
TILINGS AND DYNAMICS

BORIS SOLOMYAK

Abstract. We discuss tilings of Rd of translational finite local complexity and associ-

ated dynamical systems—translation Rd actions. The main focus is on self-similar and

self-affine tilings and their spectral properties. This is linked to “aperiodic order.”

1. Introduction

A tiling (or tesselation) of Rd is a collection of sets, called tiles, which have nonempty

disjoint interiors and whose union is the entire Rd. Tilings of the hyperbolic space or other

spaces are also considered, but we restrict ourselves to the Euclidean space.

Tiles are often assumed to be polygons (polyhedra), or at least topological balls, but

for us they are just compact sets that are closures of their interiors. To get a meaningful

theory, it is usually assumed that there are finitely many “prototiles” up to a group of

transformations acting on the space. The two natural choices in Rd are the group of

translations and the group of all Euclidean isometries. We will be concerned with the

former class of tilings, which are called translationally-finite. Usually there are additional

constraints, such as “face-to-face” for polyhedral tilings, or “matching rules” which specify

how the tiles can fit together.

We start with a few historical remarks, mostly taken from the book chapter by E. A.

Robinson, Jr. [81].

Question (Tiling Problem). Is there an algorithm that, upon being given a set of

prototiles, with matching rules, decides whether a tiling of the entire space exists?

Hao Wang (1961) considered this problem for squares with colored edges, which became

known as “Wang tilings.” If we ignore the coloring, this is just the periodic tiling of R2

by the square tiles in a grid. The edges are colored in finitely many colors, and if two tiles

touch each other, the colors of their common edge should match.
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When d = 1, the “Wang tiles” are just intervals with colored endpoints, and there is an

easy algorithm to answer the Tiling Problem. Draw a graph whose vertices are prototiles

and directed edges indicate which pairs are allowed. A tiling of R exists if and only if

there is an infinite path in this graph, which is equivalent to existence of a cycle.

Definition 1.1. A tiling T of Rd is called a periodic tiling if its translation group ΓT =

{t ∈ Rd : T − t = T } is a lattice, that is, a subgroup of Rd with d linearly independent

generators. A tiling is called aperiodic if ΓT = {0}.

From the discussion above it follows that if a tiling of R with a given prototile set exists,

then there is a periodic tiling. Wang conjectured that the same holds for d > 1. More

precisely, he conjectured that (1) there is an algorithm that decides the Tiling Problem;

(2) if a tiling exists, then there exists a periodic tiling. Wang proved that (2) implies

(1). However, the conjecture turned out to be false! Wang’s student, Robert Berger

(1966) proved that the Tiling Problem is undecidable and constructed an “aperiodic tiling

system,” that is, a prototile set which tile the plane but only aperiodically. Berger’s

prototile set was very large; it had more than 20,000 prototiles. Later, Raphael Robinson

(1971) found a simpler example with 32 prototiles.

The problem of finding small aperiodic sets of prototiles has attracted a lot of attention

(see [39] for the history up to 1987). The exact formulation depends on whether the

prototiles are counted up to translation or up to isometries.

One of the most interesting aperiodic sets is the set of Penrose tiles, discovered by

Roger Penrose [69]. Penrose tilings play a central role in the theory because they can be

generated by any of the three main methods: local matching rules, tiling substitutions, and

the projection method. The Penrose tiling has two prototiles up to isometries; below they

are defined precisely. It is an open problem whether there exists an aperiodic prototile set

consisting of a single prototile in the plane.

The discovery of quasicrystals in 1984 had a profound influence on this subject. A

quasicrystal is a solid (usually, metallic alloy) which, like a crystal, has a sharp X-ray

diffraction pattern, but unlike a crystal, has an aperiodic atomic structure. Aperiodicity

was inferred from a “forbidden” 5-fold symmetry of the diffraction picture. Since the

Penrose tilings have this symmetry (not literally, but in an appropriate sense—statistically

or for the tiling space), they became a focus of many investigations, both by physicists

and by mathematicians. See [89] for an introduction to the mathematics of quasicrystals

addressed to a general audience.
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Penrose tilings comes in several different versions. The simplest to describe has two

rhombs—a thick and a thin one—as prototiles, shown in Figure 1. Their smaller angles

are 2π/5 and 2π/10 respectively. The “markings” of the boundary define the matching

rules. A part of a Penrose tiling is shown in Figure 2. The tiles appear in 10 orientations,

so there are 20 prototiles up to translation.

Figure 1. The Penrose tiles (rhombs)

Figure 2. A part of a Penrose tiling

How do we know that a Penrose tiling exists? In other words, why is it possible to tile

the whole plane? This is not obvious; in fact, when one starts playing with the Penrose



4 BORIS SOLOMYAK

tiles as with a “jigsaw puzzle,” it becomes clear that there are many non-extendable

configurations. Penrose proved the existence of a tiling using inflation. It is easiest to

explain this using triangular Penrose tiles introduced by R. Robinson, see Figure 3.

(a) (b)

Figure 3. The triangular Penrose tiles.

They are obtained by cutting each rhomb into two triangles, and the markings are chosen in

such a way that any tiling by triangles can be converted into a Penrose tiling by combining

adjacent triangles. Now we can do the following: inflate one of the triangles by a factor of

(1+
√

5)/2 (the golden ratio) and subdivide it according to the rule indicated in the figure,

then repeat this with the entire patch. Note that some of the triangles in the subdivision

are obtained using a reflection; the subdivision rule respects this.

Exercise. Verify that when we inflate and subdivide repeatedly, adjacent triangles in the

patch satisfy the matching rules on the boundary.

Thus we can iterate this procedure producing larger and larger patches. In the limit

(appropriately defined) we get a tiling of the entire plane. This inflation-subdivision

procedure is a powerful mechanism to create hierarchical structures, and it will be one of

the main topics of the lectures.

The use of dynamical systems has been a major ingredient in the study of aperiodic

tilings. Given a tiling in Rd, one associates with it a space which is the closure of its

Rd-translation orbit, the closure being in the “local” topology, which compares tilings for

more or less exact match in regions around the origin. We call it the tiling space; in

the literature on mathematical quasicrystals it is often called the dynamical hull. Tiling

spaces provide a new point of view; many properties of tilings are really properties of the

tiling space. Moreover, many of these properties can be interpreted in dynamical terms.

Explaining this will be a major topic of these lectures. We do not list all the relevant

literature here, but mention four important early papers where this approach was used:

[83, 77, 25, 79], as well as the book [74].
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Overview of these Notes. The core of these lectures is Sections 2-5. In Section 2 we

introduce the basics of tilings and tiling dynamical systems. We include two “digressions”

to briefly review the relevant background in dynamics. In Section 3 we introduce tile-

substitutions and self-affine tilings, of which the triangular Penrose tiling is an example.

Section 4 is devoted to the problem of characterizing expansion maps for self-similar tilings

studied by W. Thurston and R. Kenyon. Geometric and number-theoretic ideas play

an important role here. In Section 5 we investigate the eigenvalues of self-affine tiling

dynamical systems, emphasizing number-theoretic connections. In Section 6, added for

completeness, we discuss some conditions for pure discrete spectrum. It contains only

a brief glimpse into the topic, without many details. Section 7 is devoted to “aperiodic

order” and “mathematical quasicrystals.” This is also a huge topic, of which we can

only scratch the surface; I tried to emphasize the relevance of dynamical systems. We

cannot possibly prove everything; some statements are left as an exercise, some proofs are

outlined, and others are omitted altogether. However, I included some longer proofs, that

are, perhaps, difficult to extract from the literature, in the Appendix (Section 8).

Disclaimer. There is a huge literature on tilings, tiling dynamical systems, and related

questions. Our reference list has almost 100 items, and it is far from being complete.

Many important topics are missing, because of time and space limitations. (In particular,

we do not return to the “Tiling Problem” or “matching rules” from the Introduction.)

Additional information may be found in excellent surveys [81, 14], which also treat many

of the same topics as these notes. I apologize for any inadvertent omissions and wrong

attributions. Please let me know if you find mistakes.

Acknowledgment. I would like to thank Michel Rigo and Valérie Berthé for inviting

me to present these lectures. I am grateful to Rick Kenyon, Jeong-Yup Lee, Robert V.

Moody, and Robbie Robinson for many helpful discussions. Many thanks to Robbie for

allowing me to use his figures (Fig. 1-4,7). Some material from [61, 67, 4, 81] was used in

these notes.

2. Tilings and tiling dynamical systems

A tile is a compact set T ⊂ Rd which is a closure of its interior. A tiling is a set T of

tiles such that Rd = ∪{T : T ∈ T } and distinct tiles have disjoint interiors.

We will assume that the tiling has finitely many tiles up to translation. Each tile will

be labeled with an element of A = {1, . . . ,m}, which may be regarded as a “tile type” or

a “color.” Any two tiles of the same type must be translates of each other (by definition).
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Formally, we should say that a tile is a pair (A, i) where A is the support of the tile and

i is its label. However, it is usually not a problem to think about tiles as sets, keeping in

mind that they have the label.

A T -patch is a finite union of T -tiles. Two tiles, or patches, are said to be equal if

they have the same collection of tiles (including the labels). Two tiles, or patches, are

equivalent if they are translates of each other. We write ≈ to indicate equivalence. When

translating a tile, we move the support and keep the label. The support of a patch is the

union of tiles in the patch (so a patch is a set of tiles, a subset of T , whereas its support

is a subset of Rd).
Two common assumptions are:

• the tiling T has finite local complexity (FLC), that is, for any R > 0 there

are finitely many T -patches of diameter less than R up to equivalence.

• the tiling T is repetitive, that is, for any T -patch P there exists R > 0 such

that every ball of radius R contains a translated copy of P .

Tiling space: XT = {−g + T : g ∈ Rd}, where the closure is in the “local” topology:

two tilings are close if after a small translation they agree on a large ball around the origin.

More precisely, two tilings T1, T2 agree on a set K ⊂ Rd if supp(T1 ∩ T2) ⊃ K. Let Bε be

the open ball of radius ε centered at the origin. For T1, T2 ∈ XT define

%̃(T1, T2) := inf{r ∈ (0, 2−1/2) : ∃ g, ‖g‖ ≤ r such that T1 − g, T2 agree on B1/r}.

Finally, let

%(T1, T2) := min{2−1/2, %(T1, T2)}.

Exercise. Verify that % is a metric. (See [81] for a solution.)

Theorem 2.1. [83] (see also [81]). (XT , %) is a complete metric space. It is compact,

whenever T has finite local complexity.

2.1. Topological Dynamics. Consider the translation action on XT defined by

T t(S) := S − t for S ∈ XT and t ∈ Rd.

It is easy to see that T t is a homeomorphism, and we get a continuous action of Rd on

XT . We call it the (topological) tiling dynamical system associated with the tiling T . It

will be denoted by (XT , T
t)t∈Rd , or just (XT ,Rd) abusing the notation a little. Next we

review briefly the relevant background.
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Digression. A topological dynamical system is a pair (X,T t)t∈G where X is a compact

metric space and T t, t ∈ G, is a continuous action of a topological (semi)group.

The most basic set-up is an action of a single continuous map T : X → X, which

leads to N- or Z-action (if T is invertible). Continuous-time systems are also studied; they

correspond to R-actions (if they are invertible). They are even more classical, since such

systems arise in physics, whenever there is an autonomous system of ODEs. The theory

has been generalized to Zd- and Rd-actions (which will be our set-up), and to actions of

other (even nonabelian) topological groups. A Zd-action is essentially the same as having

d commuting invertible transformations.

Suppose we have two G-actions, on X and on Y . A continuous map φ : X → Y

commuting with the action is called a factor map. If a factor map is a bijection, it is

called a topological conjugacy.

Given a dynamical system (X,T t)t∈G, the orbit of x ∈ X is the set O(x) := {T tx : t ∈
G}. The system is called minimal if every orbit is dense, or equivalently, if there are no

proper closed G-invariant subsets of X.

Theorem 2.2. The tiling dynamical system (XT ,Rd) is minimal if and only if the tiling

T is repetitive.

This is proved by a well-known argument in topological dynamics, which goes back to

Gottschalk [37]; see [81, Sec. 5] for details.

Next we discuss the topology of tiling spaces. Recall the definition of periodic and

aperiodic tilings, Def. 1.1.

Exercise. Prove that a tiling T is periodic if and only if its orbit O(T ) is closed.

For a periodic tiling T , the tiling space is homeomorphic to Rd/ΓT = Td, the d-

dimensional torus. In order to understand the topology of the tiling space for aperiodic

tilings we consider cylinder sets. Suppose a tiling T is given. For a patch P ⊂ T let

XP := {S ∈ XT : P ⊂ S},

i.e., XP consists of all tilings in the tiling space containing a given patch. For W ⊂ Rd let

XP,W :=
⋃
t∈W

T tXP = {S ∈ XT : ∃ t ∈W, −t + P ⊂ S}.

Cylinder sets {XP,Bεn : P ⊂ T , εn → 0} form a basis for the tiling topology on X. For

small ε > 0, XP,Bε is homeomorphic to XP ×Bε.
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For more information on the topology of tiling spaces see [86, 85] and references therein.

A tiling dynamical system can be viewed as a G-solenoid, with a structure of lamination

[13].

Exercise. Let T be an aperiodic repetitive FLC tiling. Show that XP is homeomorphic

to the Cantor set, i.e., it is compact, totally disconnected, and has no isolated points. In

particular, XP is uncountable.

Instead of tilings, it is often convenient to consider discrete point sets in Rd.

Definition 2.3. A set Λ ⊂ Rd is called a Delone set (sometimes spelled “Delonay”) if Λ

is uniformly discrete and relatively dense. This means that there exist c1, C2 > 0 such

that every ball of radius c1 contains at most one point of Λ, and every ball of radius

C2 contains at least one point of Λ. In geometric analysis, Delone sets are known as

“uniformly separated nets.”

The theory of Delone sets parallels tiling theory in many respects. For instance, we

define FLC and repetitivity in a similar way. A finite subset of a Delone set is called a

cluster. A Delone set Λ is FLC if Λ − Λ is closed and discrete, which is equivalent to

having finitely many clusters of any given size, up to translations (see [51] where the term

“finite type” is used instead of FLC). The Delone dynamical system associated to Λ is

defined, similarly to tiling dynamical systems. First we introduce a metric analogous to

% defined above; the space XΛ := {−g + Λ : g ∈ Rd} is compact whenever Λ has FLC.

The translation action (XΛ,Rd) is a topological Rd-action; it is minimal if and only if Λ is

repetitive. Similarly to tilings, where tiles have a “color” or a “label,” it is often convenient

to consider “colored” point sets, or more formally, Delone multisets (Λ1, . . . ,Λm).

Some of the papers in this area have been couched in terms of tilings, and others in

terms of Delone sets. It is usually an easy exercise to transfer the proofs from one context

to another. This can also be done in a formal way, using the notion of local derivability.

We have already seen an example in Section 1—the Penrose tiling with rhombic tiles

and the corresponding tiling with triangular tiles are mutually locally derivable, because

there is a specific local rule allowing one to pass from one kind of patch to another kind,

and vice versa. More generally, it can be any transformation rule which only depends

on the neighborhood of uniform fixed radius in a translation invariant way. Here is the

precise definition.
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Definition 2.4. (See [9, 8]) Let Λ1 and Λ2 be two Delone sets. We say that Λ2 is locally

derivable (LD) from Λ1 with a radius R > 0 if for all x, y ∈ R2 and some δ > 0,

BR+δ(x) ∩ Λ1 = (BR+δ(y) ∩ Λ1) + (x− y) ⇒ Bδ(x) ∩ Λ2 = (Bδ(y) ∩ Λ2) + (x− y).

If Λ1 is LD from Λ2 and Λ2 is LD from Λ1, then we say that Λ1 and Λ2 are mutually

locally derivable (MLD).

The definition of LD and MLD is extended to tilings, as well as to pairs (tiling–Delone

set) in an obvious way.

Remark. LD is the tiling analog of a sliding block code in symbolic dynamics, see [62].

LD from T1 to T2 induces a factor map from (XT1 ,Rd) to (XT2 ,Rd) (an easy exercise).

If two tilings or two Delone sets are MLD, then the associated translation dynamical

systems are topologically conjugate, hence they have the same dynamical and ergodic-

theoretic properties. However, in contrast with symbolic dynamics, where any factor map

is implemented by a sliding block code (this is Curtis-Lyndon-Hedlund Theorem, see e.g.,

[62]), a topological conjugacy between tiling systems does not, in general, imply that the

tilings are MLD ([70, 76]).

Any tiling T can be converted into a Delone multiset by choosing a “reference point”

in each prototile xi ∈ Ti and then taking the points with the same relative position in all

T -tiles equivalent to Ti. This results in a Delone multiset (Λ1, . . . ,Λm), which is easily

seen to be MLD with T . Thus, all the concepts and results transfer from the language of

tilings to the language of Delone (multi)sets and vice versa.

2.2. Ergodic Theory studies dynamics on measure spaces; in the classical theory the

dynamics should preserve the measure. We review briefly the relevant background.

Digression. Let X be a compact metric space. We consider Borel probability measures

on X. Recall that Borel sets are the elements of the smallest σ-algebra containing all open

(and closed) sets. The measure µ assigns a number 0 ≤ µ(E) ≤ 1 to a Borel set E ⊂ X,

with µ(∅) = 0 and µ(X) = 1. One way to interpret µ is as a probability law in which µ(E)

measures the probability that a randomly chosen point x ∈ X belongs to E. The integral

of a function with respect to a measure µ is denoted
∫
X f dµ. If we think of f as a random

variable on X, then the integral is its expectation. In order to consider the integral, we

need to assume that f is measurable and either f ≥ 0, or
∫
X |f | dµ < ∞. We will need

Lebesgue spaces Lp(X,µ) for p ≥ 1, whose elements are equivalence classes of measurable

functions f such that ‖f‖p := (
∫
X |f |

p dµ)1/p < ∞. Two functions are equivalent if they
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agree on a set of full measure. It is common to consider elements of Lp as functions,

keeping in mind this identification.

Now suppose that we have a topological Rd action (X,T t)t∈Rd . Of interest to us will

be invariant measures. These are the measures that satisfy µ(T tE) = µ(E) for all Borel

sets E and all t ∈ Rd.
An invariant measure µ is called ergodic if T tE = E for all t implies µ(E) = 0 or

µ(E) = 1. An ergodic invariant measure always exists (see [100]). Denote

Qr = [−r/2, r/2]d.

If µ is ergodic, then Birkhoff’s Ergodic Theorem asserts that for all f ∈ L1(X,µ),

(2.1) lim
r→∞

r−d
∫
Qr

f(T tx) dt =

∫
X
f dµ for µ-a.e. x ∈ X.

In the left-hand side the integration is over the Lebesgue measure in Rd. Instead of the

cubes Qr one can take balls of radius r centered at the origin; then r−d should be replaced

by 1/Vol(Br) where Vol denotes the volume (Lebesgue measure in Rd). The formula (2.1)

is often interpreted as follows: the time average is equal to the space average “typically.”

Note that here the “time” is d-dimensional.

We will be especially interested in the case when there is a unique invariant measure µ,

which is then necessarily ergodic. Then the system (X,T t)t∈Rd is called uniquely ergodic.

Such systems satisfy a stronger version of Ergodic Theorem, namely the convergence in

(2.1) is not just almost everywhere, but everywhere, and it is uniform in x.

Now we return to the tiling dynamical system (XT ,Rd). For a patch P ⊂ T let

(2.2) LP (T , A) := #{t ∈ Rd : −t + P ⊂ T , −t + supp(P ) ⊂ A}

denote the number of T -patches equivalent to P that are contained in A. The “statistics”

of patches turns out to be relevant.

Definition 2.5. A tiling T has uniform patch frequencies (UPF) if for any non-empty

patch P , the limit

freq(P, T ) := lim
r→∞

LP (T ,x +Qr)

rd
≥ 0

exists uniformly in x ∈ Rd.

In a similar way, one defines an analogous notion for Delone sets, called the uniform

cluster frequencies (UCF). The following is a standard result; see [58, Th. 2.7] for a proof

of the Delone set version, which is based on [73, Cor. IV.14(a)].
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Theorem 2.6. (i) Let T be a tiling with FLC. Then the dynamical system (XT ,Rd) is

uniquely ergodic if and only if T has UPF.

(ii) Suppose that T is a tiling with FLC and UPF. Then there exists η > 0 such that

for any Borel set W with diam(W ) < η, we have

µ(XP,W ) = Vol(W ) · freq(P, T ),

where µ is the unique invariant measure for (XT ,Rd).

In order to see how part (ii) follows from part (i), consider f = 1XP,W , the indicator

function of a cylinder set. Then the integral in the left-hand side of (2.1) reduces to (with

x = T ):

Vol({t ∈ Qr : P ⊂ −t− g + T for some g ∈W}).

The “boundary effects” become negligible in the limit, so the left-hand side of (2.1) is just

LP (T , Qr) ·Vol(W ), whereas the right-hand side of (2.1) is µ(XP,W ).

Definition 2.7. A tiling is called linearly repetitive (LR) if there exists C > 0 such that

for any P ⊂ T every ball of radius Cdiam(P ) contains a T -patch equivalent to P . LR

Delone sets are defined similarly.

LR tilings were considered in [94] under the name “strongly repetitive tilings.” F.

Durand [23] studied a similar object in symbolic dynamics, namely, linearly recurrent

subshifts. J. Lagarias and P. Pleasants [53] investigated LR Delone sets.

Theorem 2.8. ([53], see also [23, Th. 15]). If T is LR, then T has UPF.

A proof of this is sketched in Section 8.1. Fabien Durand will say more about LR

subshifts and and their higher-dimensional versions in his lectures.

3. Substitution Tilings.

3.1. Word substitutions. We begin with the more familiar set-up of word substitutions

in symbolic dynamics (or morphisms in theoretical computer science), see e.g. [73, 72] for

details.

Let A be a finite alphabet, A∗ = ∪n≥1An, the set of finite words, AN=the set of infinite

words with letters in A. A substitution is a map ζ : A → A∗. We will assume that ζ is

injective. The substitution is extended to A∗ and AN by concatenation. The length of a

word w is denoted by |w|.
Assume that |ζn(α)| → ∞, as n → ∞, for all α ∈ A. Then one can find k ≥ 1 and

u = u0u1u2 . . . ∈ AN such that ζk(u) = u (see [73, Prop. V.1]). The space AN is compact
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in the product topology. The substitution space Xζ is the orbit closure of u under the left

shift transformation σ :Xζ = {σnu : n ≥ 0}. The N-action (Xζ , σ) is called the substitution

dynamical system.

Alternatively, one can consider a Z-action, the two-sided substitution dynamical system

(X ′ζ , σ) where X ′ζ is defined as the set of all sequences x ∈ AZ such that every block of x

occurs in u.

It is often assumed that there is a letter α ∈ A such that ζ(α) = αw, with |w| ≥ 1.

Then u = αwζ(w)ζ2(w) . . . is a fixed point of ζ.

The substitution matrix is a matrix m×m with the entries Mζ(i, j) equal to the number

of letters i in ζ(j). The substitution dynamical system is minimal whenever the matrix

Mζ is primitive. (Recall that a non-negative integer matrix M is primitive, or irreducible,

if there exists k ∈ N such that Mk is strictly positive.) Primitive substitution dynamical

systems are uniquely ergodic. The ergodic theory and topological dynamics of substitution

systems have been extensively studied, and we do not attempt to review this theory.

3.2. Tile substitutions and self-affine tilings. We study perfect (geometric) substi-

tutions, in which a tile is “blown up” by an expanding linear map and then subdivided.

Other possibilities, where the substitution is combinatorial, and/or there is no perfect

geometric subdivision, have also been considered, see e.g. [28, 29, 33, 18, 96].

Let φ be an expansive linear mapping Rd → Rd, that is, all its eigenvalues are greater

than one in modulus.

Definition 3.1. Let A = {T1, . . . , Tm} be a finite set of prototiles in Rd. Denote by

PA the set of patches made of tiles each of which is a translate of one of Ti’s. A map

ω : A → PA is called a tile-substitution with expansion φ if

(3.1) supp(ω(Tj)) = φTj for j ≤ m.

In plain language, every expanded prototile φTj can be decomposed into a union of tiles

(which are all translates of the prototiles) with disjoint interiors.

The substitution ω is extended to all translates of prototiles by ω(x+Tj) = φx+ω(Tj),

and to patches by ω(P ) = ∪{ω(T ) : T ∈ P}. This is well-defined due to (3.1). The

substitution ω also acts on the space of tilings whose tiles are translates of those in A.

To the tile-substitution ω we associate its m×m substitution matrix S, with Sij being

the number of tiles of type i in the patch ω(Tj). The substitution ω is called primitive if

the substitution matrix is primitive. We say that T is a fixed point of the substitution if

ω(T ) = T .
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Definition 3.2. A repetitive FLC fixed point of a primitive tile-substitution is called a

self-affine tiling. It is called self-similar if the expansion φ is a similarity (or similitude).

A self-affine tiling of R is always self-similar, with expansion map x 7→ λx, and we will

call λ the expansion constant. Let T be a self-similar tiling of the plane R2 for which the

expansion map φ is orientation-preserving. An orientation-preserving similarity map of

the plane can be expressed as multiplication by λ ∈ C if we identify R2 ∼= C. Then λ ∈ C
is called the complex expansion constant of the tiling T .

Lemma 3.3. For any primitive tile-substitution ω there exists n ∈ N such that ωn has a

fixed point.

Proof. Take any prototile, say, T1, and consider the patches ωn(T1) for n ∈ N. Since φ is

expansive, these patches will eventually have tiles contained in the interior of the support

of the patch (and as “deep inside” as we wish). By primitivity, for n sufficiently large,

these tiles will include all tile types, T1 in particular. Thus, for some n ∈ N, x ∈ Rd, and

r > 0,

T1 + x ∈ ωn(T1), T1 + x ⊂ (φnT1)◦ = (supp(ωn(T1)))◦,

where K◦ denotes the interior of K. Then

(3.2) T1 − y ∈ ωn(T1 − y), where y = (φn − I)−1x,

which is well-defined, since φ is expansive. Moreover, T1 − y ⊂ (φn(T1 − y))◦, hence

φ−n(T1 − y) ⊂ (T1 − y)◦, which implies that the origin, the unique fixed point of φ−n, is

in the interior of T1 − y. It follows from (3.2) by induction that

ωin(T1 − y) ⊂ ω(i+1)n(T1 − y), for i ≥ 1.

Now,

T :=

∞⋃
i=0

ωin(T1 − y)

is well-defined, it is a tiling of the entire space, and ωn(T ) = T . �

Remark. Do we really need to assume FLC in Definition 3.2? The situation is a little

subtle. It turns out that a fixed point of a primitive tile-substitution is not necessarily of

finite local complexity, see [47, 20, 32].

The next lemma is helpful for checking repetivity.
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Lemma 3.4. (see [71]). Let T be an FLC fixed point of a tile-substitution with substitution

matrix S.

(i) T is repetitive (and therefore self-affine) if and only if every T -patch occurs in ωn(T )

for every T ∈ T for all n ∈ N sufficiently large.

(ii) T is repetitive if and only if S is primitive and a T -patch, containing the origin in

the interior of its support, occurs in ωn(T ) for some T ∈ T and some n ∈ N (in particular,

if the origin lies in the interior of a tile).

Examples and remarks. (a) The simplest examples of self-similar tilings of the plane

are periodic (lattice) tilings of the plane (i) by parallelograms; (ii) by triangles. They are

both self-similar with any expansion constant k > 1, k ∈ N. However, the lattice tiling by

hexagons (“honeycombs”) is not self-affine (there is no perfect decomposition).

(b) There are many aperiodic self-similar tilings with polygonal tiles congruent to each

other. Such tilings were considered by Grünbaum and Shephard [39, 10.1] (who called

them similarity tilings). Examples include the “chair” tiling, the “sphinx” tiling, see [39,

p. 529], the domino tiling, and many others. Three examples of such tilings are shown

in Figures 4-6. Actually, we only show the subdivision rule which generates the tile-

substitution. There is no “canonical” chair tiling, domino tiling, etc. One should either

speak about an element of the tiling space, or about a fixed point—self-similar tiling,

which is not unique either.

...

Figure 4. The chair tiling

Let us explain the construction in more detail for a chair tiling. In Figure 4 you see

the first two iterations of the tile-substitution: T1, ω(T1), ω2(T1), and a larger patch of

a tiling. The expansion constant is 2 (that is, the expansion map is a pure dilation by

a factor of 2). There are four tile types up to translation, but only one up to isometry,
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and the subdivision rule respects this. In order to get a self-similar chair tiling, let T1 be

located so that the lower left corner is the origin. Then ω(T1) contains T1, ωn(T1) contains

ωn−1(T1) as a subpatch, so there is a natural limit limn→∞ ω
n(T1), which is a tiling of

the quarter-plane (the 1st quadrant). Taking the reflections of this tiling around the axes

yields a tiling of R2 which is a fixed point of ω. In order to show that it is self-similar, we

need to verify that it is repetitive. The substitution matrix S is primitive, so we can use

Lemma 3.4(ii) to do this.

Exercise. (i) Find another self-similar chair tiling; enumerate ALL self-similar tilings for

the chair tile-substitution; (ii) write down the substitution matrix S; (iii) verify that the

fixed point of the chair tile-substitution described above is repetitive; for which n does the

property in Lemma 3.4(ii) hold?

In Fig. 5-6 we show two other examples of tile substitutions; the first one is sometimes

called “domino” (or “table”). In both cases the expansion is φ(x) = 2x. Thick lines

indicate “second order” tiles.

Figure 5. The “domino” tiling

Figure 6. A polyomino tiling

(c) Charles Radin [75] and his collaborators investigated the “pinwheel” tile-substitution

which is indicated in Figure 7. There is only one prototile up to isometry: the right

triangle with sides of lengths 1, 2,
√

5. Note, however, that the angle θ is irrational modulo

π which implies that in tilings of the whole plane the triangles appear in infinitely many

orientations. Thus, such a tiling is not FLC up to translations, and we do not consider it

here. (There are many interesting results about the pinwheel and analogous tilings; see

e.g. [84]; we do not review the literature about them.)

θ

Figure 7. The pinwheel decomposition
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(d) There are connections between the theory of self-affine tilings and fractal geometry.

The prototiles of a self-affine tiling can be viewed as the attractor of a graph-directed

iterated function system (see [10]). In the special case when there is only one prototile up

to isometry, they have been studied under the name of “reptiles” or self-affine tiles (see

e.g. [54]).

It appears that the boundary of self-affine tiles in Rd is either flat, or fractal; moreover,

in the latter case it has dimension strictly between d−1 and d. This is a kind of “rigidity”

phenomenon. This statement is an open problem in full generality [personal communi-

cation from M. Urbański], however, it is known in special cases, see e.g. [24, 55, 2]. Note

the following easy fact:

Exercise. Let T be a self-affine tiling with expansion map φ whose rotational part is of

infinite order (in R2 this means that the rotation is irrational modulo π). Show that the

tiles cannot be polyhedral. Hint: use the FLC property.

(e) Many more examples and beautiful pictures may be found in the on-line “Tiling

Encyclopedia” developed by E. Harriss and D. Frettlöh [40].

(f) Self-affine tilings are related to many other topics, which we cannot discuss here.

Among them: numeration systems (see e.g. [36, 78, 1, 2, 14, 15]), wavelets (see e.g. [27]),

Markov partitions (see e.g. [12, 71, 45, 50, 91]), and adic transformations (see [99]).

Lemma 3.5. (see [71, Prop. 1.1]) For any tile T of a self-affine tiling, Vol(∂T ) = 0.

By the Perron-Frobenius theory (see [90]), a primitive matrix M has a dominant eigen-

value θ > 0, which is greater in modulus than all other eigenvalues. We call θ the PF

eigenvalue of M . The matrix M has strictly positive right and left eigenvectors corre-

sponding to θ, called PF eigenvectors. Moreover, M has no other positive eigenvectors.

Corollary 3.6. The PF eigenvalue for the substitution matrix of a self-affine tiling with

expansion map φ is |detφ|. The vector el = (Vol(Tj))
m
1 is a left PF eigenvector.

Proof. We only need to check that elS = |detφ|el, since el is strictly positive. By

Lemma 3.5 and the definition of the substitution matrix,

| detφ|Vol(Tj) = Vol(φTj) =
m∑
i=1

SijVol(Ti),

which implies the desired statement. �
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3.3. Self-similar tilings of R. Suppose that we have a tiling of R by connected tiles.

Then the tiles are closed intervals; they are distinguished by their labels — “tile types”—

and possibly, but not necessarily, their lengths. We label the tile types by elements of

A = {1, 2, . . . ,m} and let si be their lengths. Such a tiling of R can be identified with a

pair (x, t) where x ∈ AZ and t ∈ [0, sx(0)) (t is the distance from 0 to the left endpoint of

the tile which covers 0). Consider the set of tilings arising from the substitution space X ′ζ
(the two-sided version). On this set there is a natural R-action by translations. It is easy

to see that the resulting tiling dynamical system is a flow under the function f(x) = sx0 ,

built over the substitution dynamical system. Much of the theory of substitutions can

be carried over to this setting. This tiling space arises from a self-similar tiling if and

only if (si)
m
i=1 is a left PF eigenvector for the substitution matrix Mζ . The map φ is the

multiplication by a ±θ, where θ is the PF eigenvalue of Mζ .

3.4. Dynamical systems from self-affine tilings of Rd. Let T be a self-affine tiling

of Rd with expansion map φ. We consider the associated tiling space XT as defined in

Section 2, and the dynamical system (XT ,Rd) = (XT , T
t)t∈Rd where the action is by

translations. Recall that FLC is always assumed; repetitivity implies that the dynamical

system is minimal, see Theorem 2.2.

On the self-affine tiling space XT we also have the action of the tile-substitution map

ω : XT → XT . Indeed, tilings in XT are characterized by the property that their every

patch occurs in T . Since ω(T ) = T , the property of being an element of XT is preserved

after applying ω. It is easy to see that ω is continuous in the tiling metric.

Digression: in the system (XT , ω) we observe some phenomena of hyperbolic dynamics.

Recall that there are neighborhoods of T which look like XP ×Bε, where Bε represents a

piece of the orbit—those tilings which are obtained from T by a small translation, and XP

is the set of tilings with a given patch P around the origin. Then Bε is a local expanding

manifold, and XP is a local contracting set (which is not a manifold) for ω. To see this,

think how the distance between tilings changes if you apply ω in these two cases. For

more on this see [3].

Lemma 3.7. The substitution map ω : XT → XT is surjective.

The proof is left as an (easy) exercise.
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A natural question arises: is ω injective? If it is, we say that the substitution ω is

invertible. Other terms used for the same concept are recognizability and unique composi-

tion property. Mossé [68] proved that aperiodic primitive word substitutions are bilaterally

recognizable, which is equivalent to ω being invertible in the one-dimensional case.

Theorem 3.8. Let T be a self-affine tiling of Rd. Then the following are equivalent:

(i) ω is invertible on XT ;

(ii) T is aperiodic, that is, ΓT = {0}.

The more difficult direction (ii)⇒ (i) was proved in [94] by a generalization of Mossé’s

argument; see also [42] for a recent proof of an extension to substitution tilings which are

not necessarily translationally finite. The direction (i)⇒ (ii) is easy and well-known (see

e.g. [39, 10.1.1]).

Proof of (i) ⇒ (ii) in Theorem 3.8. Suppose that T − g = T for some g ∈ Rd.
Then we have ω−1(T ) − φ−1g = ω−1(T − g) = ω−1(T ). Since ω−1(T ) = T , we get that

T − φ−1g = T . It follows that φ−1(ΓT ) ⊂ ΓT , which is only possible if ΓT = {0}, since

φ−1 is contracting, and a small nonzero translation of a T -tile cannot be a T -tile. �

Theorem 3.9. Let T be a self-affine tiling. Then the dynamical system (XT ,Rd) is

uniquely ergodic.

This is proved using Theorem 2.6(i) by establishing the existence of UPF (uniform patch

frequencies). We refer to [59, 81] for an argument which uses Perron-Frobenius theory (it

is a generalization of a similar proof for word substitutions, see [73]). For self-similar

tilings we can take advantage of the following.

Lemma 3.10. [94, Lem. 2.3] A self-similar tiling T is linearly repetitive: there exists

C > 0 such that for every T -patch P , any ball of radius C diam(P ) contains a translate

of P .

Together with Theorem 2.8 and Theorem 2.6(i) this implies unique ergodicity in the

self-similar case.

Proof of the lemma. For a T -tile T , consider the patch consisting of tiles which have a

common boundary point with T (including T itself). This is usually called the first corona

of T . By FLC, there are finitely many first coronas up to translation. By repetivity (which

is assumed for all self-affine tilings), there exists C1 > 0 such that every ball of radius C1

contains translates of all first coronas. Again using FLC, we observe that there exists

c2 > 0 such that two T -tiles must have a common boundary point whenever the distance
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between them is less than c2. This implies that a set F ⊂ Rd of diameter less than c2 is

covered by the first corona of any tile it meets. Since the expansion map φ is a similarity,

for any k ∈ N, the same properties hold for the tiling φkT := {φkT : T ∈ T } with the

constants C1 and c2 replaced by λkC1 and λkc2, where λ > 1 is the norm (expansion rate)

of φ.

Now let P be a T -patch. Find k ∈ N so that λk−1c2 ≤ diam(P ) < λkc2. Then P is

covered by some first φkT -corona. Every ball of radius λkC1 contains a translate of this

corona, and its k-times decomposition contains a translate of P . Since

λkC1

diam(P )
≤ λkC1

λk−1c2
=
λC1

c2
=: C

does not depend on k, we are done. �

4. Characterization of expansions

Here we discuss the following question: which φ may be expansion maps of self-affine

tilings? This was investigated by Thurston [98]. So far, we know from Corollary 3.6 that

| detφ| is a Perron number, that is, an algebraic integer λ > 1 whose Galois conjugates

(i.e., other zeros of the minimal polynomial) are strictly less than λ in absolute value.

Theorem 4.1. There is a self-similar tiling of the line R with expansion λ if and only if

|λ| is a Perron number.

Proof. We already know the necessity. Sufficiency follows from Lind’s Theorem [61]

which asserts that every Perron number is the PF eigenvalue of a primitive matrix. In

fact, we need a little bit more.

Theorem 4.2 (D. Lind [61]). If λ > 1 is a Perron number, then there is a primitive

non-negative integral matrix M with the PF eigenvalue equal to λ. Moreover, M can be

chosen so that it has a column with a positive diagonal entry and the sum of all entries

≥ 3.

This follows by a minor modification of the argument in [61], sketched in Section 8.2.

Now we deduce Theorem 4.1.

First suppose that the expansion constant λ is positive. Then λ is a Perron number

and we fix a matrix M from Theorem 4.2. Let m be the size of M ; consider the alphabet

A = {1, . . . ,m}. Define a word substitution with the substitution matrix M . The words

ζ(j) for j ≥ 1 are chosen so that they contain exactly Mij letters i. Without loss of

generality, we can assume that the first column of M has the property stated in the
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theorem. Then we can take ζ(1) = V 1W where V and W are nonempty words. The order

of letters in the words ζ(j) for j ≥ 2 is irrelevant. Now we consider a bi-infinite word

defined by

. . . ζn(V ) . . . ζ2(V )ζ(V )V 1Wζ(W )ζ2(W ) . . . ζn(W ) . . .

Let (sj)
m
j=1 be the left PF eigenvector for M . The prototiles will be closed intervals

(line segments) of length s1, . . . , sm (if some of the lengths are equal, we distinguish the

prototiles by a color). Each bi-infinite word in A corresponds to a tiling if we string

together the intervals in the same order as the symbols. This is not exactly right though,

since we also need to specify the location of the origin. We can put the origin in the

interior of the “central tile” T1 of type 1 in such a way that the patch corresponding to

ζ(1) = V 1W is obtained by linearly expanding T1 by λ. Then it is straightforward to

verify that the resulting tiling is self-similar with expansion λ.

Now let us show that we can find a self-similar tiling with expansion −λ for Perron λ.

We start with the same substitution ζ as above, but consider a different bi-infinite word.

First define

ζ∗(w1 . . . w`) = ζ(w`) . . . ζ(w1).

Let U (1) = 1 and U (2) = ζ(1) = V 1W where V and W are nonempty words. Next let

V (1) = V, W (1) = W , and define inductively for n ≥ 3,

U (n) = V (n−1)U (n−1)W (n−1), where V (n−1) = ζ∗(W (n−2)), W (n−1) = ζ∗(V (n−2)).

For such a word we consider the corresponding patch, with the same prototiles as in the

first case. We can put the origin in the interior of the central tile T1 marked by 1 in such

a way that the patch corresponding to ζ(1) = V 1W is obtained by linearly expanding T1

by −λ. Then the patch corresponding to U (n) contains the patch corresponding to U (n−1)

and can be naturally identified with ω(U (n−1)) for a tile-substitution ω. The limit of these

patches is the desired self-similar tiling of the line. �

Now we consider the case of self-similar tilings of the plane with orientation preserving

expansions, so we can speak about complex expansion constants. A complex number λ,

|λ| > 1, is said to be a complex Perron number if all its Galois conjugates, except λ, are

strictly less that |λ| in modulus.

Theorem 4.3. (Thurston, Kenyon) There is a self-similar tiling of the plane with expan-

sion constant λ if and only if λ is a complex Perron number.
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This was announced by Thurston in his lecture notes [98] with a proof of necessity. The

proof of sufficiency was published by Kenyon [49].

I would like to sketch a proof of necessity, which, as far as I know, was never “officially”

published. The ideas are very beautiful, and moreover, the method will be useful for

us in the study of eigenvalues. I will only say a few words about sufficiency. There are

some analogs in higher dimensions, but they are harder, and I will not discuss them in a

systematic way.

The following general lemma is a starting point of the proof. The rest of the proof of

necessity (in fact, covering the case d > 2 to some extent) is given in Section 8.3.

Lemma 4.4. [46, 98] Let φ be an expanding linear map on Rd, and suppose that there

exists a self-affine tiling of Rd with expansion φ. Then all the eigenvalues of φ are algebraic

integers.

First we introduce an important notion of control points (due to Thurston).

Definition 4.5. (see [71]) Let T be a fixed point of a primitive substitution with expansive

map φ. For each T -tile T , fix a tile γT in the patch ω(T ); choose γT with the same relative

position for all tiles of the same type. This defines a map γ : T → T called the tile map.

Then define the control point for a tile T ∈ T by

{c(T )} =

∞⋂
n=0

φ−n(γnT ).

The control points are not uniquely defined; they depend on the choice of γ.

Let C = C(T ) = {c(T ) : T ∈ T } be the set of control points for all tiles. The control

points have the following properties:

(a) T ′ = T + c(T ′)− c(T ), for any tiles T, T ′ of the same type;

(b) φ(c(T )) = c(γT ), for T ∈ T .

Therefore,

(c) φ(C) ⊂ C.

Proof of Lemma 4.4. Consider J = 〈C〉, the subgroup of Rd generated by C = C(T ).

We claim that J is finitely generated. Indeed, let

(4.1) Ψ := {c(T ′)− c(T ) : T, T ′ ∈ T , T 6= T ′, T ∩ T ′ 6= ∅}.

The set Ψ is finite by FLC, and J is generated by Ψ and an arbitrary control point (we

can get from it to any control point by moving “from neighbor to neighbor”).
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It is a basic fact in algebra that J , as a finitely generated free Abelian group, has a finite

set of free generators. That is, there exist vectors v1, . . . , vN ∈ Rd such that every element

of J can be uniquely written as an integral linear combination of v′js. These vectors span

Rd since the control points are relatively dense in Rd, hence N ≥ d. Define the matrix

V = [v1 . . . vN ]. This is a d×N matrix of rank d. By the definition of free generators, for

every ξ ∈ J there exists a unique a(ξ) ∈ ZN such that ξ = V a(ξ). Now, φ(C) ⊂ C implies

φJ ⊂ J , hence there exists an integer N ×N matrix M such that φV = VM . For every

eigenvalue λ of φ we can find a left eigenvector eλ of φ corresponding to λ. Then eλV

is a left eigenvector for M corresponding to λ (note that eλV 6= 0 since V has maximal

possible rank d). This proves the lemma since λ is an eigenvalue of M , hence it is an

algebraic integer. �

Now we do hope the reader will get curious and skips to Section 8.3 !

About the proof of sufficiency [49]. Here we only make a few comments, to give a flavor

of the proof. There are some parallels with the proof of Lind’s Theorem, and it is helpful

to take a look at Section 8.2 first. Let B be the companion matrix of the complex Perron

number λ, suppose that B is n-dimensional. Consider the decomposition of Rn into a

direct sum of real eigenspaces. The “dominant eigenspace” D is now 2-dimensional. The

main part of the proof consists in finding a tiling T with non-exact subdivisions. Then

the boundaries are redrawn using a recursive process, so that in the limit the subdivisions

are exact and we obtain a self-similar tiling T ′ which is MLD with T . The method of this

last step goes back to Dekking [22]; it was later used in [33].

Let πD be the projection to D along the complementary direct sum. Let πC = I − πD
be the projection to the invariant complement C of D. Consider all triangles F with

vertices in Zn with some uniform bounds on the diameter of F and on the diameter of

the projection πC (F ). Then consider the projection πD(F ). There are finitely many such

triangles up to translation; these are going to be the tile types of T . First one constructs

a non-exact subdivision with expansion λ` for a large `. Consider B`F for ` ∈ N. If

` is sufficiently large, then B`F is almost parallel to D by the Perron property. Note

that πD(B`F ) = λ`πD(F ). Consider all points in Zn within some fixed distance from B`F ,

project them to D, consider a triangulation (the Delone triangulation, see [49], is a natural

choice), and choose which triangles “belong” to λ`πD(F ). It should be done consistently,

so that the subdivisions agree on the common boundary. For this, it is necessary to

increase the number of tile types, to keep track of a triangle and its immediate neighbors.

Additional work is needed (a) to make sure that the subdivision is primitive (for this
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purpose an additional “special” tile T0 is introduced which occurs in the subdivision of

every tile); (b) to pass from a tiling with expansion λ` to one with expansion λ. �

Remark. It should be mentioned that in many special cases there exist simpler and more

direct constructions of self-similar tilings, especially for Pisot expansion constants, see e.g.

[78, 98, 71, 1, 2, 14, 15]. Some of them use β-expansions and other numeration systems.

Another method uses free group endomorphisms and covers some non-Pisot expansions as

well, see [44, 49] and especially [34].

5. Eigenvalues

Definition 5.1. Let (X,T t)t∈Rd be a continuous Rd-action on a compact metric space.

A vector α = (α1, . . . , αd) ∈ Rd is said to be an eigenvalue for the continuous Rd-action if

there exists an eigenfunction fα ∈ C(X), that is, fα 6≡ 0 and for all t ∈ Rd and all x ∈ X,

(5.1) fα(T tx) = e2πi〈t,α〉fα(x).

Here 〈·, ·〉 denotes the standard scalar product in Rd.

Note that this “eigenvalue” is actually a vector. In physics it might be called a “wave

vector.” More generally, for an action of a locally compact Abelian group G, the eigen-

values are elements of the dual group Ĝ.

The set of eigenvalues of a dynamical system is an important conjugacy invariant.

They always form a group: if fα and fβ are the eigenfunctions corresponding to α and β

respectively, then the product fα · fβ satisfies the eigenfunction equation for α+ β. Note

that α = 0 is always a trivial eigenvalue corresponding to the constant eigenfunction. A

system without non-trivial eigenvalues is called topologically weak-mixing.

Definition 5.2. Let (X,T t, µ)t∈Rd be a measure-preserving Rd-action. A vector α ∈ Rd

is called an eigenvalue for this action if there exists an eigenfunction fα ∈ L2(X,µ), that

is, fα is not the zero function in L2 and for all t ∈ Rd, the equation (5.1) holds for µ-a.e.

x ∈ X.

If the measure-preserving system is ergodic, then there are no non-constant invariant

functions, which implies that the eigenfunctions have constant modulus a.e., so they belong

to L∞. Therefore, we can multiply the eigenfunctions (as in the topological setting), and

the set of eigenvalues is a subgroup of Rd. If there are no non-constant eigenfunctions,

the system is called (measurably) weak-mixing. The set of eigenvalues (with δ-masses on

them) is the discrete part of the spectrum.
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To distinguish between the measure-theoretic and topological settings, we can speak

about measurable and continuous eigenfunctions. Of course, every continuous eigenfunc-

tion is measurable, but the converse is not true for dynamical systems in general.

However, for tiling dynamical systems we have the following:

Theorem 5.3 ([97]). If T is a self-affine tiling, then every measurable eigenfunction for

the system (XT ,Rd, µ) coincides with a continuous function µ-a.e.

This, in a sense, extends the result of Host [43] on Z-actions associated to primitive one-

dimensional symbolic substitutions. As a consequence of Theorem 5.3, for our systems

measure-theoretic weak-mixing is equivalent to topological weak-mixing.

Remark. Continuous and measurable eigenfunctions for linearly recurrent Cantor sys-

tems (which include LR subshifts) were recently investigated in [19, 17]. In the latter

paper necessary and sufficient conditions for being an eigenvalue are established, and it is

proved that not every measurable eigenfunction is continuous for such systems.

The proof of Theorem 5.3 proceeds via a characterization of eigenvalues. Recall that

ΓT denotes the group of translation symmetries (i.e. periods) for the tiling T . We also

need the set of translation vectors between tiles of the same type:

Ξ = Ξ(T ) := {x ∈ Rd : ∃T, T ′ ∈ T , T ′ = T + x}.

These vectors are sometimes called “return vectors,” they are analogous to return words

in symbolic dynamics.

Theorem 5.4 ([97]). Let T be a self-affine tiling with expansion map φ. Then the following

are equivalent for α ∈ Rd:
(i) α is an eigenvalue for the topological dynamical system (XT ,Rd);
(ii) α is an eigenvalue for the measure-preserving system (XT ,Rd, µ);

(iii) α satisfies the following two conditions:

(5.2) lim
n→∞

e2πi〈φnz,α〉 = 1 for all z ∈ Ξ(T ),

and

(5.3) e2πi〈g,α〉 = 1 for all g ∈ ΓT .

This theorem is also a generalization of the corresponding result from [43]. Theorem 5.3

is immediate from Theorem 5.4, since for an ergodic system, all eigenvalues are simple.
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I will only sketch a proof of the equivalence (i) ⇔ (iii). The direction (i) ⇒ (iii) is very

easy, but the converse is not quite so.

Proof of (i) ⇒ (iii) in Theorem 5.4. Consider the continuous eigenfunction fα of

modulus 1, corresponding to the eigenvalue α ∈ Rd. Thus,

fα(T − t) = e2πi〈t,α〉fα(T ) for all t ∈ Rd.

Taking t ∈ ΓT we obtain (5.3). To verify (5.2), let z ∈ Ξ(T ), so that for some tile

T ∈ T we have T + z ∈ T . Let ξ be any point in the interior of T . Then T − ξ and

T − z − ξ agree on some neighborhood of the origin Bε. Applying ωn we obtain that

ωn(T − ξ) = T − φnξ and ωn(T − z − ξ) = T − φnz − φnξ agree on φnBε. By the

definition of the tiling metric,

%(T − φnξ, T − φnz − φnξ)→ 0, as n→∞.

A continuous function on a compact metric space is uniformly continuous, hence

|fα(T − φnξ)− fα(T − φnz − φnξ)| → 0, as n→∞.

Using the eigenfunction equation and the fact that f is unimodular, we obtain that∣∣1− e2πi〈φnz,α〉∣∣→ 0, as n→∞, proving (5.2). �

Sketch of the proof of (i) ⇒ (iii) in Theorem 5.4. Let us assume that T is aperiodic

for simplicity. Suppose that (5.2) holds; we need to show that there exists a continuous

eigenfunction corresponding to α ∈ Rd. Define

fα(T − t) = e2πi〈t,α〉 for t ∈ Rd.

The orbit {T − t : t ∈ Rd} is dense in XT by the definition of the tiling space. If we show

that fα is uniformly continuous on this orbit, then we can extend fα to the entire space,

and this extension will satisfy the eigenvalue equation (5.1) by continuity.

Suppose that T −x is close to T −y. Making a small translation we can assume without

loss of generality that T − x and T − y agree on a large neighborhood around the origin,

which contains a tile of order n for a large n. We will use Theorem 3.8 which says that ω

is invertible, since T is aperiodic. Applying ω−n we obtain that T − φ−nx and T − φ−ny
share a tile covering the origin, hence

φ−nx− φ−ny =: v ∈ Ξ(T ).

Thus, x− y = φnv, and

|fα(T − x)− fα(T − y)| = |e2πi〈φnv,α〉 − 1|,
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which should be small when n is large by (5.2). This is cheating, of course! In order to

make this precise, we need two facts: that the convergence in (5.2) is exponential, and that

it is uniform in z ∈ Ξ(T ). The exponential convergence (that is, if |e2πi〈φnz,α〉 − 1| → 0,

then |e2πi〈φnz,α〉 − 1| ≤ Cρn for some ρ ∈ (0, 1)) follows from Lemma 4.4. The proof of

uniform convergence uses a kind of “numeration system” for translation vectors between

control points c(T )− c(S) in powers of φ applied to a finite set of “digit vectors” in Ξ(T ).

For details we refer to [60]. �

The characterization of eigenvalues given in Theorem 5.4 does not address the ques-

tion whether non-trivial eigenvalues actually exist. This turns out to be closely related

to number theory, more precisely, to Pisot numbers (also called PV-numbers) and their

generalizations. Recall that an algebraic integer θ > 1 is a Pisot number if all its Galois

conjugates θ′ satisfy |θ′| < 1.

A complex algebraic integer λ, with |λ| > 1, is a complex Pisot number if all its Galois

conjugates λ′, except the complex conjugate λ, satisfy |λ′| < 1. Extending this further,

we say that a family of algebraic integers {λ1, . . . , λr} of modulus greater than 1 is a Pisot

family if for every Galois conjugate λ′ of every λi, i ≤ r, we have either |λ′| < 1 or λ′ = λj

for some j ≤ r. Thus, λ is a complex Pisot number whenever {λ, λ} is a Pisot family.

We get a “clean” answer for self-similar tilings of Rd whose expansion map is a pure

dilation (without rotation), and for self-similar tilings of R2 with complex expansion con-

stants.

Theorem 5.5. (i) Let T be a self-similar tilings of Rd with expansion φ(x) = θx for

θ > 1. Then the associated tiling dynamical system has a non-trivial eigenvalue (is not

weak-mixing) if and only if θ is a Pisot number.

(ii) Let T be a self-similar tilings of R2 = C with a complex expansion constant λ. Then

the associated tiling dynamical system has a non-trivial eigenvalue (is not weak-mixing) if

and only if λ is a complex Pisot number.

Part (i) was proved in [97] and we sketch the proof below. A similar result was obtained

by Gähler and Klitzing [35], where the diffraction spectrum was considered. In connec-

tion with eigenvalues of symbolic substitution systems, Pisot numbers and Pisot families

appeared in [43, 26], and the link with quasicrystals was observed in [16].

Proposition 5.6. Let T be a self-affine tiling of Rd with expansion map φ, such that the

associated tiling dynamical system has a set of eigenvalues which spans Rd. Then the set

of eigenvalues of φ is a Pisot family.
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This follows from [60], see also [93] and [81]. We do not know if the converse is true.

Sketch of the proof of Theorem 5.5(i). Necessity. Let α 6= 0 be an eigenvalue. The set

of translation vectors Ξ between tiles of the same type spans Rd, hence we can find z ∈ Ξ

such that 〈z, α〉 6= 0. By Theorem 5.4, the distance from θn〈z, α〉 to the nearest integer

tends to zero, as n→∞. We know that θ is algebraic (see Lemma 4.4), hence θ is a Pisot

number by the classical result of Pisot (see e.g. [87]). �

Sufficiency. We need to show that if θ is Pisot, then there are non-zero eigenvalues for

the dynamical system. The proof relies on the following result (incidentally, [35] uses it

as well).

Theorem 5.7 (Kenyon). Under the assumptions of Theorem 5.5(i), there exists a basis

{b1, . . . , bd} of Rd such that

(5.4) Ξ ⊂ b1Z[θ] + · · ·+ bdZ[θ].

We sketch the proof of Theorem 5.7 in Section 8.4 (it is not so easy to extract from the

literature). Now we finish the sketch of the proof of sufficiency in Theorem 5.5(i) after

[97], assuming T is aperiodic for simplicity.

Let {b∗1, . . . , b∗d} be the dual basis for {b1, . . . , bd}, that is, 〈bi, b∗j 〉 = δij . We claim that

the set

b∗1Z[θ−1] + · · ·+ b∗dZ[θ−1]

is contained in the group of eigenvalues. Indeed, suppose α =
∑d

j=1 b
∗
jpj(θ

−1) for some

polynomials pj ∈ Z[x]. Let z ∈ Ξ. By (5.4), we can write z =
∑d

j=1 bjqj(θ) for some

polynomials qj ∈ Z[x]. Then

〈φnz, α〉 = θn
d∑
j=1

qj(θ)pj(θ
−1) = θn−kP (θ)

for some k ∈ N and P ∈ Z[x]. We have dist(θn−kP (θ),Z) → 0, as n → ∞ (see [87]), so

(5.2) is satisfied and α is an eigenvalue by Theorem 5.4. �

6. Pure discrete spectrum.

A measure-preserving system (X,T, µ) is said to have pure discrete (or pure point)

spectrum if the eigenfunctions span a dense subspace of L2(X,µ). By the Halmos-von

Neumann Theorem (see [100]) any dynamical system with pure discrete spectrum is met-

rically isomorphic to a Kronecker system, that is, a translation action on a compact Abelian
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group. There has been a lot of interest in substitution and tiling systems with pure discrete

spectrum, in particular, because of the connections with quasicrystals. We only discuss

this topic briefly.

Let T be a self-affine tiling. For x ∈ Ξ(T ) consider the infinite set of tiles

Dx := T ∩ (x+ T ).

It is non-empty and relatively dense by repetitivity. Observe that Dx has a well-defined

positive density given by

dens(Dx) = lim
r→∞

Vol(Dx ∩Br)
Vol(Br)

=

m∑
i=1

freq(Ti ∪ (x+ Ti), T ) ·Vol(Ti) ,

where Ti’s are the prototiles.

We also need the notion of Meyer set. A point set Λ ⊂ Rd is a Meyer set if Λ is relatively

dense and Λ−Λ is uniformly discrete (equivalently, Λ and Λ−Λ are Delone sets). Meyer

sets play an important role in the theory of aperiodic order; we will say more about them

in the next section.

Theorem 6.1 ([93, 59, 60]). Let T be a self-affine tiling with expansion φ. Then

(XT ,Rd, µ) has pure discrete spectrum iff Ξ(T ) is a Meyer set and

(6.1) lim
n→∞

dens(Dφnx) = 1, ∀x ∈ Ξ(T ).

Heuristically, it is useful to think about the property (6.1) as almost periodicity of the

tiling. Recall that a function is (Bohr) almost-periodic if the set of its ε-almost periods

is relatively dense for every ε > 0. We can say that x ∈ Rd is an ε-almost period for

T if dens(Dx) > 1 − ε and call a tiling almost periodic if the set of ε-almost periods is

relatively dense in Rd for every ε > 0. In fact, this is an approach to prove sufficiency

in Theorem 6.1, see [95] for details ([93] used a different method). The necessity of the

Meyer property is recent: it was proved in [60] and answers a question of J. Lagarias [52].

There is an algorithm to check pure discrete spectrum, called the overlap algorithm. It

was first introduced in [93] and extended to this setting in [59]; see also [92] for the case

of tilings on the line.

Definition 6.2. Let T be a tiling. A triple (T, y, S), with T, S ∈ T and y ∈ Ξ(T ), is an

overlap if the intersection (y + T ) ∩ S has non-empty interior. We say that two overlaps

(T, y, S) and (T ′, y′, S′) are equivalent if for some g ∈ Rd we have y+T = g+ y′+T ′, S =

g + S′. Denote by [(T, y, S)] the equivalence class of an overlap. An overlap (T, y, S) is a

coincidence if y+T = S. The support of an overlap (T, y, S) is supp(T, y, S) = (y+T )∩S.
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Lemma 6.3. Let T be a tiling such that Ξ(T ) is a Meyer set. Then the number of

equivalence classes of overlaps for T is finite.

Next we consider the subdivision graph for overlaps. Its vertices are equivalence classes

of overlaps. It has directed edges as follows: let O = (T, y, S). We have

supp(φy + ω(T )) ∩ supp(ω(S)) = Q(supp(T, y, S)).

For each pair of tiles T ′ ∈ ω(T ) and S′ ∈ ω(S) such that O′ := (T ′, φy, S′) is an overlap,

we draw a directed edge from [O] to [O′]. Denote this graph by GO(T ).

Lemma 6.4. Let T be a self-affine tiling with expansion map φ such that Ξ(T ) is a Meyer

set. Let x ∈ Ξ(T ). The following are equivalent:

(i) limn→∞ dens(Dφnx) = 1;

(ii) 1− dens(Dφnx) ≤ Crn, n ≥ 1, for some C > 0 and r ∈ (0, 1);

(iii) From each vertex of the graph GO(T ) there is a path leading to a coincidence.

See [59] for the proof. In the planar case this algorithm was used in [93] to analyze some

examples. For instance, the chair tiling (dynamical system) has a pure discrete spectrum,

but the domino tiling has a mixed spectrum.

Remarks. (a) The use of coincidences to characterize systems with pure discrete

spectrum goes back to Dekking [21] (for constant length symbolic substitutions) and to

Livshits [63] (for general symbolic substitutions). For recent work on the Pure Discrete

Spectrum Conjecture see [11, 14] and references therein. The conjecture is that if T is a

self-similar tiling of the line R whose expansion constant is a unimodular Pisot number,

then (XT ,R, µ) has pure discrete spectrum. It is open for the case of ≥ 3 symbols.

(b) Tiling systems with mixed spectrum are still poorly understood. For instance, it

is an open question whether the domino (=“table”) dynamical system has pure singular

spectrum (see [80] for more on this system). On the other hand, N. P. Frank [30] found

a large class of tiling systems with Lebesgue spectrum of even multiplicity, generalizing

Rudin-Shapiro substitution systems; see also [31] for an overview of the spectral properties

of multidimensional constant length substitution sequences. The only general fact known

is that a self-affine tiling system must have a singular spectral component, since it is not

mixing [93].

7. Aperiodic order.

The discovery of quasicrystals in the 1980’s inspired a lot of research in the area of “ape-

riodic order” and “mathematical quasicrystals.” Roughly speaking, physical quasicrystals
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are solids (metallic alloys) which exhibit sharp bright spots (called Bragg peaks) in their

X-ray diffraction pattern, but have aperiodic structure (usually manifested by the pres-

ence of a non-quasicrystallographic symmetry). The presence of Bragg peaks indicates the

presence of “long-range order” in the structure, hence the term “aperiodic order.”

A mathematical idealization of a large set of atoms is a Delone set Λ in Rd, see Defini-

tion 2.3. Recall that we defined the Delone set dynamical system (XΛ,Rd) in Section 2.

It is uniquely ergodic if and only if Λ has UCF. Let µ be an ergodic invariant probability

measure. We can then study the spectrum of the measure-preserving system (XΛ,Rd, µ).

More precisely, consider the group of unitary operators {Ux}x∈Rd on L2(XΛ, µ):

Uxf(Λ′) = f(−x+ Λ′).

Every f ∈ L2(XΛ, µ) defines a function on Rd by x 7→ (Uxf, f). This function is positive

definite on Rd, so its Fourier transform is a positive measure σf on Rd called the spectral

measure corresponding to f . If f is an eigenfunction (of norm 1) for an eigenvalue α ∈ Rd,
then σf = δα, the Dirac’s measure at α. It is a consequence of Spectral Theory for unitary

operators that σf is pure discrete for all f ∈ L2(XΛ, µ) if and only if the eigenfunctions

for the Rd-action span a dense subspace of L2(XΛ, µ). Then we say that the measure-

preserving system has pure discrete (or pure point) spectrum. In analogy to ordinary

crystallography, quasicrystals are often considered in terms of tilings, but as we discussed

in Section 2, it is easy to pass from the tiling setting to the Delone setting and vice versa.

7.1. Diffraction. A sharp diffraction picture has been the hallmark of aperiodic order.

How do we describe it mathematically? In our idealized world, when atoms are replaced

by points, we consider the so-called Dirac comb of Λ,

δΛ :=
∑
x∈Λ

δx.

For r > 0 we calculate the autocorrelation of δΛ restricted to the ball Br = Br(0):

δΛ∩Br ∗ δ̃Λ∩Br =
∑

x,y∈Λ∩Br

δx−y.

Here the over-tilde indicates changing the sign of the argument. The absolute value of the

Fourier transform of the last expression represents the scattering intensity of the diffraction

pattern of the finite set of scatterers in the ball Br. In order to consider the diffraction of

the entire Λ, we need to let r →∞, after normalizing by the volume:

γ = lim
r→∞

1

Vol(Br)

∑
x,y∈Λ∩Br

δx−y.
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We will assume that the limit distribution exists in the vague topology, i.e., this limit exists

when taken against rapidly decreasing test functions. One can show that if Λ has UCF,

then

γ =
∑

z∈Λ−Λ

ν(z)δz,

where ν(z) is the frequency of the cluster {x, x + z} in Λ. The distribution γ is called

the auto-correlation measure of Λ. It is positive-definite, hence its Fourier transform γ̂

is a positive measure by Bochner’s Theorem. The measure γ̂ gives the diffraction

pattern of Λ. It can be decomposed into the discrete (or pure point) part, called the

Bragg spectrum and continuous part. See [41] for more details about mathematics of

diffraction.

7.2. Connection of the diffraction spectrum to the dynamical spectrum. To

relate the autocorrelation of δΛ to spectral measures we need to do some “smoothing.”

Let ω ∈ C0(Rd), that is, ω is continuous and has compact support. Denote

ρω,Λ′ := ω ∗ ν
Λ′

and let

fω(Λ′) := ρω,Λ′(0) for Λ′ ∈ XΛ.

Lemma 7.1. fω ∈ C(XΛ).

Proof. We have

fω(Λ′) =

∫
ω(−x) dν

Λ′
(x) =

∑
x∈−supp(ω)∩Λ′

ω(−x).

The continuity of fω follows from the continuity of ω and the definition of topology on

XΛ. �

Denote by γω,Λ the autocorrelation of ρω,Λ. Assuming that there is a unique autocor-

relation measure γ, we have

γω,Λ = (ω ∗ ω̃) ∗ γ.

Lemma 7.2. ([25], see also [41])

σfω = γ̂ω,Λ.
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Proof. By definition, fω(−x+ Λ) = ρω,Λ(x). Therefore,

γω,Λ(x) = lim
r→∞

1

Vol(Br)

∫
Br

ρω,Λ(x+ y)ρω,Λ(y) dy

= lim
r→∞

1

Vol(Br)

∫
Br

fω(−x− y + Λ)fω(−y + Λ) dy

=

∫
XΛ

fω(−x+ Λ′)fω(Λ′) dµ(Λ′)

= (Uxfω, fω) .(7.1)

Here the third equality is the main step; it follows from unique ergodicity and the conti-

nuity of fω. Thus,

γ̂ω,Λ = ̂(U(·)fω, fω) = σfω ,

and the proof is finished. �

The introduction of the function fω and the series of equations (7.1) is often called

Dworkin’s argument.

Lemma 7.2 implies, essentially, that the diffraction spectrum is always a “part” of the

dynamical spectrum. In particular, (a) if the dynamical spectrum is pure discrete, then the

diffraction spectrum is pure discrete and (b) every Bragg peak must be an eigenvalue. The

latter implies that if the dynamical system has no nontrivial eigenvalues, then there are no

Bragg peaks except at the origin. The following was proved in [58] and later generalized

in [5] and [38].

Theorem 7.3 ([58]). Suppose that the Delone set Λ has FLC and UCF. Then the following

are equivalent:

(i) Λ has pure discrete dynamical spectrum;

(ii) δΛ has pure point diffraction spectrum.

About the proof. (i) ⇒ (ii) This is essentially proved by Dworkin in [25], see also [41]

and [7]. By Lemma 7.2, pure point dynamical spectrum implies that γ̂ω,Λ is pure point

for any ω ∈ C0(Rd). Note that

γ̂ω,Λ = |ω̂|2γ̂.

Choosing a sequence ωn ∈ C0(Rd) converging to the delta measure δ0 in the vague topology,

we can conclude that γ̂ is pure point as well, as desired. This approximation step requires

some care; it is explained in detail in [7].
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(ii)⇒ (i) This is proved using the group property of the point spectrum, i.e., the product

of eigenfunctions is an eigenfunction. It is largely a generalization of an argument in [73,

Prop. IV.21], see [58] for details. �

7.3. Model sets. There is a very general method to construct Delone sets with pure

point diffraction. In its original form it was based on projection from lattices in higher

dimensional spaces and called the “cut and project” method. Y. Meyer [65] had already

considered sets formed by projection under the name “model sets” from the point of view

of harmonic analysis long before the discovery of quasicrystals. R. V. Moody [66] (see

also [67]) developed the theory much further. Here we only give a brief overview of this

subject.

Definition 7.4. A cut and project scheme (CPS) consists of a collection of spaces and

mappings as follows;

Rd π1←− Rd ×G π2−→ G⋃
L

(7.2)

where Rd is a real Euclidean space, G is some locally compact Abelian group, L ⊂ Rd ×G
is a lattice, i.e. a discrete subgroup for which the quotient group (Rd ×G)/L is compact,

π1|L is injective, and π2(L) is dense in G.

Definition 7.5. A model set in Rd is a subset of Rd which, up to translation, is of the

form Γ(W ) = {π1(x) : x ∈ L, π2(x) ∈ W} for some cut and project scheme as above,

where the window W ⊂ G is compact with W = W ◦ (the closure of its interior). The

model set Γ(W ) is regular if the boundary ∂W is of (Haar) measure 0. The model set

Γ(W ) is generic if ∂W ∩ π2(L̃) = ∅.

The LCA group G is called the internal space, and Rd is the physical space of the CPS.

It is actually quite reasonable to replace Rd with a general LCAG as well, and this has

been done in [88]. Here are some basic facts about model sets:

• Every model set Λ is a Meyer set.

• A generic model set is repetitive.

• A regular model set has UCF.

It follows that for each regular and generic model set Λ, the associated dynamical system

(XΛ,Rd) is minimal and uniquely ergodic.
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To each CPS one can associate a Kronecker Rd-action as follows: Let Y := (Rd×G)/L;

this is a compact group by definition. Define φ = π◦i1 : Rd → Y , where i1 : Rd → Rd×G
is the coordinate injection and π is the canonical projection. Let R be the Rd-action on Y

defined by Rgy = y+φ(g). The dynamical system (Y,Rd) is a classical object in dynamics;

it is uniquely ergodic and has pure discrete spectrum.

Theorem 7.6 ([88]). (M. Schlottmann) Let Λ be a regular and generic model set. Then

there is a continuous factor map from (XΛ,Rd) to (Y,Rd) which is almost everywhere

1:1. The corresponding measure-preserving systems are metrically isomorphic. Thus,

(XΛ,Rd, µ) has pure discrete spectrum, and Λ has a pure point diffraction spectrum.

Note that the Kronecker Rd-action depends on the CPS but not on the window; it is

the factor map (called torus parametrization) that depends on the window. See [82] for

more on diffraction spectra of model sets from the point of view of Ergodic Theory.

7.4. Consequences of pure discrete spectrum and conditions for being a model

set. A natural question is whether there is some kind of a converse to the last statement of

Theorem 7.6, namely, given a Delone set dynamical system, which is minimal and uniquely

ergodic, can it be obtained from a model set? At least, is this true for self-affine tilings?

The classical examples, such as the Penrose tiling, were long known to be obtainable

from a regular CPS. The examples studied in [93], namely the chair and the sphinx tiling

(although for the latter no details were provided in [93]), turned out to be MLD to model

(multi)sets as well, as shown by J.-Y. Lee and R. V. Moody [57]. It is interesting that the

“internal space” G is non-Euclidean in these examples; it is isomorphic to Z2 × Z2 where

Z2 is the group of 2-adic integers. Building on [57] and [93] the following was obtained:

Theorem 7.7 ([59]). Let T be a self-affine tiling which is mutually locally derivable with

a Delone multiset (Λ1, . . . ,Λm), such that ∪mi=1Λi is a lattice. Then (XT ,Rd, µ) has pure

discrete spectrum if and only if each Λi is a regular model set.

Using very different methods, Barge and Kwapisz [11] proved an analogous result for

1-dimensional self-similar tilings associated to unimodular Pisot substitutions. More pre-

cisely, one of the corollaries of their work is that if such a tiling dynamical system (R-action)

has pure discrete spectrum, then the endpoints of a generic tiling in the tiling space form

a model set, see [11, Remark 18.6].

Recently, Baake and Moody [7] and Baake, Lenz and Moody [6] investigated conditions

for being a model set in terms of dynamical systems in the general (non-substitution)
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setting. Description of their work is beyond the scope of these lectures. We just state the

main result of [6] (in a special case).

Theorem 7.8 ([6]). Let (XΛ,Rd) be a Delone set dynamical system. It is associated to a

repetitive regular model set if and only if the following four conditions are satisfied.

(1) All elements of XΛ are Meyer sets;

(2) (XΛ,Rd) is minimal and uniquely ergodic;

(3) (XΛ,Rd) has pure discrete dynamical spectrum with continuous eigenfunctions;

(4) The eigenfunctions of (XΛ,Rd) separate almost all points of XΛ in the following

sense: the set {Γ ∈ XΛ : ∃Γ 6= Γ′ with f(Γ) = f(Γ′) for all eigenfunctions f} has

measure zero.

Note that for Λ arising from a primitive substitution, the properties (1)-(3) are known,

but (4) is open. On the other hand, J.-Y. Lee [56] obtained a characterization of sub-

stitution systems with pure discrete spectrum in terms of inter-model sets introduced in

[6].

Definition 7.9. An inter-model set in Rd is a set Λ which satisfies

t + Γ(W ◦) ⊂ Λ ⊂ t + Γ(W )

for some t ∈ Rd and compact W ⊂ G with W = W ◦.

Theorem 7.10 (J.-Y. Lee [56]). Let Λ be an aperiodic primitive substitution Delone

multiset arising from a self-affine tiling. Then the following are equivalent:

(i) Λ has pure discrete spectrum (diffraction or dynamical);

(ii) Λ is an inter-model multiset.

8. Appendix. Selected proofs.

8.1. Linear Repetivity. Sketch of the proof of Theorem 2.8. Write LP (A) := LP (T , A)

to simplify notation, see (2.2). Fix a T -patch P and define for n ≥ 1:

φn := max
x∈Rd

LP (x+ [0, 2n]d)

2nd
, φ

n
:= min

x∈Rd
LP (x+ [0, 2n]d)

2nd
.

The max and min exist since the numerators are integers. Note also that there exists

C1 > 0 such that for any Borel set W ,

(8.1) LP (W ) ≤ C1Vol(W ).

This follows from the fact that two equivalent T -patches cannot be too close to each other

(they are allowed to have overlapping supports; however, if they are distinct, then the
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translation vector between them should be at least η > 0 such that every tile contains a

ball of diameter η in its interior). Clearly, φ
n
≤ φn for all n. Moreover, there exists C2 > 0

such that φ
n
≥ C2 by ordinary repetitivity. Next observe that

(8.2) φ
n+1
≥ φ

n
for all n ≥ 1.

This follows by subdividing a cube of side 2n+1 containing the minimal number of patches

equivalent to P , into 2d cubes of side 2n. Therefore, there exists a limit φ = limn→∞ φn.

To get a similar estimate for φn, consider a cube Q of side 2n+1 containing the maximal

number of patches equivalent to P . We have

(8.3) φn+1 ≤ φn +Rn/2
nd,

where Rn is the number of patches equivalent to P contained in Q, which intersect one of

the d hyperspaces which dissect Q into 2d cubes of side 2n. By (8.1),

Rn ≤ C1diam(P ) · d · 2(d−1)n.

Thus φn+1 ≤ φn + o(1), as n → ∞, and we can deduce that there exists a limit φ =

limn→∞ φn. Clearly, φ ≤ φ. We claim that φ = φ. This would imply the existence

of uniform patch frequencies in dyadic cubes, and then a standard argument shows the

existence of UPF over cubes of all sizes.

Now we use the LR property. Consider a cube Q of side 22n with the maximal number

of patches equivalent to P . By linear repetitivity, there exists ` ∈ Z+ independent of n

such that the “pattern of T in Q” occurs in every cube of side 22n+`. Now consider any

cube Q′ of side 22n+`. Subdivide it into 2(n+`)d dyadic cubes of side 2n. Find a translate

with the pattern of Q in Q′. It is covered by at most (2n + 1)d cubes of side 2n from the

subdivision. It follows that

LP (Q′) ≥ φ2n · 22nd + φ
n
· 2nd · (2(n+`)d − (2n + 1)d),

hence

φ
2n
≥
φ2n · 22nd + φ

n
· 2nd · (2(n+`)d − (2n + 1)d)

2(2n+`)d
.

This reduces to

φ
2n
− φ

n
≥ 2−`d(φ2n − φn(1 + 2−n)d).

Letting n→∞ yields φ = φ, as desired. �
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8.2. Lind’s Theorem. Here we prove Theorem 4.2 which we restate for convenience.

Theorem (D. Lind [61]) If λ is a Perron number, then there is a primitive non-negative

integral matrix M with the PF eigenvalue equal to λ. Moreover, M can be chosen so that

it has a column with a positive diagonal entry and the column sum ≥ 3.

Proof. We follow [61], but leave many estimates as an exercise and make a minor

modification.

Let λ be a Perron number of degree d ≥ 2 over Q. Denote the minimal polynomial of

λ by f(t) = td − c1t
d−1 − · · · − cd, where cj ∈ Z. Then

B =



0 0 · · · cd

1 0 · · · cd−1

0 1 · · · cd−2

...
...

...

0 0 · · · c1


is the companion matrix of λ. Of course, it can contain negative entries, otherwise, we

could take M = B.

The idea of the proof is to find integral points z1, . . . , zn ∈ Rd such that

Bzj =
n∑
i=1

aijzi, for j ≤ n, with aij ∈ Z+,

and the matrix A = [aij ] has positive trace. Selecting an irreducible component of A will

yield the desired matrix.

Now we proceed with the construction. Since f(t) is irreducible, it has no repeated roots.

It follows that Rd splits into the direct sum of three classes of B-invariant subspaces. The

first consists of the single 1-dimensional eigenspace D for λ, the dominant eigenvalue. The

second class E contains eigenspaces E corresponding to conjugates of λ strictly outside the

unit circle. Note that dimE = 1 if the conjugate is real, and dimE = 2 otherwise. The

third class F contains those 1- or 2-dimensional subspaces F corresponding to conjugates

of λ with absolute value ≤ 1. There are norms on these subspaces so that

‖Bx‖D = λ‖x‖D , x ∈ D,

‖Bx‖E = τE‖x‖E , x ∈ E, 1 < τE < λ,

‖Bx‖F = τF ‖x‖F , x ∈ F, τF ≤ 1.

We equip Rd with the norm which is the maximum of these norms. If G represents one

of the subspaces above, let πG : Rd → G be the projection to G along the complementary
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direct sum. Let πC = I − πD be the projection to the invariant complement C of D. By

choosing a non-zero vector in D we can identify D with R and think about πD(x) as the

coordinate of x.

We next construct aB-invariant convex region. For E ∈ E denote p(E) = log λ/ log τE >

1 and xE = πEx. Define Φ :
⊕
E E → R by

Φ
(∑
E

xE

)
=
∑
E

‖xE‖
p(E).

For fixed ξ, η > 0, consider the region

Ω = Ωξ,η =
{
x ∈ Rd : max

F
‖πF x‖ ≤ ξ, Φ

(∑
E

xE

)
≤ η πDx

}
.

Since p(E) > 1 for every E, the region Ω is bowl-shaped, tangent to C at the origin, and

curved towards D. A direct verification shows that Φ has an invariant graph and BΩ ⊂ Ω.

We leave the verification as an exercise.

If S ⊂ Rd, let sg(S) be the additive subgroup generated by S. For θ > 0, consider the

cone about D:

Kθ := {x : πDx ≥ θ‖πCx‖}.

For r, s > 0 define

Kθ(r) = {x ∈ Kθ : πDx ≤ r}, Kθ(r, s) = {x ∈ Kθ : r ≤ πDx ≤ s}.

The following lemma shows that the semigroup generated by the integral points in a

truncated cone contains all the integral points in a slimmer cone.

Lemma 8.1. Fix θ > 0. For all sufficiently large r,

K2θ ∩ Zd ⊂ sg(Kθ(r) ∩ Zd).

Proof of the Lemma. We first claim that there exists δ > 0 such that if x ∈ K2θ with

πDx > 4, then [x−Kθ(1, 3)] ∩K2θ contains a ball of radius δ. This is intuitively obvious:

the point y on the ray [0, x] with πDy = 2 lies in K2θ, and its neighborhood of some

fixed size is in Kθ, since K2θ(1, 3) is contained in the interior of Kθ. If we move in this

neighborhood in the direction of decreasing the slope of the line to x, we will still be in

K2θ. Precise estimates are left as an exercise; in [61] it is shown that δ = (2θ+2)−1 works.

Now the lemma is proved inductively. First choose ρ such that any ball in Rd of radius

ρ intersects Zd. Choose r so that rδ > ρ. The claim implies that if x ∈ K2θ with πDx > 4r,

then [x−Kθ(r, 3r)] ∩K2θ contains a ball of radius rδ > ρ, hence intersects Zd.
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Let Γ = sg(Kθ(4r) ∩ Zd). We show K2θ ∩ Zd ⊂ Γ. Clearly K2θ(4r) ∩ Zd ⊂ Γ. Suppose

K2θ(t) ∩ Zd ⊂ Γ for some t ≥ 4r; we show that this forces K2θ(t + r) ∩ Zd ⊂ Γ, which

suffices by induction.

Let z ∈ [K2θ(t+ r)\K2θ(t)]∩Zd. By the claim, there is an element y ∈ Zd contained in

[z−Kθ(r, 3r)]∩K2θ. We have πDy ≤ t, hence y ∈ Γ by hypothesis, and y = z−x for some

x ∈ Kθ(r, 3r) ∩ Zd ⊂ Γ. Therefore z = x+ y ∈ Γ + Γ ⊂ Γ, and the lemma is proved. �

Now we can proceed with the proof of the theorem. First fix any θ > 0. By the lemma,

choose r > 0 such that K2θ ∩ Zd ⊂ sg(Kθ ∩ Zd). Next find ξ, η > 0 so that

Kθ(r) ⊂ Ωξ,η = Ω.

It is geometrically obvious that this is possible, since Ω is tangent to C at the origin.

Precise estimates are left to the reader. Here we are using the Perron property, that is,

p(E) > 1. For s > 0 define

Ω(s) = {x ∈ Ω : πDx ≤ s}, Ω(s,∞) = {x ∈ Ω : πDx ≥ s}.

We claim that if s is sufficiently large, then

(B − I)Ω(s,∞) ⊂ K2θ.

The estimates are not difficult and are left to the reader (note that πD(Bx−x) = (λ−1)πDx

and ‖πE (Bx− x)‖ ≤ (τE + 1)‖πEx‖).
Now fix s > λ

λ−1r so that (B − I)Ω(s/λ,∞) ⊂ K2θ. (This is the place where we made

a tiny modification: in [61] it is assumed that s > r.) Let Γ = Ω(s) ∩ Zd, and order the

elements of Γ as z1, . . . , zn. The following procedure specifies a rule for writing each Bzj

as a non-negative integral combination

(8.4) Bzj =

n∑
i=1

aijzi.

If πD(zj) ≤ s/λ, then Bzj = zk ∈ Γ (because Ω is B-invariant), and put aij = δik. If

(8.5) s/λ < πD(zj) ≤ s,

then

Bzj − zj ∈ K2θ ∩ Zd ⊂ sg[Kθ(r) ∩ Zd] ⊂ sg(Γ),

so choose aij in (8.4) with ajj ≥ 1 and other non-zero coefficients corresponding to zi ∈
Kθ(r). Note that starting with any zi ∈ Kθ(r) and applying powers of B, we will eventually

get a zj satisfying (8.5). For such zj we have πD(Bzj−zj) = (λ−1)πD(zj) > s(λ−1)/λ > r,

so we will have
∑

i 6=j aij ≥ 2 in (8.4). This process yields a matrix A with ajj ≥ 1 and the
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sum of non-diagonal entries in jth column ≥ 3. Now starting with zj we can choose an

irreducible component of A. (Draw the directed graph with vertices zi and the incidence

matrix A. Consider all the vertices which can be reached from zj . This is our irreducible

component; it corresponds to a primitive matrix since there is a loop from zj to itself.)

Replace A by this component, so now A is primitive and indexed by Γ0 ⊂ Γ. We can of

course reorder the variables so that j = 1. It remains to prove that λA, the PF eigenvalue

of A, is equal to λ.

Let A be n-dimensional. Denote by ei the unit vectors in Rn and define a linear

map P : Rn → Rd by Pei = zi. Then (8.4) implies that PA = BP . By the Perron-

Frobenius theory, A has a strictly positive eigenvector v for λA. Then Pv is a positive linear

combination of the zi, hence πD(Pv) > 0, and so Pv 6= 0. Also, B(Pv) = P (Av) = λA(Pv),

so λA is an eigenvalue of B. Thus, λA ≤ λ.

To prove λ ≥ λA, we note that P (Rd) ⊃ D. Indeed, PA = BP implies that P (Rd) is a

B-invariant subspace. Since Pei have non-zero D-coordinate and λ is a simple eigenvalue,

the claim follows. Thus, there is u ∈ Rn such that Pu = w, where w is an eigenvector for

B corresponding to λ. Then

λn‖w‖ = ‖Bnw‖ = ‖BnPu‖ = ‖PAnu‖ ≤ ‖P‖‖An‖‖u‖.

The spectral radius formula for A shows that λA ≥ λ, completing the proof.

8.3. Necessity in Theorem 4.3. We will actually prove something stronger:

Theorem 8.2. Let φ be an expanding linear similarity on Rd, and suppose that there

exists a self-similar tiling of Rd with expansion φ. Let λ be an eigenvalue of φ, and let

γ be a Galois conjugate of λ. Then either |γ| < |λ|, or γ is also an eigenvalue of φ of

multiplicity greater or equal to that of λ.

This, of course, includes as a special case d = 2, with φ being the multiplication by

λ ∈ C, which has the eigenvalues λ and λ. Then the conclusion is that λ has all other

conjugates of modulus strictly smaller than |λ|, i.e., it is complex Perron.

Proof. We continue the argument started in the proof of Lemma 4.4. Recall that

J = 〈C〉 is the free Abelian group generated by the control points of the tiling T , and we

fixed the matrix V = [v1 . . . vN ] whose columns are free generators of J . By the definition

of free generators, for every ξ ∈ J there exists a unique a(ξ) ∈ ZN such that

ξ = V a(ξ).
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We call ξ 7→ a(ξ) the “address map.” Observe that

(8.6) SpanR{a(ξ) : ξ ∈ C} = RN .

Indeed, J is generated by C, hence every vj is an integral linear combination of control

points, and a(vj) is the jth unit vector in RN .

Lemma 8.3. The address map is uniformly Lipschitz on C: there exists L1 > 0 such that

(8.7) ‖a(ξ)− a(ξ′)‖ ≤ L1‖ξ − ξ′‖, ∀ ξ, ξ′ ∈ C.

Note that the address map is usually not even continuous on J , since J is usually dense

in Rd, whereas the range of the address map is a subset of the integer lattice.

Proof sketch. It is not hard to see that one can move “quasi-efficiently” between control

points by moving “from neighbor to neighbor.” More precisely, there is a constant C1 =

C1(T ) such that ∀ ξ, ξ′ ∈ C, there exist p ∈ N and ξ1 := ξ, ξ2, . . . , ξp−1 ∈ C, ξp := ξ′ such

that ξi+1 − ξi ∈ Ψ for i = 1, . . . , p− 1 (see the definition of Ψ in (4.1)), and

p−1∑
i=1

‖ξi+1 − ξi‖ ≤ C1 · ‖ξ − ξ′‖.

(See [51, Lem. 2.2] for a proof of this claim.) Let

C2 := max{‖a(ζ)− a(ζ ′)‖/‖ζ − ζ ′‖ : ζ ′ − ζ ∈ Ψ},

which is well-defined and finite by FLC. Now we can estimate:

‖a(ξ)− a(ξ′)‖ = ‖a(ξ − ξ′)‖ =

∥∥∥∥∥
p−1∑
i=1

a(ξi+1 − ξi)

∥∥∥∥∥
≤

p−1∑
i=1

‖a(ξi+1 − ξi)‖

≤ C2

p−1∑
i=1

‖ξi+1 − ξi‖ ≤ C1C2‖ξ − ξ′‖,

as desired. �

Recall that there exists an integer N ×N matrix M such that

(8.8) φV = VM.

We already saw that every eigenvalue of φ must be an eigenvalue of M . Note also that

(8.8) implies

(8.9) a(φξ) = Ma(ξ), ∀ ξ ∈ J.
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Lemma 8.4. The matrix M is diagonalizable in CN .

Proof. This is a standard fact in algebra; we provide an elementary proof for the reader’s

convenience.

Recall that φ is a similarity, hence it is diagonalizable over C (it is a unitary linear

map times θ for some θ > 1). Decompose Rd into a direct sum of eigenspaces Ei, i ≤ p,

corresponding to eigenvalues λi (one-dimensional if λi is real and 2-dimensional otherwise).

Decomposing the vectors vj (the generators of J) in terms of Ei yields

J ⊂ J ′ :=
p⊕
i=1

Jiei,

where ei ∈ Ei and Ji is a finitely-generated Z[λi]-module. Thus,

Ji =

ri⊕
k=1

Z[λi]y
(i)
k

for some y
(i)
k ∈ Ei. The transformation φ induces an endomorphism of J ′. We choose

the canonical set of generators for Z[λi], namely, 1, λi, . . . , λ
ni−1
i , where ni is the degree

of the algebraic integer λi, and the corresponding basis for J ′, namely, {λsiy
(i)
k : 0 ≤

s ≤ ni − 1, 1 ≤ k ≤ ri, i ≤ p}. In this basis, the endomorphism has a block matrix,

whose every block is a companion matrix of the minimal polynomial of one of the λi’s.

This matrix is diagonalizable over C, since the minimal polynomial has no repeated roots.

Finally, we note that the endomorphism induced by φ on J is a restriction of the one

which is induced on J ′, hence its matrix, M , is diagonalizable as well. �

Now suppose that γ is a conjugate of λ and |γ| ≥ |λ| > 1 (otherwise, there is nothing to

prove). Then γ is an eigenvalue of M . Let Uγ be the (real) eigenspace for M corresponding

to γ. By Lemma 8.4, there is a projection πγ from RN to Uγ commuting with M . By

definition, the only eigenvalues of M |Uγ are γ and γ (if γ is nonreal). Thus, we can fix a

norm on Uγ satisfying

(8.10) ‖My‖ = |γ| ‖y‖, y ∈ Uγ .

Consider the mapping fγ : C → Uγ given by

(8.11) fγ(ξ) = πγa(ξ), ξ ∈ C.

Our goal is to extend fγ to the entire space Rd. We let

(8.12) fγ(φ−kξ) = M−kfγ(ξ), ξ ∈ C.
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This is well-defined since M is invertible on Uγ , and unambiguous by (8.9), since πγM =

Mπγ . This way we have fγ defined on a dense set

C∞ :=
∞⋃
k=0

φ−kC.

We want to show that fγ is uniformly continuous on C∞, hence can be extended to all of

Rd. In fact, it is uniformly Lipschitz. Recall that φ is a similarity and λ is its eigenvalue,

hence ‖φx‖ = |λ|‖x‖ for all x ∈ Rd.

Lemma 8.5. The map fγ is uniformly Lipschitz on C∞:

‖fγ(ξ1)− fγ(ξ2)‖ ≤ L1‖ξ1 − ξ2‖ ∀ ξ, ξ′ ∈ C∞.

Moreover, if |γ| > |λ|, then fγ is a constant function.

Proof. Let ξi = φ−kci for i = 1, 2, where ci ∈ C. We have, using |γ| ≥ |λ|, (8.10) and

Lemma 8.3:

‖fγ(φ−kc1)− fγ(φ−kc2)‖ = ‖M−k(fγ(c1)− fγ(c2))‖

= |γ|−k‖fγ(c1)− fγ(c2)‖

≤ L1|γ|−k‖c1 − c2‖

= L1(|λ|/|γ|)k‖φ−kc1 − φ−kc2)‖.

If |γ| = |λ|, we get the desired property. If |γ| > |λ|, then we obtain that fγ(ξ1) = fγ(ξ2)

by letting k → ∞ (this is possible since φ(C) ⊂ C). Since ξ1 and ξ2 were arbitrary, we

obtain that fγ is a constant function. �

Lemma 8.5 implies that |γ| > |λ| is impossible. Indeed, fγ is non-constant by (8.11)

and (8.6). Thus, it remains to consider the case |γ| = |λ|. By Lemma 8.5, we can extend

fγ by continuity to obtain a function fγ : Rd → Uγ . Observe that

(8.13) fγ ◦ φ = M ◦ fγ ,

since this holds on the dense set C∞.

Lemma 8.6. The function fγ depends only on the tile type in T up to an additive constant:

if T, T + x ∈ T and ξ ∈ T , then

(8.14) fγ(ξ + x) = fγ(ξ) + πγa(x).



44 BORIS SOLOMYAK

Proof. It is enough to check (8.14) on a dense set. Suppose ξ = φ−kc(S) ∈ T for some

S ∈ ωk(T ). Then S + φkx ∈ ωk(T + x) and we have

fγ(ξ + x) = fγ(φ−kc(S) + x)

= fγ(φ−kc(S + φkx))

= M−kfγ(c(S + φkx))

= M−kfγ(c(S)) +M−kπγa(φkx)

= fγ(ξ) + πγa(x),

as desired. Here we used the definition of fγ on C and (8.9). �

Conclusion of the proof of Theorem 8.2. We mimic the argument of Thurston [98] but

provide more details.

The function fγ : Rd → Uγ is Lipschitz, hence it is differentiable almost everywhere by

Rademacher’s Theorem. Let x be a point where the total derivative D = Dfγ(x) (a linear

map from Rd to Uγ) exists. Then

fγ(x+ u) = fγ(x) +Du+ Ψ(u) for all u ∈ Rd,

where Ψ : Rd → Uγ satisfies ‖Ψ(u)‖ = o(‖u‖), as u→ 0. Multiplying by Mn, using (8.13)

and substituting v = φnu, we obtain

fγ(φnx+ v) = fγ(φnx) +MnDφ−nv +MnΨ(φ−nv) for all v ∈ Rd.

For a set A ⊂ Rd denote by [A]T the T -patch of tiles which intersect A. By repetitivity,

there exists R > 0 such that BR(0) contains a translate of the patch [B1(φnx)]T for all

n ∈ N. This implies, in view of Lemma 8.6, that there exist xn ∈ BR(0), for n ≥ 1, such

that

fγ(xn + v) = fγ(xn) +MnDφ−nv +MnΨ(φ−nv) for all v ∈ B1(0).

Recall that φ is a similarity with expansion factor |λ|, and the expression above is in Uγ

where M expands by |γ| = |λ|, see (8.10). Thus, ‖MnDφ−n‖ = ‖D‖ and ‖MnΨ(φ−nv)‖ =

|γ|n ·o(|λ|−n‖v‖)→ 0, as n→∞. Passing to a subsequence, we can assume that xnk → x′

and MnkDφ−nk → D′, where D′ : Rd → Uγ is a linear map. Then by continuity of f ,

fγ(x′ + v) = fγ(x′) +D′v for all v ∈ B1(0).

Thus, fγ is flat on some neighborhood. Multiplying by Mn and applying (8.13), we obtain

that fγ is flat on an arbitrarily large neighborhood. By repetitivity, a translate of [B1(0)]T

occurs in every sufficiently large neighborhood, therefore, by Lemma 8.6, the function fγ
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is flat on B1(0). Using (8.13) again, we conclude that fγ is flat everywhere, and since

fγ(0) = 0 by (8.12), we obtain that fγ is linear. By (8.6) and (8.11), the range of fγ is the

entire Uγ . Thus, in view of (8.13), there exists a linear subspace E of Rd, invariant under

φ, such that fγ restricted to E is an isomorphism onto Uγ . It follows that the restriction

of φ to E is isomorphic, as a linear map, to M |Uγ . This implies the desired conclusion: γ

is an eigenvalue of φ, and if λ has multiplicity k as an eigenvalue of φ, then γ (being its

Galois conjugate) has multiplicity greater or equal to k as an eigenvalue of M and hence

of φ as well. �

8.4. Sketch of the proof of Theorem 5.7. Here we only present an outline; see [97]

for more details. The proof is based on [98, 48] and a personal communication from Rick

Kenyon.

Instead of the set Ξ, it is more convenient to work with control points, see Definition 4.5.

Let C = C(T ) = {c(T ) : T ∈ T } be the set of control points for all tiles. Clearly,

Ξ(T ) ⊂ C − C. Observe that it is enough to prove the inclusion

(8.15) C ⊂ e1Q(θ) + · · ·+ edQ(θ)

for some basis {e1, . . . , ed}. Indeed, the Abelian group 〈C〉 is finitely generated. Let

{w1, . . . , wN} be a set of free generators. By (8.15), wj =
∑d

j=1 ej
p
(i)
j (θ)

q
(i)
j (θ)

, for i ≤ N , for

some polynomials p
(i)
j , q

(i)
j ∈ Z[x]. Then we obtain (5.4), with

bj = ej

 d∏
j=1

N∏
i=1

q
(i)
j (θ)

−1

.

Now pick any set {e1, . . . , ed} ⊂ C which spans Rd. Consider the vector space C̃ :=

SpanQ(θ)C over the field Q(θ). We want to show that {e1, . . . , ed} is a basis for C̃. Let π

be any linear projection from C̃ onto SpanQ(θ){e1, . . . , ed}. Since the vector space is over

Q(θ), we obviously have

(8.16) π(θnx) = θnπ(x) for x ∈ C̃, n ∈ Z.

Thus we have a map

f(x) = π(x) for x ∈ C∞, where C∞ :=

∞⋃
n=0

θ−nC.

This is consistent in view of (8.16). Now f defined on a dense subset of Rd. The rest of the

proof is almost identical to that of Theorem 8.2: it is shown that f is uniformly Lipschitz on

this set, hence f can be extended to Rd by continuity. This extension satisfies the equation
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f(θx) = θf(x) for all x ∈ Rd. Then it is proved that f is linear. But f(ej) = π(ej) = ej ,

hence f is the identity map, π(ξ) = ξ for all ξ ∈ C, and we conclude that (8.15) holds, as

desired. �

References

[1] Sh. Akiyama, Self affine tiling and Pisot numeration system, Number theory and its applications

(Kyoto, 1997), 7–17, Dev. Math., 2, Kluwer Acad. Publ., Dordrecht, 1999.

[2] Sh. Akiyama, On the boundary of self-affine tilings generated by Pisot numbers, J. Math. Soc. Japan

54 (2002), 283–308.

[3] J. Andersen and I. Putnam, Topological invariants for substitution tilings and their associated C∗-

algebras, Ergodic Th. Dynam. Sys. 18 (1998), no. 3, 509–537.

[4] M. Baake, A guide to mathematical quasicrystals, in Quasicrystals—An Introduction to Structure,

Physical Properties and Applications, edited by J.-B. Suck, M. Schreiber, and P. Hussler, Springer,

Berlin, 2002, pp. 17–48.

[5] M. Baake and D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical

and diffraction spectra, Ergodic Th. Dynam. Sys. 24 (2004), no. 6, 1867–1893.

[6] M. Baake, D. Lenz, and R. V. Moody, Characterization of model sets by dynamical systems,

arXiv:math.DS/0511648.

[7] M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew.

Math. (Crelle) 573 (2004), 61–94.

[8] M. Baake and M. Schlottmann, Geometric aspects of tilings and equivalence concepts, in Proc. ICQ5,

World Scientific, Singapore, 1995, pp. 15–21.

[9] M. Baake, M. Schlottmann, and P. D. Jarvis, Quasiperiodic tilings with tenfold symmetry and equiv-

alence with respect to local derivability, J. Phys. A 24 (1991), 4637–54.

[10] C. Bandt, Self-similar tilings and patterns described by mappings, in The mathematics of long-range

aperiodic order (Waterloo, ON, 1995), 45–83, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 489,

Kluwer Acad. Publ., Dordrecht, 1997.

[11] M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, American J. Math.,

to appear.

[12] T. Bedford, Generating special Markov partitions for hyperbolic toral automorphisms using fractals,

Ergodic Th. and Dynam. Sys. 6 (1986), 325–333.

[13] R. Benedetti and J.-M. Gambaudo, On the dynamics of G-solenoids. Applications to Delone sets,

Ergodic Theory Dynam. Sys. 23 (2003), no. 3, 673–691.
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[64] C. Mauduit, Caractérisation des ensembles normaux substitutifs, Inventiones Math. 95 (1989), no. 1,

133–147.

[65] Y. Meyer, Algebraic numbers and harmonic analysis, North-Holland Math. Library, Vol. 2, North-

Holland, Amsterdam, 1972.

[66] R. V. Moody, Meyer sets and their duals, in The Mathematics of Long-Range Aperiodic Order (Wa-

terloo, ON, 1995), R. V. Moody, ed., NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 489, Kluwer

Acad. Publ., Dordrecht, 1997, 403–441.

[67] R. V. Moody, Model sets: A Survey, In: From Quasicrystals to More Complex Systems, eds. F. Axel,

F. Dénoyer, J.P. Gazeau, Centre de physique Les Houches, Springer Verlag, 2000.
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