for the. segond-prlce sgaled-blq protocol, in equnlbrlum

some bidders will bid above their valuation and some others will
bid below their valuatioh Finally, for each of the protocols, it was
proved that as the number of bid levels become very large (i.e. the
bid increment becomes small), the equilibrium bids converge to the
equilibrium bids of the corresponding continuous bid auction.
_ In contrast to this work, Rothkopf and Harstad considered the
more general question of determining the optimal number and value
of these bid levels [8]. They provided a full discussion of how the

The results that we provide in this paper may be used in the designdiscrete bid levels affect the expected revenue of the auction and
of online auctions or may be used by automated trading agents thatthey considered two different distributions for the bidders’ private
are adopting the role of an auctioneer within a multi-agent system. Valuations: a uniform and an exponential distribution. In the case
The remainder of the paper is organized as follows: in section qf the un}f0rm dls.trlbutlon, they considered two §peC|f|c instances:
2 we present related work and in section 3 we develop our auction () two bidders with any number of allowable bid levels, and (ii)
model. In section 4 we derive a general expression for the expectedtWo allowable bid levels and any number of bidders. In the first
revenue of the auction and we use this result in section 5 to showinstance, evenly space bid levels (i.e. a fixed bid increment) was
how the optimal bid levels can be derived analytically and deter- found to be the optimal. Whilst in the second instance, the bid in-
mined numerically. Also in section 5, we compare with calculated
and simulated results, the properties of the auction when optimal 1This is in contrast to the dominant strategy that exists in the

and fixed bid increments are implemented. Finally, we conclude second-price sealed-bid continuous bid auction, where bidders bid
and suggest areas of future work in section 6. their true private valuations.

1. We consider the same model of an ascending price auction
with discrete bid levels that was proposed by Rothkopf and
Harstad [8]. But, rather than considering simple instances
with limited numbers of bidders or bid levels, we are able
to derive, for the first time, a general expression for the ex-
pected revenue of the auction. This expression relates the
expected auction revenue to the specific discrete bid levels
used in that auction and is valid for any number of bidders
and any distribution of bidders’ private valuations.

3. We show that contrary to the continuous bid result, the re-

4. We compare the revenue generated by the auction with op-
timal bid levels, with that generated in the more commonly
implemented auction with a fixed bid increment. We show
that for the same number of bid levels, the optimal auction
generates more revenue, decreases the duration of the auc
tion and increases the allocative efficiency of the auction.
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crement was shown to decrease as the auction progressed (this de
crease was described analytically). For the exponential distribution

of bidders’ valuations, the instance of just two bidders was again lica l; liva
considered and the optimal bid increment was shown to increase as

the auction progressed.
In this paper, we extend the work of Rothkopf and Harstad. We | Case 1
consider the same model of the ascending price auction, but derive © O O

the optimal bid levels in the general case with any distribution of
bidders’ valuations, any number of bid levels, and any number of
bidders. In contrast to their work, we make no assumptions regard-
ing the value of the first bid level, and thus we derive the optimum
reserve price of the auction at the same time as deriving the opti-
mal bid levels. Compared to the continuous case auction, where ‘ [ |

Two or more bidders have valuations betwélen; 1) and no
bidders have valuations> ;1.

it is well known that the optimal reserve price is independent of | case 2
the number of bidders [7, 6], here we show that for auctions with
discrete bid levels, the optimal reserve price is indeed dependent
on the number of bidders. Moreover, we show that whilst the opti-
mal reserve price approaches that of the continuous auction as the|
number of bid levels increases, it approaches this limit slowly.

|
|oo | ®

One bidder has a valuation > 1,11, one or more bidder$
have valuations in the randg, l;+1) and the bidder with th¢
highest valuation was selected as the current highest bidder at
l;.
3. AUCTION MODEL

We consider an auction in whiehrisk neutral bidders are attempt-
ing to buy a single item from a risk neutral auctioneer. Bidders have | | |
independent private valuations, drawn from a common continu- Case 3 ’ o Cl) | o

ous probability density functiory,(v), within the rangdv, 7]. This

probability density function has a cumulative distribution function,

F(v), and with no loss of generality, we can state thév) = 0 One bidder has a valuatian> [;, one or more bidders have
andF(v) = 1. valuations in the rang@;, l;+1), and the bidder with the high-

The bidders participate in an ascending price auction, whereby | est valuation was not selected as the current highest bidder at
the bids are restricted to discrete levels which are determined by the

auctioneer. We assume there aret- 1 discrete bid levels, starting
atly and ending at,,. At this point, we make no constraints on
the actual number of these bid levels, nor on the intervals between
them. Figure 1: Diagram showing the three cases whereby the auction
In the work of Rothkopf and Harstad, the standard oral English closes at the bid level;. In each case, the circles indicate a
auction is considered and thus, when implemented with discrete bid bidder’s private valuation and the arrow indicates the bid level
levels, there is no dominant bidding strategy. In our work we mod- at which that bidder was selected as the current highest bidder.
ify the auction protocol in such a way that the bidders have a domi-
nant strategy, and the analysis of the auction revenue developed by
Rothkopf and Harstad is still valid. Under this modified protocol,
the auctioneer proposes the first bid levgl,and then all bidders
willing to pay this price and thus continue within the auction, indi-
cate this to the auctioneer. At this point, the auctioneer randomly
selects one bidder from amongst these willing bidders. This bid- 4. AUCTION REVENUE
der is nominated as the current highest bidder and this nominationIn order to calculate the optimal bid levels, we must first find an
is announced to all the participants. The auctioneer then proposesexpression for the expected revenue of the auctioneer, given the
the next bid level];, and again bidders indicate their willingness specific discrete bid levels used in that auction. Following the work
to remain in the auction. Again, one bidder from amongst these of Rothkopf and Harstad, we can describe the probability of the
willing bidders is randomly selected as the current highest bidder. auction closing at any particular bid level by considering three ex-
The auction proceeds, with the price ascending through the discretehaustive and mutually exclusive cases [8]. These three cases are
bid levels, until no bidders are willing to pay the new higher offer shown in figure 1 and they describe all the possible configurations
price. The auction then closes and the item is sold to the current of bidders’ valuations that lead to the auction closing at a bid level
highest biddef. of I;. In the diagram, the valuations of the bidders are shown as
Unlike the conventional oral auction with discrete bid levels, un- circles and the arrows indicate which bidder was nominated as the
der our modified auction protocol, bidders have a simple dominant current highest bidder at each bid level. We can describe each case
strategy; they should continue to participate in the auction and thus as:
bid at each bid level, until the current bid level exceeds their pri-
vate valuation. There is no need for the bidders to strategise over
the valuations of the other bidders, nor need they strategise over the
timing of their bids. As such, this auction protocol is particularly

li—q.

attractive in computational setting where the bidders are likely to
be automated trading agents with limited complexity.

Case 1 Two or more bidders have a valuation greater than bid level
l;, but none of these bidders have valuations greater than
li+1. Thus, once the bid price has reacligdno bidder is

able to increase the bid any further, and the item is allocated

2This auction protocol is similar to the Japanese variant of the En- to the current highest bidder. In this case, the revenue earned
glish auction, with the addition of discrete bid levels [3]. by the auctioneer is less than that which would have been
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earned in a continuous auction (i.e. the second highest valu- final expression is described as:
ation) and the outcome may be inefficient as the item is not

necessarily allocated to the bidder with the highest valuation. nF(lo)" ' [1 = F(lo)] i=0
Case 2 Two or more bidders have valuations betweéeand/; 1 P(case3l;) = 11\ Ekn k1

and a single bidder has a valuation greater than. As Z k mF(li_l)

this single bidder was also the current highest bidder when k=1 & )

the bid level reacheéi, none of the other bidders have val- X [F(li) = F(li-)]" 1 = F(L)] >0

uations sufficient to raise the bid tp,;. Thus the auction (3

closes at the pricg and the item is allocated to the bidder
with the highest valuation. Again, the revenue earned by the
auctioneer is less than that which would have been earned
in a continuous auction, but the outcome is allocatively effi-
cient.

Now, as these three expressions completely describe all the possible
ways in which the auction may close at any particular bid level, we
can find the expected revenue of the auctioneer by simply summing
over all possible bid levels and weighting each by the revenue that
it generates. Thus the expected revenue of the auction is given by:

Case 3 This is identical to case two, with the exception that the m
bidder with the highest valuation is not the current highest B = > I [P(casell;) + P(case2l;) + P(case3l)]  (4)
bidder. Thus, this bidder is forced to raise the bid level fur- i=0
ther and the auction closes at the bid ldvetather thard; ;. The resulting expression at this stage is extremely complex due
Again this case is allocatively efficient, however the revenue tg the combinatorial sums in equations 1, 2 and 3. However, as
earned by the auctioneer is actually greater than that earmnedgetailed in appendix A, it is possible to significantly simply this
In a continuous auction. expression (noting that with no loss of generality we can define
F(l;m+1) = 1), to give the final result:
The expected revenue of the auction is thus dependent on the proba- " i) P
bility of each of these three cases occurring. Each of these probabil- ., _ i+)" = FU)™ 1, . N . )
ities can be described in terms of the cumulative distribution func- E= ; F(lig1) — F(l) (1= F(l) =l (1 F(l”l)]
tion of the bidders’ valuationgy'(v). Thus, given thaP’(casell;) B (5)
represents the probability that case one occurs and that the auc-
tion closes at bid level;, we can describe the probability of this  This expression is a key result and all of the results that we present
case occurring by considerikgoidders having valuations between in this paper stem from the fact that we have been able to express
bid levelsi; andl;+;. The probability of this occurring is sim-  the revenue of the auction in a relatively compact form. Unlike

ply described byF (I;11) — F(1;)]*, whilst the probability that all previous work that has considered simple instances of the auction,
the othern — k bidders have valuations beldly is described by for example, those with just two bidders or two bid levels, this is
F(1;)"*. Thus, we can find?(casell;) by summing over all a general expression. It relates the revenue of the auction to the
possible values of to give: actual bid levels used, and is valid for any number of bid levels,

any number of bidders, and for any valuation distribution function
_ " (n ek & which is described by’(v). Also, unlike the earlier work, we make
P(casell;) = Z (k:) F(L:) [Flis1) = F(L:)] 1 no assumptions about the positions of the first and last bid level.
k=2 Whereas, Rothkopf and Hastard fixed these at the extremes of the
Likewise, we can perform a similar calculation for case two, where bidders’ valuation distribution (i.elo = v andl,, = ), we make
we havek bidders with valuations between andl; 1, one bid-  them free parameters and allow them to take any value. 3ince
der with a valuation greater thdn.; andn — k — 1 bidders with is equivalent to the reserve price of the auction, we thus determine
valuations below;. In this case we must also consider the probabil- the optimal reserve price and the optimal bid levels by the same
ity that the bidder with the highest valuation is the current highest Process.
bidder. Under our assumption that this selection is random, this

probability is simply given by#, and thus the whole expression 5 OPTIMAL AUCTION DESIGN
is described as: . . . . .
The expression derived in the last section describes the expected

11\ n - revenue of the auction when discrete bid levgls. . [, are used.
P(case2l;) = ) 5 k—_HF(li)n Having derived this, a key question that we can now ask is how does
k=1 this revenue compare to that obtained in the equivalent continuous
X [F(lis1) — F(I)]F[1 = F(liv1)] () auction? Rothkopf and Harstad considered the case where bidders’

valuations are drawn from a uniform distribution, and showed that
Finally, we consider case three, which is identical in form to case the revenue of the auction with discrete bid levels is always less
two, with the exception that the bidder with the highest valuation than that obtained in the continuous case [8]. This argument is
was not nominated as the current highest bidder at bid lgvel based on the observation that the expression for the probability of
and must thus raise the price ko The probability of this occur- case three occurring istimes the probability that case two occurs.
ring is ﬁ rather than the factog% that occurred in case two.  However, the loss in revenue (compared to the second highest valu-
Note that this description implies that there exists a bid level be- ation) that occurs in case two/istimes the gain that is achieved in
low [; and thus the expression that we derive is only valid for bid case three. Thus, the loss of revenue that occurs in case two is ex-
levelsl; .. .1,,. In order to include the instance in which the auc- actly canceled by the gain in revenue that occurs in case three. This
tion closes at the bid levé$, we do so separately and note that this leaves case one as the sole determinant of the auction revenue, and
occurs when all but one bidder have valuations bdlgwl hus the since in this case the revenue of the auctioneer is always less than
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the second highest valuation, the auction with discrete bid levels
generates less revenue than the continuous case.

In general, for any distribution of the bidders’ valuations, the
revenue generated by the auction with discrete bid levels is less
than that obtained in the equivalent continuous auction. However,
this loss in revenue must be balanced against the savings in time
and communication cost that result from using the discrete bid lev-
els. Specifically, the number of discrete bid levels strictly bounds
the maximum duration and communication costs of the auction (in
terms of the number of times that the bid level is raised and thus the
number of times that the auctioneer must update all the participants
about the state of the auction). Thus optimal auction design in the
case of auctions with discrete bid levels consists of finding the val-
ues of the bid levels that maximise the auction revenue, given that
the number of these bid levels is constrained.

Thus, in this section, we present two alternative methods for per-

d +— o
t—20
a «— maz(v,v/2)
for i=0:m
l;(t) —a+i*x(®—a)/m
while d > stopping condition,
lo(t +1) « argmax E(z,l1(t), ..., lm(t))
’ v<z<li(t)
lm—1(t), )
lm—1(t) <z <7T

Im (t + 1) «— argmax E(lo(t), . ..

for i=1:m-1
l;(t+ 1) «— argmax E(lo(t), .. ()
Li—1(t) <z <liy1(t)

Ty

forming this optimisation. The first is a numerical method which is d—20

applicable to any bidders’ valuation distribution, and allows us to for i=0:m

calculate the optimal values for bid levéis. . .1,,. The second is d — max(d, l;(t + 1) — 1;(t))
an exact analytical method, which although it is valid for all bid- te—t+1

ders’ valuation distributions, sometimes yields expressions which
can not be solved. Thus, in order to compare these approaches
and to allow comparison with the majority of the earlier work, we  Figure 2: Pseudo-code representing an algorithm to find the
consider a uniform distribution of bidders’ valuations (the uniform numerical solutions for the optimal bid levels for any distribu-
distribution is one in which the analytical expressions are solvable). tion of bidders’ private valuations.

Having derived the optimal bid levels in this case, we then compare
the properties of the auction, using calculated and simulated results,
against an auction in which the standard fixed bid increment is im-
plemented.

this range evenly spaced bid levels with a fixed bid increment are
optimal when there are only two bidders. However, as the number

5.1 Numerical Solutions

In order to find the optimal bid levels for any given number of bid-
ders and any bidders’ valuation distribution, we must simply find
the set of values foly . . . I, that maximises the revenue expres-
sion shown in equation 5. Performing this maximisation numer-
ically is reasonably straightforward, with the only particular diffi-
cultly being that the expression is indeterminate if dyet 1, or

l; = l;+1. To avoid this event, we use an iterative routine whereby
we sequentially update each bid level in turn. Thus, whilst fix-
ing all other bid levels, we find the value &f which maximises
the revenue expression, but only allowifigto vary in the range
li-1 < l; < l;+1. Between these limits, the revenue expression

is well behaved and has a single maximum. This maximum can

be found using a simple hill climbing routine or a more sophisti-
cated gradient based method. Thus, we sequentially updaterall

turn and then iterate the process until the bid levels converge to the
necessary accuracy. This iterative procedure is shown as pseudo

code in figure 2 where the expressibiflo, . . .
revenue expression shown in equation 5.
This numerical routine is valid for any bidders’ valuation distri-
bution that we can describe y(v). Thus, in the case of the uni-
form distribution with rangégu, 7], f(v) = iiv andF(v) = 2—.
In the examples that follow, we choose this range t¢1h&0] and
thusy = 1 andv = 10. In figure 3 we show the optimal bid levels
diagrammatically for three different numbers of bidders< 2, 20
and40). In figure 4 we show the results plotted over a continuous
range of the number of bidders varying continuously from 2 to 100.
For the case where = 2, we find that the optimal distribution

,Im) represents the

of bidders increases, we find that the value of the optimal first bid
level, lo, increases and also that the bid levels become increasingly
closer spaced (i.e. the bid increment decreases as the auction pro-
gresses). This behavior is dependent on the particular distribution
from which the bidders’ valuations are drawn, and, intuitively, we
can see that given a fixed number of bid levels, we should set them
closer together in areas where we are most likely to differentiate
the bidders with the highest valuations. Thus, in the uniform case,
as the number of bidders increases, we are more likely to find the
bidders with the highest valuations increasingly closer to the up-
per limit of the distribution and thus the bid levels should become
closer together in this area. With other valuation distributions, dif-
ferent patterns emerge. For example, in the case of an exponential
distribution, which we do not consider in detail in this paper, the
bid increment begins by decreasing with each bid level, reaches a
minimum size and then begins to increase again. In this case, the
point at which the bid levels are most closely spaced is where we
are most likely to find the bidder with the second highest valuation.

5.2 Analytical Solutions

Whilst the previous section presented a numerical solution that al-
lows us to solve for the optimal values of the discrete bid levels, it
is valuable to be able to perform this maximisation analytically. To
do so we must find the partial derivatives of the revenue expression
given in equation 5, with respect to any individual bid lekelWe
can then solve this expression ®E/9l; = 0, and thus find the
value ofl; that maximises the revenue.

Thus to perform this differentiation, we must note that efch

of bid levels is to have a fixed bid increment and thus evenly spaced occurs in the summation of equation 5 twice. For example, the bid

bid levels. The first bid level, occurs ainax(v,v/2), as expected

level [5 occurs in the summation term when= 5, asF'(l;), and

from the literature of optimal reserve prices in continuous auctions also in the proceeding term whén= 4, asF'(l;+1). Thus, for a

[6, 7]. Now, when Rothkopf and Harstad fixed the first and last
bid levels such thaly = v andl,, = w, they showed that within
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uniform bidders’ valuation distribution, we substitute our analytical

expressionF'(l;) = % into these two terms and differentiate
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Figure 3: Optimal bid levels (m=10) plotted for three example ~ Figure 4: Optimal bid levels (m=10) plotted against an increas-
numbers of bidders (n=2, 20 and 40)with private valuations ing number of bidders with private valuations drawn from a
drawn from a uniform distribution with range [1,10]. uniform distribution with range [1,10].
them to give: bidders within the auction [6, 7] and is described by:
OFE _(liy1 —v)" — (li-a — )" F )" ' f(v*) + Fv*) = 1] =0 (10)
ol; o (5 — y)”

In the case of the uniform distribution with ranfe 7], this gives
nlici(li —v)" " = nliga (L —v)" " ©6) avalue ofv* = max(v,7/2). In addition, in discrete bid auctions
T—v)" with a fixed bid increment, it has been shown that the optimal re-
serve price matches this continuous auction result [9]. However,
in contrast to these two results, we show that in the case of a fixed
number of discrete optimal bid levels, the reserve price is not inde-
pendent of the number of bidders participating in the auction.
l . "i/(l”l — ) — (lisg —0)" As before, we can derive an analytical solution for the value of
i =2

In order to find the value df that maximises the revenue, we must
make this partial derivative equal to zero (i€E/0l; = 0) and
solve the resulting expression. This gives the result:

(1) lop by again considering the partial derivatives of the revenue ex-
pression in equation 5. This time we differentiate with respect to

This expression relates any individual optimal bid level to the bid /o, and as this only occurs within one term of the summation, this

levels on either side of it. Thus, if we consider the specific case gives the result:

wheren = 2, we can simplify this expression to give: 0F _ (=)™ — (lo — )" —n(lo — v)"“(lo — B+ 1)

li—1 —; lit1 @8) Ol (T—o)"

11)
Thus, the value of; is midway betwee;_, andl;;1, and as this
is true for alll;, the optimal distribution of bid levels is an even
spacing with a fixed bid increment. If we consider the case when
n > 2, we can show that:

n(liz1 —li—1)

L =

As before, in order to maximise the revenue, we must solve for
OE/dly = 0. However, unlike the derivation of the othgr we
can not solve the resulting expression analytically. However, we
can simplify it slightly to give:
lic1+lipa _

li > ———— ) (h—0)"—=(lo—v)" —n(lo—v)" (o —T+1L)=0 (12)
Again, as this is true for all;, the optimal distribution of bid lev- If we consider a large number of bid levels and thus= lo + &
els consists of a decreasing bid increment, whereby the bid levelswheres is small, we can see that the above expression has solutions
become closer together as the auction progresses (see Appendix Blose tay = v andly = 7/2. These findings agree with the contin-

for a proof of this result). uous auction results. However, in figure 5, we show the numerical
. . results for this optimal reserve price as we increase the number of
5.3 Optimal Reserve Price finite discrete bid levels (i.en = 10, 100 and1000). In each case,

Aside from the changing bid increment, the most notable feature we can see that when the number of bidders is small, the optimal
of the numerical results plotted in the previous section, is that the reserve price approaches the continuous auction result. However,
value of the starting bid levely, increases as the number of bidders as the number of bidders increases, the optimal reserve price also
increases. This bid level represents the reserve price of the auctionincreases. By increasing the number of discrete bid levels (i.e. in-
If there are no bidders willing to pay this amount, the auction closes creasing m), we can delay this increase slightly. However, even for
with no sale occurring and the item is discarded by the auctioneer. moderate number of bidders, we require an extremely large num-
The literature of optimal auction design in continuous auctions, in- ber of discrete bid levels in order to approach the continuous result.
dicates that this reserve pricg;, is independent of the number of  For example, as shown in figure 5, even with 1000 bid levels, the
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Figure 5: Optimal auction reserve price for three different
numbers of discrete bid levels(m=10, 100 and 1000) Results Auction Duration
are shown for an increasing number of bidders with private val-
uations drawn from a uniform distribution with range [1,10].
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optimal reserve price is only close to the continuous result when
there are less than 20 bidders.

5.4 Auction Properties

Finally, having shown that we can derive both numerical and ana-
lytical solutions for the optimal bid levels, we consider how these

optimal bid levels affect the properties of the auction. We consider
three properties: (i) the expected revenue of the auction (i.e. the
property that we have maximised in the derivation of the optimal 0 : : : ‘
bid levels), (ii) the expected duration of the auction (measured in 0 20 Nur%%er of Bsigders 80 100
terms of the number of bid levels that the price has been raised
through) and (iii) the allocative efficiency of the auction expressed

as the probability that the item is sold to the bidder with the high-

est private valuatich Given these measures, we then compare the

Auction Allocative Efficiency

auction with optimal bid levels with the more commonly imple- ! Q
mented auction where the bid increment is fixed and the bid levels Z\hg\@*%
are evenly spaced betweerandw. As in the previous examples, 0.80
we assume an instance in which there are bid lelets 119 (i.e. N
m = 10) and we vary the number of bidders continuously from .
n=21t0100. 0.6r o
For each number of bidders, we use the numerical methods pre- R
sented in section 5 to find the optimal bid levels. We then use these 0.4 o
bid levels to calculate the expected revenue, duration and efficiency "
of the auction. The first is calculated using the revenue expression Te
shown in equation 5. The other two properties are calculated as 0.2r o~
described in appendices C and D. We then compare these measures ©T-e--
to those calculated when a fixed bid increment is used. We present 0 ‘ ‘ ‘ ‘
these calculated results alongside simulation results, where we im- 0 20 40 60 80 100
plement the auction, assign private valuations to the bidders within Number Of Bidders

the auction and then simulate the bidding process. We record the

closing price of the auction, the duration of the auction and the

number of times that the winner of the auction was the bidder with

the highest valuation. We simulate this auction 10,000 times for Figure 6: Simulation and calculated results for the three key
different bid valuations and average over these simulation runs to auction performance measures when evenly spacinglgshed

3 - o ~lines) and optimal (solid lineg discrete bid levels are used. In
0L be the expociad AmoLI: that ne VAIL of the winring bid faty (S €Xample,y=1, v=10and =10 The simulation results are
below the highest valuation. However, we observe that this measure"".\'erf?‘.geOI lover 13’00?1 aucrt:on_s ani tL'e resutl)tlr?g error bars are
shows a similar trend to that of the expected auction revenue, andS!gnificantly smaller than the size of the symbols.
thus don'’t present it here.
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present average results. In all cases, the size of the error bars oruniform distribution. For this, we proved that when there are more
these results are significantly smaller than the size of the plotted than two bidders, it is optimal to implement a decreasing bid incre-
symbols (for example, in the case of optimal bid levels with 30 ment so that the interval between bid levels decreases as the auc-
bidders, the expected revenue of the auctiof.4dd + 0.01), and tion proceeds. Moreover, we showed that as the number of bidders
thus we omit them. increases, the optimal reserve price of the auction also increases.
We show these simulated and calculated comparisons in figure 6.Finally, we compared an auction implementing these optimal bids
If we first consider the case of the auction with evenly spaced bid levels to the more common approach of evenly spaced levels, and
levels, as expected, we see that the revenue of the auction increaseshowed that using the optimal discrete bid levels result in improve-
as the number of bidders increases. Thus, the auction closes at anents in the revenue, duration and allocative efficiency of the auc-
higher bid level and we also see an increase in the auction dura-tion.
tion as bidders must raise the offer price through more bid levels  Our future work, consists of extending the analysis that we have
in order to reach this closing price. We also see a large loss in the performed here to examples where the bidders’ valuations are drawn
allocative efficiency of the auction. This loss of efficiency results from other distributions. For example, an exponential distribution
from the fact that the fixed bid increments are unable to discrimi- in which there is no upper valuation limit. Preliminary results in
nate between the bidder with different valuations, as their numbers this case indicate that the optimal bid increment is quite complex.
increase. Of the three cases discussed in section 4, case one béAe find that it initially decreases, reaches a minimum size and then
comes increasingly likely as there are several bidders with valua- subsequently increases again. We intend to explore this behaviour
tions above the current bid level, but no bidders are able to raise in more detail, by considering the limiting case whetds suffi-
the bid level further. Thus the item is allocated randomly to one of ciently large that we can express this result in terms of the density
these bidders, with the corresponding loss of allocative efficiency of bid levels. Furthermore, since our determination of the optimal
and auction revende bid levels depends on knowing both the number of bidders that are
In the case of the optimal bid levels, the bid interval becomes participating in the auction and the distribution from which their
increasingly smaller in order to prevent this loss of allocative effi- valuations are drawn, we are exploring methods to learn these pa-
ciency. Reducing the bid increment makes it more likely that a bid rameters through observations of repeated auctions. As in this pa-
level will fall between the bidders with the first and second high- per, we believe it is possible to derive a probabilistic expression
est valuations. Thus, case one (as discussed in section 4) becomeslating the revenue of the auction to these parameters, and if we
increasingly less likely to occur, and since the gain and loss of rev- can achieve this, we expect to be able to use standard techniques
enue due to cases two and three cancel each other out, reducingrom probabilistic inference in this task.
this likelihood results in an increase in the expected revenue of the
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APPENDICES
A. EXPECTED AUCTION REVENUE

Our initial expression for the revenue of the auction is derived by
summing the three cases whereby the auction closes at bid jevel
over all possible bid levels:

E = i l; [P(casell;) + P(case2l;) + P(case3!l;)] (13)

1=0

In equations 1, 2 and 3, we presented expressions for these three

probabilities. However, in order to reduce the complexity of the
final expression, we are able to simplify the combinatorial sums in
these expressions. To do so, we initially adjust the limits of the
summations and hence adjust the corresponding binomial terms.

P(casell;) Z (”) FFli) - FOF (14
P(case2l;) Zn: <n> “EF i) — FO)
X [-Ftn) (15)
nF(lo)" 1 [1 — F(lo)] i=0
P(case3l;) = “(n nk
,;2 <k> (k—1)F(li-1)
X [F(l;) — F(Lie)]* " [1 = F(l)] i>0
(16)
Now, from the identity}"}_, (})a™ *b* = (a + b)", we can
derive the result that_;_, ( ) "kpF = (a+b)"—na" " tb—a".

Thus, we can immediately S|mpI|fy equations 14 and 15 to give:

P(casell;) = F(li41)"
—nFL)" F(lia) — F(l)] - FG)" (17)
P(case2l;) = #&l“}l(}ll) Flip)"

—nF()" T [F(li) = F)) - F(L)"] - (18)

The case forP(case3l;) is more complex as we have an addi-
tional factor of k — 1 inside the summation. However, we can
use the observation that this factor arises through the differentia-
tion of b*~* to derive the identity>"}_, (7)(k — L)a™ *b* =
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b4 (330, (1)a™ *b*]. Thus, by substituting in the previous
result and differentiating the expression, we can sholejgt:2

() (k—1)a"*b* = (a+b)""" [b(n — 1) — a] + a™. Using this
result in equation 16 gives:
nF (o))" [L — F(lo)] i=0

P(case3l;) = L-F () [F(lq-_l)" — F(l)"

T F1)
FnF )Y (F ) — F(li,l))} i>0
(19)

Now, we can substitute these three expressions into our expression
for the expected revenue of the auction (equation 13), to give:

B S L2
E= ; liF(li+l) —F () [F(li_H)
— nF(li)n_l(F(l1+1) F(ll)) _ F(lz)"]
+ Zl P;(El) - [Pty
+nF(l)"" ( (i) — F(li- 1))_F(li)"]

+ lonF(l)" (1 — F(lo)) (20)

Clearly, many terms in these expressions cancel with each other.
The middle terms of each summation are equal and opposite when
l; is betweeri; andi,,,. Additionally, the term that is left over from
this cancellation (i.e. wheh= 0), cancels with the additional term
P(case3ly). This gives the simpler result:

m

E= LF(;;)*% [F(liva)" — F(l:)"]
+y zﬁiﬁé}) Fi )"~ F)" (21)

Finally, by changing the indices of the second summation and using
the fact that, with no loss of generality, we can state Hi@t, 1) =
1, we can combine these two summations to give the final result:

[l‘(l — F(l:)) = lig1(1 = F(liy1)]
(22)

This final expression relates the expected revenue of the auction-
eer to the discrete bid levels used in the auction and the cumula-
tive distribution from which the bidders’ independent valuations
are drawn.

B. PROOF OF OPTIMAL DECREASING
BID INCREMENTS

In order to show that the optimal bid levels show a decreasing bid
increment whem > 2, it is sufficient to show that in this case:

lic1+lipa
2

Thus, using the result from equation 7, we must show that:

et iy =)™ — (licy —v)™
v+ \/ n(lit1 —li—1)

li > (23)

lic1 +liga
2

(24)



If we definea = [;—-1 — v andb = ;11 — v, then we must show,

for0 < a < b, that: m o\ \n
. a >n(a2 ) 25) P (lix1) — F(L)
—a
—(+D[1-Fln)]]  (28)
~ ProoF If f(t) is a convex function V‘{itf}f//(t) > 0 over the Thus an auction which closes ithas a duration of one unit and
interval[a, b], then it follows from Jensen’s inequality and the def-  og in which none of the bidders have valuations sufficient to bid
inition of convexity that: lo has a duration of zero.
1 b J a+b 26
b—al, fOdt> f{ — (26) D. EXPECTED AUCTION EFFICIENCY

The efficiency of the auction (i.e. the probability that the item is
allocated to the bidder with the highest valuation) is determined
by again considering the three cases that describe how the auction
closes. Cases two and three both represent efficient cases where the
b — a™ a+b\"! item is allocated to the bidder with the highest valuation. However,

n ( ) (27) inefficiency occurs both when the item is not allocated to any bidder

We takef(t) = nt"~'. This is a convex function wittf” (t) > 0
whenn > 2. Substitutingf(¢) into equation 26 and integrating
between the limits gives, as required:

b— 2 i . ; ; -
¢ atall (i.e. all bidders have valuations beldyy and with probability
O (k — 1)/k in case two. Thus the expression for efficiency is given
as:

C. EXPECTED AUCTION DURATION

The analysis presented earlier for the derivation of the expected rev- Efficiency=1 — Z Z (Z) %F(li)n_k
enue of the auction, also allows us to predict the expected duration i=0 k=2

of the auction. In order to do the former, we calculated the proba- X [F(lix1) — F(1)]* — F(lo)"  (29)
bility of the auction closing in each of the three cases discussed in ) ) ) .
section 4 and then performed a weighted sum, where these prob-Un“k_e the comblna_torla_l sur_nmatlons _encounter earlier, it is not
abilities were weighted by the revenue that they earned. Thus, toPOsSible to further simplify this expression.

calculate the expected duration, we perform the same summation,

but we weight each probability by the number of bid levels that the

price has been raised through (i.e. if the auction closes at bid level

l; then the price must have been raised throuighl bid levels).

Thus this gives:
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