Numerical Methods for Mathematical Finance, 88-636
Moed Aleph, Semester Aleph, 5773
Exam length: 90 minutes
You may use all reference materials and a pocket calculator.
Answer all the questions. All questions carry equal weight.
Explain all your answers thoroughly.

1. The stochastic process $X(t)$ satisfies the stochastic differential equation

$$
d X=a X(2-X) d t+\sigma d W
$$

and $X(0)=0$. It is required to compute

$$
p(T)=P\left(\max _{0<t<T} X(t)<1\right)
$$

(a, σ and T are all positive constants.)
(a) Write down the Euler-Maruyama method for simulating the process $X(t)$, and explain how you would use this in a Monte Carlo simulation to find $p(T)$ for some specific time T.
(b) Do you expect $p(T)$ to be an increasing or decreasing function of the parameters a, σ and T ?
(c) What are sources of error in the calculation of $p(T)$?
(d) How does the calculation need to be modified if the SDE is changed to $d X=$ $-2 a \log (1-X) d t+\sigma d W ?$ (Note $\log (1-X)$ is only defined for $X<1$.)
2. The price $S(t)$ of a certain asset follows a geometric Brownian motion

$$
d S=S(r d t+\sigma d W)
$$

A "can't lose" contract with expiration T and barrier $B \geq S(0)$ pays the holder, at time $T, S(T)$ if $S(T) \geq S(0)$ and $\max _{0<t<T} S(t) \leq B$, and $S(0)$ otherwise.
(a) Explain why the (current) value of this contract rises with B. What is the value if $B=S(0)$? Explain why for large B the value is $S(0) \exp (-r T)$ plus the value of a call with strike $S(0)$.
(b) Explain how you would perform a calculation to determine the value of the contract for fixed r, σ, T and B. You should not write explicit Matlab code, but you should explain all the necessary considerations in writing such a program.
(c) Explain how you would perform a calculation to determine the value B^{*} of the barrier for which the value of the contract is equal to $S(0)$.
(d) The value of σ is not known exactly. How would you go about estimating the accuracy required in σ for the value of B^{*} to have an error of no more than 5% ?
3. Give a brief explanation of the Euler and Crank Nicolson methods for solution of

$$
u_{t}=u_{x x}+(2+\sin x) u_{x}, \quad 0<x<2 \pi, \quad t>0
$$

assuming Dirichlet boundary conditions $u(0, t)$ and $u(2 \pi, t)$ are specified.
If instead of Dirichlet boundary conditions, periodic boundary conditions, i.e. that $u(0, t)=u(2 \pi, t)$ and $u_{x}(0, t)=u_{x}(2 \pi, t)$, are specified, how would you implement these in the Euler method? Why is the Crank Nicolson method ruined?

Good luck!

