n=100000; % first method U=rand(n,12); N=zeros(n,1); for i=1:n N(i)=sum(U(i,:))-6; end figure(1) hist(N,200); % second method x=rand(n,1); y=rand(n,1); r=sqrt(-2*log(x)); theta=2*pi*y; u=r.*cos(theta); v=r.*sin(theta); N=[u;v]; figure(2) hist(N,200); % third method x=zeros(n,1); y=zeros(n,1); for i=1:n; X=2*rand-1; Y=2*rand-1; while ((X^2+Y^2)>1); X=2*rand-1; Y=2*rand-1; end x(i)=X; y(i)=Y; end rsq=x.^2+y.^2; A=sqrt(-2*log(rsq)./rsq); u=A.*x; v=A.*y; N=[u;v]; figure(3) hist(N,200);The 3 plots look very similar, just in the first case we have n normal variates and the second and third we have 2n.