sigma=[0.1:0.02:0.6]; prob=zeros(size(sigma)); Tmax=10; N=200; h=Tmax/N; t=0:h:Tmax; M=10000; Z=randn(M,N); for k=1:length(sigma) X=[0.5*ones(M,1),zeros(M,N)]; sig=sigma(k); for j=1:M for i=1:N if (abs(X(j,i))<10) X(j,i+1)=X(j,i)+h*X(j,i)*(1-X(j,i))+sig*sqrt(h)*Z(j,i); else X(j,i+1)=10; end end end prob(k)=sum(X(:,N+1)==10)/M; end figure (1) plot(sigma,prob);
Running gave the following plot
We expect the probability of divergence to increase with sigma - higher fluctuations gives more chance of divergence.
Back to main course page
Back to my main teaching page
Back to my home page