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Numerical Methods for Mathematical Finance, 88-636
Moed Aleph, Semester Aleph, 5773 - Solutions

Exam length: 90 minutes
You may use all reference materials and a pocket calculator.
Answer all the questions. All questions carry equal weight.
Explain all your answers thoroughly.

1. The stochastic process X(t) satisfies the stochastic differential equation

dX = aX(2−X)dt+ σdW

and X(0) = 0. It is required to compute

p(T ) = P (max0<t<TX(t) < 1).

(a, σ and T are all positive constants.)

(a) Write down the Euler-Maruyama method for simulating the process X(t), and
explain how you would use this in a Monte Carlo simulation to find p(T ) for some
specific time T .

(b) Do you expect p(T ) to be an increasing or decreasing function of the parameters
a, σ and T ?

(c) What are sources of error in the calculation of p(T )?

(d) How does the calculation need to be modified if the SDE is changed to dX =
−2a log(1−X)dt+ σdW ? (Note log(1−X) is only defined for X < 1.)

(a) The Euler-Maruyama method approximates the continuous stochastic process
X(t) by the discrete stochastic process Xn given by

Xn+1 = Xn + ahXn(2−Xn) +
√
hσZn , n ≥ 0

where X0 = 0 and Zn ∼ N(0, 1). Here h is the discrete time step and Xn

is understood as the approximation to X(nh). To use this in a Monte Carlo
simulation to approximate P (T ), choose a (sufficiently large) number of time
steps N and set h = T

N
, and a (sufficiently large) number of simulations M .

Construct M simulations of the process Xn, and for each one check whether
max0≤n≤NXn < 1. If m is the number of simulations for which this is true, then

p = m
M

is an approximation to P (T ), with stochastic error estimate

√
p(1−p)

M
.

(b) For X < 1, the drift term aX(2 − X) is positive, and increases with a. Thus
increasing a increases the chance of “hitting” X = 1 and reduces P (T ). Similarly
increasing T increases the chance of hitting, and reduces P (T ). And increasing
σ means more stochastic effects and also increases the chance of hitting, thus
reducing P (T ).



(c) There are 3 sources of error. First, using the EM method to simulate the stochas-
tic process. Second, we only look if X(t) is above 1 for discrete times t. Third,
using the Monte-Carlo method to approximate the expected value by an average.
The latter is “stochastic error”, the first two are both forms of “deterministic
error”.

(d) In the original SDE the drift term increases from 0 to a as X increases from 0
to 1. In the new SDE the drift term increases from 0 to ∞. Indeed the drift
is not defined for X ≥ 1. Thus whereas for the first equation we can follow the
stochastic process from t = 0 to t = T , for the second equation, once X has
“hit” 1 the process cannot be continued. However, the only real effect of this is
to make the programming a little more complicated.

2. The price S(t) of a certain asset follows a geometric Brownian motion

dS = S(rdt+ σdW ) .

A “can’t lose” contract with expiration T and barrier B ≥ S(0) pays the holder, at
time T , S(T ) if S(T ) ≥ S(0) and max0<t<TS(t) ≤ B, and S(0) otherwise.

(a) Explain why the (current) value of this contract rises with B. What is the value
if B = S(0) ? Explain why for large B the value is S(0) exp(−rT ) plus the value
of a call with strike S(0).

(b) Explain how you would perform a calculation to determine the value of the con-
tract for fixed r, σ, T and B. You should not write explicit Matlab code, but
you should explain all the necessary considerations in writing such a program.

(c) Explain how you would perform a calculation to determine the value B∗ of the
barrier for which the value of the contract is equal to S(0) .

(d) The value of σ is not known exactly. How would you go about estimating the
accuracy required in σ for the value of B∗ to have an error of no more than 5% ?

(a) The contract pays S(0) if either S(T ) < S(0) or the barrier B is hit sometime
between t = 0 and t = T . Otherwise it pays S(T ).

The higher the barrier, the less chance it will be hit. Hitting the barrier reduces
the payoff, so a higher barrier should give a higher return.

If the barrier is B = S(0) then it is already hit at the start. The return will for
sure be S(0) and the value of the contract is S(0)e−rT .

If the barrier is very high then it will not be hit. The return is max(S(T ), S(0)) =
S(0) + max(S(T ) − S(0), 0). In other words, the return is S(0) plus the return
from a regular call option with strike K = S(0), and the value of the contract is
S(0)e−rT plus the value of this call.

(b) I would chose a number of simulations to do M , and a number of subintervals N
in which to divide the time period T . I would use the standard GBM formula
to simulate the price of the asset at the end of the time period from the price at
the start

Sn+1 = Sne
(r− 1

2
σ2)h+

√
hσZn



where h = T
N

and Zn ∼ N(0, 1). For each simulation I would find the maximum
value of the price and decide whether the barrier B is breached or not, and record
the corresponding return:

return =

{

S(T ) max0≤t≤BS(t) ≤ B and S(T ) > S(0)
S(0) otherwise

I would estimate the value of the contract by taking the average value of the
return over the M simulations, and compute an estimate of the stochastic error
from the standard deviations of the returns, divided by

√
M .

(c) In principle the procedure described in the previous section defines a function
f(B) which gives the price for a given B. For B = S(0) we will have f(B) =
S(0)e−rT and as B increases, so does f(B). We want to find the solution of the
equation

f(B) = S(0) .

This can be done, for example, by Newton’s method. BUT: (1) For different
choices of the random numbers used, different values of f(B) are obtained. In
solving the equation it is essential to use the same common random numbers
every time. (2) The value of f is not accurate, but has a stochastic error, say q.
So in fact it makes more sense to solve the 2 equations

f(B) = S(0)− q , f(B) = S(0) + q

This will give an interval B1 ≤ B ≤ B2 in which B∗ must lie — we can take B∗

to be the middle of this interval, and the error estimate for B∗ to be half the
length of the interval.

(d) We need to compute the sensitivity of B∗ to changes in σ, i.e. we need to find

∂B∗

∂σ
.

As usual we can approximate this by a finite difference:

∂B∗

∂σ
≈

1

2∆
(B∗(σ +∆)− B∗(σ −∆))

for a suitable, not too small, ∆. Once again, the 2 calculations of B∗ must be
done with common random numbers to get a sensible result. The stochastic error
in calculation of B∗ may make the above result rather inaccurate, but it should
be sufficient to get an idea of what is needed. Once the sensitivity is known, the
change ∆σ in σ that gives a given change ∆B in B can be found from

∆B ≈
∂B∗

∂σ
∆σ .

3. Give a brief explanation of the Euler and Crank Nicolson methods for solution of

ut = uxx + (2 + sin x)ux , 0 < x < 2π, t > 0



assuming Dirichlet boundary conditions u(0, t) and u(2π, t) are specified.
If instead of Dirichlet boundary conditions, periodic boundary conditions, i.e. that
u(0, t) = u(2π, t) and ux(0, t) = ux(2π, t), are specified, how would you implement
these in the Euler method? Why is the Crank Nicolson method ruined?

In both E and CN methods, the solution function u(x, t) is approximated at grid points
x = ih, t = jk where h, k are the step sizes in the x and t directions respectively, and
0 ≤ i ≤ N , where h = 2π

N
.

For Euler we have

ui,j+1 − ui,j

k
=

ui+1,j − 2ui,j + ui−1,j

h2
+ (2 + sin ih)

ui+1,j − ui−1,j

2h

or

ui,j+1 =

(

k

h2
+

k(2 + sin ih)

2h

)

ui+1,j +

(

1− 2
k

h2

)

ui,j +

(

k

h2
−

k(2 + sin ih)

2h

)

ui−1,j

For CN we have

ui,j+1 − ui,j

k
=

1

2

[

ui+1,j − 2ui,j + ui−1,j

h2
+ (2 + sin ih)

ui+1,j − ui−1,j

2h

+
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
+ (2 + sin ih)

ui+1,j+1 − ui−1,j+1

2h

]

.

or

−
(

k

2h2
+

k(2 + sin ih)

4h

)

ui+1,j+1 +

(

1 +
k

h2

)

ui,j+1 −
(

k

2h2
−

k(2 + sin ih)

4h

)

ui−1,j+1

=

(

k

2h2
+

k(2 + sin ih)

4h

)

ui+1,j +

(

1−
k

h2

)

ui,j +

(

k

2h2
−

k(2 + sin ih)

4h

)

ui−1,j

For the equations of both E and CN the index i runs from 1 to N − 1, and ev-
ery occurence of u0,j or uN,j should be replaced by the relevant boundary condition
(assuming Dirichlet boundary conditions). For E, the equation allows direct deter-
mination of the ui,j+1 given ui,j. For CN, the equations give a tridiagonal system to
determine the ui,j+1.

If periodic boundary conditions are imposed then we no longer know u0,j and uN,j.
However we have u0,j = uN,j and

u1,j − u0,j

h
=

uN,j − uN−1,j

h

giving

u0,j = uN,j =
1

2
(u1,j + uN−1,j)

which in E allows the boundary conditions to be determined at each level. Unfortu-
nately in CN this relation wrecks the tridiagonality.


