Approximation by orthogonal projection
We are going to approximate the function v = sin(x) on the interval [0 , Pi/2]
using the orthogonal set P0(z), P1(z), P2(z), P3(z), where z = 4x/Pi - 1
(in general on the interval [a,b] use the Pn( (2x-a-b)/(b-a) )
> | ![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
(1) |
Check these are orthogonal if you like.
> | ![]() |
![]() |
(2) |
Compute the Fourier coefficients
> | ![]() |
![]() |
(3) |
> | ![]() |
![]() |
(4) |
> | ![]() |
![]() |
(5) |
> | ![]() |
![]() |
(6) |
Approximation using 3 basis functions:
> | ![]() |
![]() |
(7) |
> | ![]() |
![]() |
(8) |
> | ![]() |
![]() |
> | ![]() |
![]() |
(9) |
Approximation using 4 basis functions
> | ![]() |
![]() ![]() |
(10) |
> | ![]() |
![]() |
(11) |
> | ![]() |
![]() |
> | ![]() |
![]() |
(12) |
> |