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Abstract

We consider RCMS, a method for integrating differential equations of the form y’ = [AA + A(¢)]y with highly oscillatory
solution. It is shown analytically and numerically that RCMS can accurately integrate problems using stepsizes determined only by
the characteristic scales of Aj(r), typically much larger than the solution “wavelength”. In fact, for a given ¢ grid the error decays
with, or is independent of, increasing solution oscillation. RCMS consists of two basic steps, a transformation which we call the
right correction and solution of the right correction equation using a Magnus series. With suitable methods of approximating the
highly oscillatory integrals appearing therein, RCMS has high order of accuracy with little computational work. Moreover, RCMS
respects evolution on a Lie group. We illustrate with application to the 1D Schrodinger equation and to Frenet—Serret equations. The
concept of right correction integral series schemes is suggested and right correction Neumann schemes are discussed. Asymptotic
analysis for a large class of ODEs is included which gives certain numerical integrators converging to exact asymptotic behaviour.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and definition of RCMS

One of the long standing challenges in numerical analysis is integration of differential equations with highly oscil-
latory solution. We address a particular class of such equations and describe an approach giving numerical integrators
whose performance benefits from the severe oscillation instead of suffering from it.

Consider the linear ODE

y =[A) + A1(D)]y, (1)

where for all 7, / the eigenvalues of A(4) + A{(¢) have zero real part and some grow in absolute value as 4 — oo.
Generally, the solution of (1) will become severely oscillatory (this does not exclude unbounded solutions) as 2 — oo
and standard numerical integrators will have to advance in small steps.
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The approach suggested here is based on two principles, transformation to the right correction equation and ap-
proximation of its solution using an integral series. The idea of right correction, known in quantum mechanics as the
“interaction representation” [27], is the following. Suppose we wish to solve the linear ODE w’ = (P + Q)w where
P and Q are time dependent matrices. If the fundamental solution z of 7/ = Pz is known we can write w = zu. u is
called the right correction and must satisfy the basic right correction equation u’' = (z~' Qz)u. Restricting 7 to the
nth grid interval, one choice of a constant approximation for A(¢) is A =1 [/(ths1 — tn) fti”“ A1(t)dz. Eq. (1) can be
written

Y =[AG) + A1) + (A1(1) = ADly, 1 € [t, tat1]. )

In each grid interval the right correction uy (1), t € [y, ty+1], is defined by the equation y(z) = exp[(z — t)(AA) +
A ]u,(t). u, satisfies

u, = By(Dup, 1t € [tn, tn+1], 3)
where
By (1) = exp[—(t — t,)(A(A) + ADI(A1(t) — A1) expl(t — t,)(A(Z) + A)].

For large / the restrictions on the eigenvalues of A(1) + A1 (¢) will generally cause the entries of B, (¢) to be highly
oscillatory as functions of #; moreover, the difference (Aj(t) — A1) makes || By,(#)| small. Hence integral series
representations of ODE solutions are ideal for (3). With suitable quadrature methods the severe oscillations in the
integrands kill numerical errors and accelerate convergence. The small norm of the matrix in (3) is also favourable.
Thus working with Eq. (3) and with an integral series representation of its solution is preferred over working with (1),
where the coefficient matrix is non-oscillatory with large norm. Our numerical implementation uses the Magnus series
giving a Lie group integrator. The Neumann series, which avoids use of the matrix exponential but does not respect Lie
group structure, is another possibility which may be suitable for large systems. The Right Correction Magnus Series
(RCMS) integrators constructed along these lines are highly accurate and very efficient when compared to standard
integrators applied to Eq. (1).

We must mention that in some cases, which are avoided in this work, || B, (¢)|| may be an unbounded function of ¢
for fixed A. This can happen, for example, if A(1) + A is not diagonalizable or if we drop the assumption that the
eigenvalues of A(4) + A1(¢) have zero real part. Even so the properties of the right correction integral series approach
may still exert their positive influence, as discussed in [7,6]. It is also explained in these references why the right
correction is prefered over the left correction.

In [9] Iserles has presented the “modified Magnus method”. This method and RCMS, which were conceived and
developed independently,! use the same basic approach, application of a Magnus series integrator to the right correction
equation. The discussion in [9] centres on 2 x 2 “linear oscillator” equations and the problem of quadrature is avoided
by applying the modified Magnus method only to problems allowing analytic integration in the right correction Magnus
series, e.g. the Airy equation. In [10,13], Iserles and Nersett continue this line of work by addressing the essential problem
of efficient quadrature, in case Aj(¢) has general entries, of the highly oscillatory integrals which appear in the right
correction Magnus series. Other authors have also addressed integration of similiar highly oscillatory ODEs. In [17,18]
Lubich and Jahnke have constructed highly efficient integrators for near adiabatic propagation in quantum mechanics.
In [15] Ixaru et al. presented an exceptional shooting “eigensolver” for the 1D time independent Schrédinger equation
whose heart is an ODE integrator suitable (also) for reconstructing high energy, highly oscillatory, eigenfunctions. In
both cases the integrators can be viewed as right correction Neumann series schemes. All these independent and recent
appearances indicate that the right correction integral series approach has great potential for solving highly oscillatory
differential equations.

We proceed to give a brief overview of this paper. In Section 2 the basics of Magnus and Neumann series are
recounted. Then efficient, high order, quadrature methods for integrals with highly oscillatory integrands are discussed.
The properties of different projection operators, which can give non-interpolating polynomial approximants, occupy
a central part in our analysis. In Section 3 RCMS is applied to “type A” equations, an example of which are the
perturbed constant coefficient Frenet—Serret equations. In Section 4 RCMS is applied to the 1D Schrodinger equation.

! Accounts of the initial stages of our work can be found in the research proposal [4] and in the progress report [S].
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It is analytically and numerically shown that RCMS can have high order in / and that for fixed step size the error is
either 4 independent or decaying with 4, i.e. the error does not grow as the solution becomes more oscillatory. Our
discussion is based on asymptotic expansions of Magnus series terms yielding detailed asymptotic analysis of exact
solutions and of numerical errors. In Section 5 we discuss the implications of our averaging approximation A; of
A1 (t) and show that it has an important role in asymptotic analysis and in construction of RCMS integrators with exact
asymptotic behaviour. Several observations and directions for future research are given in the conclusion. The appendix
includes formulas giving approximations of right correction Magnus series as functions of the parameter 4 and step
size h. More detailed presentations of this work appear in the PhD thesis [6], and in the technical report [7].

2. Integral series and highly oscillatory quadrature

Numerical integrators for differential equations can be based on integral series representations of the solution. These
are very different from traditional integrators where solution derivatives determine the error.

The simplest integral series can be obtained by applying Picard iteration to obtain the fundamental solution of the
matrix linear ODE

Y =A@y, yO0)=E. “)

We obtain
t t T
y(t)=E+/ A(r)dr+f A(r)/ A(ty)drydt
0 0 0

t T T1
+/ A(T)/ A(‘El)/ A(tp)drpdrydr + - -- )
0 0 0

This series is known in quantum mechanics as the Feynman (or Dyson) path ordered exponential, in mathematics it is
known as the Neumann or Peano series. Despite its age, the Neumann series seems to have only recently found use in
the numerical analysis literature on ODEs, see [6,7,25,11,1], and references therein. It is easily seen that for ¢ € [0, 4]
the Neumann series is dominated by the exponential series Z?OZO (rt)j /j!=¢"" with r =Max,cpo.n||A )] (We assume
A is continuous). Thus the Neumann series absolutely converges for all ¢, although if 4 is large many series terms may
be needed, and upon truncation at the Nth term the tail is O@rt)N*! (as t — 0). Note that the Neumann series does
not generally give a Lie group integrator, approximations of y(#) obtained by truncation will generally not evolve in a
matrix Lie group G even if y(¢) does.

The Magnus expansion, which respects Lie group structure, is another example of an integral series. It is briefly
described below, and extensive discussions can be found in [12,14]. The fundamental solution of Eq. (4) on [0, 4] can
be written in the form exp(g), where ¢ = o1 + 02 + g3 + g4 + - - - is the Magnus series associated with Eq. (4). The
first few terms are

h 1 h t

o1 =/ A(t) dt, O'2=—/ [/ A(tl)dtl,A(t)] dz,
0 2 Jo LJo
1 h t 11

03 = _/ [/ [/ A() dn, A(tl)] drq, A(z)} de,
4Jo LJo LJo
1 h t t

04 = — |:/ A(ty) dty, |:/ A([l)dtl,A([):Hdt.
12 Jo LJo 0

To avoid excessive detail we do not give further terms; however, it is useful to keep in mind that they are all obtained from
A(t) by repeated integrations and commutations. A linear change of variables extends these formulas to any interval
[#,, th+1]. Numerical Magnus integrators are based on truncation of the series and approximation of its head to obtain
approximations of fundamental solutions on each grid subinterval. These are multiplied to form an approximation of
the fundamental solution on a large interval. The local order of such integrators is given in the following theorem; if it
is denoted by k then the global order is k — 1, see [9].
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Theorem 1 (adapted from Iserles and Norsett [12]). Suppose A(t) = O(t), then

lo(t) — a1(2)]| = O(), (6)
la(t) — (a1(t) + a2() | = O, ©)
la(t) — (a1(t) + a2(r) + a3(1) + 04(1)) || = O(°). (8)

If ¢ is an approximation of the series head such that ||a(t) — a(t)| = O(t%) then
lexp(a () — exp(G(1))]| = O(t*). )

If A(t) € g, the Lie algebra corresponding to the Lie group G, then exp(a(t)) € G together with the exact solution.

Note that the order estimates in (6)—(8) may be viewed as pessimistic upper bounds; sometimes the truncated tail has
even smaller norm as the discussion after Theorem 2 shows. The convergence of the Magnus and Neumann series is
greatly enhanced if ||A|| is small and if A(#) has highly oscillatory entries. On the other hand, convergence is generally
worse for smooth A(z) with large norm. It is these features of the coefficient matrix which restrict the step size of
Magnus and Neumann integrators applied directly to (1).

The basic integral which appears in the Magnus, or Neumann, series associated with the right correction equation is
of the form

h
/ w(t)a(t)dt, (10)
0

with w(t) = exp(igt) (or cos(gt) or sin(gt)), a(t) a sufficiently smooth function, and large ¢ causing severe integrand
oscillation. To construct numerical integrators for the right correction equation we must address quadrature of such
integrals. The oscillation will restrict “usual” quadrature, approximating the integral by a weighted sum of (full)
integrand values, to small intervals. However, the methods described here do not suffer from the severe oscillation; on
the contrary, it enhances their performance! In [10,13], Iserles and Norsett treat this problem in great detail and give
an extensive list of references.

An obvious suggestion is to approximate a(t) with a polynomial p(¢) and evaluate foh w(t)p(t)dt analytically.
One possibility, on which Filon quadrature is based [3], is that p(#) will be an interpolation polynomial, i.e. it will
equal a(?) on a set of points in [0, #]. Careful choice of interpolation nodes yields surprisingly small error. We use
the Filon-Legendre method; p(#) is an mth degree interpolation polynomial with nodes on the m 4 1 Legendre
points, which are obtained by linearly mapping the roots of the m + 1 Legendre polynomial from [—1, 1] to [0, A].
This defines a linear projector Qa = p. The quadrature error is O(h>"13), therefore high accuracy is obtained with
surprisingly low order polynomials requiring few evaluations of a(¢). The following explanation clarifies the mechanism
at work here. On the interpolation nodes a(t;) — p(t;) = 0, but the nodes are the roots of L, 11(f), the Legendre

polynomial of degree m + 1 on [0, h]. We can therefore write the quadrature error, foh w(t)[a(t) — p(¢)]dt, in the

form foh f(@)Lyy4+1(t)de. But L, is orthogonal to all polynomials of degree m or less. Hence all terms up to order
m in the Taylor series of f contribute nothing to the error. Writing L, 4+1(¢) = (t —t1) - - - (t — t,,41), where the roots
are all in [0, ], we see that the error is O(h2m+3). A different proof is given in [6], it is based on the following
lemma.

Lemma 1 (from Pruess [21]). Let P be the projector mapping a function f € C*"T2[—1, 1]to the degree m polynomial
p = Pf such that p(xj) = f(x;) on {x1, ..., X1} the roots of the m + 1 degree Legendre polynomial. For this P
there exists a constant K > 0 such that

1
‘f (1= P)(f)dt| <K P oo, i=0,...,m. (11)
-1

The projector Q defined above satisfies a similiar system of inequalities obtained from (11) by a linear change of
variable mapping [—1, 1] to [0, #]. Our analysis of quadrature error given in [6] invokes only these inequalities and
therefore it remains valid for approximation of a(¢) with different projectors, not necessarily of the interpolation type,
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as long as they satisfy the same system of inequalities. In [21] a list of such projectors is given. Thus our analysis
of quadrature error is valid not only for interpolation approximants p(t) but for a wider class, including orthogonal
projection of a(t) onto spaces of polynomials which is so important in Section 5.

Integration by parts clearly shows how increasing g (severe oscillation) reduces the quadrature error

1
—[(a@®) — p)™ explign]s + R (12)

h N
/O [a(t) — p®)]explign di =Y (~1)"

—~" " (g

Ry is a remainder term which is 0o(¢ ™V ~!). In many cases this expansion extends to a convergent series, e.g. if exists
a constant C such that @™ (t) < C for all ¢, n. With our projector Q the first term in the expansion is non-zero, hence
the error envelope decays like ¢ ~!. In Filon—Lobatto quadrature, exposed in [10], the set of quadrature points includes
the interval end points 0, &, thus the error envelope decays like g ~2. A generalization would be to choose polynomials
satisfying the 2(n 4 1) conditions p®0)=a®(0), p®h)=a® (h),k=0,1, ..., n. These will give an error envelope
decay of q_("+2), see [8,3], and references therein.

Integral (10) arises from the first term in the Magnus (second in Neumann) series. The errors in approximation of
higher terms is analysed in [6]; it is shown there that for fixed ¢ the error is also O(h2"+3). Fixing h, expansions similiar
to (12), which are given in the sequel, show that the error is at worse bounded with increasing g.

3. RCMS applied to type A equations
A particular instance of Eq. (1) is the following:

Definition 1. Let G be a matrix Lie group with corresponding matrix Lie algebra g. Suppose that every element of g
is diagonalizable with purely imaginary or zero eigenvalues. Equations of the form

Y =[AA+ A0y, 13)
with A, A1(¢) € gV, will be called type A equations.

G can be, for example, SO (n) or SU (n). There are two intrinsic scales in the problem. The first is 1/4, which
determines the scale of oscillations in the solution, the second is the scale in which A (7) changes. As 4 increases the
solution becomes highly oscillatory and the length of the first scale decreases while the second remains constant, see
Fig. 1. An attempt to integrate Eq. (13) directly would be restricted to use small steps, standard schemes will suffer
from the large values of solution derivatives (see Table 1), while Magnus and Neumann schemes will be affected by
the large norm and non-oscillatory entries of the coefficient matrix in (13). RCMS achieves high accuracy with large
steps for any 4. Guidelines for application are given in the following list.

1. Define a discretization of ¢. The step size is determined by Aj(¢) alone. This can be done a priori or adaptively
during the run of the integrator.
2. In the nth grid interval define A; as the value of 1/(t,4+1 — t,,) ft:’*' A1 (t) dr obtained by Gaussian quadrature of

suitable order and A; = A + (1/2)A;. Write Eq. (13) in the form
Y =[A;+ (A1(t) — ADly, 1 € [ta, tus1].
3. Define the right correction u, by y(t,,t) = exp[(t — t,)AAJuy, t € [t,, ty+1]. u, is a solution of
u, = By(uy, uy(ty) =E, (14)
where
By (1) = exp[—(r — 1) 2A;)(A1 (1) — A1) expl(t — 12)2A;].

4. Approximate the initial value problem (14) by replacing (A; (1) — A1) with the matrix P (¢) whose entries are degree
m polynomial approximations of the entries of (A1(#) — A1) obtained as explained in Section 2. We shall shortly
show that the choices m = 1 and m = 2 are suitable for fourth and sixth (global) order RCMS integrators.
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A=1; F(t)vst A=20; F,(t)vst
1 T T T T T T T T 1
09 r 1 09 H
08 1 0.8
0.7 1 1 0.7
06 1 0.6
05 1 0.5
0.4 | 1 0.4
03 E 0.3
0.2 - - - - - - - - - 0.2 - - - - - - - - -
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1

Fig. 1. Frenet-Serret, as A grows the solution becomes increasingly oscillatory.
These graphs show the (1, 1) entry of the fundamental solution matrix, y11(0, ¢) vs ¢ € [0, 1]. dt(t) = OKk(t) = sin(nt)z, K =154, T =204, see
Eq. (22). The graph on the left is for 2 = 1 and on the right for A = 20. The step size used in both cases was h = %

Table 1
RCMS performance versus standard methods
2 error N cpu fime (seconds)
RK4 RCMS4 ODE45 RK4 RCMS4 ODEA45 RK4 RCMS4 ODEA45
1 9.96 x 10~8 8.7 x 108 0.0028 985 21 161 451 0.26 0.94
10 9.86 x 1078 2.02 x 1078 0.028 17,007 43 1350 77.06 0.43 6.51
20 9.75 x 1078 8.9x 1078 0.055 40,500 14 2665 177.6 0.14 12.8

Comparison of computational performance in approximation of the fundamental solution of Eq. (22) on [0, 1] with accuracy tolerance 1077, using
fourth order RCMS (only the first Magnus series term), fourth order Runge Kutta and the Matlab solver ode45. For ode45 the absolute error tolerance
was set using options = (‘AbsTol’, 1e-7). The parameters are 07(1) = 0k (t) = sin?(nt), i = 154, T = 20

5. Obtain u,, an approximation of #,, by calculating exactly the desired terms in the head of the Magnus series of the
approximate i.v.p. using integration by parts.

6. The approximation of the fundamental solution of Eq. (13) on [#,, ty+1] 18 ¥(ty, tat1) = expl(tar1 — ;) AA; Jid,.
Obtain an approximation of y(a, b), the fundamental solution of Eq. (13) on [a, b], by time stepping y(a, b) ~
y(a,b) =yn-1,D)y(tn-2,tn-1) - Y(a, t).

The choice of step size in item 1 is not restricted by an increase of 4. On the contrary, errors are reduced by increasing
oscillation and typically each step includes several solution “wavelengths”. The form of Eq. (13) appearing in item
2 was chosen for the favourable effect of small || B, || (=O(h)) on Magnus series convergence. To obtain P(¢) our
application uses the projector Q from Section 2 giving “Filon-Legendre” quadrature; other possibilities including non-
interpolatory projectors are discussed there. The RCMS approximation y(a, b) is in G together with the exact solution
y(a,b).

Recall that all matrices are in g and therefore diagonalizable with purely imaginary eigenvalues. Diagonalizing,
T—'AT = D, T)_IAATA = D,, it is easily seen that as 4 increases A, — A, T; — T, and therefore ||7; || is bounded
for all relevant 4. We can write B, (¢) in the form

By(t) = Ty expl—(t — ta)2D;1T; (A1(t) — A)T; expl(t — 1) AD1T; . (15)
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Let én (1) = T;l B, (t)T); the entries of é,, (1) are
[By(1));j = e~ DDA [T (A (1) — AT (16)

Eq. (16) shows clearly why the entries of én () and B, (¢) are of the form e’ a(¢) (as in (10)) whigh is the basis for our
approach to quadrature and error analysis. Note that the Magnus series ¢ and ¢ associated with B,, and B,, are related
by the coordinate change T;VS'T)__l = ¢ and the same relation holds between individual series terms.

3.1. Error analysis

The local error of the integrator is

Ytn, tns1) = (b, tng1) = expltat1 — ta) AA;1T; (expl3] — expla]) T; !
= T, expl(tn+1 — 1) 2D;1(expl5] — exp[aDT; ', (17)

where & is the approximation of ¢ obtained by truncation and polynomial approximation as described above. || T} ||
and || exp[(ty+1 — t;)AD,]|| are bounded independently of 4 and of & = t,,11 — t,, so the local error is determined by
exp[o] — exp[a]. We examine two cases. Holding A constant the error’s order is studied as /4 is decreased. Fixing a
discretization of ¢ (which does not imply that the steps are uniform) the error’s dependence on growing / is examined.

3.1.1. Error dependence on step size (fixed 7.)

By Theorem 1 (exp[6] — exp[a]) and (6 — &) are of the same order in h. (¢ — G) is composed of the truncated
tail of the series and of errors in approximation of the series head. Theorem 1 states that the truncated tail satisfies
|6 — &1l = O’) and |6 — (61 + 62)|| = O(h”). We turn to approximation of the series head. In Section 2 we have
discussed why the error in approximation of the i, j entry of 67 is

1 _
/ eHmmPADANT N (A (1) — Ay — P@)T; 1 di| = O(h*"*3)
In

and mentioned that errors in approximation of ¢, (and higher terms) are also O(h>"*3). The order of error in approx-
imation of the series head should be compatible with the order of the truncated Magnus series tail. Thus if only ¢ is
included linear polynomials (m = 1) should be used, if 6; and 6, are included then quadratic (m = 2) polynomials
should be used. The global error will be O(h4) in the first case and O(4°) in the second, or better. The discussion here
is restricted to the first two Magnus terms, in [6] this is generalized.

3.1.2. Error dependence on J (fixed steps)

Let B(t) be the matrix obtained from B (1) upon replacement of A (7) — Al by P(¢). The terms of 6, & are constructed
by repeated integration and commutation of B, B. Given (16), a brief reflection shows that if each integration is done
by parts always taking integrals of exponents then it is possible to expand ¢ and & in formal series of the form

1 1
&=Z (D), T=) 5 a0, (18)

n=0 n=0

where the entries of g, (4, 1), (4, t) are bounded as 1 — oo (since the entries of T, exp[iA(r — t,) D;] are bounded
as 4 — 00). The definition of the matrix exponent gives the following useful relation:

. _ . R R B O SV S S 1
exp(#) — exp(@) = exp(80) — exp(@o) + 7 Y — > (& Fae T — g F@a ") +0 (?) (19)
n=1 " k=1

This expansion shows why RCMS local error does not increase with /, the leading term is at worst bounded by a 4
independent constant. Moreover, the discussion leading to Eq. (18) does not invoke Lie algebraic structure and could
be applied to a Neumann series right correction scheme. Such a scheme applied to type A equations will have local
error which is A independent or decaying with increasing A. Similiar analysis gives the same results for other types of
equations.
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To find the dependence of RCMS global error on 4 we need to describe it in terms of local errors as in [9]. Let e,,, L,
denote the global and local errors, respectively, at the nth grid point. Assuming quadratic (and higher order) terms in
e,—1 have negligible contribution to e, we obtain

n

n
en=y.1) Y Y@ tni) 'Lk =) Y(tn—i+t)Lu—i. (20)
k=0 k=0

In addition to its dependence on local errors, the global error is influenced by the fundamental solutions y(#,—¢, #,). In
specific applications we will use the fact that y(#,_¢, t,) is in G, and other information that will become available, to
show that RCMS global error is also 4 independent or decaying as 4 grows.

3.2. Type A equations in so(3); Frenet—Serret equations

Consider y(1), a curve in R parameterized by arclength. At each 7 the tangent, normal, and binormal vectors are
defined tobe T=19", N = (1/]7”)y”, B=T x N. Viewing T, N, B as row vectors it is a classical result in differential
geometry that they satisfy the following 3 x 3 matrix ODE, known as the Frenet—Serret equation (see [26])

4 /T 0 x O\ /T
_<N):<_K 0 )<N> e
dr \p o —-r o/ \B

The parameters « = ||| and t = (1/x?) det(y’y"y") are the curvature and torsion, respectively. The solution of (21)
with initial condition Ty = 7/(0), No = (1/]]y”(0)|)y”(0), Bo = Ty x Ny evolves in SO(3) and is called the osculating
frame associated with 7. The family of curves in R related to y by all possible rotations and translations is characterized
by x and 7. Thus knowing the fundamental solution of (21) is equivalent to knowing, up to integration of T, this family.
For constant x, T > 0 the fundamental solution of (21) gives the family of all right handed helices (left handed if t < 0)
with pitch tan~!(t/x) and radius x/(x? + 7). Frenet-Serret equations can describe different objects and processes,
some applications in physics are given in [2,19] and the references therein.
We apply RCMS to the perturbed constant coefficient Frenet—Serret equation

0 K + 0K(t) 0
y = <_K — ox(t) 0 T+ 5r(t)) ¥, (22

0 —1 — ot(t) 0

with 7, K constant, 72 + k2> 0. The RCMS approximation resides in SO(3) together with the exact solution. Thus, if
(22) describes evolution of the osculating frame attached to a space curve, RCMS will preserve orthonormality. If (22)
describes a two level quantum mechanical system in the Feynman Vernon Hellwarth representation [2], RCMS will
conserve probability.

Define A = +/x2? + 2 and « such that cos(a) = x//4, sin(a) = t/A. Let

0 cos o 0 0 oK (1) 0
A= (—cos o 0 sin oc) , At = (—5K(t) 0 5r(t)> .
0 —sin o 0 0 —01(1) 0
Eq. (22) becomes

Yy =[A+ A1(D)]y, (23)

which is a type A equation since any non-zero matrix in so(3) has one zero and two purely imaginary conjugate
eigenvalues. As A grows the solution of (23) exhibits increasing oscillation, see Fig. 1. Note that this need not occur in
all entries of the fundamental solution, consider for example the slowly varying binormal and the rapidly oscillating
tangent and normal of a tightly wound helix with small pitch.

To obtain an integrator with global error O(/°), the steps in the general description of RCMS were followed with
some minor variations.

1. Uniform grids with spacing & were used to simplify the programming; this choice can be refined.
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2. Ay is defined by

- 1 th+1 0_ & 2
A| = —— Gaussian quadrature (/ Aq(1) dt) =|-6x 0 61,
th+1 — In Iy 0 -5t 0

we have used three node Gaussian quadrature with O(h7) error.
3. Writefc:x—l—ﬁ,%:r—i—g,Z:vfcz + 72 and define & by cos &:fc/z, sin &:%/Z. Let

0 cosa sina . ~ Q -3 0
R= (1 0 0 ), then R71[1A+A1]R=A= (i 0 0). 24)
0 —sinda cosa 0O 0 O

Defining z,, = R~ u, R, after some calculation we obtain

0 —fi(ty  cos(it) fo(t)
zjl = ( Si(0) 0 — sin(lt)fz(t)) Zn, t € [ty, tht1], (25)
—cos(At) fo(t) sin(Ar) fo(t) 0

where fi (1) = cos& (3k(t) — 0K) + sind (31(t) — 1), fo(t) = cosd (d1(t) — 67) — sind (S (1) — Ok).

4. fi1(t) and f>(t) are approximated by the quadratic interpolation polynomials p; = Qf; and p» = Qf,. Relevant
subroutines return the coefficients of pi, p» using three function evaluations of f and f>.

5. Replacing f1, f2, by pi, p2, in Eq. (25) the first two terms in the Magnus series are explicitly calculated to obtain
a. The formulas giving ¢ as a function of k, / and of the coefficients in py, p» appear in Appendix A.

6. The approximation of u,, is R exp(c)R~! and the RCMS approximation of the solution of Eq. (22) on the nth grid
interval is

$(tn, tar1) = Rexp(hA) exp(G)R™ ", (26)

the local error is O(h”). The approximations from successive grid intervals are composed to obtain j(a, b), a sixth
order approximation of y(a, b), the fundamental solution of (22) on an interval [a, b].

Aparicio et al. [1] study equations very similiar to (13). They also use precalculated formulas for approximation of the
Magnus and Neumann series. However, these are applied directly to (13) rather than to right corrections. Consequently
the errors of the integrators in [1] grow with /.

To address the error’s independence on / we proceed as outlined in Section 3.1.2. The first step is expanding ¢ and ¢
in power series of 1/4. Integrating by parts, we obtain the head of the 1/4 expansion of 1, the first term in the Magnus
series associated with Eq. (25). The same analysis applies to 61 with p; and p; replacing f1 and f>.

0 —Jy ity 0\ /0 0 si(h)
o= [ A de 0 0|+ z ( 0 0 Sz(h)> +h.o.t, @7
0 0 0 “\=si(h) —s2(h) O

where s1(h) = f>(h) sin(ﬁh) and s2(h) = —(f2(0) — cos(Zh)fz(h)). It can be shown that all higher Magnus series
terms do not contributq to the zeroth term in the 1/4 expansion of ¢ and 6. Moreover, an infinite number of series terms
contribute to the O(1/4) term and hence we do not attempt to calculate it (the analysis in [20] may be possibly used to
refine this). As in Eq. (18) we can write

1 | 0 — [T fide 0
O':gO‘i‘O(:)» 6'26_'0"‘0(:) where go = fohfl(l‘)dl‘ 0 0

But foh p1(t)dt =0 since dx and ot are obtained by three node Gaussian quadrature and the same interpolation nodes
are used for pj. Hence ggp = 0 and by Eq. (19), (26) the local error is

Rexp(hA)(exp(o) — exp(3)) R~ = Rexp(hA)(exp(go) — HDR™' + 0O (1) , (28)

3
A
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logyq (err) vs log, (N)
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Fig. 2. Frenet—Serret, observed i dependence of RCMS error agrees with analysis.

The graph marked by circles shows log( of the error versus log, of the number of grid intervals, log;o([ly(0, 1) — y(0, 1)]|) vs log,(N), in
RCMS applied to Eq. (22) with k = 10, T =6, 0 (1) = 01(t) = —1 (¢t — 1). For the above choice of dk (), d7(r) the terms in the Magnus series head
are evaluated exactly, so only the truncated tail contributes to the error. The graph marked in stars is for k = 10, T =6, 0k(1) = d7(t) = sinz(nt). For

this choice of dk(t), dt(t), the RCMS error includes contributions from errors in approximating the Magnus series head. As our analysis predicts
the global error is O(h6) in both cases.

The global error is given in Eq. (20). Since the y(f,—¢, t,) are rotations and the leading terms in the local errors are 4
independent, so is the leading part of the global error.

3.2.1. Results

We compare the performance of fourth order RCMS, taking just the first Magnus series term, with the Matlab solver
ode45 and with the standard fourth order Runge Kutta method from [24] both applied directly to Eq. (22). Results
are summarized in Table 1. The error is ||y(0, 1) — y(0, 1)|| where y(0, 1) is a high accuracy approximation of the
exact fundamental solution at + = 1. y(0, 1) is the approximation of the fundamental solution at t = 1 obtained with
RCMS, Runge Kutta or ode45. N is the number of steps taken by the different integrators. The values of N appearing
in the table for RCMS4 and for RK4 were obtained by a binary search to find the smallest N for which error < 107,
ode45 was run with the absolute error tolerance set to 10~7. The cpu time was evaluated for a Matlab 6 implementation
using the Matlab cpu time command. This comparison is a striking illustration of RCMS performance; note that for
A=20the (1, 1) entry of the fundamental solution has approximately five “wavelengths” in each RCMS step. A serious
comparison to ODE45, and other ODE software, must address issues of automatic step size control. We avoid this, but
note in passing that the results in Table 1 and the extensive discussion of error accumulation in classical schemes (with
fixed steps, and with step size control) given in [9] do indicate the need for accessible software for oscillatory ODEs.

In Fig. 2 numerical results are given for k=10, t=6,¢ € [0, 1], k(1) =01(t)=—1t (t — 1) and Sk (t) = dt(t) =sin>(nt).
The graphs show logo(||y(0, 1) — y(0, 1)||2) versus log, (N ), where y (0, 1) was obtained with grids having N =2" 41
points, m =2, ..., 8. As predicted by our analysis the global error is O(h°) in both cases.

In Fig. 3 the 4 independence of local error and global error is illustrated for dt(¢) = dx(r) = 2 exp(10¢) sin?(mt),
k=157,7=202and /. € [1, 5 x 10*]. The graphs show that as 1 grows the norm of the global and local error approaches
a / independent constant.

4. RCMS applied to the 1D Schrodinger equation

The 1D Schrodinger eigenproblem is fundamental in quantum mechanics and other areas. References to some
applications, together with those for other Sturm Liouville problems, can be found in [20,23]. We consider the “regular”
version of the problem [23] which can be stated in vector form thus:
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Fig. 3. Frenet-Serret, 4 independence of RCMS error.

The local and global errors in approximation of the fundamental solution were obtained for RCMS applied to Eq. (22). The results are for
St(r) = or(t) = 2exp(101) sin(mt)2, k = 154, T =204, 1 € [1,5 x 10%]. The local error was obtained by RCMS approximating y(0, 0.1) using
just one step, 7 = 0.1, and comparing to a high accuracy approximation of y(0, 0.1) (obtained with 10 RCMS steps & = 0.01). The global error was
obtained by RCMS approximating y(0, 1) using 10 steps, 7 = 0.1, and comparing to a high accuracy approximation of y(0, 1) (obtained with 500
RCMS steps h = ﬁ). On the left ||local error|| vs A is shown and on the right ||global error|| vs A. In both cases the errors are 4 independent as the
analysis in Section 3.2.1 predicts.

Given a finite closed interval [a, b] and a continuous function V (x) on it, find all eigenvalues A for which there exists
a nontrivial solution to the b.v.p.

;L 0 1
y—<v(x)_/1 0>y, x € (a,b), (29)

B.y(a) + Bpy(b) =0, By, By € R**% (30)

For each eigenvalue find the corresponding eigenfunction.

In quantum mechanics textbooks (29) usually appears in the form —/" (x) + V (x)¥(x) = Ay (x) which is the 1D
version of I—M = Ay with H=—-A+V.

Let y(4, a, b) be the fundamental solution of (29) on [a, b]. Then (30) gives [B, + Bpy(/4, a, b)]y(a) = 0. So the
problem of finding eigenvalues is equivalent to finding all 4 such that

det[B, + Bpy (4, a, b)] = 0. (31)

An essential step used by all “shooting” algorithms, searching for solutions of (31), is the integration of (29) or an
equivalent equation to obtain y(4, a, b). Note that the coefficient matrix in (29) is in s/(2) (trace = 0) hence the
fundamental solution is in SL(2) (det=1).

Several kinds of difficulty arise. In the case V (x) — 4> 0 integrators applied to (29) are susceptible to numerical
instability. The discussion in [7,6], and the results in [15], strongly indicate that RCMS and other right correction
integral series schemes can perform well in this regime.

Here we concentrate on V (x) — A <0, where the solution is severely oscillatory. As / grows the solution “wavelength”
approaches 27/+// and in the search for large eigenvalues a naive integrator will be forced to make increasingly smaller
steps. To avoid this some algorithms use the scaled Priifer transformation, see [23] for a thorough discussion. In certain
problems, where a good scaling function is heuristically found, this removes the oscillations and allows large x steps
to be taken. However, the scope of this approach is limited by the fact that there is no general method for finding the
scaling function.
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In [21] Pruess suggests to solve the eigenvalue problem by approximating the differential equation (29). This is
done by replacing V (x) with piecewise polynomial approximations. For conventional numerical integrators solving
the approximate problem, with polynomials of order greater than zero, is no easier than the original. Thus until recently
only piecewise constant polynomials were used in practical software packages (SLEDGE [22]), because for these (29)
is easily analytically integrated. For such piecewise constant methods (PWCM) the step size is not restricted by the
oscillations in y(x) as long as the matrices B, Bj, have zero bottom rows, i.e. the boundary conditions include only
the first component of vector solutions of Eq. (29). The main disadvantage of PWCM is their low order, with global
error O(h?). To overcome this repeated Richardson extrapolation is used in [22].

Recently two approaches, of Moan [20] and Ixaru et al. [15], have been suggested towards the realization of the idea
of approximating Eq. (29) with high order piecewise polynomial V (x). Moan [20] applies Magnus series integrators
directly to Eq. (29) with piecewise polynomial V (x). The discussion in Section 2 implies that this is not recommended
because the norm of the matrix in (29) grows large with increasing A while its entries remain non-oscillatory. Indeed,
despite a clever method for analytic evaluation of subseries of the Magnus series, the increase of the integrators’ error
with / is not eliminated.

Ixaruetal. [15] apply an algorithm that is closely related to our work, so we discuss it in some detail. The fundamental
solution for Eq. (29) on the nth grid interval is regarded in [15] as the limit of the series

v, xp, x) = Py(x) + P1(x) + Po(x) + -+, X € [xy, Xp+1]s (32)
where
0 1
PO(X):eXp[(x_x”)(W—x 0)}
r_ 0 1 0 0 _
P"_(Vn—/l 0) Pk+(V(x)—V,, 0) Pi1, Pelon) =0, (33)

i.e. (32) is a perturbation series solution for (29) regarding V (x) — V,, as a perturbation of V,,, a constant approximation
of V(x) on [x,, x,+1]. The description of series (32) given in [15] is

X
_ -1 0 0
Pi(x) = Po(x) / RO <V(S) y O) Pi-i(s) ds (34)
and integrators based on it are called piecewise perturbation methods (PPM). To obtain a different viewpoint note that
X
P = Poo) [ BuGs0) i 35)
Xn
and fork=2,3, ...
x 51 Sk—1
Pr(x) = Po(x) / By (s1) / By(s2) ... / B (sg) dsg ... ds2 dsy, (36)
Xn Xn X,

n

where B, is precisely the right correction equation matrix of coefficients from Eq. (39). Thus, the piecewise perturbation
approach in [15] may be viewed as a Neumann series applied to the right correction equation (39).

This observation places RCMS and the PPM integrator together in the family of right correction integral series
integrators. In such integrators V (x) is replaced by a polynomial approximation and the resulting series terms are
evaluated analytically. The advantages of this approach stand out. Taking a large number of terms can give a very
high order of accuracy. Moreover, if V,, — 4 <0 the oscillations in the entries of B, (x) reduce all contributions to the
error, those arising from truncation of the series and those arising from approximations of terms in its head. The major
difference is that the PPM integrator does not respect evolution in SL(2). The excellent performance of the eigenvalue
search algorithm in [15] is a convincing illustration of the high efficiency of right correction integral series schemes.
We note in passing that our analysis indicates the possibility that lower order polynomials may have been used in [15]
with the same order of error. In [16] Ixaru et al. expand their method to general regular Sturm Liouville problems using
the Liouville transformation.

We construct an RCMS integrator for x marching in the 1D Schrodinger equation. The implementation is only
for A such that V(x) — 2 <0 Vx but it is possible to extend for general 1. The integrator preserves SL(2) structure,
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has high order with respect to the step size and its error does not depend on positive powers of A. This means that
the step size is determined only with respect to the scale on which V (x) changes with no need to decrease it as |A|
grows.

Let us introduce a piecewise constant approximation of V (x) whose value on [x,, x,,41] is denoted by V,,, in our
application V,, = 1/(x,+1 — x,) Gauss quadrature ( f ;: "y (&) dE). On this interval Eq. (30) can be written as

Y _|:<V"_;L 0>+(V(x)—Vn O)]y’ xe[xnaxn+l]. (37)

The right correction u, is defined by

y(i, Xp, X) = €Xp [(x — Xn) (V 0_ jl (1)>] up(x), x € [xp, Xpy1l. (38)
Then
Uy = By(X)y, X € [Xp, Xpy1l (39)
with
0 1 0 0 0 1
B, (x) =exp |:—(x — Xy) (Vn _J 0)] <V(x) _v, 0) exp |:(x — Xy) (Vn _J 0)] . 40)

Denoting g, = +/4 — V,, after some calculations it is found that for A — V,, >0

SIN20x — x)gal  ——SIn?[(x — x1)q]
By(x) = (V(x) — V) n n : (1)
cos?[(x — X,)qn] sin[2(x — x,)qn]

n

The RCMS integrator implemented in this work for the 1D Schrodinger equation consists of the following steps:

1. Asin our treatment of Frenet—Serret equations, uniform grids are chosen to simplify the programming. This is not
necessary and could be refined.

2. Vy, an approximation of (1/(x,+1 — xp)) f ;1”“ V(&) dé, is calculated using four node Gaussian quadrature.

3. The four coefficients in the cubic polynomial approximation of V (x) — V,,, obtained using the projector Q from
Section 2, are calculated. For this the four function evaluations from item 2 are used.

4. These four coefficients are input, together with ¢,, &, to precalculated formulas, given in Appendix A, that return
g, the approximation of the Magnus series truncated after the first two terms.

5. Finally, the ninth order approximation of y(4, xp, x,,41) is

- 0 1 -
FOu X X 1) = eXP [(xm —x) (vn _;, O)} eXp(&).

6. To generate an eighth order approximation of the fundamental solution of Eq. (29) on the whole interval [a, b], the
V(4, X, x,4+1) from each subinterval are multiplied.

It should be noted that the very fact that makes the formulas in item 4 useful for large ¢,, the appearance of g, in the
denominators, causes numerical instability for 4 close to V,,, i.e. 0 < g, < 1. In this case the entries of B, are slowly
varying and simple Gaussian quadrature can be used to evaluate the integrals in a Magnus integrator applied directly
to Eq. (29). Note also that although only the first two terms in the Magnus series, a1, 02, are included, the integrator is
eighth order, while Theorem 1 guarantees only sixth order. This is explained next.
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4.1. Error dependence on step size (fixed 1)
The following surprising theorem is proven in [6].

Theorem 2. Let a3 and o4 be the third and fourth terms in the Magnus series. For the right correction equation
(39) corresponding to the 1D Schrodinger equation, the joint contribution of these two terms to the Magnus series is
Ooh?) ie.

los + a4ll = O(A?).

Note that in the Frenet—Serret equation this phenomenon did not occur, truncation of the right correction Magnus
series after the first two terms gave a sixth order integrator. Theorem 2 together with the results quoted in Theorem
1 implies that if the Magnus series is truncated after the first two terms the tail is O(h°). Our choice of polynomial
approximation of V (x) — V,, ensures that ¢ and o, are approximated with an O(h”) error. The resulting (global) order
of the integrator is 8.

4.2. Error dependence on A (fixed steps)

Although the 1D Schrodinger equation is not a type A equation, the discussion in Section 3 applies since the form of
entries of the matrix B, is the same as in Eq. (16). So it is possible to expand ¢ and ¢ in the form 0= Z?o:o qn / gilgn, 1)

and 6 =720 qn ' 8j(qn, ).

To obtain the 1/g, dependence of the local error we calculate go, g1, g2, £0, &1, &2. Using integration by parts
the contribution of a1, 02 to go, g1, &2 is explicitly found. Integration by parts also shows that the leading terms in
03, 04 are O(1 /q,%). In [6] it is proved that all higher Magnus series terms also contributed nothing to go, g1, 2.
Thus

(0 0 (0 0 B cC-D —A “2)
80=\a o) 87\B 0) 7 \E—ACc-4AD D-C)°

where

Xn+1 1
A= f V) = Valdx, €= 5 cos@hagn)lV (i) = Vol
Xn

B = ;" Sin(zthn)[V(Xn+l) - Vn], D= % [V(.Xn) _ ‘/n]’

1

E=g [/XHI(V(X) — V)2 dx + cos(hugn) V' (xns1) — V/(x")} '

80, &1, &2 are obtained similarly with the cubic polynomial p(x) replacing V (x) —V,. We define e(x)=V (x) — V, — p(x)
and note that

ouli (s - (o, Veiess). v

—gy sin(xq,,) cos(xq,,)

Explicitly writing the O(1 //12) terms in Eq. (19) we obtain

0 0 I (N, 0O I (0, —M 1
local error = +— + — (=" ”) +0 <_> , 44
<Mn 0) n (Pn Nn) i (Rn Ky a0 s

where

1 Xn+1 1 Xn+1
M, = 5 Cos(hnCIn)/ e(x)dx, N, = 5 Sin(thn)/ e(x)dx,
Xn Xn

Py = Lsin(hygn)le(xngr) —e(x)l, Ky = 1 cos(hugn)(e(xn) — co8(2hngn)e(xni1)),
0, = +cos(hugn)le(xnr1) — e(xn)]. (45)
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Fig. 4. One-dimensional Schrddinger, as A increases solutions become increasingly oscillatory and RCMS behaviour improves.

Shown here are high accuracy approximations of eigenfunctions (continuous lines) and RCMS approximations of them (o) for the Coffey—Evans
potential V (x)=—2f (:0s(2x)—|—[32 sin2(2x), x € [-71/2, m/2], =30, in the 1D Schrodinger equation with boundary conditions y(—7/2)=y(7/2)=0.
Also shown is 1178 V(x) (broken line). The IITS factor is just to normalize V (x) to the scale of the figure. The graphs were constructed with the
following choices of A which are all approximate eigenvalues: top left: 2 = 909.4810465034; top right: 4 = 5079.573751132997. Bottom left and
right: A =50, 179.518034624. The bottom right figure is a detail of the bottom left. Notice how the number of eigenfunction “wave lengths” per
RCMS step increases with A. In contrast to conventional integrators RCMS performance improves with increasing A instead of deteriorating, with
no increase of work. The maximal error of the RCMS approximation is bounded by 6 x 1074,1.11x1076,7.5x 1078, respectively (for increasing
values of /), and step length is /32 in all cases. The high accuracy eigenfunctions where constructed using RCMS with step size 71/1024.

R, can be calculated explicitly but it is cumbersome and unnecessary because the corresponding lower order entries
dominate.

To find the dependence of global error on 4 recall Eq. (20) describing the dependence of global error on local errors.

~ n+1 = ~
Let V, = (1/(xp+1 — x)) f;; ! V(x)dx exactly, G, = v A — Vy, hj = xj41 — x;. Taking V,, = V,,, we see that A from
(42) is zero hence lim_, o, u,, = E, and so

1
. , cos(hiq;) — sin(h;q;)
lim Yoo =( g ) (46)
00 —qj sm(hjqj) COS(hjqj')
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Fig. 5. One-dimensional Schrodinger, dependence of RCMS error on step size A.

The graphs show log( (ly(4, 0, 1) — 3(4, 0, D)) vs logy (N) (N is the number of grid intervals), with 4 = 15, 150, in RCMS applied to the 1D
Schrodinger equation with V (x) =sin(4nx) (), and V (x) = 100(x — 1/2)3 (o), x € [0, 1]. The graphs illustrate that for fixed A the global error is
O(h8) as predicted in Section 4.

Thus, keeping terms up to 1/g,, as 4 — oo Eq. (20) becomes

n n—1 ~ 1 . ~
N cos(h;q;) —sin(hiq;) 0 0 1 Nu_k 0
én ~ Z l_[ ( Y 4j Y Mn—k 0 + qn—k P:—k Nn—k ' (47)

k=0 j=n—k \—¢q; sin(h;q;)  cos(h;q;)

Following the matrix multiplications it is easily seen that as 4 — oo the global error is

o L) of!
() ()
_ O(f O<%>. (48)

This was confirmed numerically.

€n

4.3. Results

Fig. 4 shows eigenfunctions and their RCMS approximations, corresponding to eigenvalues 4 ~ 909.4810, 4 ~
5079.5737, A =~ 50, 179.5180 for the Coffey—Evans problem (see [23]) V(x) = —2fcos(2x) + ﬁzsin2(2x), X €
[—n/2, /2], p=30, with boundary conditions y(—7/2) = y(n/2) = 0. The figures illustrate the increasing oscillations
in the solutions of the 1D Schrodinger equation and the increasing accuracy of RCMS as / increases. In Fig. 5 results are
given for V (x) =100(x — 3)* and V (x) =sin(47x) on [0,1]. The graphs in Fig. 5 show log,o(ly(4, 0, 1) — 5(4, 0, D)
versus log, (N), N being the number of grid intervals. y(4, 0, 1) is a high accuracy approximation of the exact value
of the fundamental solution at x = 1 obtained with a very fine grid, # =27°. $(4, 0, 1) is the RCMS approximation of
the fundamental solution at x = 1 obtained with coarser grids N =2" +1,m =2, ..., 8. As expected, the global error
is O(h®) agreeing with our predictions.

Because of our choice of p(x), all terms in Eq. (44) containing f;i "1 o(x)dx are O(h%). So unless & is large,
contribution of these terms to the RCMS local error is negligible. Thus, to see the effect of the leading term in Eq. (44)
very large h steps must be taken. This is illustrated in Figs. 6 and 7.
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Fig. 6. One-dimensional Schrddinger, RCMS error is independent of, or decays with, increasing .

Entries of local error, in approximation of the fundamental solution vs 4, for A = 0.1, V(x) = (sin(47mx) + cos(47x)) exp(—x) exp(3 cos(x)),
x € [0, 0.1]. The contribution of terms with f e(x) to the local error is negligible and the next order terms in (44) dominate. In the right column ¢; ;
is multiplied by (4 — V;,)" 12y being given by the higher order terms in Eq. (44).

5. The benefits of averaging—integrators with exact asymptotics

Our discussion repeatedly invokes constant approximations of functions obtained by averaging. Thus in the Schrodinger
equation V, = 1/(x,+1 — x,) Gauss-quad ( f;;”“ V(x)dx) was the constant approximation of V(x), and in type A
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Fig. 7. One-dimensional Schrodinger, RCMS error is independent of, or decays with, increasing /.

Local error in approximation of the fundamental solution vs / for h = 1, V (x) = (sin(47x) + cos(47x)) exp(—x) exp(3 cos(x)), x € [0, 1]. The
large / step is chosen to enhance the contribution of terms with [ e(x) to the error. In the right column ¢; j is multiplied by A=V)12 r being
given by the leading order terms in Eq. (44). Note that where they appear, the large errors are due to the large step size h.

equations Ap(¢) was similiarly approximated by Aj. It turns out that such averaging approximations have important
implications.

First, recall that Of is the interpolation polynomial equal to f on the Legendre points, which are the quadrature nodes
for obtaining V},. It has already been noted that

if p(x)=Q{V(x)—V,) then /ixn+1 p(x)dx =0. (49)

n
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Fig. 8. Orthogonal projection RCMS converges to exact asymptotic solution.

The Coffey—Evans equation from Fig. 4 was integrated with increasing values of A. The norm of the error in approximation of the fundamental
solution, ||y(4,0,1) — y(y, 0, 1)|, is plotted versus A for orthogonal projection RCMS (continuous line), Filon-Legendre RCMS, and modified
Magnus (indistinguishable results, dotted line) all fourth order. As predicted by our analysis the error envelope of orthogonal projection RCMS

decays to zero as O(1/ \//TL), while the error envelopes of “regular” Filon-Legendre RCMS and of modified Magnus are constant. For each value of

o L “« » : 1 1 i
/. the step sizes used to generate the approximation y, and the “exact” solution y, were & = 5, and h = 3000 - Fespectively.

This property leads to cancellations and simplifications (considerable, but not drastic) in the calculation of right
correction Magnus series elements. To see this consider integration by parts of (51), (52). The same simplifications
occur in the Frenet—Serret case.

Second, our surprising Theorem 2, backed by numerical results, shows that the RCMS integrator applied here to the
1D Schrodinger equation is eighth order using the first two Magnus terms. Eq. (49) is a crucial ingredient in the proof,
given in [6]. The linear oscillators discussed in [9] can be viewed as 1D Schrédinger equations with V (x) = —g(x) and
A=0.1In [9] it is shown that the Modified Magnus method using the first two Magnus terms with V,, =V ((x,+1 +x,)/2)
and with exact integrations is only seventh order, giving rise to the suspicion that the higher order predicted by Theorem
2 is a result of the averaging approximation V,,. This (possible) benefit of averaging approximants is particular to the
1D Schrodinger equation and was not observed in the Frenet—Serret case.

Third, the discussion leading to Eq. (46), giving the asymptotic solution of the 1D Schrédinger equation, shows that
averaging approximations are an important analytic tool. Generally, given the ODE (2) to obtain the asymptotics of the
exact solution as 4 — oo we have expanded exact right corrections in a series u, = Z?O:o (1/q7)g ;j (in our examples
g ~ A", r>0).Choosing Ay = (1/(ty41 — 1n)) ft;”“ A1 (1) dr exactly, gives go = 0 which shows that for ¢ € [t,, t,,11]
the asymptotic fundamental solution of (2) is lim;_, o, y = exp[(t — ,)(AA + A})]. Note that this argument does not
require [#,, t,+1] to be a small interval. The asymptotic form of the exact solution determines error propagation, as
shown in (20) and [9]. The fact that its form is “built in” our analysis is (partly) a consequence of considering averaging
approximations Aj.

Fourth, let [ ], be the orthogonal projection operator, with respect to the inner product ( f|g) = f ;i Hf(x)g(x) dx,
onto the space of degree m polynomials. Suppose we take V,, = (1/(xy41 — X)) /, x); "1V (x) dx exactly, together with
px) = ]_[m(V(x) — V,,). The discussion after Lemma 1 shows that to construct a fourth order RCMS integrator for
the 1D Schrodinger equation with this choice of V,, p(x), we need the first Magnus term with linear polynomials
m = 1. It can be shown that (47) gives the leading terms in the asymptotic expansion of the global error of such an
integrator. Our choice of V,,, p(x) gives M,,_; = N,_; =0 and so the leading term of the global error is O(1/ \/I), ie.
the approximations generated by such an “orthogonal projection” RCMS integrator will converge to the exact solution
as A grows! In contrast, the error envelope of “usual” Filon—-Legendre RCMS (with degree m interpolating polynomials
on the Legendre points) described in the previous parts of this work, or of (Filon-Legendre) modified Magnus, will
be a constant equal to m + 1 point Gaussian quadrature error which is O(h22”3). These predictions are supported by
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Fig. 8 where the error of “orthogonal projection” RCMS is compared to those of “Filon-Legendre” RCMS and modified
Magnus, all fourth order integrators, applied to the Coffey—Evans problem with increasing /. Higher order “orthogonal
projection” RCMS and “orthogonal projection” right correction Neumann integrators are of course also possible. The
form of RCMS local error for Frenet—Serret (28) shows that “orthogonal projection” RCMS will also exhibit exact
asymptotics in this case.

Calculating orthogonal projection of functions requires analytic integration of inner products. The construction of
general purpose numerical ODE software based on exact quadratures seems rather hard (although not necessarily
impossible in the era of symbolic computation). However, when a specific problem is at hand and accurate answers are
required for large parameter values “orthogonal projection” RCMS may be useful.

6. Conclusion

Our work discusses efficient numerical integration of oscillatory linear ODEs of form (1), which are perturbations of
constant coefficient ODEs. Two essential steps are taken, transformation to the right correction equation and application
of an integral series representation of the solution of this equation. We name this RCIS, the Right Correction Integral
Series approach. RCMS, the modified Magnus method from [9], the integrator for the 1D Schrodinger equation from
[15] and the integrators for near adiabatic quantum mechanical propagation from [17,18], are examples of RCIS
schemes. The first two use the Magnus series and the others use the Neumann series to integrate the right correction
equation. Their exceptional performance illustrates the power of the RCIS approach.

We emphasize the degrees of freedom inherent in this approach; the integral series representing the right correction,
the constant approximations A, and the method of obtaining polynomial approximants of A(r) — A (which defines
the quadrature method), all can be chosen in various ways giving integrators suitable for highly oscillatory problems
but with different properties.

Two examples involving matrices with purely imaginary or zero eigenvalues were studied in detail here. These are
the 1D Schrodinger and the type A equations. The important aspects of quadrature (see also [10,13]) and error analysis
were developed for RCMS and can be used for other RCIS schemes. The importance of constant approximations A
calculated by averaging of A|(r) was noted. It was shown that they determine the exact asymptotic form of solutions,
and that together with polynomial approximants of A;(¢) — A1 obtained by orthogonal projection RCMS integrators
with exact asymptotics are constructed.

Several important points call for further research. Our brief remark on the case A < V(x) in the 1D Schrédinger
equation shows that the RCIS approach may also perform well when the involved matrices have eigenvalues with
nonzero real part. Application of RCMS for such problems may be explored.

In this work the perturbation, A1(#), was assumed not to vary much on the scale of solution oscillations. This was
used to approximate Aj(¢) by polynomials, on intervals large with respect to the scale of solution oscillation. Thus
analytical integration was possible in the Magnus series (Neumann series in [15]) of the right correction equation. The
crucial point here is analytic integration over large intervals not polynomial approximation. If A{(¢) is highly oscillatory
it may be expanded in a Fourier series. Analytical integration in an integral series representation of the right correction
will still be possible. In this way efficient, long step, integrators may be constructed for more general perturbations
Aq(1).

The Neumann series (5) can have great value in numerical analysis. Like other integral series representations of ODE
solutions it is extremely suitable for ODEs with highly oscillatory coefficient matrix. In [7] we observed that since the
Neumann series does not use the matrix exponential, or other computationally costly transformations, it may be used
for right correction integrators applied to large systems of equations. This line of work was recently taken in [11].

The possibility of even faster error decay with increasing A should be explored. This may be achieved if jets (the
vector of higher derivatives at a point) of the entries of A1 (¢) — Aj atinterval endpoints are used in the formulas giving
@, instead of jets of the entries of the polynomial approximation P(t) A~ Aj(t) — Aj. This suggestion leads to RCMS
(RCIS) integrators which are based on asymptotic expansion of the terms in the right correction Magnus series (other
series). Particularly intriguing is the possibility of RCMS integrators with exact accelerated asymptotics. These may
be obtained by a refined choice of P () combining the requirement fti"“ Pt)—(A1(t)— A1) dr =0 with requirements

on equality of the jets of P(¢), (A1(r) — A;) at interval endpoints. The purpose is to nullify as many terms as possible
in the head of the asymptotic error expansion leaving a remainder that rapidly decays with increasing 4.
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Another direction is treatment of highly oscillatory linear ODEs which are perturbations of analytically solvable
(non-constant coefficient) ODEs. Yet another is extension of the RCIS approach to non-linear equations, a preliminary
discussion of which is given in [9].
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Appendix A. Formulas for approximation of Magnus series
A.l. One-dimensional Schrodinger equations

A;j, the entries in the first Magnus series term, are obtained using repeated integration by parts in foh [B(x)];; dx,
where B(x) is the matrix in the right correction equation (41). p(x) appearing here is a cubic polynomial approximation
of V(x) — V,, on a given grid interval. It is obtained by Lagrangian interpolation from the four Legendre points in
[xn, Xn+1]- The calculations here are done for the interval [0, /] but they apply to any grid interval via a simple coordinate
translation. We write g for ¢,,.

1 1 1
A= —Ap= —W(p(o) — cos(2hq) p(h)) — ¥ sin(2hq) p'(h) + W(ﬁ”(o)
1
— c0s(2hq) p" (h)) + = sin(2hq) p"' (0),
32¢q

sin(2hq) p" (h)

1 1
Aot =P A2 = 1 sinChg)p(h) = o5 (0'(0) = cosCha)p' () -

" l

+p (O)W(l — cos(2hq)).

1
1643

The second Magnus series term is foh [ f(f B(y)dy, B(x)]dx. Performing the commutation, the following integrals
appear:

h X
I :/0 (/0 p(y)cos(qu)dy) p(x)sin(2xq) dx, (50)
h X
I = 2/0 (fo p(y)dy) p(x)sin(2xq) dx, (51)
h X
I =/0 (/0 py) dy) p(x)cos(2xq) dx. (52)

Integrating by parts and rearranging we obtain

— l " 2# - Vi L L " / L 1 2
T4 (((((((hp O Joos 7 O (h)144>h+ = 1" O©p'(h) + o5 p'(h) )h

L, 5, 7
TR O ph) + 307 (m)p (h)) h)

1 1 1
+E<p’(h)2 + p(h)p”(h))) h=1 p(h)p’(h)) ht g p<h>2> h

h4 1 p p/// (O) , 1 p p///(o)
+Z<§p 0) + > h) (p(0)+h(2§p 0) + > h))
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|
216 sin(4hq) p(h)?

1 1 " " 14 _ ] " 1 1
+ e (((((—80 (0)* h+ o6 O)p (h)>h w? 0)p'(h) — o ? (h) )
L "0)p(h) L "(hyp" h)>h L (h) ”(h))h L 0)p'(0)
+32p p +32p( p( ~ 16 PP ~ 16 POP
1 1
+§ cos(2hq) p(h)p'(0) — T6 cos(4hq)p(h)p/(h)>

11
+ P (—1—6 sin(2hq) p'(0) p’(h) + sin(4hq) (— P’ + P(h)P"(h)>>

1 /1 1 1
t 3 ( P (Op©) + = p'(0)p"(0) = cos(2hq) < P Oph) = 5 p'O)p"(h)

/// 0
+p (0)< ')+ 7 ()h))

2

1
+ cos(4hq) ( p"(0)p(h) TP (h)p”(h)>>

1
1288 sin(2hq)(2p" (0)(p'(0) + p'(h)) — cos(2hg)(2p" (0) p' (h) + p" (h)*))

1
~ 25607 " (0)(p"(0) + (=2 cos(2hq) + cos(4hq)) p” (h))

AT p"(0)*(—4sin(2hq) + sin(4hq)),

" 2
I1 = sin(2hq) K> + cos(Rhq) K1 + 412 <p(0) +h <p/(0) +h <% p"0) + P 6(0) h))> sin(2hq)

3 5 " " 35 " " 35 " 2
Tip pO)p' (0)+ (p ©)p"(0) + 3 p" (0)p(0)) — 64q" p(0)p7(0) — mp (0)” sin(2hq),

. K
L= sm(2hq)— —

cos(2hq) (

L 0)2
5 g (>) 42p<)

1

Ry ( PO’ +3 P(O)P”(O)) (15(17”’(0)1? (0) 4+ 10p"(0) ))

646

35 n
~ 288 P (0)*(5 — cos(2hq)),
where
3 Y 1 " 35 " "
K=o 3p(h>p(h>——(p Wp" () + 5 p" O ph)) + =5 p" O)p" (h),

1 2 1 2 "
Ky = 1q — p(h)” — ( P+ ph)p (h))

5 /7 2 3 " / " 2
— h - 0 h 0)~.
+16q6<p() +37"OP0) ) + 75 O



1. Degani, J. Schiff / Journal of Computational and Applied Mathematics 193 (2006) 413—-436 435

The right correction equation Magnus series truncated after the first two terms is approximated by
I I 63

G (An An)_1 q? 9> q*
Ay Ax 2 2A21A22—£—£ b

2q q
A.2. Perturbed constant coefficient Frenet—Serret equations
The matrix B(z) in the transformed right correction equation for the perturbed constant coefficient Frenet-Serret

equations is given in (25). We write ¢ for A. The functions f; and f> appearing here are the quadratic polynomials
approximating fi and f> from (25). Thus

fit)y=dy +c1t + b1t2,
Fo(t) = do + ot + bot?.

We define Z(t) = f>(t) fot f1(s) ds. The six coefficients di, c1, b1, da, ¢2, by determine all the evaluations of f1, f>, Z
and their derivatives appearing below.
The first Magnus series term is foh B(t) dt. Integration by parts gives

[N
Agj =d1h+561h +§b1h ,

1 1 1
Az = . sin(hq) f2(h) + ?(COS(hQ)fz//(h) - £0) — pe sin(hq) f5 (h),

1 1 1
A = —;(COS(hq)fz”(h) — f(0) + p sin(hq) f5 (h) + E(COS(hq)fz”(h) — f7(0)).

The second Magnus series term is foh [ fé B(x)dx, B(t)]dr. Performing the commutation, the following integrals
appear:

h x
I:/O (/0 F2(y) cos(2yq) dy) fr(x) sin(2xq) dx,
h
11=/ Z(1) sin(2rq) dr,
0

h
12=/ Z(t) cos(2tq)dz.
0

Note that if f> is replaced by p, I is identical to the expression with the same name appearing in the RCMS formulas
for the 1D Schrodinger equation. Moreover, if f] is also replaced by p then /1 and I, here transform to those appearing
in the discussion on the 1D Schrodinger equation.
The formulas for I used here are obtained from those in the 1D Schrodinger equation by replacing any appearance
of f3” ~ p” by 0. I and I, are obtained by a simple integration by parts
L= - é(cos(hq)Z(h) —-Z(0)) + qizsin(hq)Z’(h) + %(cos(hq)z”(h) - 7"(0))

- i4 sin(hg)Z" (h) — %(cos(hq)z@”(h) - Z90) + ié sin(hq) 2 (h),
q q q

b= cllsin(hq)Z(h) + q—lz(cos(hq)Z’(h) —7/(0)) — q%sin(hq)Z”(h)

1 " " 1. 4) 1 ) (5)
— —;(cos(hq)Z™(h) — Z7(0)) + — sin(hq) Z™ (h) + —¢(cos(hg) Z* (h) — Z*(0)).
q q q
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Now ¢ the RCMS approximation of the Magnus series can be written as

0 Ay Apz 1 0 21 — A13A3 211 — Ay1Ax
o= A 0 —Axp | — = | A13A3p —21 0 21, — Ari A3
—A;z Axp 0 Ax1Az — 21y Ap1A13 =20 0
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