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0. INTRODUCTION

I would like to make brief presentations on two topics, both of which focus on
an issue of ‘integrability’ in equations of interest in high energy physics. In my
first talk, I would like to introduce the Chern-Simons-Higgs vortex equations, which
describe classical solutions of a certain (2 +1)-dimensional field theory. In flat space-
time these equations are non-integrable, but in curved spacetime the ODE describing
cylindrically symmetric vortices can, by correct choice of the metric, be made to be
a degenerate case of the third Painlevé equation, possessing rational solutions which
can be written down. Remarkably, the overall features of the solutions (found numer-
ically) for the flat spacetime case, are very similar to those found in the integrable
case, suggesting that maybe the non-integrable case should be looked on as a ‘per-
turbation’ of the integrable case. My second talk is on the topic of a reduction of the
self-dual Yang-Mills equations from four to three dimensions: there has been consid-
erable interest recently in the self-dual Yang-Mills equations as a ‘master equation’,
from which many integrable systems can be obtained by suitable reductions. Here I
focus on a method to reduce to three dimensions, but the systems that emerge are
really trivial generalizations of two dimensional integrable systems.

For the reader’s ease, equations and references in my first talk are referred to by
letter (A,B,C,...), and in my second talk by number (1,2,3,...).

1. INTEGRABILITY OF CHERN-SIMONS-HIGGS VORTEX EQUATIONS

It has been known for some years that in (2+1) dimensions there exists an inter-
esting alternative to standard electromagnetism [A]. In (d+ 1) dimensions, standard
electromagnetism is defined by the action

S =

∫

dd+1x
√
g(−1

4FµνF
µν) (A)

Here we understand that the fundamental quantity is the potential Aµ(x), µ =
0, 1, 2, ..., d, and Fµν = ∂µAν−∂νAµ. In writing this we have allowed for the possibility
that we are working on a curved spacetime, with metric tensor gµν (for flat spacetime

gµν = diag(1,−1,−1, ...,−1)); Fµν is defined by Fµν = gµµ′

gνν′

Fµ′ν′ where gµν is
the inverse of the metric tensor (i.e. gµνgνρ = δµ

ρ ), and g = det(gµν). If d = 2 we can
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consider an alternative action

S =

∫

d3x(−1
4α

√
gFµνF

µν + 1
4κǫ

µνρFµνAρ) (B)

where α, κ are constants. The extra term is known as the Chern-Simons term, and the
theory based on this action (with non-vanishing α, κ) is called ‘topologically massive
electromagnetism’; the photon in this theory has mass, due to the Chern-Simons term,
which is independent of the metric tensor gµν , and therefore topological.

If in (B) we set α = 0 we obtain ‘pure Chern-Simons electromagnetism’. The
equations of motion (i.e. the variational equations δS = 0) in this theory are Fµν = 0,
and from these it follows that, at least within a topologically trivial region of space-
time, there is no classical dynamics. Somewhat surprisingly though, if one couples
pure Chern-Simons electromagnetism to a certain type of other field then the electro-
magnetic field does become dynamical [B]. Specifically, let φ(x) be a complex scalar
field and consider the action

S =

∫

d3x( 1
4κǫ

µνρFµνAρ +
√
gDµφ ¯Dµφ−√

gV (|φ|2)) (C)

where Dµφ = (∂µ + ieAµ)φ (e is the ‘coupling constant’), and V (|φ|2) is some ‘Higgs
potential’, that is, a function with a minimum at some value of |φ|2 other then 0.
This is the general (abelian) Chern-Simons-Higgs action, and an action of this type
is thought to play a role in high-Tc superconductivity.

Following [C], we shall consider a particular Chern-Simons-Higgs action, with the
potential

V (|φ|2) =
e4

k2
|φ|2(|φ|2 −m)2 (D)

If further we take the metric to have the form gµν = diag(1,−b,−b) where b is some
function of x1, x2, the space variables, then it is possible to show a remarkable fact:
while the equations of motion for the action (C) include a second order PDE (the
equation of motion for the scalar field), for the particular choice (D) it is possible to
obtain finite energy, stationary (i.e. x0 independant) solutions of the equations by
solving a set of only first order PDEs. For full details see [C],[D]; here I wish to focus
on integrability properties of the final equations, so I just quote the result. For any
stationary solution it is easy to show that

A0 =
−κF12

2be2|φ|2 (E)

The system of equations to be solved for the remaining fields φ,Ai, i = 1, 2, is

(D1 ± iD2)φ = 0 (F1)

eF12 = ±2e4

κ2
b|φ|2(|φ|2 −m) (F2)

(where it is understood that one has to choose the upper or lower signs consistently in
both equations). This system is clearly underdetermined, due to the gauge freedom
Ai → Ai + ∂iΛ, φ→ e−iΛφ. For solutions given by equations (F) the energy is given
by

E = ∓meΦ (G1)

Φ =

∫

d2x F12 (G2)

Since the energy is positive, from (G1) it follows that the quantity Φ (the flux) must
be negative (positive) for the choice of upper (lower) signs in equations (F); for all
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the solutions we shall look at here |φ|2 is bounded above by m, so this is indeed
the case, from equation (F2). The question as to whether the first order system (F)
yields all finite energy, stationary solutions of the equations of motion (for our choice
of potential and the flat metric) is currently open.

Equation (F1) can be solved to give Ai in terms of φ. Parametrizing φ by

φ =
√
mχe−iω (H)

where χ, ω are real functions of x1, x2 with χ nonnegative, we obtain

eAi = ∓1
2ǫij∂j lnχ+ ∂iω (I)

Substituting in (F2) we obtain one equation for χ (the function ω in (H),(I) is just
the gauge degree of freedom):

∇2 lnχ = γ2bχ(χ− 1) (J)

where

γ =
2e2m

κ
(K)

We seek solutions to (J) which are ‘well-behaved’ everywhere, and for which χ → 0
or χ→ 1 at spatial infinity (corresponding to |φ|2 tending to one of the two vacuum
values 0 or m, necessary for finite energy).

I will return to equation (J) briefly later, but the main point I would like to make
can be well-illustrated by restricting to cylindrically symmetric solutions; specifically
if b is a function of r =

√

x2
1 + x2

2 alone, then it makes sense to look for solutions of
(J) where χ is a function of r alone. We then obtain the ODE

1

r

(

rχ′

χ

)

′

= γ2bχ(χ− 1) (L)

I will present solutions to this for the flat space case (b = 1), when the equation is
non-Painlevé, and for the case b ∝ 1/r2, when the equation is Painlevé. Interestingly,
the overall features of the solutions are very similar for both cases, suggesting that
maybe they can be regarded as ‘perturbations’ of each other.

For b = 1 there are four types of (well-behaved) solutions, found in [C] by a com-
bination of analytic and numerical techniques (the solutions have not been obtained
in closed form).

1. Vacuum solutions, χ = 0 and χ = 1.
2. ‘Vortex solutions’, χ(0) = 0, χ → 1 as r → ∞. For any positive integer n there

is a solution of this type, with χ ∼ Gn(γr)2n for small r, where Gn is some fixed
number depending on n, and with (1 − χ) decaying as a multiple of K0(γr) for
large r. These solutions have flux Φ = 2πn/e.

3. Solutions with 0 < χ(0) < 1, and χ → 0 as r → ∞. There is a one parameter
family of such solutions, and χ(0) can be taken to be the parameter. For large r,
the solutions decay as (γr)−2α for some positive number α determined by χ(0).
The flux is Φ = 2πα/e.

4. Solutions with χ(0) = 0 and χ → 0 as r → ∞. These solutions are specified
by two parameters, a positive integer n and a number H with 0 < H < Gn; for
small r, χ ∼ H(γr)2n, and for large r, χ decays as (γr)−2α where the number α
is determined by n,H. The flux is Φ = 2π(n+ α)/e.

In the above list the fact that n is an integer is not required if we just wish to
solve equation (L); it arises from the requirement that Ai should be single-valued
at the origin. So essentially we have 1-parameter families of types 2 and 3, and
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a two parameter family of type 4 (the different ‘types’ classify different asymptotic
behaviors).

We now look at the case of equation (L) with b = 4p2/γ2r2 (this case was
suggested by Painlevé analysis of (L) as will be explained later). Here p is a positive
constant. We obtain the equation

(

rχ′

χ

)

′

=
4p2

r
χ(χ− 1) (M)

which is a special case of the third Painlevé equation, with rational solutions, found
in [E]. Again we can write down four types of solution.

1. Vacuum solutions, χ = 0, χ = 1.
2. Vortex solutions. For any α > 0 there is a solution, with χ(0) = 0, χ(∞) = 1

given by

χ =
1

1 + αr−2p
(N)

with Φ = 2πp/e.
3. Solutions with χ(1) = 1, χ(∞) = 0. For any β > 0 there is such a solution, given

by

χ =
1

1 + βr2p
(O)

with Φ = 2πp/e
4. Solutions with χ(0) = χ(∞) = 0. For any α, β > 0 we have a solution

χ =
µ

(α+ r2λ)(β + r−2λ)
(P )

Here µ, λ are defined in terms of p, α, β by

αβ =
p+ λ

p− λ
(Q1)

µ =
2λ2

p(p+ λ)
(Q2)

The flux is Φ = 4πλ/e.
Again types 2 and 3 give one parameter families, and type 4 a two parameter family.
There are clear relations between the types of solution here and the corresponding
types above. (Furthermore the similarity extends to solutions with singularities of
the two equations, that are not of physical interest.) We note that requiring single-
valuedness of Ai at the origin in the case we have just discussed would produce
a requirement that p should be an integer; this is not reasonable from a physical
standpoint, however, since for our second choice of b the origin is a singular point,
and therefore there is no justification for imposing single-valuedness there. p would
similarly be quantized if we insisited that the Euler character associated with our
metric should be an integer, but there is no reason to do this either (the metric we
have is flat everywhere but at the origin, and in fact gives space the topology of a
cylinder). It would be very interesting to elucidate further the relation of the two
sets of solutions above, and understand how to ‘perturb’ any ODE with the Painlevé
property in such a way as to keep the qualitative nature of the solutions. It seems that
all we lose going from the integrable to non-integrable cases is the ability to explicitly
write down solutions.

To return to the PDE (J), or equivalently the system (F), once we have shown the
existence of one solution, it is possible to use index theory methods to determine how
we can vary that solution to obtain other solutions of the system. For the flat space
case one can show that there are 2n deformations of the n-vortex solution. On the
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other hand it is possible to show that equation (J) does not have the Weiss-Tabor-
Carnevale Painlevé property for any choice of b. It would seem that equation (J)
furnishes an example of a non-integrable system with soliton-type solutions (which
can not be explicitly written down).

I wish to devote the rest of this presentation to dealing with some interesting,
if not very novel, aspects of Painlevé analysis that arose in the analysis of equation
(L) for arbitrary b. In fact let us do the Painlevé analysis (in the style of [F]) for the
ODE

1

r

(

rχ′

χ

)

′

= fχ2 + gχ (R)

where f, g are arbitrary functions of r. We write this in the form

χχ′′ − χ′2 +
χχ′

r
= fχ4 + gχ3 (R′)

and look for a solution in the form

χ =

∞
∑

n=0

χn(r − r0)
n−1 (S)

Remembering to expand f, g, 1/r in Taylor series around r0,

f(r) =
∞
∑

n=0

fn(r − r0)
n fn =

1

n!

dnf

drn

∣

∣

∣

∣

r=r0

(S)

etc., we obtain at leading order

χ2
0 =

1

f0
(T )

We find that resonances occur at n = −1, 2 and the consistency condition for the
n = 2 resonance is

(

± 2gr√
f

+
f ′r

f

)

′

= 0 (U)

The ± in (U) originates from the fact that (T) allows two choices for χ0; Painlevé
property only holds if (U) is satisfied for both sign choices, implying we need

f = ArB

g = Cr
1
2B−1

(V )

where A,B,C are arbitrary constants. (for f = −g = γ2b we need B = −2, A = −C
giving b as taken above). If we insist on consistency for just one choice of sign we
need

f = h2r−2D

g = h′r−D
(W )

where h is an arbitrary function and D is an arbitrary constant. I wish to show that
for this more general choice of f, g it is possible to find a one parameter family of
solutions (unfortunately they do not have the boundary conditions required for our
physical application); this emerges in the course of rewriting equation (R) (for the
choice (W)) in a form where instead of having two different possible residues (the two
possible values of χ0) there are two different leading orders in the Painlevé analysis
(this will become apparent).
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We proceed as follows. In equation (R), with the choice (W), we make successive
changes in the independent variable, dependent variable and arbitrary function as
follows:

t = ln r

Y = χh−1e(D−1)t

v = ḣ/h

(X)

(dots denore differentiation with respect to t). Our equation becomes

d2

dt2
(lnY ) = Y 2 + vY + v̇ (Y )

We now make the crucial substitution Y = q̇/q; where Y has a pole with a positive
(negative) residue, q will have a zero (pole). We obtain a third order equation, which
can however be integrated once to yield

q̈ =
2q̇2

q
+ vq̇ +

ǫq̇

q
(Z)

where ǫ is an arbitrary constant. Setting r = 1/q this becomes

r̈ = vṙ + ǫrṙ (AA)

For ǫ = 0 this can be solved to give

r = F +G

∫

dt exp

(
∫

dt v

)

(BB)

where F,G are constants of integration. This yields a one parameter family of so-
lutions χ to the original equation. For ǫ 6= 0, Painlevé analysis of equation (AA)
requires looking at two expansions

r =
∞
∑

n=0

rn(t− t0)
n−1 (CC)

r =

∞
∑

n=0

rn(t− t0)
n+1 (DD)

so we might describe the procedure we have followed as ‘resolving two residues into
two different leading orders’. An expansion of form (DD) is consistent for any v in
(AA), but an expansion of form (CC) is only consistent if v is a constant.

The reason I have detailed this at such length is that it seems that it may well
be useful in other circumstances; whenever an equation has two possible leading
coefficients in its Painlevé expansion (for a particular leading order), it can, by a
suitable substution, increasing the order of the ODE by one, be brought to a form
where the two possible leading coefficients have been ‘resolved’ into two possible
leading orders. Integrating this higher-order equation once, if possible, will introduce
an arbitrary constant, and for a special value of this constant we may be able to
extract special solutions. For example, for the second Painlevé equation

w′′ = 2w3 + wr + α (EE)

the Painlevé expansions starts
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w =
±1

r − r0
+ ... (FF )

To ‘resolve’ the ± we set w = u′/u to obtain

(

u′′

u3
+

r

2u2

)

′

=
(α+ 1

2 )

u2
(GG)

For α = −1
2

this can be integrated to

u′′ + 1
2ru = Cu3 (HH)

where C is an arbitrary constant; for C = 0 we obtain at once the special solutions
of the α = −1

2 second Painlevé equation, in terms of solutions of Airy’s equation.
To return to our main subject, and conclude, we have seen that the Chern-

Simons-Higgs vortex equations provide a system that, while not integrable, seems, in
some non-formal sense, to be very close to an integrable system. For the cylindrically
symmetric case we can see explicitly how solutions for the flat space case mimic
solutions for the integrable case. Many similar results to the ones we have presented
here can be presented for the more standard Abelian Higgs vortex equations (see the
references in [C] and [D]): for flat space the relevant PDE fails the Painlevé test,
despite the existence of n-vortex solutions. It is to be hoped that the relationship of
the vortex systems to usual integrable systems might be understood better.

2. A REDUCTION OF THE SELF-DUAL YANG-MILLS EQUATIONS TO THREE
DIMENSIONS

2.1. INTRODUCTION

As we have already heard in this workshop, in the talk of Ablowitz [1], there has
been some recent interest in the self-dual Yang-Mills (SDYM) equations, as it seems
that a large number of known integrable systems (in 0 + 1 and 1 + 1 dimensions) can
be obtained by reduction of the SDYM equations, with a suitable choice of the gauge
group. That reductions of the SDYM equations are integrable is no surprise, as the
SDYM equations themselves can be completely solved [2]. Furthermore the SDYM
equations possess a host of the ‘standard properties’ of integrable systems: they have
Painlevé property (shown in the sense of Weiss, Tabor and Carnevale (WTC) for gauge
group SU(2) in [3], and in a possibly stronger sense for arbitrary gauge group in [4]),
they have an infinite number of conservation laws associated with them [5], they have
Bäcklund transformations [6], and they can be written as consistency conditions for a
system of linear equations [7]. Any reduction of the SDYM equations will inherit all
these properties. It is of interest to ask what integrable systems can arise by reduction
from the SDYM equations. Any system in 1+1 dimensions that can written as a single
zero curvature condition, can be obtained from SDYM, as we shall see shortly, and this
includes many systems, such as the KdV, mKdV, NLS, Sine-Gordon, Boussinesq [8],
Super-KdV [9] and Toda chain [10] equations. By further reduction of these systems
it follows that one can obtain a number of the Painlevé equations in 0+1 dimensions,
and Ablowitz et. al. [1] have shown how to obtain other interesting 0+1 dimensional
systems. Here we shall investigate briefly a 2+1 dimensional reduction of SDYM. One
cannot expect to obtain the KP or Davey-Stewartson equations from SDYM (at least
with a finite dimensional gauge group), because these equations would thereby inherit
a Lax pair formalism of a type they are believed not to have. But it is nevertheless
of interest to see what one does obtain. We will follow a simple reduction technique,
which is a trivial generalization of a method recently used by Mason and Sparling [11]
to obtain KdV and NLS from SDYM. We obtain equations which superficially are
2+1 dimensional, but actually have the structure of 1+1 dimensional systems, as we
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will explain. Despite this, it is still of interest to see the equations emerge explicitly
from SDYM. We also demonstrate some interesting properties for the simplest case
(KdV-type) of our reduction scheme.

2.2. REDUCTION METHOD

The SDYM equations can be presented as follows [12]: let Az, Az̄, Aw, Aw̄ be func-
tions of the variables z, z̄, w, w̄ taking values in a Lie algebra G. For i, j ∈ {z, z̄, w, w̄},
i 6= j define

Fij = ∂iAj − ∂jAi + [Ai, Aj] (1)

The SDYM equations are
Fzw = 0

Fww̄ + Fzz̄ = 0

Fz̄w̄ = 0

(2)

Choosing the coordinates w, w̄, z, z̄ to be complex conjugate pairs in the obvious
manner, is appropriate for the SDYM equations on flat Euclidean R

4; for this talk
however we shall take all the coordinates to be real, which is appropriate for the
SDYM equations on flat R

4 with a metric of signature (2, 2). The SDYM equations
are invariant under gauge transformationsAi → gAig

−1+g∂ig
−1, where g is a function

with values in the Lie group associated with G. We use this freedom to set Az̄ to
zero; we still have the residual freedom of gauge transformations with g independent
of z̄. We now perform a reduction to three dimensions by taking all the remaining
functions independent of w̄. The Fz̄w̄ = 0 equation becomes, as a result of our gauge
choice,

∂z̄Aw̄ = 0 (3)

Since Aw̄ is independent of z̄, it follows that we can apply the residual gauge trans-
formations to it to bring it to a canonical form of some sort. Indeed, if we had not
performed the reduction, then Aw̄ would transform by Aw̄ → gAw̄g

−1 + g∂w̄g
−1 and

we would be able to gauge transform Aw̄ to zero. But because of the reduction, Aw̄

transforms homogeneously, Aw̄ → gAw̄g
−1, and therefore it cannot be taken to be

zero, but can be taken to be one of several canonical forms (all independent of z̄, w̄,
of course) . We shall not here attempt to classify these forms, but shall focus on the
simplest examples. The remaining equations we have to solve are

∂zAw − ∂wAz + [Az, Aw] = 0

∂wAw̄ + [Aw, Aw̄] − ∂z̄Az = 0
(4)

The first of these is a zero curvature condition for Az, Aw; the second is a simple
linear relation between Az and Aw for a given canonical choice of Aw̄. Note that if we
choose Aw̄ = 0 and further reduce by taking Az, Aw independent of z̄, then we obtain
just a single zero curvature condition for Az(z, w), Aw(z, w), and, as mentioned in
the introduction, many integrable systems arise this way: for example, for KdV one
chooses (with G = sl(2,C))

Az =

(

0 1
−u 0

)

Aw =
1

4

(

−uz 2u
−(2u2 + uzz) uz

)

(5)

(where u is a function of z and w). Note further that in equations (4) the coordinate
z̄ appears on a different footing from z, w. The same observation can be made on two
other results: first, if we apply our reduction to the standard Lax pair formulation of
SDYM, we see our equations can be written

[∂z + Az + λAw̄, ∂w + λ∂z̄ +Aw] = 0 (6)
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(Here λ is a parameter, and our equations emerge by requiring the above to be true
order-by-order in λ). Note in this that if we define Z̄ = z̄ − λw, W = w, then
the derivative with respect to Z̄ does not appear in the Lax pair. Second, it is
straightforward to show how to reduce the standard non-local conservation laws for
SDYM [5], to obtain the existence of quantities V (n)(z, z̄, w), n = 0, 1, 2, ... such that

∂w

(
∫

dzV (n)

)

= 0 (7)

(Here the quantities V (n) are non-local in the A’s). In these conservation laws, z̄ has
a parametric role. We now proceed to give explicitly the simplest examples of the
reduction, and to explain the observation that one coordinate seems to be redundant.

2.3. EXAMPLE 1

We choose G = sl(2,C), and

Aw̄ =

(

0 0
1 0

)

(8)

We parametrize Az, Aw by

Aw =

(

α β
β̃ −α

)

Az =

(

γ δ
δ̃ −γ

)

(9)

and insert into equations (4). We meet the equations

∂z̄δ = 0 (10)

∂z̄(δ̃ + γz + γ2) = 0 (11)

which we solve (for simplicity) by taking δ = 1 and δ̃ = −(γz + γ2). We obtain

Aw =

( 1
2γzz̄ + γγz̄ γz̄

β̃ −( 1
2γzz̄ + γγz̄)

)

Az =

(

γ 1
−(γz + γ2) −γ

)

(12)

where
β̃ = γw − 1

2
γzzz̄ − γγzz̄ − 2γzγz̄ − γ2γz̄ (13)

and γ satisfies the equation

γwz = 1
4
γzzzz̄ + 2γzγzz̄ + γzzγz̄ (14)

This equation is our result. Setting u = γz we can write this

uw = 1
4uzzz̄ + 2uuz̄ + uz

(
∫

dzuz̄

)

= ( 1
4
∂2

z + 2u+ (∂zu)∂
−1
z )uz̄

(15)

We see that our equation is simply uw = Φ(u)uz̄ where Φ(u) is the recursion operator
of the KdV equation.* Our equation, while being an integrable differential equation
in three dimensions, has essentially the same structure as the KdV equation (uw =
Φ(u)uz), in the same way that all the higher KdV equations (uw = Φ(u)nuz, n =

* I thank A.S.Fokas for this critical observation.
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2, 3, ...) have the same structure as the KdV equation. For all these equations, the
integrability arises as a consequence of the existence of the ‘strong symmetry’ Φ (see
[13] for more details). It seems likely that all the integrable equations that arise
from our reduction will be three dimensional analogues of two dimensional integrable
systems in this way, thereby explaining the observations at the end of section 2. We
note that if we set z = z̄ in (15) we obtain the KdV equation; this is the reduction of
Mason and Sparling [11].

Despite the fact that the equation (14) we have obtained is not a new type of
integrable equation, we establish some of its properties here.
1. Equation (14) has the Painlevé property in the sense of WTC. This is straightfor-
ward to check, using a reduced ansatz

γ =
∞
∑

n=0

γn(z̄, w)φn−1 (16)

φ = z + α(z̄, w) (17)

The resonances are at n = −1, 1, 4, 6 (i.e. α, γ1, γ4, γ6 are arbitrary functions); these
are the same as for the KP equation in the form

vxt + vxxxx + vxvxx + vyy = 0 (18)

(obtained from the usual form of the KP equation by setting u = vx).
2. For the KdV equation, truncating the Painlevé expansion to contain just singular
terms produces the substitution necessary to pass to Hirota bilinear form [14]. For
equation (14) Painlevé analysis suggests the substitution

γ =
φz

φ
(19)

This yields
0 =4(φ2φzzw − φφzzφw − 2φφzφwz + 2φ2

zφw)

+ φ2φzzzzz̄ − φφz̄φzzzz − 4φφzφzzzz̄ + 2φφzzφzzz̄

+ 4φzφz̄φzzz − 2φz̄φ
2
zz − 4φzφzzφzz̄ + 4φ2

zφzzz̄

(20)

This appears to be in some sort of trilinear form. It seems reasonable to attempt to
find some suitable extension of Hirota’s bilinear operators to cast the above expression
into a simpler form.* To this end, define the action of the trilinear operator Dm

z Dn
z̄ Dp

w
on a triplet of functions (a, b, c) (all functions of z, z̄, w) by

Dm
z Dn

z̄ Dp
w(a, b, c) =

(

∂

∂z
+ ω

∂

∂z′
+ ω2 ∂

∂z′′

)m(

∂

∂z̄
+ ω2 ∂

∂z̄′
+ ω

∂

∂z̄′′

)n

(

∂

∂w
+ ω

∂

∂w′
+ ω2 ∂

∂w′′

)p

a(z, z̄, w)b(z′, z̄′, w′)c(z′′, z̄′′, w′′)

∣

∣

∣

∣

(w,z,z̄)=(w′,z′,z̄′)=(w′′,z′′,z̄′′)

(21)

* I thank J. Hietarinta for pointing out to me that equation (14) can actually be
written using Hirota’s bilinear operators, by the introduction of an extra independent
variable, as explained in [15]; this method is also used for bilinearisation of higher
order KdV equations [16], and hence is certainly appropriate here. I also thank J.
Hietarinta for pointing out to me reference [17], where another type of trilinear form
is introduced.
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Here ω is a cube root of unity obeying ω + ω2 = −1; note the asymmetry between z
and z̄ in this formula. With this definition our equation can be written in the elegant
form

(4D2
zDw −D4

zDz̄)(φ, φ, φ) = 24

∣

∣

∣

∣

∣

∣

φ φz φz̄

φz φzz φzz̄

φzz φzzz φzzz̄

∣

∣

∣

∣

∣

∣

(22)

3. The final form of the equation given in the last paragraph turns out to be convenient
for finding 1- and 2-soliton solutions. Defining λi = αiz + βiz̄ + γiw + δi, i = 1, 2,
with γi = α2

iβi/4, the general 2-soliton can be written

φ = 1 + eλ1 + eλ2 + ηeλ1+λ2 (23)

where

η =

(

α1 − α2

α1 + α2

)2

(24)

The fact that the phase shift can be written purely in terms of α1, α2 is presumably
the expression of the underlying two-dimensional structure of our equation.
4. Just as the AKNS formalism for the KdV equation can be reduced to a scalar
scattering problem, for this particular reduction of SDYM, the SDYM Lax pair can
be reduced to solving the scalar equations:

(∂2
z + 2γz)ψ = λψ (25)

(∂w − γz̄∂z + 1
2γzz̄)ψ = −λ∂z̄ψ (26)

Once again we see we have a KdV theory, as the scattering problem that has to be
solved is just that of the Schrödinger equation. We note that if we define

L = ∂2
z + 2γz

M = −γz̄∂z + 1
2γzz̄

(27)

then our equation can be written

Lw = [L,M ] + 2γzz̄L (28)

2.4. EXAMPLE 2

For our second example we again take G = sl(2,C), and now

Aw̄ = κ

(

1 0
0 −1

)

(29)

After one integration one obtains the system of equations

χz = (δδ̃)z̄

2κδw = −δzz̄ + 2δχ

−2κδ̃w = −δ̃zz̄ + 2δ̃χ

(30)

A priori the functions χ, δ, δ̃ are all complex, but we can consistently take δ̃ to be plus
or minus the complex conjugate of δ if κ is pure imaginary. Then, setting κ = ik we
have

−2kδw = (−i∂z ± 4iδ∂−1
z Re(δ̄·))δz̄ (31)

11



i.e. −2kδw = Ψ(δ)δz̄ , where Ψ(δ) is the recursion operator for the NLS equation
[13] (NLS is obtained from our system by setting z = z̄ [11]). Thus our system here
is related to NLS in exactly the same way that the system obtained in section 3 is
related to KdV. We note that the fifth order system obtained here has WTC Painlevé
property, with resonances n = −1, 0, 2, 3, 4.

2.5. CONCLUSION

The essential result we have presented here is that a simple generalization of
Mason and Sparling’s [11] reduction of SDYM to two dimensional integrable systems
yields three dimensional integrable systems with essentially the same structure as
the two dimensional integrable systems; in effect, removing the ‘timelike symmetry’
(i.e. dependence on z, z̄ only through z + z̄) imposed by Mason and Sparling has
no consequence. We note that Fokas and Santini [18] have recently shown that the
recursion operators of KdV, of KP, of SDYM and of Chiral Fields are all in fact
concrete realizations of the same abstract recursion operator. It is clearly of interest
to clarify the structure of SDYM further and to see how it ‘contains’ and ‘unifies’
many two dimensional integrable systems, and their extensions.

ACKNOWLEDGEMENTS

I thank V.P.Nair and M.Tabor for discussions and encouragement through this
work. For my second presentation, I am much indebted to A.S.Fokas for clarifying the
nature of the three dimensional systems I obtained, and I also thank M.J.Ablowitz
for some comments. I thank V.P.Nair for a critical reading of the manuscript, and
A.S.Fokas and M.Tabor for a critical reading of the second part of the manuscript.
This work was supported in part by the U.S.Department of Energy.

REFERENCES

[A] R.Jackiw and S.Templeton, Phys.Rev.D 23 (1981) 2291; J.Schonfeld, Nucl.Phys.
B185 (1981) 157; S.Deser, R.Jackiw and S.Templeton, Phys.Rev.Lett. 48 (1982)
975, Ann.Phys. 140 (1982) 372, (E) 185 (1988) 406.

[B] S.Deser and Z.Yang, Mod.Phys.Lett.A 4 (1989) 2123.
[C] J.Hong, Y.Kim and P.Y.Pac, Phys.Rev.Lett. 64 (1990) 2230; R.Jackiw and

E.J.Weinberg, Phys.Rev.Lett. 64 (1990) 2234; R.Jackiw, K.Lee and E.J.Weinberg,
“Self-Dual Chern-Simons Solitons”, Phys.Rev.D., to appear.

[D] J.Schiff, “Integrability of Chern-Simons-Higgs and Abelian Higgs Vortex Equa-
tions in a Background Metric”, J.Math.Phys., to appear.

[E] H.Airault, Stud.Appl.Math 61 (1979) 31.
[F] M.J.Ablowitz, A.Ramani and H.Segur J.Math.Phys. 21 (1980) 715.

[1] See the talk of M.J.Ablowitz at this workshop, and S.Chakravarty, M.J. Ablowitz
and P.A.Clarkson, Phys.Rev.Lett. 65 (1990) 1085.

[2] M.F.Atiyah, N.J.Hitchin, V.G.Drinfeld and Yu.I.Manin, Phys.Lett. 65A (1978)
185.

[3] M.Jimbo, M.D.Kruskal and T.Miwa, Phys.Lett. 92A (1982) 59; R.S.Ward Non-
linearity 1 (1988) 671.

[4] R.S.Ward, Phys.Lett. 102A (1984) 279.
[5] See, for example, L.Dolan, Phys.Rep. 109 (1984) 1; L.L.Chau in Integrable

Systems, M.L.Ge and X.C.Song (eds.), World Scientific, (1990).
[6] E.Corrigan, D.B.Fairlie, R.G.Yates and P.Goddard, Phys.Lett. 72B (1978) 354,

Comm.Math.Phys. 58 (1978) 223.
[7] A.A.Belavin and V.E.Zakharov, Phys.Lett. 73B (1978) 53.
[8] I.M.Krichever and S.P.Novikov, Physica 3D (1981) 267.
[9] A.Das and S.Roy, University of Rochester preprint, UR-1137.

12



[10] A.N.Leznov and M.V.Saveliev, Lett.Math.Phys. 3 (1979) 489.
[11] L.J.Mason and G.A.J.Sparling, Phys.Lett.A 137 (1989) 29.
[12] C.N.Yang, Phys.Rev.Lett. 38 (1977) 1377.
[13] B.Fuchssteiner and A.S.Fokas, Physica 4D (1981) 47.
[14] J.D.Gibbon, P.Radmore, M.Tabor, D.Wood, Stud. in Appl.Math 72 (1985) 39.
[15] J.Hietarinta, in Partially Integrable Evolution Equations in Physics, R.Conte and

N.Boccara (eds.), Kluwer Academic Publishers, the Netherlands (1990).
[16] P.G.Drazin and R.S.Johnson, Solitons: An Introduction, Cambridge University

Press (1989).
[17] J.Matsukidaira,J.Satsuma and W.Strampp, Phys.Lett.A 147 (1990) 467.
[18] A.S.Fokas and P.M.Santini, in Solitons in Physics, Mathematics and Nonlinear

Optics, P.J.Olver and D.H.Sattinger (eds.), Springer Verlag (1990).

13


