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In this paper the spectral properties of stationary adic transformations are
studied. First sufficient conditions for existence and nonexistence of noncon-
stant eigenvectors are given, supplementing those obtained by A.N.Livshitz
[5] and B.Host [3]. Then we investigate when the spectrum is purely dis-
crete. A sufficient condition is obtained, which is applied to some examples
generalizing the well-known ”golden mean” (or ”Fibonacci”) case. Using the
results of A.N.Livshitz on the equivalence of substitutional flows and adic
transformations [5], we can give the following, equivalent formulation of our
main Theorem 4.1 :

the minimal flow generated by the substitution on {1, 2, . . . ,m} : 1 →
123 . . .m, 2 → 1, 3 → 2, . . . ,m → m − 1, is metrically isomorphic to a
translation on the (m− 1)-dimensional torus.

This result appeared in [13] without detailed proof.

The author is grateful to A.M.Vershik and A.N.Livshitz for many helpful
discussions and valuable suggestions.

1. The notion of adic transformation on a Markov compactum was in-
troduced by A.M.Vershik [14, 15]. Here we give the definition for the special
case of stationary compacta.

Let M be an m×m matrix, having entries 0 or 1. Consider a directed
graded graph Γ with levels indexed 0, 1, 2, . . . , having m vertices in each
level. The vertices in each level are ordered and indexed 1, 2, . . . ,m. The
edges of Γ connect vertices of i-th level with vertices of (i + 1)-st level
according to the adjacency matrix M.

Consider the space XM of all infinite paths in this graph. More precisely,

XM = {t = {t(i)}∞i=0 | 1 ≤ t(i) ≤ m, Mt(i)t(i+1) = 1}.
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In this representation t(i) is the vertex of the path t on i-th level. XM is
a compact totally disconnected set with topology induced from the product

space {1,m}N and is called the Markov compactum corresponding to the
matrix M.

The one-sided shift of finite type, or Markov shift σ : XM → XM is
defined by

σt(i) = t(i+ 1), i ≥ 0.

We shall be concerned with another transformation which is in a sense
transversal to σ.

Introduce a partial ordering on XM :

t ≺ t′, if for some n ∈ N,
t(i) = t′(i), i > n;
t(n) < t′(n).

The adic transformation T of t ∈ XM is defined to be the minimal element
t′ ∈ XM such that t ≺ t′.

Throughout the paper it is assumed that the matrix M is primitive, i.e.
that for some d > 0 all entries of Md are strictly positive. In this case
the adic transformation is well-defined on XM \ K , where K is a finite set
of maximal elements with respect to the introduced ordering. It is known
(see [16]) that for primitive M the adic transformation is minimal (i.e. all
its orbits are dense), and uniquely ergodic. Below we describe the unique
invariant measure for T, also called the central measure.

By the Perron-Frobenius Theorem, a primitive matrix M has a simple
positive eigenvalue θ, such that θ > |λ| for any other eigenvalue λ of
M, and there exists a strictly positive eigenvector corresponding to θ.

Denote by ξn the partition of XM into subsets having the same initial
part i0, i1, i2, . . . in. The elements of ξn will be sometimes identified with
”finite paths of length n” (we count the edges of the path), and for C ∈ ξn
we shall write C = C(0)C(1) . . . C(n), where C(k) = ik. We shall also
write t ∼ s (mod ξn) if t(i) = s(i), i ≤ n.

Central measure. A measure on XM is called central if it is invariant
under the adic transformation. It is easy to see that a measure µ is central
if and only if µ(C) depends on n and C(n) only. We have the following
description of the unique central measure (see [16], and for substitutions [7],
[9, p.100]).
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Lemma 1.1 Let T be the adic transformation on a Markov compactum
XM with primitive M = {Mij}. Then the central measure µ is a Markov
measure with initial distribution µl = µ({t(0) = l}), l = 1, 2, . . . ,m, and
stationary transition probabilities [pij]

m
i,j=1, where [µl]

m
l=1 is the normalized

eigenvector corresponding to θ, and pij = Mijµj/(θµi).

T and T−1 are defined µ-almost everywhere. Our goal is to investigate
the spectral properties of T as an automorphism of (XM , µ) . By UT we
denote the unitary operator UTf(t) = f(Tt) on L2(XM , µ).

Substitutions. Let D = {1, 2, . . . ,m} and consider the function
ω : D → Dm which assigns to every i ≤ m the increasing sequence of
numbers j such that Mji = 1 (M is the same as above). This function
is called the substitution of alphabet D. Substitutions generate minimal
flows on certain sequence spaces, whose properties were studied in many
works (see the bibliography in [9]). It was discovered by A.N.Livshitz [5]
that essentially all stationary adic transformations are metrically isomorphic
to corresponding substitutional flows. On the other hand, ”generalized adic
transformations” were introduced (see [16] ), which correspond (essentially)
to all substitutional flows. Thus the two theories are parallel, and some meth-
ods and ideas turned out to be quite similar. For a long time the emphasis
was on substitutions of constant length, which means in our case that all the
column sums are equal. In the case of nonconstant length the spectral theory
is far from being complete. We are going to deal with adic transformations
but indicate the links with theory of substitutions.

2. Eigenvalues of the adic transformation. The set of eigenvalues
of the unitary operator UT will be denoted by σdisc(UT ). Since UT arises
from an automorphism of a measure space, σdisc(UT ) is a subgroup of the
unit circle T. We shall also write σdisc(UT ) = exp(2πiG), where G is a
subgroup of R.

Consider the vectors P (n) = [P
(n)
i ]mi=1 ∈ Zm, n ≥ 0, where P

(n)
i =

#{C ∈ ξn | C(n) = i}. Clearly

P
(n+1)
i =

∑
j:Mji=1

P
(n)
j ,

hence P (n) = MTP (n−1) = . . . = (MT )nP (0), P (0) = [1, 1, . . . , 1]T . Thus all
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the components of P (n) satisfy the recurrence relation

xn+m = −am−1xn+m−1 − am−2xn+m−2 − · · · − a0xn, (1)

where p(x) = xm + am−1x
m−1 + · · ·+ a0 is the characteristic polynomial of

the matrix M.

Lemma 2.1 (i) If ζ ∈ σdisc(UT ), then

lim
n→∞

ζLn = 1, (2)

for some positive sequence Ln ∈ Z satisfying the recurrence relation (1).
(ii) If

lim
n→∞

ζP
(n)
i = 1, i = 1, 2, . . . ,m, (3)

then ζ ∈ σdisc(UT ).

Remark. (i) was proved by A.Livshitz in [5], where the sequences {Ln},
appearing in (2), are described. For substitutions the result corresponding to
this lemma (even more precise) was obtained by B.Host [3, Theorem (1.4)].

Proof of Lemma 2.1(ii). Our construction resembles that of [12], see
also [5].

Consider the partition ξk. For each t ∈ XM let C
(k)
t ∈ ξk be the set

containing t. A total ordering on ξk : is now defined by

C ≺ D, if C(k) < D(k), or if for some l < k,
C(l) < D(l), C(i) = D(i), l < i ≤ k.

This ordering is not to be confused with the partial ordering on XM ,
though if t ≺ s, then C

(k)
t ≺ C(k)

s for k sufficiently large.
Now enumerate all elements of ξk starting from zero with respect to this

ordering and let Nk(t) be the index of C
(k)
t . For ζ satisfying (3) let

fζ(t) = lim
k→∞

ζNk(t). (4)

It is not hard to see that if lim ζLn = 1 for a sequence {Ln} satisfying a
recurrence relation, then the convergence is exponential. Thus (3) implies∑

n

|ζP
(n)
i − 1| <∞, i = 1, . . . ,m, (5)

Now the existence of the limit is implied by the following simple assertion:
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Nk+1(t)−Nk(t) is a linear combination of

P
(k)
i , P

(k+1)
i , i = 1, . . . ,m, with coefficients 0,±1.

It remains to note that if Tt is defined, then Nk(Tt) = Nk(t) + 1 for k
large enough, so fζ(Tt) = ζfζ(t). The function fζ is continuous, since the
convergence in (4) is uniform, and thus ζ ∈ σdisc(UT ).

Now we will discuss how algebraic properties of the characteristic poly-
nomial of the matrix M affect the (non)existence of eigenvalues for the
adic transformation. Different methods work for the case of eigenvalues
exp(2πiα) with rational and irrational α. We shall assume that the charac-
teristic polynomial is irreducible. Some analogs can be proved for the general
case, but the situation becomes more complicated.

Theorem 2.2. Suppose that XM is a Markov compactum, where M
is a primitive matrix with a characteristic polynomial p(x) irreducible over
Q . Then the following are equivalent:

(i) there is a polynomial g(x) ∈ Z[x] constant and irrational on the set
{xi| p(xi) = 0, |xi| ≥ 1};

(ii) the adic transformation on XM has an eigenvalue exp(2πiα) with
irrational α.

Moreover, if g(x) ∈ Z[x] , g(xi) = α for |xi| ≥ 1, p(xi) = 0, then
exp(2πiαk) is an eigenvalue for all k > 0.

Remark. There are conditions (see [5]) which guarantee that there are no
eigenvalues exp(2πiα) with rational nonintegral α. For example, this is the
case if detM = ±1, and M11 = 1. Combining this with Theorem 2.2 and
corollaries below, one can obtain some conditions for the adic transformation
to have continuous spectrum, or equivalently, to be weakly mixing.

Proof of Theorem 2.2. The implication (ii)⇒(i) is a special case of a
theorem due to A.Livshitz [6, Theorem 2].

(i)⇒(ii). Suppose that g(x) ∈ Z[x] is such that g(xi) = α 6∈ Q , for
each root xi of p(x) with |xi| ≥ 1. Let ζ = exp(2πiα). We shall prove
that ζLn → 1, for every sequence Ln ∈ N satisfying (1), and then make
use of Lemma 2.1 (ii) to assert that ζ ∈ σdisc(UT ).

Since p(x) is irreducible, it has m distinct roots xi (m = deg p) , and
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any sequence Ln satisfying the recurrence relation (1) can be written as

Ln =
m∑
i=1

cix
n
i

(see [1]). We have

αLn = α
∑

i: |xi|≥1
cix

n
i + α

∑
i: |xi|<1

cix
n
i . (6)

Let g(x) = g0 + g1x+ g2x
2 + · · ·+ glx

l. Then

Kn
def
=

l∑
j=0

gjLn+j =
l∑

j=0

gj
m∑
i=1

cix
n+j
i =

=
m∑
i=1

cix
n
i g(xi) = α

∑
i: |xi|≥1

cix
n
i +

∑
i: |xi|<1

cix
n
i g(xi).

Comparing this with (6) we see that αLn −Kn → 0. Since Kn ∈ Z, we
have

ζLn = exp(2πi(αLn −Kn))→ 1.

One can take Ln = P
(n)
i , and by Lemma 2.1(ii) ζ ∈ σdisc(UT ).

To prove that exp(2πiαk) is an eigenvalue, write gk(x) = p(x)Q(x) +
R(x), where R(x) ∈ Z[x], degR < m = deg p. Then R(xi) = αk for
|xi| ≥ 1, and αk is irrational since p(x) is the minimal polynomial for x1,
the maximal in modulus root. Thus, the same argument works if we replace
g(x) with R(x), and the proof is complete.

Corollary 2.3. Under the conditions of Theorem 2.2 let s be the smallest
prime divisor of m = deg p. If

#{xi | p(xi) = 0, |xi| ≥ 1} > m/s,

then G ⊂ Q .

Remark. Related results were obtained by B.Host [3] and A.N.Livshitz
[5]. These authors do not assume that p(x) is irreducible. In [5] it is proved
that if all zeroes of p(x) have modulus greater or equal than one, then G ⊂
Q . After the translation from the language of substitutions, the statement
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of [3, (6.5)] runs as follows: Suppose that M11 = 1 and more than half of the
zeroes of the minimal polynomial for the Perron eigenvalue θ have modulus
greater or equal than one. Then G ⊂ Q . This result can be proved similarly
to Corollary 2.3.

Definition. An algebraic integer is called a Pisot number, if all its con-
jugates have modulus less than one.

A special case of Corollary 2.3 is the following

Corollary 2.4. Under the conditions of Theorem 2.2, if m = deg p is
prime, then eigenvalues with irrational α exist if and only if θ is a Pisot
number.

In [11, 12] it is proved that if θ is a Pisot number, then G\Q is rather
large: it contains a free Abelian group of rank m− 1. Theorem 2.2 contains
this result. Below we give an example when θ is not a Pisot number, but
still eigenvalues exp(2πiα) with irrational α exist.

Example. Let m = 4,

M =


0 1 1 1
1 1 1 0
0 0 1 1
1 0 0 0


We have p(x) = x4−2x3−x2+2x−1 = ψ(g(x)), where g(x) = x2−x, ψ(y) =
y2 − 2y − 1. The polynomial p(x) is irreducible and it has four zeroes:

x1, x2, x3, x4, where x1,2 = 1/2(1±
√

5 + 4
√

2) have modulus greater than

one, and x3,4 = 1/2(1± i
√

4
√

2− 5) have modulus less than one. We have

g(x1) = g(x2) = 1 +
√

2. So Theorem 2.2 implies that exp(2πi
√

2) is an
eigenvalue of the adic transformation on XM .

Proof of Corollary 2.3. Let Z be the set of all zeroes of the irreducible
polynomial p. If G 6⊂ Q , then by Theorem 2.2 there exists g(x) ∈ Z[x],
such that g(xi) = α for xi ∈ Z, |xi| ≥ 1. Let F be the splitting field
for the polynomial p (see [17, p.121]), and let Aα = {xi ∈ Z| g(xi) = α}.
We can assume that deg g < deg p, replacing g(x) by the remainder in
the division by p(x), if necessary. Thus we have #Aα < #Z. Let τ
be an automorphism of the field F over Q which maps x1 ∈ Aα to
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some xj 6∈ Aα (exists by [17, p.166]). Then g(τxi) = τg(xi) = τα,
so τAα ∩ Aα = ∅, τAα ⊂ Z, #τAα = #Aα. Proceeding in this fashion
we see that the set Z is partitioned into sets having the same number of
elements, on which g is constant. Thus #Aα divides deg p, and we get
a contradiction with the hypothesis of the corollary.

3. Purely discrete spectrum. Discreteness of the spectrum is estab-
lished with the help of the following proposition of a general nature.

Proposition 3.1. Suppose that T is an automorphism of a Lebesgue
space (X , µ), UT the corresponding unitary operator on L2(X , µ), and E
its projection spectral measure on the circle T. We assume that there exists
a sequence of increasing measurable partitions of X denoted by {ξn}, such
that ξn → ε (partition into points) and a sequence pn → ∞ of integers
such that

for all k, for all C ∈ ξk,
∑
n µ(T pnC4C) <∞. (7)

Then E(T \ {ζ : ζpn → 1}) = 0.

Proof was given in [13] but we repeat it for convenience of the reader.
Let χ(C) be the indicator function of the set C ∈ ξk, νC(·) =

(E(·)χ(C), χ(C)). Then∫
|ζpn − 1|2 dνC =‖ (Upn

T − I)χ(C) ‖22=‖ χ(T pnC)− χ(C) ‖22=

= µ(T pnC4C).

Now (7) implies that ∑
k

νC{ζ : |ζpn − 1| > 2−l} <∞

for all l > 0. Therefore νC{T\{ζ : ζpn → 1}) = 0. Since the set of indicators
for all C is total in L2(X , µ) we conclude that E(T \ {ζ : ζpn → 1}) = 0.

Proposition 3.1 was used by A.N.Livshitz [4, 6] to obtain combinatorial
conditions for discreteness of spectrum of adic transformations and substitu-
tions.

Let M be an m × m matrix such that M1,1 = 1 and XM the
corresponding Markov compactum. In this case we have a unique minimal
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path t0 ∈ XM , t0 = 111 . . . . Analogous condition for substitutions (viz. the
word assigned to 1 starts with 1 ) is often used (see [3, 9] ).

Let pn denote P
(n)
1 , the number of paths of length n, leading to the

vertex 1.

Lemma 3.2. Suppose that M1,1 = 1, and set

Dn,k = {t ∈ XM : t 6∼ T pnt(mod ξk)}.

a) If the adic transformation T has purely discrete spectrum, then
∀k, µ(Dn,k)→ 0, n→∞.

b) If ∀k, ∑
n µ(Dn,k) <∞, then T has purely discrete spectrum.

Remark. A similar result for substitutions on {0, 1} was obtained by
B.Host (see [9, VI.27])

Proof of Lemma 3.2. It follows from [5] that if M1,1 = 1, then
in Lemma 2.1 (i) one can set pn = Ln. Thus if ζ is an eigenvalue of
UT , then limn→∞ ζ

pn = 1. If eigenvalues of UT form a total set, then
(Upn

T − I)χ(C)→ 0, for each C ∈ ξk. This implies that µ(T pnC4C)→ 0.
This proves a) since

Dn,k = ∪C∈ξk(T pnC4C).

Assertion b) follows from Proposition 3.1 and Lemma 3.3 below.

Lemma 3.3. If {pn} is any sequence satisfying the recurrence relation
(1) with ak ∈ Z, then the set {ζ ∈ T | ζpn → 1} is countable.

Proof of Lemma 3.3. Let ζ = exp(2πiα). Then ζpn → 1 if and only
if ‖ αpn ‖→ 0, where ‖ b ‖ is the distance of b to the nearest integer. We
can write

αpn = Rn + εn; Rn ∈ Z, εn → 0.

Since {αpn}n≥1 satisfies (1), the sequence {Rn} satisfies the same recur-
rence relation (1) starting from some n = n(α). We have α = limn→∞ p

−1
n Rn.

Since the set of integral sequences satisfying a given recurrence relation is
countable, we are done.

4. In this section we consider matrices of a special form. Let M be the
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following m×m matrix:

M =


1 1 0 . . . 0
1 0 1 . . . 0
· · · · · · · · · · · · · · ·
1 0 0 . . . 1
1 0 0 . . . 0


We shall consider the Markov compacta XM and XMT where MT is the
transpose of M. The characteristic polynomial of M is

p(x) = xm − xm−1 − · · · − x− 1.

Let θ be the Perron-Frobenius eigenvalue, 1 < θ < 2. It is not hard to see
that all other zeroes of p(x) have modulus less than one.

Let T be the adic transformation. Using Lemma 1.1, we find the ”initial
probabilities” on XM ,XMT , denoted by µl, µ

∗
l correspondingly:

µl =
θ − 1

m− 1
(θl−1 − θl−2 − · · · − 1), µ∗l = θ−l, l = 1, . . . ,m.

Theorem 4.1. The adic transformation on XM (XMT ) has purely
discrete spectrum and is metrically isomorphic to a translation on the (m−1)-
dimensional torus:

Rm−1/Zm−1 3 ~x 7→ ~x+ ~α , where ~α = [µl]
m−1
l=1 ([µ∗l ]

m−1
l=1 ).

Remarks. 1) Special cases of the theorem are: m = 2 (”Fibonacci” or
”golden mean” case), and m = 3, studied by G.Rauzy [10] in the language
of substistutions.

2) Theorem 4.1 appeared in [13] without detailed proof. Here the for-
mulation is slightly modified, using the observation of B.Host [3] that if
M1,1 = 1, detM = 1, then the generators for the group of eigenvalues can
be taken equal to µl.

Proof of Theorem 4.1. The Markov compacta XM and XMT are
studied similarly, so we confine ourselves to the adic transformation T on
XM . By the theorem of J. von Neumann (see [2, p.46]) two automorphisms
with the same purely discrete spectrum are metrically isomorphic. So it is
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sufficient to prove that UT has purely discrete spectrum and the group of
eigenvalues is generated by exp(2πiµl), l = 1, . . . ,m − 1. The description
of eigenvalues follows from Lemma 2.1, which in our case implies that

ζ ∈ σdisc(UT )⇔ ζpn → 1.

It follows also from the results of B.Host [3] on substitutions, so we will not
give details of this description here.

Thereby it remains to prove that UT has purely discrete spectrum. We
are going to make use of Lemma 3.2, but first some preparation is needed.

It is convenient to add negative levels indexed −m+ 1,−m+ 2, . . . ,−1
to the graded graph Γ, and to extend all the paths t ∈ XM to negative
levels so that

t ∼ {t(i)}∞i=−m+1, t(−m+ 1) = 1,

and if t(r) = 1, r ≤ 0, then t(i) = 1, i ≤ r. Such extension is unique
because only one edge leads to each of the vertices 2, 3, . . . ,m.

Recall that pn is the number of paths {t(i)}ni=0 for which t(n) = 1.
It is clear from the form of the graph that the number of paths of length n
leading to the l-th vertex is equal to pn−l+1. Set pi = 1, −m+ 1 ≤ i ≤ 0.
The sequence pi satisfies the recurrence relation

pk+m = pk+m−1 + · · ·+ pk+1, k ≥ −m+ 1.

We shall say that a path t ∈ X is eventually straight if for some k > 0,
we have t(i) = 1, i ≥ k. The set of eventually straight paths is linearly
ordered by the partial ordering in XM . Now enumerate all eventually straight
paths, starting from zero, and let N(t) be the index of t. The path indexed
zero is t0 ∼ {t0(i) = 1}∞i=−m+1. Evidently t = TN(t)t0.

Instead of working with the sequence {t(i)}, it is more convenient to
deal with another representation of paths.

Symbolic representation. We shall assign to each element t ∈ XM ,
a sequence {εi(t)}∞i=−m+1 :

εi(t) =

{
0, if t(i) = 1;
1, otherwise.
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Lemma 4.2. If t ∈ XM is eventually straight , then

N(t) =
∞∑

i=−m+1

εi(t)pi. (8)

Remark. G.Rauzy [10] has a similar representation for m = 3.

Proof. Straightforward.

Admissible sequences. A sequence {εi}∞i=−m+1 is said to be admissible

if it arises from some t ∈ XM . It is easily seen that {εi}∞−m+1 ⊂ {0, 1}N is
admissible if and only if

(a) there is no segment of m successive ”ones” ;
(b) ε−m+1 = 0, εi are monotone for i ≤ 0.

We shall also say that a sequence {εi}κ2i=κ1 is admissible, if it corresponds
to a part of the path from κ1 to κ2.

Note that condition (a) describes the sequences arising in β-expansions
( β = θ ) of real numbers, see [8].

Proposition 4.3. If t ∈ XM , εk+1(t) = εk+2(t) = . . . = εk+3m(t) = 0,
then T pnt ∼ t(mod ξk) for any n > k.

Before we give the proof of the proposition let us deduce Theorem 4.1.
Set Dn,k = {t ∈ XM |T pnt 6∼ t (mod ξk)}. It follows from Proposition

4.3 that if t ∈ Dn,k , then the part of the path from k-th to n-th level does
not contain a segment of 3m successive ”ones”. Recall that the conditional
probability for the path to go from i-th vertex to j-th vertex is equal to pij
and does not depend on the level (see Lemma 1.1). Thus for any l ≥ 0 and
any C ∈ ξl,

µ({t ∈ C| t(l+1) = t(l+2) = . . . = t(l+3m) = 1}) = µ(C)pC(l)1p
3m−1
11 > δµ(C),

where δ does not depend on l or C(l). Hence

µ({t ∈ XM | t(k + 1)t(k + 2) . . . t(k + 3m) 6= 11 . . . 1,

t(k + 3m+ 1)t(k + 3m+ 2) . . . t(k + 6m) 6= 11 . . . 1, . . . ,

t(k + 3md+ 1)t(k + 3md+ 2) . . . t(k + 3m(d+ 1)) 6= 11 . . . 1}) < (1− δ)d+1
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Therefore
µ(Dn,k) ≤ (1− δ)[(n−k)/3m]

Since k and m are fixed,
∑
n µ(Dn,k) <∞, and by Lemma 3.2 (ii) UT has

purely discrete spectrum.
It remains to prove Proposition 4.3.

Proof of Proposition 4.3. It is assumed that T pnt is defined. This
means that T pnt ∼ t (mod ξK) for some K for which t(K) = 1. Clearly
the claim of the proposition for t is equivalent to that for the path t′ such
that t′(i) = t(i), i ≤ K; t(i) = 1, i > K. Thus it is sufficient to prove the
proposition for eventually straight paths.

We can define the addition of eventually straight paths by the formula:

N(t+ s) = N(t) +N(s).

Let en be the eventually straight path such that εi(en) = δni (Kronecker’s
symbol). Then by Lemma 4.2, T pnt = t+ en.

Let {di}∞i=−m+1, {d′i}∞i=−m+1 be two integral sequences having finitely
many nonzero terms. We shall call them equivalent, if

∞∑
i=−m+1

dipi =
∞∑

i=−m+1

d′ipi

Our goal is to transform the sequence {εi(t) + δni} to obtain an equivalent
admissible sequence. Recall that a sequence of zeroes and ones is said to be
admissible if it does not contain a segment of m ones, and its terms with
nonpositive indices (if any) are nondecreasing.

Definition 4.4. A sequence {di}∞i=−m+1 will be called an admissible
sequence with perturbation if

(a) 0 ≤ di ≤ 2.
(b) There exists ν > 0, such that dν+1 = 0, and both {di}ν−mi=−m+1

and {di}∞i=ν+1 are admissible.
The integer ν will be called the final point of the perturbation.

First we note that the sequence {εi(t) + δni} is admissible with pertur-
bation, since gaps between two successive zeroes in {εi(t)} are not greater
than m− 1. Roughly speaking, the idea of what follows is that the pertur-
bation ”propagates” and is ”damped” in the straight segment of the path t,
leaving its initial part untouched.
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We shall use two types of operations leaving sequences equivalent.

Operation A. Suppose that for a sequence {bi} having finitely many
nonzero terms, we have

br+1 = br+2 = . . . = br+m = 1, br+m+1 = 0.

Them we can put

b′i =


0, if r + 1 ≤ i ≤ r +m;
1, if i = r +m+ 1;
bi, otherwise.

Since pr+m+1 = pr+1 +pr+2 + · · ·+pr+m by the recurrence relation, {b′i}
is equivalent to {bi}. The following is readily seen.

Assertion 1. If {bi}∞i=−m+1 is a sequence with finitely many nonzero
terms, such that bi ≤ 1 for i ≥ l, and bl = 0, then using Operation A
several times one can obtain an admissible sequence {b′i}∞i=−m+1 equivalent
to the original one, and such that b′i = bi, i ≤ l.

Returning to T pnt, we see that if εn(t) = 0, then di = εi(t) + δni ≤ 1.
Assertion 1 shows that T pnt ∼ t (mod ξk).

If εn(t) = 1, we have to apply another operation.

Operation B. Suppose that {bi}∞i=−m+1 is an admissible sequence with
perturbation where ν is the final point of the perturbation. Let

r = max{i | bi = 2} − 1.

So br+1 = 2, and we can assume that (if r + 1 < ν ) br+2 = br+3 = . . . =
bν = 1, or otherwise we could take a smaller final point of the perturbation.
Now we use that

pr+1 = pr + pr−1 + · · ·+ pr−m+1, pν−m+1 + pν−m+2 + · · ·+ pν = pν+1

and put

b′i =


bi + 1, if i = ν + 1;
0, if r + 1 ≤ i ≤ ν;
bi + 1, if r −m+ 1 ≤ i ≤ ν −m;
bi, otherwise.
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The sequences {bi} {b′i} are equivalent. It is possible that {b′i}∞i=ν is
inadmissible. This will happen if bν+2 = bν+3 = · · · = bν+m = 1. But in this
case we can apply Assertion 1 to obtain a sequence {b′′i }∞i=−m+1 equivalent
to {bi}∞i=−m+1, such that b′′i = b′i for i ≤ ν, and {b′′i }∞i=ν is admissible.

Let us prove that {b′′i }∞i=−m+1 is almost admissible. First, {b′′i }∞i=r+1 is
admissible as b′′r+1 = b′′r+2 = · · · = b′′ν = 0 (and there is at least one zero
since r + 1 ≤ ν ).

Since {bi}ν−mi=−m+1 is admissible, we have that {b′i}r−m−1i=−m+1 = {bi}r−m−1i=−m+1

is admissible and b′i ≤ bi + 1 ≤ 2 for i ≤ ν −m. For ν −m + 1 ≤ i ≤ r
we have b′i = bi ≤ 2. Thus {b′′i } is admissible with perturbation, and the
final point of the perturbation is r < ν.

We have proved the following

Assertion 2. If {bi}∞i=−m+1 is an admissible sequence with perturbation,
ν is the final point of perturbation, then using Operations B and A it
is possible to obtain an equivalent admissible sequence with perturbation
{b′′i }∞i=−m+1 with the final point of the perturbation r, ν −m ≤ r < ν, and
such that b′′i = bi for i ≤ r −m.

Let us return to the proof of Proposition 4.3 and put di = εi + δni.
As was mentioned already, the sequence {di}∞i=−m+1 is admissible with
perturbation. Using Assertion 2 repeatedly we can reduce it to an equivalent
admissible sequence with perturbation {d′i}∞i=−m+1 with the final point of the
perturbation ν ′, k+3m+1 ≤ ν ′ ≤ k+4m, and such that d′i = di = εi(t) for
i < ν ′−m. (Of course it is possible that at some point the sequence becomes
admissible, but then we are done.) From the assumption of Proposition 4.3
that εi(t) = 0 for k + 1 ≤ i ≤ 2m it follows that

d′ν′−m = d′ν′−m−1 = · · · = d′ν′−2m+1 = 0.

We shall continue to perform Operations B and A. But now ”adding ones”
at the places i ≤ ν ′−m will not produce new ”twos” in the sequence (take
into account that now for every operation B the new interval of adding does
not intersect the previous one). Thus with each application of Operation
B, the number of terms of the sequence equal to two, decreases. On the
other hand, the final point of the perturbation remains greater or equal than
ν ′−m+1, so the property of having a straight segment (all zeroes) of length
m preceding the perturbation, preserves. So eventually, after no more than
m steps, we come to a sequence {d′′i } such that d′′i = di = εi(t) for i ≤ k,
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and d′′i ≤ 1. Now applying Operation A, we obtain an admissible sequence
corresponding to T pnt. The proof of the proposition, and therefore the proof
of Theorem 4.1 is now complete.
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[10] G.Rauzy, Nombres algébraiques et substitutions. Bull. Soc. math. France
1982 (110), 147-178.

[11] M.Solomyak, Master Thesis. Leningrad University, 1982.

16



[12] M.Solomyak, The simultaneous action of adic transformation and
Markov shift on the torus, to appear in Advances of Soviet Mathematics,
1991.

[13] B.Solomyak, On a dynamical system with discrete spectrum. Russian
Math Surveys 41:2 (1986), 219-220.

[14] A.M.Vershik, Uniform algebraic approximation of shift and multiplica-
tion operators. Soviet Math. Dokl. 24:1 (1981), 97-100.

[15] A.M.Vershik, A theorem on periodic Markov approximation in ergodic
theory. Journal of Soviet Math. 28 (1985), 667-674.

[16] A.M.Vershik and A.N.Livshitz, Adic models of ergodic transformations,
spectral theory, substitutions, and related topics (an overview), present
volume

[17] B.L.van der Waerden, Algebra, Volume 1. Frederick Ungar Publ.Co.,
New York, 1970.

17


