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LECTURE 11 SUMMARY

1. HYPERBOLIC TORAL AUTOMORPHISMS (CONT.)

Let A be d x d integer matrix, with det A = +1. Consider T¢ = R%/Z% (the d-

dimensional torus).

Definition 1.1. The map T4 (x) = Ax (mod Z?) is called the toral automorphism asso-
ciated with A.

Proposition 1.2. T4 is a group automorphism; in fact, every automorphism of T has
such a form.

Definition 1.3. The automorphism is called hyperbolic if A is hyperbolic, that is, A has
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Theorem 1.5 (see [1, §2.4]). Every hyperbolic toral automorphism is chaotic.

no eigenvalues of absolute value one.

Example 1.4 (Arnold’s “cat map”). This is T4 for A =

We will see the proof for d = 2, for simplicity, following [1, 2]. The proof will be broken
into lemmas. The first one was already covered on December 27.

Lemma 1.6. The points with rational coordinates {(%*, %), m,n,k € N} (mod Z?) are
dense in T2, and they are all periodic for Ty.

Lemma 1.7. Let A be a hyperbolic 2x 2 matriz. Thus it has two real eigenvalues: |A1| > 1
and |Xa| < 1. Then the eigenvalues are irrational and the eigenvectors have irrational

slopes.

Let E®, E" be the stable and unstable subspaces for A, respectively; they are one-
dimensional and are spanned by the eigenvectors.

Consider the point 0 = (0,0) on the torus; it is fixed by T4. Let W#(0) and W"(0)
be the stable and unstable manifolds of T4 corresponding to 0. They are obtained by
considering E* (mod Z?) and E* (mod Z?).

Lemma 1.8. Consider T? as the unit square [0,1]? (with opposite sides identified). Let
to = 0,t1,ta,- -+, be the consecutive intersections of W*(0) with the “base” of the square

[0,1]. Then these points form the orbit of 0 under an irrational rotation by o, where a~*

1s the slope of E".

Lemma 1.9. Every orbit of an irrational rotation Ry : t — t + « (mod 1) is dense on
the circle [0,1] = R/Z, hence W*(0) is dense in T?. Similarly, W*(0) is dense. As a

consequence, the set of homoclinic points for 0 is dense in T2.
The statements about density may be made more quantitative.
Definition 1.10. A set F' in a metric space X is called e-dense if |J,p B:(z) = X.

Lemma 1.11. Let o € Q. Then for any € > 0 there exists n. € N such that for n > n.

every orbit of R is e-dense in T.
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Corollary 1.12. For any € > 0 there exists M. > 0 such that every segment of W*(0) of
length > M, is e-dense in T?.

Definition 1.13. A topological dynamical system (X, T) is called topologically mixing if
for any U,V # () open, there exists ng € N such that

T"UNV #0, for all n > ng.
Proposition 1.14. A hyperbolic toral automorphism T4 is topologically mixing.
Remark. Observe that T4 is NOT typologically exact.

Lemma 1.15. If (X, T) is topologically mixing, then (X,T) has sensitive dependence on

initial conditions.

Proposition 1.16. The following are equivalent for a continuous dynamical system (X, T)
on a separable complete metric space:

(i) there is a dense orbit;

(ii) for any U,V # () open, there exists n € N such that T"U NV # ().

In this case we say that (X, T) is transitive.

Obviously, “topologically mixing” implies “transitive”; thus, combining all of the above

we obtain that T4 is chaotic.

2. STRANGE ATTRACTORS

Definition 2.1. Suppose f : X — X isamap. A compact set K C X is called an attractor
for f if there exists a neighborhood U of K such that f(U) C U and (), oy f"(U) = K.
We usually require K to have no proper subsets with the same property.

The simplest attractors are attracting fixed points. (Attracting limit cycles are attrac-
tors for continuous dynamical systems, but here we are talking about discrete dynamical
systems.) “Strange” attractors are attractors that have a complicated “fractal” structure
(we do not give a formal definition).

2.1. Solenoid, or Smale attractor, see [1, §2.5]. Consider the solid torus M := S x B2,
where B? is the unit disk in R? and S is the unit circle. On it we define the coordinates
(6,p) such that § € S* and p € B?, that is, p = (z,y) with 22 + y?> < 1. Using these
coordinates we define the map by doubling up and shrinking the thickness by 5.

Proposition 2.2. The map

1 1 .
[iM =M, [(0,p) = (20, Pt i)

1s well-defined and injective.
Theorem 2.3. The map f has an attractor K = (1,5 f"(M). Moreover, f|k is chaotic.

Remark. A similar stretching and refolding procedure is used in practice: (a) candy
machines making “taffy”, which consists of molasses and sugar; the candy has “stringy”
structure; (b) production of Japanese swords [2, p.333].

Denote B(0*) = {e*™} x B. Observe that
f(B(6%)) C B(20*) and f(B(6* +1/2)) C B(26).
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Proposition 2.4 (without proof). (i) The attractor K is connected, but not locally con-
nected and not path-connected.
(ii) Locally, K is homeomorphic to the Cartesian product of a line segment and a Cantor

set.

2.2. Hénon map. Let H = H,; be the map of the plane given by
H('Ccay) = (a’ - by - $27$)‘
Observe that det(DH) = b.

e For b # 0 the map H is invertible.
For 0 < |b| < 1 the map H is area-contracting.

For |b| =1 the map H is area-preserving.

For || < 1 and a > ¢(b) a non-linear horseshoe appears.
e For some parameters H has a “strange attractor”; the classical parameters are

b= 0.3, a = 1.4, for which it was observed numerically.
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