Numerical Methods for Mathematical Finance, 88-636 Moed Aleph, Semester Aleph, 5773

Exam length: 90 minutes

You may use all reference materials and a pocket calculator. Answer all the questions. All questions carry equal weight. Explain all your answers thoroughly.

1. The stochastic process X(t) satisfies the stochastic differential equation

$$dX = aX(2-X)dt + \sigma dW$$

and X(0) = 0. It is required to compute

$$p(T) = P(\max_{0 \le t \le T} X(t) \le 1).$$

 $(a, \sigma \text{ and } T \text{ are all positive constants.})$

- (a) Write down the Euler-Maruyama method for simulating the process X(t), and explain how you would use this in a Monte Carlo simulation to find p(T) for some specific time T.
- (b) Do you expect p(T) to be an increasing or decreasing function of the parameters a, σ and T?
- (c) What are sources of error in the calculation of p(T)?
- (d) How does the calculation need to be modified if the SDE is changed to $dX = -2a \log(1-X)dt + \sigma dW$? (Note $\log(1-X)$ is only defined for X < 1.)
- 2. The price S(t) of a certain asset follows a geometric Brownian motion

$$dS = S(rdt + \sigma dW) \; .$$

A "can't lose" contract with expiration T and barrier $B \ge S(0)$ pays the holder, at time T, S(T) if $S(T) \ge S(0)$ and $\max_{0 \le t \le T} S(t) \le B$, and S(0) otherwise.

- (a) Explain why the (current) value of this contract rises with B. What is the value if B = S(0)? Explain why for large B the value is $S(0) \exp(-rT)$ plus the value of a call with strike S(0).
- (b) Explain how you would perform a calculation to determine the value of the contract for fixed r, σ , T and B. You should not write explicit Matlab code, but you should explain all the necessary considerations in writing such a program.
- (c) Explain how you would perform a calculation to determine the value B^* of the barrier for which the value of the contract is equal to S(0).
- (d) The value of σ is not known exactly. How would you go about estimating the accuracy required in σ for the value of B^* to have an error of no more than 5%?

3. Give a brief explanation of the Euler and Crank Nicolson methods for solution of

$$u_t = u_{xx} + (2 + \sin x)u_x$$
, $0 < x < 2\pi$, $t > 0$

assuming Dirichlet boundary conditions u(0,t) and $u(2\pi,t)$ are specified. If instead of Dirichlet boundary conditions, *periodic boundary conditions*, i.e. that $u(0,t) = u(2\pi,t)$ and $u_x(0,t) = u_x(2\pi,t)$, are specified, how would you implement these in the Euler method? Why is the Crank Nicolson method ruined?

Good luck!