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Abstract

We investigate spectral properties of the translation action on the orbit closure of a Delone

set. In particular, sufficient conditions for pure discrete spectrum are given, based on the

notion of almost periodicity. Connections with diffraction spectrum are discussed.

1 Introduction

A set Λ ⊂ Rd is a Delone set if there exist positive constants R and r such that every ball of

radius R intersects Λ and every ball of radius r contains at most one point of Λ. The collection

of all such sets with fixed R and r can be equipped with a metric to form a compact space.

The group Rd acts on this space by translations. We study the spectral properties of this action

restricted to some invariant subsets. We begin with a description of eigenvalues (with continuous

eigenfunctions) assuming that the restricted action is minimal. Then we consider dynamics with

respect to an ergodic invariant measure and obtain sufficient conditions for the system to have

pure discrete spectrum. These conditions are based on a variant of almost periodicity for Delone

sets.

This work has an application to the theory of quasicrystals, as we explain at the end of Section

2. Roughly speaking, the set Λ models an atomic structure, and pure discrete dynamical spectrum

implies pure discrete diffraction spectrum, a property often associated with quasicrystals.

Tiling dynamical systems are closely related to systems arising from Delone sets. A tiling of

Rd is a decomposition of the space into a countable union of compact sets (tiles), having disjoint

interiors. The tiles are often assumed to be polygons, each congruent to an element of a finite set

of “prototiles”. The translation action of Rd on the space of tilings with a given prototile set (or
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its restriction on an invariant subspace) is called a tiling dynamical system. Such systems have

been intensively studied in recent years, see Radin and Wolff [20] Radin [18, 19] and references

therein, E.A. Robinson [22, 23], and Solomyak [24]. There are many ways to go from a tiling to

a Delone set and back. If this is done with some care, the tiling and Delone set are going to be

“mutually locally derivable”, which implies topological conjugacy of the corresponding dynamical

systems. In this paper we work with Delone sets but all results can be easily rephrased in terms

of tilings.

The paper is organized as follows. In Section 2 the results on Delone sets are stated and

connections with diffraction, projection method, and Meyer sets are discussed. These results

naturally fit into a more general framework of abstract dynamical systems on compact metric

spaces developed in Section 3. The proofs are given in Sections 4 and 5.

2 Delone sets

Denote by BR(y) the closed ball of radius R centered at y ∈ Rd. A set Λ ⊂ Rd is called relatively

dense if there exists R = R(Λ) > 0 such that Λ ∩ BR(y) 6= ∅ for all y ∈ Rd. The set Λ is said to

be uniformly discrete if there exists r = r(Λ) > 0 such that #[Λ ∩Br(y)] ≤ 1 for all y ∈ Rd. The

set Λ is called a Delone set if it is relatively dense and uniformly discrete. The collection of all

Delone sets Λ with these properties for given R and r will be denoted D(R, r). The space D(R, r)

is equipped with a metric:

ρ(Λ1,Λ2) = min{2−1/2, ρ̃(Λ1,Λ2)}, where

ρ̃(Λ1,Λ2) = inf{ε > 0 : dH [Λ1 ∩B1/ε(0) , Λ2 ∩B1/ε(0)] ≤ ε} . (1)

Here

dH [A1, A2] = inf{δ > 0 : A1 ⊆ A2 +Bδ(0) & A2 ⊆ A1 +Bδ(0)}

is the Hausdorff distance.

The “cut-off” at 2−1/2 in the definition of ρ is needed to fulfill the axioms of metric. Although

the metric looks complicated, its meaning is simple: two Delone sets are close if they almost

coincide on a large neighborhood of the origin. (An equivalent metric was considered by Dworkin

in [2]; a similar metric for tiling spaces is used by Robinson in [23].)

A standard diagonalization argument shows that (D(R, r), ρ) is compact. For all y ∈ Rd the

translation Γy : Λ 7→ Λ− y is a homeomorphism on D(R, r). Given a Delone set Λ, we consider

the orbit closure XΛ = Clos {Λ − y : y ∈ Rd} in the metric ρ. The space XΛ, together with the

translation action Γy, is the topological dynamical system arising from Λ.
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A Delone set Λ is often assumed to have the property of (translational) local finiteness:

#[(Λ− Λ) ∩Bt(0)] <∞, for all t > 0. (2)

This means that Λ has finitely many “local patterns” up to translation. Lagarias [12] has inves-

tigated this property in great detail; he called such Λ a “Delone set of finite type”.

When considering locally finite Delone sets, it is more convenient to use another metric ρ′

which is defined as the minimum of 2−1/2 and

ρ̃′(Λ1,Λ2) = inf{ε > 0 : ∃u, v ∈ Bε(0), (Λ1 − u) ∩B1/ε(0) = (Λ2 − v) ∩B1/ε(0)} .

If Λ is locally finite, ρ and ρ′ define the same topology (an easy exercise), and the space XΛ

can be interpreted as the collection of Delone sets all of whose local patterns occur in Λ, up to

translation.

Definition. Let us say that y ∈ Rd is a topological δ-almost-period for Λ if

Λ ∩B1/δ(0) = (Λ− y) ∩B1/δ(0). (3)

Denote by Ψδ(Λ) the set of topological δ-almost-periods.

A locally finite set Λ is called repetitive if Ψδ(Λ) is relatively dense for all δ > 0. In plain

language, this means that all local patterns of Λ occur relatively dense in space. It is well-known

that Λ is repetitive if and only if XΛ = XΛ′ for every Λ′ ∈ XΛ, or equivalently, XΛ is the local

isomorphism class of Λ. The corresponding dynamical systems (XΛ,Γy) are called minimal and

sometimes “(topologically) almost periodic.”

Our first result is a description of eigenvalues for the dynamical system (XΛ,Γy). Here we

formulate the result in the case when the Delone set is locally finite. The non-locally finite case is

contained in Theorem 3.1 given in the next section. Denote by 〈x, y〉 the standard scalar product

in Rd. Recall that α ∈ Rd is an eigenvalue for the translation action if there exists a non-zero

function fα ∈ C(XΛ) satisfying

fα(ξ − y) = e2πi〈y,α〉fα(ξ) for all ξ ∈ XΛ and y ∈ Rd.

Theorem 2.1 Let Λ be a locally finite, repetitive Delone set. Then α is an eigenvalue for (XΛ,Γy)

if and only if

lim
δ→0

sup
y∈Ψδ(Λ)

|e2πi〈y,α〉 − 1| = 0. (4)

Next we consider measurable dynamics. It is known that there exists a Borel probability mea-

sure µ on XΛ which is translation-invariant and ergodic, that is, any Borel translation-invariant
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set has measure 0 or 1. (Here we do not consider the question of uniqueness for this measure; it

is related to the existence of “uniform patch frequencies”, see [13] for some sufficient conditions.)

A non-zero µ-measurable function on XΛ is an eigenfunction for the measure-preserving system

(XΛ, µ,Γy) if the eigenfunction equation holds for µ-almost every ξ ∈ XΛ. We write “continu-

ous eigenfunctions” and “measurable eigenfunctions” to distinguish between the topological and

measure-theoretic settings. It is not always true that each measurable eigenfunction coincides

with some continuous eigenfunction a.e.; of course, every continuous eigenfunction is measurable.

The system (XΛ, µ,Γy) is said to have pure discrete spectrum if measurable eigenfunctions

form a basis for L2(XΛ, µ). (Ergodicity implies that all eigenspaces are one-dimensional and Γy-

invariance of the measure implies that eigenfunctions corresponding to distinct eigenvalues are

mutually orthogonal.)

Definition. The lower uniform frequency of a discrete set A is defined by

freq(A) = lim inf
L→∞

sup
a∈Rd

L−d #[A ∩ (CL + a)], (5)

where CL = [−L/2, L/2]d. If lim inf can be replaced with lim in (5), we say that A has uniform

frequency freq(A).

Recall that A4 B = (A \ B) ∪ (B \ A) is the symmetric difference of sets. Let us say that

x ∈ Rd is a statistical δ-almost-period for Λ if

freq[Λ4 (Λ− x)] ≤ δ. (6)

Theorem 2.2 Let Λ be a Delone set. If the set of statistical δ-almost-periods for Λ is relatively

dense for all δ > 0, then the system (XΛ, µ,Γy) has pure discrete spectrum for any ergodic invariant

measure µ.

Remarks. 1. We propose to call a Delone set Λ statistically almost periodic if the conditions of

Theorem 2.2 are fulfilled.

2. If the system (XΛ,Γy) is uniquely ergodic, that is, if µ is unique, then the frequency (rather

than lower frequency) exists in (6), and it is always uniform, so that one can let a = 0 and drop

supa in (5).

3. Notice that in this theorem we do not assume the set Λ to be locally finite.

Diffraction spectrum. Physicists use Delone sets to model infinite atomic structures, e.g. in

statistical mechanics and the theory of diffraction. For instance, one can consider the measure

ν =
∑
x∈Λ δx as “atomic density” (here δx is the Dirac’s δ at x). If the autocorrelation γ of ν exists,

the diffraction is described by the Fourier transform γ̂, see papers [6, 8] by Hof. If Λ is locally
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finite and there exist “pair correlations” (frequencies na of a ∈ Λ − Λ), then the autocorrelation

exists and is given by γ =
∑
a∈Λ−Λ naδa. Moreover, γ̂ is then a measure as well, as shown by Hof

[6], and one can speak about the discrete component of γ̂ (“Bragg peaks”), continuous component

(“diffuse spectrum”), etc.

The diffraction spectrum is related to the dynamical spectrum which we study. It follows

from the work of Dworkin [2], see also Hof [8], that (assuming unique ergodicty) γ̂ is pure discrete

(resp. pure continuous), if the spectrum of the associated dynamical system is such. Thus, we

obtain the following.

Corollary 2.3 If a Delone set is statistically almost periodic and the corresponding dynamical

system is uniquely ergodic, then the diffraction spectrum is pure discrete.

The discrete part of γ̂ is concentrated on the discrete part of the dynamical spectrum, however,

they need not coincide. Gähler and Klitzing in [4] investigated the discrete component of the

diffraction spectrum for self-similar tilings; some of their results are parallel to our results from

[24] on dynamical spectrum. The work of Robinson [21] implies that there is a connection between

continuous eigenfunctions and the standard procedure used by physicists to determine the “Bragg

peaks”.

Although the statistical almost periodicity condition is quite strong, it can often be verified.

In the special case of self-similar tilings, an analog of Theorem 2.2 was used to develop a concrete

algorithm (the “overlap algorithm”) for checking pure discrete spectrum. Pure discrete spectrum

was confirmed for the “chair” and “sphinx” tilings in our paper [24]; as well as for the three-

dimensional version of the “chair” tiling (in preparation). It is likely that Theorem 2.2 can also

be applied to hierarchical tilings which are not strictly self-similar.

Projection Method. As an illustration, let us give an alternative proof of a result by

Hof [8] that the dynamical system associated with a set obtained by projection method has pure

discrete spectrum. (Earlier, Robinson in [22] has shown that the dynamical system associated

with the Penrose tiling is an almost 1:1 extension of a translation action on the torus T4, and

hence has pure discrete spectrum.)

Let T be a lattice in Rm and E a d-dimensional subspace such that the dual lattice T ∗ satisfies

T ∗ ∩ E = {0}. Further, let K ⊂ E⊥ be a compact set in the orthogonal complement of E. As

in [8], we assume that K has non-empty interior and ∂K has zero (m− d)-dimensional Lebesgue

measure Lm−d. The set K is called a “window”. Let π denote the orthogonal projection onto E.

The set Λ is defined by

Λ = π[T ∩ (E ×K)].
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It is well-known that Λ is a Delone set in E. Let us check that the hypotheses of Theorem 2.2

are satisfied. We shall use the fact that for such a set there exists uniform frequency proportional

to Lm−d(K) (see Hof (1996a) and references therein). For each δ > 0, replacing K with the ball

Bδ(0) in E⊥, we obtain that the set

A(δ) = π[T ∩ (E ×Bδ(0))]

is relatively dense in E. Let x ∈ A(δ). Since T is a lattice, it is immediate that

Λ4 (Λ + x) ⊂ π[T ∩ (E × (∂K +Bδ(0)))].

The set in the right-hand side has uniform frequency proportional to the measure of ∂K +Bδ(0),

which tends to zero as δ → 0. It follows that x satisfies (6) for δ sufficiently small, so Theorem

2.2 yields that (XΛ, µ,Γy) has pure discrete spectrum.

Meyer sets. Recently the notion of a Meyer set was introduced: A Delone set Λ is Meyer if

Λ − Λ ⊂ Λ + F for some finite set F . There are many equivalent characterizations, see Moody

[16]. Lagarias in [11] has shown that a Delone set Λ is Meyer if and only if Λ−Λ is Delone. Meyer

in [14, 15] developed a duality theory for such sets. A question arises if there is any connection

between the spectral properties of the system (XΛ,Γy) and the Meyer theory.

We note that being a repetitive Meyer set does not imply pure discrete spectrum or even

the presence of non-trivial discrete spectral component. Indeed, any relatively dense subset of a

Meyer set is Meyer, so any self-similar tiling with vertices in a lattice gives rise to a Meyer set.

In [24] we gave an example of such a tiling with mixed spectrum (the “domino” tiling). To get a

Meyer set without discrete spectrum one can take a weakly mixing substitution ζ on two symbols

0 and 1, and let Λ be the set of integers corresponding to 0 in some bi-infinite sequence arising

from ζ (see [17] for the definitions). On the other hand, one can find a Delone set with non-trivial

discrete spectrum which is not Meyer: take the product of a one-dimensional set with discrete

spectrum and a non-Meyer set. We do not know if a repetitive Delone set with finitely many local

patterns can have pure discrete spectrum but be non-Meyer.

3 Abstract Dynamical Systems

In order to prove the results stated in the previous section, it is convenient to put them into

the more general framework of Rd-actions. Let (X , ρ) be a compact metric space. A topological

Rd-action is a continuous homomorphism y 7→ Fy from Rd as a topological group, into the group

of homeomorphisms of X . Recall that a dynamical system is said to be minimal if it has no
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non-trivial closed invariant subsets, or equivalently, if its every orbit is dense. For δ > 0 and

ξ ∈ X let

Φδ(ξ) = {y ∈ Rd : ρ(Fyξ, ξ) ≤ δ}. (7)

By a well-known argument (see Chapter 1 in Furstenberg’s book [3]),

(X , Fy) is minimal ⇐⇒ Φδ(ξ) is relatively dense ∀ξ ∈ X , ∀δ > 0. (8)

Recall that α ∈ Rd is an eigenvalue for (X , Fy) if there exists a non-zero function fα ∈ C(X )

satisfying

fα(Fyξ) = e2πi〈y,α〉fα(ξ) for all ξ ∈ X and y ∈ Rd. (9)

Theorem 3.1 Let (X , Fy) be a minimal Rd-action on a compact metric space. Then α is an

eigenvalue if and only if

lim
δ→0

sup
y∈Φδ(ξ)

|e2πi〈y,α〉 − 1| = 0, for ξ ∈ X . (10)

If (10) is satisfied for a single ξ ∈ X , then it holds for all ξ ∈ X .

Let µ be an ergodic Fy-invariant Borel probability measure on X . A non-zero µ-measurable

function on X is an eigenfunction for the measure-preserving system (X , µ, Fy) if the equality in

(9) holds for µ-a.e. ξ ∈ X and all y ∈ Rd. The measure-preserving system (X , µ, Fy) is said to

have pure discrete spectrum if µ-measurable eigenfunctions form a basis for L2(X , µ).

Let us say that x ∈ Rd is a measure-theoretic ε-almost-period for the Rd-action (X , µ, Fy) if

µ{ξ ∈ X : ρ(Fxξ, ξ) > ε} < ε. (11)

Theorem 3.2 Let (X , µ, Fy) be an ergodic Rd-action. If the set of measure-theoretic ε-almost-

periods is relatively dense for all ε > 0, then the system has pure discrete spectrum.

Although we are not aware of such a result in the literature, perhaps, it is known. The

proof is rather simple, using that a finite measure is pure discrete if and only if its Fourier

transform is almost periodic (in the sense of H. Bohr), see Corollary 4.15 in Burckel’s book [1].

For some substitution dynamical systems a similar proof was sketched by Bernard Host [personal

communication], see also Lemma VI.25 in Queffelec’s book [17] for the case of Z-actions. We

should note that the statement and proof of Theorem 3.2 easily extend to the setting of locally

compact abelian group actions.

It is unlikely that the condition in Theorem 3.2 is necessary for pure discrete spectrum; a

partial converse is given below.
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Proposition 3.3 Suppose that (X , µ, Fy) is a minimal Rd-action with pure discrete spectrum,

and all measurable eigenfunctions can be chosen to be continuous. Then the set of measure-

theoretic ε-almost periods for the Rd-action is relatively dense for all ε > 0.

4 Continuous eigenfunctions

In this section we prove Theorem 3.1 and then use it to deduce Theorem 2.1.

Proof of Theorem 3.1 Necessity. Suppose that there exists a non-zero continuous eigenfunc-

tion fα satisfying (9). Since (X , Fy) is minimal, |fα| is constant; assume that it is equal to one.

The space X is compact, so fα is uniformly continuous. Given ε > 0, one can find δ > 0 such

that if ρ(ξ1, ξ2) < δ then |fα(ξ1)− fα(ξ2)| < ε. Let ξ be any element of X . For y ∈ Φδ(ξ) we have

ρ(Fyξ, ξ) < δ, so

|e2πi〈y,α〉 − 1| = |fα(ξ)||e2πi〈y,α〉 − 1| = |fα(Fyξ)− fα(ξ)| < ε,

as desired.

Sufficiency. Suppose that (10) holds for some ξ ∈ X . We let Φδ := Φδ(ξ) to simplify the

notation. Let

fα(Fyξ) = e2πi〈y,α〉.

This defines a function on the orbit of ξ; this orbit is dense by minimality. If we prove that

fα is continuous on the orbit, it can be extended to a continuous function on X satisfying the

eigenfunction equation (9). Fix ε > 0. By (10), we can find δ1 > 0 so that

|e2πi〈y,α〉 − 1| < ε/2 for all y ∈ Φδ1 . (12)

The set Φδ1/2 is relatively dense by (8), so for some R > 0 every ball of radius R contains a point

in Φδ1/2. Since our action is continuous, there exists δ2 > 0 such that

ρ(ξ1, ξ2) < δ2 ⇒ ρ(Fyξ1, Fyξ2) < δ1/2 for all y ∈ BR(0). (13)

Now we can show that fα is continuous on {Fyξ : y ∈ Rd}. Suppose that ρ(Fy1ξ, Fy2ξ) < δ2.

One can find z ∈ BR(0) such that y1 + z ∈ Φδ1/2, that is, ρ(Fy1+zξ, ξ) < δ1/2. Observe that

ρ(Fy1+zξ, Fy2+zξ) ≤ δ1/2 by (13), so ρ(Fy2+zξ, ξ) < δ1. We obtain that y1 + z ∈ Φδ1/2 ⊆ Φδ1 and

y2 + z ∈ Φδ1 . Thus, (12) implies

|fα(Fy1ξ)− fα(Fy2ξ)| = |e2πi〈y1,α〉 − e2πi〈y2,α〉|

= |e2πi〈y1+z,α〉 − e2πi〈y2+z,α〉|

≤ |e2πi〈y1+z,α〉 − 1|+ |e2πi〈y2+z,α〉 − 1| < 2(ε/2) = ε,
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and the proof is complete.

Proof of Theorem 2.1. By the definition of the metric (1), if Λ ∩B1/δ(0) = (Λ− y) ∩B1/δ(0),

then ρ(Λ− y,Λ) ≤ δ, hence Ψδ(Λ) ⊆ Φδ(Λ), see (7) and (3). By Theorem 3.1, (4) is necessary for

α to be an eigenvalue.

Let us establish sufficiency. Since Λ is locally finite, for any t > 0, there exists δ(t) ∈ (0, 1/t),

such that if

dH [(Λ− y) ∩Bt(0),Λ ∩Bt(0)] ≤ δ(t),

then

(Λ− y′) ∩Bt(0) = Λ ∩Bt(0)

for some y′ with ||y′ − y|| ≤ δ(t). Thus, Φδ(t)(Λ) ⊆ Ψ1/t(Λ) +Bδ(t)(0). It follows that (4) implies

(10), so α is an eigenvalue by Theorem 3.1.

5 Pure discrete spectrum

Here we prove Theorem 3.2 and Proposition 3.3, and then deduce Theorem 2.2.

Proof of Theorem 3.2. For any f ∈ L2(X , µ) the spectral measure corresponding to f is a

finite measure νf on Rd such that

ν̂f (y) =

∫
Rd
e−2πi〈y,t〉 dνf (t) =

∫
X
f(Fyξ)f(ξ) dµ(ξ) for y ∈ Rd. (14)

The Rd-action (X , µ, Fy) has pure discrete spectrum if and only if all the spectral measures νf

are pure discrete. It is sufficient to show this for f from a set whose closed linear span is the

whole space L2(X , µ). It is well-known that the collection of indicator functions of open sets has

this property.

So let U be an open set in X and let f be its indicator (characteristic) function. It is a fact

from harmonic analysis that a finite measure is pure discrete if its Fourier transform is almost

periodic (see Hewitt [5] or Corollary 4.15 in Burckel’s book [1] for general groups; Katznelson in

[9] gives a proof for the case of R). Recall that a continuous function g on Rd is almost periodic

if the set of its ε-almost-periods is relatively dense for all ε > 0, and a vector x ∈ Rd is an

ε-almost-period for g if |g(y + x)− g(y)| < ε for all y ∈ Rd. Thus, it suffices to prove that given

ε > 0, the set of ε-almost-periods for ν̂f is relatively dense.

Since µ is a Borel probability measure on a metric space, it is regular, see e.g. Theorem 6.1

in [25]. This implies that there is a compact set K ⊂ U such that

µ(K) > µ(U)− ε/4. (15)
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Since X is compact, the distance between K and the boundary of U is a positive number which we

denote by η. Let δ = min{ε/4, η}. By assumption, the set of measure-theoretic δ-almost-periods

for the system (X , µ, Fy) is relatively dense. Consequently, the proof will be complete once we

prove that if x is a measure-theoretic δ-almost-period for (X , µ, Fy), then x is an ε-almost-period

for the function ν̂f .

We have by (14), using that f is the indicator of U :

|ν̂f (y + x)− ν̂f (y)| =

∣∣∣∣∫
X

(f(Fy+xξ)− f(Fyξ))f(ξ) dµ(ξ)

∣∣∣∣
≤ µ(F−x−yU 4 F−yU)

= µ(U 4 F−xU)

= 2[µ(U)− µ(U ∩ F−xU)] . (16)

In the last two equalities we used the Fy-invariance of the measure µ. Now observe that if ξ ∈ K
and ρ(Fxξ, ξ) ≤ δ < ρ(K, ∂U), then Fxξ ∈ U and so ξ ∈ U ∩ F−xU . It follows that

µ(U)− µ(U ∩ F−xU) ≤ µ(U)− µ(K) + δ < ε/2.

This, together with (16), shows that x is an ε-almost-period for ν̂f , as desired.

Proof of Proposition 3.3. Fix ε > 0. Let B1, . . . , Bm be a finite covering of the compact space

X by balls of radius < ε/2. Let hj denote the indicator function of Bj . By assumption, hj can be

approximated by a linear combination of continuous eigenfunctions. Thus, for all j ≤ m, there

exist cj,k ∈ C, fj,k ∈ C(X ), and αj,k ∈ Rd, with k = 1, . . . , nj , such that

fj,k(Fyξ) = e2πi〈y,αj,k〉fj,k(ξ) for y ∈ Rd, ξ ∈ X , (17)

and

||hj −
nj∑
k=1

cj,kfj,k||2 < (1/3)(ε/m)1/2 . (18)

The eigenfunctions are normalized so that ||fj,k||2 = 1. Choose any ξ0 ∈ X and let Φδ = Φδ(ξ0),

see (7) for the definition. By Theorem 3.1, there exists δ > 0 such that

x ∈ Φδ =⇒ |e2πi〈x,αj,k〉 − 1| < (ε/m)1/2(3

nj∑
k=1

|cj,k|)−1 for k = 1, . . . , nj ; j = 1, . . . ,m. (19)

Since our system is minimal, the set Φδ is relatively dense by (8), so it suffices to show that any

x ∈ Φδ is a measure-theoretic ε-almost-period for (X , µ, Fy).
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Let x ∈ Φδ. It follows from (17) and (19) that

||fj,k(Fxξ)− fj,k(ξ)||2 < (ε/m)1/2(3

nj∑
k=1

|cj,k|)−1 for k = 1, . . . , nj ; j = 1, . . . ,m.

Combined with (18), this implies

||hj(Fxξ)− hj(ξ)||2 < (ε/m)1/2 for j = 1, . . . ,m, (20)

Since hj is the indicator of Bj ,

||hj(Fxξ)− hj(ξ)||22 = µ(Bj 4 F−xBj) for j = 1, . . . ,m. (21)

Observe that

{ξ ∈ X : ρ(ξ, Fxξ) > ε} ⊆
m⋃
j=1

(Bj 4 F−xBj).

Indeed, every ξ ∈ X lies in some Bj . If ρ(ξ, Fxξ) > ε, then Fxξ 6∈ Bj since Bj is a ball of radius

ε/2. Thus, by (20) and (21),

µ{ξ ∈ X : ρ(ξ, Fxξ) > ε} < ε,

so x is a measure-theoretic ε-almost-period. The proof is complete.

Proof of Theorem 2.2. Recall that we now work with Delone sets and the translation action,

so we write ξ − x instead of Γx(ξ). Let

Ω(x, ε) = {ξ ∈ XΛ : ρ(ξ, ξ − x) ≤ ε}.

To deduce Theorem 2.2 from Theorem 3.2 it suffices to show that there exists an absolute constant

C > 0 such that if

freq[Λ4 (Λ− x)] < Cεd+1, (22)

then µ(Ω(x, ε)) > 1 − ε. We will do this for C = (4Ld(B1(0)))−1 where Ld denotes Lebesgue

measure.

By the pointwise Ergodic Theorem for Rd-actions (see Krengel’s book [10]), for any f ∈
L1(XΛ, µ), ∫

X
f(ξ) dµ(ξ) = lim

L→∞
L−d

∫
CL

f(ξ − y) dy

for µ-a.e. ξ ∈ XΛ. Letting f be the indicator function of a Borel set E ⊆ XΛ, we obtain for µ-a.e.

ξ ∈ XΛ,

µ(E) = lim
L→∞

L−dLd{y ∈ CL : ξ − y ∈ E}.
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Fix such a ξ for E = Ω(x, ε). Then for all L sufficiently large

|µ(Ω(x, ε))− L−d Ld{y ∈ CL : ξ − y ∈ Ω(x, ε)}| < ε/2. (23)

Since ξ is in the orbit closure of Λ and freq is the lower uniform frequency, (22) implies

freq[ξ 4 (ξ − x)] ≤ freq[Λ4 (Λ− x)] < Cεd+1.

Thus, we can choose L arbitrarily large, so that

#[(ξ 4 (ξ − x)) ∩ CL] < 2Cεd+1Ld. (24)

Observe that ξ−y ∈ Ω(x, ε) means ρ(ξ−y, ξ−y−x) ≤ ε. This is certainly true if ξ−y = ξ−y−x
on B1/ε(0) or equivalently, if ξ = ξ − x on B1/ε(y). But the latter holds for

y 6∈ [ξ 4 (ξ − x)] +B1/ε(0).

Indeed, such a y has a distance of at least 1/ε to every point of ξ 4 (ξ − x) and hence

B1/ε(y) ∩ [ξ 4 (ξ − x)] = ∅

which means that ξ and ξ − x agree on B1/ε(y). Thus,

Ld{y ∈ CL : ξ − y ∈ Ω(x, ε)} ≥ Ld(CL)− Ld
((

[ξ 4 (ξ − x)] +B1/ε(0)
)
∩ Cl

)
≥ Ld(CL)−#[(ξ 4 (ξ − x)) ∩ CL]Ld(B1/ε(0))

≥ Ld − 2Cεd+1Ld Ld(B1(0))ε−d

= Ld[1− 2CεLd(B1(0))]

= Ld(1− ε/2),

using (24) in the third inequality and that C = (4Ld(B1(0)))−1 in the last equality. Combining

this with (23) implies µ(Ω(x, ε)) > 1− ε, as desired. The proof is complete.
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