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Abstract

An analog of the lattice KdV equation of Nijhoff et al. is constructed on a hexagonal lattice. The

resulting system of difference equations exhibits soliton solutions with interesting local structure:

there is a nontrivial phase shift on moving between adjacent lattice sites, with the magnitude of

the shift tending to zero in the continuum limit.

Bobenko, Hoffmann and Suris [1] have recently proposed that some effort should be made to un-

derstand integrable systems of difference equations on lattices other than Z2. In addition to being of

theoretical interest, it is possible that in certain cases this could have physical significance [2, 3]. This

letter examines the analog of Nijhoff et al.’s lattice KdV equation [4, 5] on a hexagonal lattice, which

we call “hexaKdV” for short. The soliton solutions of hexaKdV are constructed. HexaKdV solitons

undergo a nontrivial phase shift on moving between adjacent lattice sites, with the magnitude of the

shift tending to zero in the continuum limit.

Nijhoff et al.’s lattice KdV equation involves a single field b defined at the vertices of the standard

lattice Z2. The equation gives a relation between the values of the field at the 4 vertices of each

fundamental lattice plaquette. Writing b1 for bn,m, b2 for bn+1,m, b3 for bn+1,m+1 and b4 for bn,m+1 (so

b1, b2, b3, b4 are values of the field as we go around a fundamental plaquette), the equation takes the form

[5]
b1 − b2 − b3 + b4

h
+

−b2 + b3 + b4 − b1

k
− b1b2 + b2b3 − b3b4 + b4b1 = 0 . (1)

Two features of this equation are important in the sequel. The first is that the equation is unchanged

on replacing b1 by b2, b2 by b3, b3 by b4, b4 by b1, h by k and k by −h. This symmetry is associated with
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rotating the lattice through 90°. Indeed, the equation can be written in the evidently symmetric, and

rather more compact, form

(
I − R + R2 − R3

)(b1 − b2

h
− b1b2

)
= 0 , (2)

where R is the rotation (or replacement) operator. The second important feature to note about standard

lattice KdV is that the number of variables and the number of equations is properly balanced. Each

equation relates between 4 different values of the field, but each value of the field appears in 4 different

equations (as each vertex of the lattice belongs to 4 fundamental plaquettes). Thus lattice KdV is a set

of equations that can be expected to yield a solution, given suitable initial/boundary data.

The hexaKdV system which will shortly be constructed also displays a rotation symmetry. Consistent

with this, each equation in hexaKdV relates the 6 values of the field at the vertices of each fundamental

hexagonal plaquette. But now a problem arises: Each vertex of the lattice evidently belongs to only 3

fundamental plaquettes, so it seems there are twice as many variables as equations (each equation calls

6 variables, but each variable only appears in 3 equations). The simplest imaginable solution to this

problem is that there should be two equations associated with each plaquette. In fact there is a system

of four equations associated with each plaquette, but they are degenerate and should be considered like

two.

The hexaKdV system will be constructed on the hexagonal lattice with vertices

{n1q + n2hω + n3kω2 : n1, n2, n3 ∈ Z, n1 + n2 + n3 = 0 or 1 } , (3)

where ω = e2iπ/3, and q, h, k are arbitrary positive reals. See figure 1. The vertex n1q + n2hω + n3kω2

will be referred to in the sequel simply as “the vertex n1, n2, n3”. There are 3 kinds of edges, parallel to

1, ω, ω2 respectively. Following the ideas of [1] and [4], we look for a GL(2)-valued function Ψn1,n2,n3(λ)

defined on the vertices of the lattice and dependent on the spectral parameter λ, satisfying the following

equations, one for each edge in the lattice:

Ψn1+1,n2,n3(λ) =

(
1 − qbn1+1,n2,n3 q

qλ + bn1,n2,n3 − bn1+1,n2,n3 − qbn1,n2,n3bn1+1,n2,n3 1 + qbn1,n2,n3

)
Ψn1,n2,n3(λ),

Ψn1,n2+1,n3(λ) =

(
1 − hbn1,n2+1,n3 h

hλ + bn1,n2,n3 − bn1,n2+1,n3 − hbn1,n2,n3bn1+1,n2,n3 1 + hbn1,n2,n3

)
Ψn1,n2,n3(λ), (4)

Ψn1,n2,n3−1(λ) =

(
1 − kbn1,n2,n3−1 k

kλ + bn1,n2,n3 − bn1,n2,n3−1 − kbn1,n2,n3bn1,n2,n3−1 1 + kbn1,n2,n3

)
Ψn1,n2,n3(λ).

The consistency condition arising from the two different ways to go around a fundamental plaquette

(n1, n2, n3 → n1, n2 + 1, n3 → n1, n2 + 1, n3 − 1 → n1 + 1, n2 + 1, n3 − 1 or n1, n2, n3 → n1 + 1, n2, n3 →
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Figure 1: The hexagonal lattice

n1+1,n2,n3-1

n1,n2+1,n3

n1,n2+1,n3-1           n1+1,n2+1,n3-1

n1,n2,n3              n1+1,n2,n3

Figure 2: Two ways around a fundamental plaquette

n1 + 1, n2, n3 − 1 → n1 + 1, n2 + 1, n3 − 1, see figure 2) can be written

(
1 − qb4 q

qλ + b3 − b4 − qb3b4 1 + qb3

)(
1 − kb3 k

kλ + b2 − b3 − kb2b3 1 + kb2

)(
1 − hb2 h

hλ + b1 − b2 − hb1b2 1 + hb1

)

= (5)(
1 − hb4 h

hλ + b5 − b4 − hb5b4 1 + hb5

)(
1 − kb5 k

kλ + b6 − b5 − kb6b5 1 + kb6

)(
1 − qb6 q

qλ + b1 − b6 − qb1b6 1 + qb1

)

where here for brevity b1 stands for bn1,n2,n3, b2 for bn1,n2+1,n3, b3 for bn1,n2+1,n3−1, b4 for bn1+1,n2+1,n3−1, b5

for bn1+1,n2,n3−1 and b6 for bn1+1,n2,n3, these being the 6 values of b at vertices of a fundamental plaquette.

A symbolic manipulator was used to multiply out (5). Four equations emerge. Since full rotational

symmetry has been broken by the choice of a starting and ending point in the fundamental plaquette,

the equations are not rotation invariant, but this can be rectified by taking suitable linear combinations
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and just the final symmetric form of the equations will be presented here. Writing R for the 60°rotation

operator, implemented by replacing b1 by b2, b2 by b3, b3 by b4, b4 by b5, b5 by b6, b6 by b1, h by k and

k by q and q by −h, the equations are:

(
I − R + R2 − R3 + R4 − R5

)(b1 − b2

h
− b1b2

)
= 0 , (6)

(
I + R + R2 + R3 + R4 + R5

)((b1 − b2)
2

h
− b1b2(b1 − b2)

)
= 0 , (7)

(
I − R + R2 − R3 + R4 − R5

)(2(b1 + b2)

qk
− b1b4(b2 + b3) (8)

+
b1b3 + b1b4 + b2b3 − b2b5 − b3b4 − b3b5

h

)
= 0 ,

(
I − R + R2 − R3 + R4 − R5

) (2(b1 + b2)
2

qk
+ b1b2(b

2
1 + b2

2 − b1b2 − 2b3b4 − b4b1 − b2b5) (9)

−b3
1 − b3

2 + b2
2(2b1 + b5) − b2

1(b4 + 2b2) + 2b2
3(b4 − b2) + 2(b1b2b6 + b2b3b5 − b1b2b3 − b1b3b4)

h

)
= 0 .

Note the similarity of the first equation, (6), with the standard lattice KdV equation (2). An analysis of

the hexaKdV system (6)-(9) is quite straightforward with a symbolic manipulator. The first equation,

(6), is linear in b1, and can be used to eliminate b1 provided its coefficient, b6 − b2 + 1
h
− 1

q
, does not

vanish. Proceeding along these lines it can be shown that the solution set consists of two components,

characterized by whether or not b6−b2 + 1
h
− 1

q
vanishes. One component is a dimension 3 set of solutions

given by solutions of the 3 linear equations

b6 − b2 + 1
h
− 1

q
= 0

b2 − b4 + 1
q

+ 1
k

= 0(
1
h2 − 1

q2

)
b1 +

(
1
q2 − 1

k2

)
b3 +

(
1
k2 − 1

h2

)
b5 =

(
1
q
− 1

h

) (
1
k

+ 1
q

) (
1
h

+ 1
k

)


 . (10)

The other component is a dimension 4 set of solutions in which b1 is determined by

b1 =
b3 b4 − b3 b2 − b5 b4 + b5 b6 + b5−b4+b2

h
+ −b3+b4−b6

q
+ −b3+b5−b6+b2

k

b6 − b2 + 1
h
− 1

q

, (11)

and b2, b3, b4, b5, b6 satisfy the single constraint

0 = b2 b5 b6 + b6 b3 b4 − b2 b5 b4 − b6 b3 b2 + b5 b4
2 − b3 b4

2 + b3 b4 b2 − b5 b4 b6

+
b4 b6 − b4

2 − b6 b2 + b5 b6 − b3 b6 + b4 b2 + b3 b4 − b5 b4

q
+

b6 + b5 − b3 − 2 b4 + b2

h k
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+
−b3 b6 + b5 b6 − 2 b5 b4 + 2 b3 b4 − b3 b2 + b2 b5

k
+

−b2 − b3 + b6 + b5

h q
(12)

+
b3 b4 + b2 b5 + b4

2 − b5 b4 − b4 b2 − b3 b2 − b4 b6 + b6 b2

h
+

−b6 + 2 b4 − b2 − b3 + b5

q k

+
−b3 + b5 − b6 + b2

k2
.

It can be checked that the 4 dimensional set of solutions includes the 3 dimensional set obtained by

rotating the solution of (10), i.e. the solutions of

b1 − b3 + 1
k

+ 1
h

= 0

b3 − b5 − 1
h

+ 1
q

= 0(
1
k2 − 1

h2

)
b2 +

(
1
h2 − 1

q2

)
b4 +

(
1
q2 − 1

k2

)
b6 =

(
1
h

+ 1
k

) (
−1

q
+ 1

h

) (
1
k

+ 1
q

)


 . (13)

Thus, to summarize, we have arrived at the hexaKdV system. This consists of the system (6)-(9)

of 4 polynomial equations in 6 variables on each plaquette of the lattice. Because the system (6)-(9)

is degenerate, in the sense that it has a 4 dimensional solution set, it is more appropriate to think of

hexaKdV as specifying 2 constraints for each plaquette. Thus, as explained above, there is a proper

balance between the number of variables and the number of constraints in hexaKdV.

Soliton solutions. A direct computation shows that (6)-(9) has the following two parameter family of

solutions:
b1 = C tanh (z) ,

b2 = C tanh
(
z + tanh−1(hC)

)
,

b3 = C tanh
(
z + tanh−1(hC) + tanh−1(kC)

)
,

b4 = C tanh
(
z + tanh−1(hC) + tanh−1(kC) + tanh−1(qC)

)
,

b5 = C tanh
(
z + tanh−1(kC) + tanh−1(qC)

)
,

b6 = C tanh
(
z + tanh−1(qC)

)
.

(14)

Here C, z are arbitrary. Such solutions on an individual plaquette can be pasted together to give a full

solution of hexaKdV of form

bn1,n2,n3 = C tanh
(
n1 tanh−1(qC) + n2 tanh−1(hC) − n3 tanh−1(kC) + z

)
, (15)

where again C, z are arbitrary constants. To get some understanding into the nature of the soliton

solution, it is necessary to write it as a function of the standard Cartesian coordinates x and y of the

vertex n1, n2, n3. These are given by

x = n1q − 1

2
(n2h + n3k) , y =

√
3

2
(n2h − n3k) . (16)
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Writing n1, n2, n3 in terms of x, y and the quantity

s = n1 + n2 + n3 (17)

(which is 0 or 1), the soliton becomes

b(x, y, s) = C tanh(D(x + cy) + Es + z) , (18)

where

D =
(k + h) tanh−1(qC) + h tanh−1(kC) − k tanh−1 hC

qk + qh + hk
, (19)

c =
(h − k) tanh−1(qC) + (h + 2q) tanh−1(kC) + (k + 2q) tanh−1 hC√

3
(
(k + h) tanh−1(qC) + h tanh−1(kC) − k tanh−1 hC

) , (20)

E =
kh tanh−1(qC) − qh tanh−1(kC) + kq tanh−1 hC

qk + qh + hk
. (21)

Before discussing this result, note that for sufficiently small q, h, k (for which tanh−1(qC) ≈ qC etc)

D ≈ q(k + h)

qk + qh + hk
, (22)

c ≈ qk + 3qh + 2kh√
3q(k + h)

, (23)

E ≈ qkh

qk + qh + hk
. (24)

In the form (18), the meaning of the soliton solution is quite clear. c is the speed of the soliton, C

its amplitude, and equation (20) expresses the speed-amplitude relation. The dependence of D on C,

through (19), shows that the width of the soliton also depends on the speed (or amplitude), a common

phenomenon seen, for example, in the KdV equation. The novel feature of hexaKdV solitons is, however,

the dependence of (18) on s. This means that there is a phase shift between the soliton solution on “even”

(s = 0) and “odd” (s = 1) sites of the lattice. This interesting phenomenon distinguishes hexaKdV from

standard lattice KdV. Equation (24) shows that as the continuum limit is approached (q, h, k tending

to 0), the dependence on s becomes very weak, and indeed vanishes in the continuum. Equations (22)

and (23) show that as q, h, k tend to 0 with constant ratios, the speed and width of the solitons tend to

constant values, independent of amplitude.

The continuum limit. Is hexaKdV in any sense a discretization of a PDE? Consider making the following
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replacements in (6)-(9):

b1 → b
(
x − 1

2
q + 1

4
h − 1

4
k, y −

√
3

4
h −

√
3

4
k
)

,

b2 → b
(
x − 1

2
q − 1

4
h − 1

4
k, y +

√
3

4
h −

√
3

4
k
)

,

b3 → b
(
x − 1

2
q − 1

4
h + 1

4
k, y +

√
3

4
h +

√
3

4
k
)

,

b4 → b
(
x + 1

2
q − 1

4
h + 1

4
k, y +

√
3

4
h +

√
3

4
k
)

,

b5 → b
(
x + 1

2
q + 1

4
h + 1

4
k, y −

√
3

4
h +

√
3

4
k
)

,

b6 → b
(
x + 1

2
q + 1

4
h − 1

4
k, y −

√
3

4
h −

√
3

4
k
)

.

(25)

Expanding the 4 resulting equations in a Taylor series in q, h, k and retaining only leading orders (as-

suming h, q, k all to be of the same order) gives only 2 distinct equations. Equations (8) and (9) both

give

by =
qk + 3qh + 2kh√

3q(k + h)
bx . (26)

This is consistent with the results on soliton solutions, as for small q, h, k the soliton speed is given by

c as in (23), and this is precisely the factor that has just appeared in (26). However, both (6) and (7)

reduce to another PDE, which is only consistent with (26) if q = h. So far we have no understanding

of why it should be necessary to impose such a constraint for a consistent continuous limit, or whether

there is maybe some reason to ignore it.

Dual Discretizations of PDEs. Although it is a digression from the main topic, since it has been shown

that hexaKdV is a discretization of (26), at least in the case h = q, we briefly raise the question of

how ab initio one might go about discretizing this (or another) PDE on a hexagonal lattice, with the

intention of getting equations relating the 6 values of the field around each hexagonal plaquette.

The standard finite difference approach for discretizing a PDE involves writing a discrete equation to

approximate the PDE at each vertex of the lattice being used. The discrete equation involves the values

of the functions appearing in the PDE at the relevant vertex, as well as the values at neighboring vertices.

The balance between the number of equations obtained and the number of variables is automatic, as

both equal the number of lattice vertices in the relevant domain.

Here we follow a different “dual” approach. The aim is to approximate the PDE on a fundamental

lattice plaquette (or, more precisely, at the center of gravity of a lattice plaquette), using the values

of the function on lattice vertices. In the case of a hexagonal lattice, this means it is necessary to

approximate derivatives of b at the point (x, y) using the 6 values of b that appeared in (25). This is

straightforward. For example it can be shown that under the replacements (25)

b4 − b1 + b6 − b3

2q
= bx(x, y) + O(q2, h2, k2, hk, qk, qh) , (27)
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1

2
√

3

(
b5 − b2 − b6 + b3

k
+

b4 − b1 − b5 + b2

h

)
= by(x, y) + O(q2, h2, k2, hk, qk, qh) . (28)

Thus the PDE by = Mbx/
√

3 can apparently be discretized by the difference equation

b5 − b2 − b6 + b3

k
+

b4 − b1 − b5 + b2

h
= M

b4 − b1 + b6 − b3

q
. (29)

However, there is now a counting problem of exactly the type mentioned before. The PDE has been

replaced by a single difference equation for each plaquette, with the difference equation “calling” 6 values

of the field. But, each value of the field only appears in 3 equations, so the number of variables is twice

the number of equations. The resolution of this is that there is a constraint that needs to be imposed.

Working to the same order as the approximations (27)-(28) it can be checked that

(
1

h
+

1

q

)
(b4 − b1) −

(
1

k
+

1

h

)
(b5 − b2) +

(
1

q
+

1

k

)
(b6 − b3) = 0 + O(q2, h2, k2, hk, qk, qh) . (30)

Thus equation (29) on each plaquette must be supplemented by the constraint

(
1

h
+

1

q

)
(b4 − b1) −

(
1

k
+

1

h

)
(b5 − b2) +

(
1

q
+

1

k

)
(b6 − b3) = 0 . (31)

This resolves the counting problem.

Dual discretizations of PDEs may well be appropriate in a variety of settings. It is certainly no

surprise that they arise in discretizations of equations in the KdV hierarchy, which are, in a natural

way, zero curvature equations. In conclusion of this section, note that the constraint equation (31)

looks very similar to what is obtained by applying all the necessary rotation operators just to the term

(b1 − b2)/h in (6). But the differences turn out to be significant; for hexaKdV there does not seem to

be a natural division of the equations into a constraint part and a dynamic part, as there is with the

simple discretization comprised of (29) and (31).

OctaKdV and other lattices. The work presented in this letter can be extended to other lattices. We

report briefly on the extension to a lattice of alternating octahedra and rectangles (with the octahedra

having 4 pairs of parallel sides of equal length). On the rectangular plaquettes standard lattice KdV

must hold. A simple counting argument then shows that there should be 3 equations (in 8 variables)

associated to each octagonal plaquette. Looking at the analog of (5) with 4 matrices in each side gives

a complicated system of 6 polynomial equations in 8 variables, with the first being an obvious extension

of (2) and (6). We hypothesize that this system has a 5 parameter solution set, and thus should be

thought of as just 3 constraints. As of yet we have not been able to verify this in general, the memory

requirements for the algebra being substantial. We have, however, looked at a number of reductions, in
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which one variable is assumed to vanish; in such reductions there are 4 parameter solution sets, which

is consistent with the hypothesis.

It may be possible to obtain some general results on the algebraic system obtained from the gen-

eralization of (5) with n matrices on each side, relevant to a plaquette with 2n sides. Presumably

soliton solutions on more general lattices will also exhibit “small scale” phase shifts as we move round

a plaquette, as there are for hexaKdV. These phase shifts may well be indicative of lattice structure.

It remains a mystery whether there is a way to formulate integrable systems of difference equations

on lattices with plaquettes with odd numbers of sides, particularly triangular lattices.
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