Question 2 on Targil 2

Ito's lemma: if $d X=a(X, t) d t+b(X, t) d W$ and $g=g(X, t)$ then

$$
d g=\left(g_{t}+a g_{X}+\frac{1}{2} b^{2} g_{X X}\right) d t+b g_{X} d W
$$

Taking $X=W$ (i.e. $a=0, b=1$) we have that for $g(W, t)$

$$
d g=\left(g_{t}+\frac{1}{2} g_{W W}\right) d t+g_{W} d W
$$

Taking $g=W^{n+1}$ we have

$$
d\left(W^{n+1}\right)=\frac{1}{2} n(n+1) W^{n-1} d t+(n+1) W^{n} d W
$$

Integrating, dividing by $n+1$ and rearranging we have

$$
\underline{\int_{0}^{t} W(s)^{n} d W(s)=\frac{W(t)^{n+1}}{n+1}-\frac{n}{2} \int_{0}^{t} W(s)^{n-1} d s}
$$

Taking the expectation of both sides and using the fact that the expectation of an Ito integral is zero, we obtain

$$
\mathbf{E}\left[W(t)^{n+1}\right]=\frac{n(n+1)}{2} \int_{0}^{t} \mathbf{E}\left[W(s)^{n-1}\right] d s
$$

Thus (taking $n=3$)

$$
\underline{\mathbf{E}\left[W(t)^{4}\right]}=6 \int_{0}^{t} \mathbf{E}\left[W(s)^{2}\right] d s=6 \int_{0}^{t} s d s \equiv 3 t^{2}
$$

and (taking $n=5$)

$$
\underline{\mathbf{E}\left[W(t)^{6}\right]}=15 \int_{0}^{t} \mathbf{E}\left[W(s)^{4}\right] d s=45 \int_{0}^{t} s^{2} d s \equiv 15 t^{3}
$$

In general let us try $\mathbf{E}\left[W(t)^{2 N}\right]=a_{n} t^{N}$. This works for $N=0,1,2,3$ if $a_{0}=a_{1}=1$, $a_{2}=3, a_{3}=15$ and in general, provided

$$
a_{N} t^{N}=\frac{1}{2}(2 N-1)(2 N) \int_{0}^{t} a_{N-1} s^{N-1} d s=(2 N-1) a_{N-1} t^{N}
$$

Thus we have $a_{N}=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 N-1)$ Answer:

$$
\underline{\mathbf{E}\left[W(t)^{2 N}\right]=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 N-1) t^{N}}
$$

