hep-th/9210137
IASSNS-HEP-92/76
October 1992

Actions for Integrable Systems and
Deformed Conformal Theories™

Jeremy Schiff

School of Natural Science, Institute For Advanced Study
Olden Lane, Princeton, NJ 08540

Abstract

I report on work on a Lagrangian formulation for the simplest 1+1 di-
mensional integrable hierarchies. This formulation makes the relationship
between conformal field theories and (quantized) 141 dimensional inte-
grable hierarchies very clear.

1. Introduction

It is a not widely appreciated fact that at least some (141) dimensional inte-
grable hierarchies (of KAV type), in their “second” hamiltonian formulation, can
be derived from an action principle!. Interestingly, as I will show later, the same
action, considered as a functional of different sets of fields, can give rise to different
“gauge equivalent” integrable hierarchies®. But the main merit of this Lagrangian
approach to integrable systems is that when we quantize these theories in the ob-
vious way, we see the relationship between (deformed) conformal field theories and
quantized integrable systems emerge naturally. We need an action for integrable
systems in their “second” hamiltonian formulation, because it is the “second” Pois-
son bracket algebras of integrable systems that are related to the operator algebras
of conformal field theory?.

I will focus here on the KdV action, summarizing the results of ref.4, but
I will also give an action for NLS® hierarchy. In section 2, after presenting some

* Based on a talk given at the NSERC-CAP Workshop, Quantum Groups, Inte-
grable Models and Statistical Systems, Kingston, Ontario, Canada, July 1992
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results in classical KdV theory, including an explanation of the notion of the “gauge
equivalence class” of the KdV equation, I give the KdV action. In section 3 I show
how to quantize the theory defined by the KdV action, to obtain the usual notions of
“quantum KdV” and “quantum MKdV”; we also obtain very naturally the result of
Zamolodchikov®, that the quantum KdV hamiltonians are conserved quantities in a
certain deformation of the minimal conformal models. Similar treatment of the NLS
action, given in section 4, reveals the result that the quantum NLS hamiltonians are
conserved quantities in a certain deformation of the parafermion and SL(2)/U(1)
coset models.

2. Classical KdV Theory and the KdV Action

The meaning of the statement “the KAV equation is gauge equivalent to the
MKdAV equation” is that via the “Miura map” u = j, — % 42, a) a solution to the
MKdV equation

Jt = Joew = 35%5a (1)
generates a solution of the KdV equation
Up = Uggy + Ul (2)
and b) the “second” Poisson bracket structure of the MKdV equation”
{i(2),j(2")} = 0u0(z — 2') (3)
induces the “second” Poisson bracket structure of the KdV equation
{u(x),u(z)} = (03 + u(x)0y + Opu(x))d(x — ') (4)

Less well known, but of fundamental importance®, is the fact that via the map
J = Quzz/qz, &) a solution of the Ur-KdV equation

qt = Qezx — %chmq;l (5)
generates a solution of MKdV, and b) the Poisson bracket structure
{a(),q(2")} = 07420 14205 6 (x — a) (6)

induces the Poisson bracket structure (3). As recognized and explained by Wilson®,
Egs.(5) and (6) are invariant under Mobius transformations

aq+b
H

d—bc=1
gt d a c (7)



It follows that if f is some functional of ¢ invariant under some subgroup of the
Mbobius transformations, then Eq.(5) will imply some KdV-type equation for f
and the bracket (6) will imply some bracket for f. Examples of such f’s are
7, which is invariant under the ¢ = 0 subgroup of Mo6bius transformations, and
U= Qroxly " — %qixq; 2 which is invariant under the full group of Mé&bius transfor-
mations. Another such fis j = Qezq, * —2q.q~ ', which is invariant under the b = 0
subgroup; j satisfies MKAV*, satisfies the same brackets as j, and u = j, — %jz We
can also take f’s that are invariant under one parameter subgroups of the Mobius
transformations, such as h = In ¢, (invariant under a =d =1, ¢ = 0), h = In(q./q?)
(invariant under a = d = 1, b = 0), and n = ¢, /q (invariant under b = ¢ = 0).
All this is explained in ref.8. Note that we could have written any function of g,
instead of h above; we have chosen h and h so that j = h, and j = h,. The com-
plete set of equations obtained from Ur-KdV in this way is what I call the gauge
equivalence class of KdV; I should point out that this notion is usually introduced
via a zero-curvature formulation, but I will have no need for this here.
Consider now the following action:

S=5 +H

_ —2
SO - AST dzdt Quetlraq, (8)
H= /dajdt plul

Here ¢ is a constant and plu| is some function of u and its z-derivatives. Sy is
the “geometric Virasoro action” of Polyakov, Bershadsky and Ooguri and others?,
which is invariant under Mobius transformations (7), as is H. H has no time
derivatives in it, so the Poisson brackets are determined purely by Sy; on the other
hand since Sy is first order in time derivatives it will give no contribution to the
hamiltonian, which is therefore H. The Poisson brackets determined by Sy are
exactly those in Eq.(6) multiplied by 247 /c. We can write

C

so S can also be considered as an action for h. Treating S as an action for g the
equation of motion is found to be

—24%(62 + u(x)d, + amu(@)g_z (10)

Ut =

*So there are two distinct maps from Ur-KdV to MKdV.
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Here 6p/du is defined by 6H = [ dzdt (6p/du)du. Treating S as an action for h the

equation of motion is
247 op
L= 2T (9, + )P
Jt C ( + j) Su

where here we understand that we should write ép/du in terms of j. From (10) and

(11)

(11) it is clear that if we choose

p[u] = Z )\npn[u] (12)

where the \,,’s are constants and the p,’s are the densities of the conserved quan-
tities of the KAV equation,

pilu]l = u
peolu| = %uQ
palul = b — ) )

then (10) will give an arbitrary equation in the KdV hierarchy and (11) an arbitrary
equation in the MKdV hierarchy. Note that by treating S as a non-local functional
of u we can also obtain an arbitrary equation in the Ur-KdV hierarchy from 5.4
In the last paragraph we pulled the KdV conserved quantities out of a hat.
In fact we could have chosen p[u] as in Eq.(12) with the p,’s any set of densities
such that the quantities I, = [dz p,[u] mutually commute under the bracket
(4). This would have given a different integrable hierarchy. I am not aware of a
classification of all possible sets of p,’s. But when we write the p,’s of the KdV
hierarchy in terms of h we find that the I,,’s commute with both I, = [dx € and
I_ = [dx e (note that I} and I_ do not commute though); in fact it is known!°
that requiring the p,’s to be functions of j = h, and its derivatives such that the
I,,’s commute with I and I_ uniquely determines the p,’s of the KAV hierarchy.

Note that in our formalism e’

= ¢, so (assuming periodic boundary conditions
on q) I is zero. I strongly suspect (from conformal field theoretic considerations)
that a general set of p,’s can be obtained by requiring commutation of the I,,’s
with I and I(A) = [dz e " for some A (not all X’s will be allowed); but I am
unaware of a proof of this statement. In quantization we will for one purpose use
“commutation with I and I_" as the definition of the KdV hamiltonians, and for
another purpose use “commutation with I5” as the definition (this is also sufficient

to define the other I,,’s at the classical level'?).
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3. Quantization

When we quantize a theory we choose a set of Poisson brackets and elevate
them to the level of operator commutation relations. In quantizing the theory based
on the action Sy we have a choice; either we can treat the field ¢ as fundamental,
in which case we should use the u bracket (4), as u is the dynamical field, or we
can treat the field h as fundamental, in which case we should use the j bracket (2).
But in the latter approach we should not completely ignore the fact that Sy can
be treated as an action for g; this reflects the fact that we can impose a consistent
constraint on the theory defined by Sp[h], namely the constraint I, = [ dx e =0
(by “consistent” in this context I mean that this constraint is preserved under the
dynamics). We will do this.

But first a few words on the standard notions of quantum integrable systems.
A common feature of classical integrable systems is the existence of at least one
Poisson bracket structure and an infinite number of quantities in involution with
respect to this bracket. Given this situation, we can investigate whether upon
elevating the brackets to operator commutation relations there is still an infinite
number of quantities in involution, with “classical limit” (suitably defined) the
hamiltonians of the classical integrable system. If the answer is positive then we
can regard the quantities in involution as conserved quantities of some operator evo-
lution equation, which we dub the “quantum” version of the original classical equa-
tion. Remarkably it seems that there are infinite numbers of conserved quantities
for the quantum KdV equation (quantized using its first!%1112 and second!0-11:13
brackets), the quantum MKdV equation (quantized using its second bracket%:13),

t'412 and second® brackets),

£11:13)

the quantum NLS equation (quantized using its firs
and the quantum SL(N) KdV equations (quantized using its second bracke
These are remarkable results because the “bihamiltonian” structure of integrable
systems, often regarded as responsible for the existence of the infinite number of
conserved quantities, is lost on quantization'!.

Returning now to the quantization of our action, the first quantization of Sy
proposed above consists of making the u Poisson bracket (4) into an operator com-

mutation relation. Looking at ref.3 we see that if we write

12 « ‘
u=—— Ln INT 1
o 2 L3 (14)
n=-—oo
then the modes L,, satisfy a Virasoro algebra with central charge c¢. The natural
choice of Hilbert space is the “Verma module of the identity”, i.e. the states

L_,,L_,,.L_,]|0), ny>ng > >y > 2 (15)



where |0) is a vacuum state satisfying
L,|0) =0, n>-1 (16)

Since this quantum theory knows nothing of the classical fields h and j, we proceed
by defining a quantum analog of I, namely

1
Iy = 3 /da: (uu) (17)

where the parentheses denote normal ordering. We seek quantum KdV hamilto-
nians as operators that commute with Zs; this is just the quantum KdV theory
of Kupershmidt and Mathieu'!. It has been proven that an infinite number of
quantum hamiltonians exist!3.

For the second quantization the fundamental field is j; writing

. 6 = . —inx
j= \ﬁ S e (18)

n=—oo

we find the modes j, satisfy the Heisenberg algebra
[jn7jm] = 2n5n,—m (19)

Without imposing the constraint the natural Hilbert space is the set of states

j_nlj_n2""j_n'r|0>7 ny Z N9 Z Z s >1 (20)

where here |0) is a vacuum state satisfying j,|0) = 0, n > 0. To impose the
constraint, the quantum analog of I, = 0, we restrict to states |¢)) satisfying

Iily) =0 (21)

where
I+:/dx el (22)

In Eq.(22) the colons denote normal ordering and h = 9;!j. Operators in the
constrained theory should commute with Z so that they map physical states to
physical states. But before we work out the simplest such operator, let us first do
some rescalings to make our formulae appear more like the conformal field theory

literature; writing
c
=1/ =h
¢ 6 (23)
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we have

So = i /dxdt oo
81

I+:/da::e_w¢:, ﬁ:\/E
c

Following ref.10, we can use conformal field theoretic techniques to evaluate com-

(24)

mutators. We find that the operator T' = —% : J? : +iaJ, commutes with 7 if
a = %(ﬁ — B371). T is the analog of u in this quantization of the theory, and the
modes of T satisfy a Virasoro algebra, but with central charge ¢ = 1 — 24a? =
13—-6(32+372)=13—c—36c .

For = \/m, m = 3,4, ..., we obtain in this way the central charges
of the minimal conformal models. In fact what we have seen here is that quantizing
Sp, treated as an action for the constrained field h, leads us naturally to certain
features of the Dotsenko-Fateev-Feigin-Fuchs construction for the minimal models.
As explained by Felder!®, this construction works because the Hilbert spaces of
the minimal models (which are representation spaces of the Virasoro algebra) can
be realised as the cohomology of a certain operator acting between certain repre-
sentation spaces of the Heisenberg algebra (“Fock spaces”). We have obtained a
Lagrangian prescription of a part of this; the states in our theory are restricted to
lie in the kernel of 7, , which on the single charge-zero Fock space we have been con-
sidering, is Felder’s BRST operator. It might be hoped that a more careful analysis
of Sy might lead to a more complete Lagrangian prescription of Felder’s work; in
particular in ref.4 I explained why the field h should be regarded as compactified,
and this would motivate us to enlarge the Hilbert space of the unconstrained theory
to include Fock spaces of exactly the charges required. But it is at the moment not
clear to me how the constraint operator becomes Felder’s operator on these spaces.

Returning to the main subject, we have seen that operators in the quantum
theory of Sy we are now considering must commute with Z,, and it is therefore
natural to seek quantum KdV hamiltonians in this context by seeking operators
that commute both with 7, and with Z_ = [dz : e " :. It is not clear that
the quantum KdV hamiltonians defined this way will coincide with those defined
previously. But it turns out that the second hamiltonian constructed this way can
be written in the form [ dz (TT) (cf. Eq.(17)), so the set of quantum KdV hamil-
tonians defined here does coincide with those defined above (up to a replacement of
¢ with ¢). This is a non-trivial result, that the two definitions of the classical KdV
hamiltonians given at the end of section 2, namely “commutation with I, and I_"
and “commutation with I5”, give rise to the same set of quantum hamiltonians (up
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to ¢ — ¢)*; we will appreciate this result more in the next section.

Finally in this section we note the significance of the quantum KdV hamiltoni-
ans in the minimal models. Defining the quantum KdV hamiltonians via commu-
tation with Z, and Z_, we see that (for appropriate values of 3) they are operators
in the minimal model which commute with [dz : e~ but : e " : is exactly the
(1,3) primary field, so the quantum KdV hamiltonians are conserved quantities in
the @y 3y deformations of the minimal models®.

4. An action for the Nonlinear Schrodinger Hierarchy

I will now give the NLS action. In the KdV case, while the action gave us an
interesting perspective, we did not really learn anything new. In writing the NLS
action a) we gain insight into the gauge equivalence class of the NLS equation (it
only takes fragmented knowledge of the class to write the action, and then it can
be used to deduce more), b) on quantization we see how just as quantum KdV is
related to (a deformation of) the minimal models, similarly quantum NLS is related
to (a deformation of) the parafermion and SL(2)/U(1) coset models, and c) the
most cryptic element in the bosonization of these models, the form of (one of the)
screening operators is obtained naturally from the classical theory. I will just give
a few details here; for a more complete discussion see ref.5.

The gauge equivalence class of NLS is specified by giving the Ur-NLS equa-
tions, their second Poisson bracket structure and the group action that leaves the
equations and brackets invariant. Calling the Ur-NLS fields S, T, the equations,
brackets and group action are

Ty =Tpr + 27,5,

x

LT} _ 0 —07 '\ T, 07!
(1)} {T<x>,T<Z>}) - (am—lTIam—l 2@;1Txaﬂxa;1) 6z~ y)
e® — \NcT + d)e® (26)
al +b (27)
T T +d

* There are several other results we are taking for granted; for example, on the
classical level it is straightforward to show that the set of objects that commute
with I generate an abelian algebra, but this is not so clear on the quantum level.
Such issues are discussed in ref.10.



where in Eq.(27) ad — bc = 1. The group is SL(2) x R. In the KdV case we had
four different variables that were useful, ¢, h, j,u. S, T are the analogs of ¢, and the
analogs of h, j, u are, respectively the three sets of variables

h=S
. X (28)
h=—-S+1In(S,T,")
.
e (29)
]:hm
2_(J J+3a/d) (30)
B =jj

The variables A, B are invariant under the full transformation group. Eq.(25)
induces the NLS equation for the quantities v, ), where

77[] = eh_ﬁhm

these are invariant under the SL(2) subgroup of the transformation group; indeed
the NLS equations B
djt = ¢mm - 2¢2¢
@Z_Jt = _@Z_me + 2/‘7;277[]
display an obvious invariance under ¢y — aw) ¥» — o~ ), which is the residual R.
The NLS action is

(32)

SNLs = l;/dxdt hyhe + Z)\n/dm’dt pnlA, B] (33)

n=1

where the p,,’s are certain functionals of A, B and their x-derivatives; one way to de-
fine them is to require commutation with Hy = [ dx ehth and Hy = [ dz hye~(hth),
which play the role of I_ and I in the KdV theory. In fact, when written in terms
of S, T, and assuming periodic boundary conditions, Ho vanishes, just as I, van-
ishes in terms of ¢ in KdV theory; similarly A, B commute with Hs, just as u
commutes with I, in KdV theory. Syrs gives the A, B hierarchy when varied with
respect to S, T, and vice-versa; it gives the 7, j hierarchy when varied with respect
to h, h, and vice-versa; it gives the usual NLS hierarchy when varied with respect
to variables T and S, /T.



Quantizing Syrs along the lines of the second quantization method in sec-
tion 3, we are naturally led to consider states in a Fock space annihilated by a
normal-ordered version of Hs, and we have to seek operators that commute with
this constraint operator. It is easy to find quantized analogs of ¢, ¢, B (written in
terms of h, h), and these take exactly the forms of the fundamental parafermion, its
conjugate, and the stress-energy tensor in the bosonized version of the parafermion
and SL(2)/U(1) coset models. And as I have already said, the normal-ordered
version of Hs is the mysterious screening operator in these theories, which we have
now obtained from a simple classical argument. The quantum NLS hamiltonians,
defined by “commutation with H; and Hy” (both normal ordered) can thus be iden-
tified as conserved quantities in a deformation of the parafermion and SL(2)/U(1)
coset models by an operator eh#b, which is just the first “thermal operator”. Fi-
nally I should mention that searching for the conserved quantities in the deformed
theories by looking for operators (written in terms of 7, j) that commute with H;
and Hs is quite a bit easier than trying to build such operators out of the quantized

¥, 1 fields.

Acknowledgements

Useful discussions with Didier Depireux are acknowledged. This work was
supported by the U.S.Department of Energy under grant #DE-FG02-90ER40542.

References

1. From an action one derives both equations of motion and Poisson brackets for
the fields involved (see ref.4). It is fairly easy to write an action which gives
the KdV equation and its “first” hamiltonian structure, and this has been
done explicitly in (for instance) L.A.Dickey, Ann.N.Y.Acad.Sci. 410 (1983)
301 and A.Das, Integrable Models, World Scientific (1989). I am also informed,
by Boris Kupershmidt, that it is known that one can write an action for the
MKdV equation with its “second” hamiltonian structure, but the novel point
that I will be stressing here is that this same action can be viewed as an action
for the KdV equation in its “second” hamiltonian formulation as well. Note
also that from the work of Dickey just mentioned it is clear such an action
exists, but it is not clear how to write it in a simple form.

2. For the action mentioned in note 1. for the KdV in its “first” hamiltonian
formulation this does not seem to be the case.

3. The first observation of this kind is due to J.-L. Gervais, Phys.Lett.B 160

10



10.

11.
12.

13.
14.
15.

(1985) 277.

J.Schiff, The KdV Action and Deformed Minimal Models, Institute for Ad-
vanced Study Preprint TASSNS-HEP-92/28 (revised version).

J.Schiff, The Nonlinear Schrédinger Equation and Conserved Quantities in
the Deformed Parafermion and SL(2,R)/U(1) Coset Models, Institute for Ad-
vanced Study Preprint IASSNS-HEP-92/57.

A.B.Zamolodchikov, Adv.Stud.in Pure Math. 19 (1989) 641.

It is often stated that the MKdV equation has only one hamiltonian structure.
In fact, as shown in F.Magri, J. Math.Phys. 19 (1978) 1156, it has two hamil-
tonian structures, one local and one non-local. I call the local one “second”
and the non-local one “first”.

G.Wilson, Phys.Lett.A 132 (1988) 45; Quart.J. Math.Ozford 42 (1991) 227;
Nonlinearity 5 (1992) 109; and in Hamiltonian Systems, Transformation Groups
and Spectral Transform Methods, ed. J.Harnad and J.E.Marsden, CRM (1990).
A .M.Polyakov, Mod.Phys.Lett.A 2 (1987) 893; M.Bershadsky and H.Ooguri,
Comm.Math.Phys. 126 (1989) 49 and references therein.

R.Sasaki and I.Yamanaka, Comm.Math.Phys. 108 (1987) 691; Adv.Stud.in
Pure Math. 16 (1988) 271.

B.A Kupershmidt and P.Mathieu, Phys.Lett. B 227 (1989) 245.

M.D.Freeman and P.West, On the quantum KP hierarchy and its relation to
the non-linear Schrodinger equation, King’s College preprint KCL-TH-92-2, to
appear in Phys.Lett. B.

B.Feigin and E.Frenkel, Phys.Lett.B 276 (1992) 79.

M.Omote, M.Sakagami, R.Sasaki and I. Yamanaka, Phys. Rev.D 35 (1987) 2423.
G.Felder, Nucl.Phys.B 317 (1989) 215.

11



