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LECTURE 11 SUMMARY

1. Hyperbolic toral automorphisms (cont.)

Let A be d × d integer matrix, with detA = ±1. Consider Td = Rd/Zd (the d-

dimensional torus).

Definition 1.1. The map TA(x) = Ax (mod Zd) is called the toral automorphism asso-

ciated with A.

Proposition 1.2. TA is a group automorphism; in fact, every automorphism of Td has

such a form.

Definition 1.3. The automorphism is called hyperbolic if A is hyperbolic, that is, A has

no eigenvalues of absolute value one.

Example 1.4 (Arnold’s “cat map”). This is TA for A =

[
2 1

1 1

]
.

Theorem 1.5 (see [1, §2.4]). Every hyperbolic toral automorphism is chaotic.

We will see the proof for d = 2, for simplicity, following [1, 2]. The proof will be broken

into lemmas. The first one was already covered on December 27.

Lemma 1.6. The points with rational coordinates {(mk ,
n
k ), m, n, k ∈ N} (mod Z2) are

dense in T2, and they are all periodic for TA.

Lemma 1.7. Let A be a hyperbolic 2×2 matrix. Thus it has two real eigenvalues: |λ1| > 1

and |λ2| < 1. Then the eigenvalues are irrational and the eigenvectors have irrational

slopes.

Let Es, Eu be the stable and unstable subspaces for A, respectively; they are one-

dimensional and are spanned by the eigenvectors.

Consider the point 0 = (0, 0) on the torus; it is fixed by TA. Let W s(0) and W u(0)

be the stable and unstable manifolds of TA corresponding to 0. They are obtained by

considering Es (mod Z2) and Eu (mod Z2).

Lemma 1.8. Consider T2 as the unit square [0, 1]2 (with opposite sides identified). Let

t0 = 0, t1, t2, · · · , be the consecutive intersections of W u(0) with the “base” of the square

[0, 1]. Then these points form the orbit of 0 under an irrational rotation by α, where α−1

is the slope of Eu.

Lemma 1.9. Every orbit of an irrational rotation Rα : t 7→ t + α (mod 1) is dense on

the circle [0, 1] ∼= R/Z, hence W u(0) is dense in T2. Similarly, W s(0) is dense. As a

consequence, the set of homoclinic points for 0 is dense in T2.

The statements about density may be made more quantitative.

Definition 1.10. A set F in a metric space X is called ε-dense if
⋃
x∈F Bε(x) = X.

Lemma 1.11. Let α 6∈ Q. Then for any ε > 0 there exists nε ∈ N such that for n ≥ nε

every orbit of Rα is ε-dense in T.
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Corollary 1.12. For any ε > 0 there exists Mε > 0 such that every segment of W u(0) of

length ≥Mε is ε-dense in T2.

Definition 1.13. A topological dynamical system (X,T ) is called topologically mixing if

for any U, V 6= ∅ open, there exists n0 ∈ N such that

TnU ∩ V 6= ∅, for all n ≥ n0.

Proposition 1.14. A hyperbolic toral automorphism TA is topologically mixing.

Remark. Observe that TA is NOT typologically exact.

Lemma 1.15. If (X,T ) is topologically mixing, then (X,T ) has sensitive dependence on

initial conditions.

Proposition 1.16. The following are equivalent for a continuous dynamical system (X,T )

on a separable complete metric space:

(i) there is a dense orbit;

(ii) for any U, V 6= ∅ open, there exists n ∈ N such that TnU ∩ V 6= ∅.
In this case we say that (X,T ) is transitive.

Obviously, “topologically mixing” implies “transitive”; thus, combining all of the above

we obtain that TA is chaotic.

2. Strange attractors

Definition 2.1. Suppose f : X → X is a map. A compact set K ⊂ X is called an attractor

for f if there exists a neighborhood U of K such that f(U) ⊂ U and
⋂
n∈N f

n(U) = K.

We usually require K to have no proper subsets with the same property.

The simplest attractors are attracting fixed points. (Attracting limit cycles are attrac-

tors for continuous dynamical systems, but here we are talking about discrete dynamical

systems.) “Strange” attractors are attractors that have a complicated “fractal” structure

(we do not give a formal definition).

2.1. Solenoid, or Smale attractor, see [1, §2.5]. Consider the solid torusM := S1×B2,

where B2 is the unit disk in R2 and S1 is the unit circle. On it we define the coordinates

(θ, p) such that θ ∈ S1 and p ∈ B2, that is, p = (x, y) with x2 + y2 ≤ 1. Using these

coordinates we define the map by doubling up and shrinking the thickness by 5.

Proposition 2.2. The map

f : M →M, f(θ, p) =
(

2θ,
1

5
p+

1

2
e2πiθ

)
is well-defined and injective.

Theorem 2.3. The map f has an attractor K =
⋂
n≥0 f

n(M). Moreover, f |K is chaotic.

Remark. A similar stretching and refolding procedure is used in practice: (a) candy

machines making “taffy”, which consists of molasses and sugar; the candy has “stringy”

structure; (b) production of Japanese swords [2, p.333].

Denote B(θ∗) = {e2πiθ} ×B. Observe that

f
(
B(θ∗)

)
⊂ B(2θ∗) and f

(
B(θ∗ + 1/2)

)
⊂ B(2θ∗).
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Proposition 2.4 (without proof). (i) The attractor K is connected, but not locally con-

nected and not path-connected.

(ii) Locally, K is homeomorphic to the Cartesian product of a line segment and a Cantor

set.

2.2. Hénon map. Let H = Ha,b be the map of the plane given by

H(x, y) = (a− by − x2, x).

Observe that det(DH) = b.

• For b 6= 0 the map H is invertible.

• For 0 < |b| < 1 the map H is area-contracting.

• For |b| = 1 the map H is area-preserving.

• For |b| < 1 and a > c(b) a non-linear horseshoe appears.

• For some parameters H has a “strange attractor”; the classical parameters are

b = 0.3, a = 1.4, for which it was observed numerically.
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