LECTURE 11 SUMMARY

1. Hyperbolic toral automorphisms (cont.)

Let A be $d \times d$ integer matrix, with det $A = \pm 1$. Consider $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$ (the d-dimensional torus).

Definition 1.1. The map $T_A(\mathbf{x}) = A\mathbf{x} \pmod{\mathbb{Z}^d}$ is called the toral automorphism associated with A.

Proposition 1.2. T_A is a group automorphism; in fact, every automorphism of \mathbb{T}^d has such a form.

Definition 1.3. The automorphism is called hyperbolic if A is hyperbolic, that is, A has no eigenvalues of absolute value one.

Example 1.4 (Arnold's "cat map"). This is T_A for $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.

Theorem 1.5 (see [1, §2.4]). Every hyperbolic toral automorphism is chaotic.

We will see the proof for d = 2, for simplicity, following [1, 2]. The proof will be broken into lemmas. The first one was already covered on December 27.

Lemma 1.6. The points with rational coordinates $\{(\frac{m}{k}, \frac{n}{k}), m, n, k \in \mathbb{N}\}$ (mod \mathbb{Z}^2) are dense in \mathbb{T}^2 , and they are all periodic for T_A .

Lemma 1.7. Let A be a hyperbolic 2×2 matrix. Thus it has two real eigenvalues: $|\lambda_1| > 1$ and $|\lambda_2| < 1$. Then the eigenvalues are irrational and the eigenvectors have irrational slopes.

Let E^s , E^u be the stable and unstable subspaces for A, respectively; they are onedimensional and are spanned by the eigenvectors.

Consider the point $\mathbf{0} = (0,0)$ on the torus; it is fixed by T_A . Let $W^s(\mathbf{0})$ and $W^u(\mathbf{0})$ be the stable and unstable manifolds of T_A corresponding to $\mathbf{0}$. They are obtained by considering $E^s \pmod{\mathbb{Z}^2}$ and $E^u \pmod{\mathbb{Z}^2}$.

Lemma 1.8. Consider \mathbb{T}^2 as the unit square $[0,1]^2$ (with opposite sides identified). Let $t_0 = 0, t_1, t_2, \cdots$, be the consecutive intersections of $W^u(\mathbf{0})$ with the "base" of the square [0,1]. Then these points form the orbit of 0 under an irrational rotation by α , where α^{-1} is the slope of E^u .

Lemma 1.9. Every orbit of an irrational rotation $R_{\alpha}: t \mapsto t + \alpha \pmod{1}$ is dense on the circle $[0,1] \cong \mathbb{R}/\mathbb{Z}$, hence $W^{u}(\mathbf{0})$ is dense in \mathbb{T}^{2} . Similarly, $W^{s}(\mathbf{0})$ is dense. As a consequence, the set of homoclinic points for $\mathbf{0}$ is dense in \mathbb{T}^{2} .

The statements about density may be made more quantitative.

Definition 1.10. A set F in a metric space X is called ε -dense if $\bigcup_{x \in F} B_{\varepsilon}(x) = X$.

Lemma 1.11. Let $\alpha \notin \mathbb{Q}$. Then for any $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for $n \geq n_{\varepsilon}$ every orbit of R_{α} is ε -dense in \mathbb{T} .

Corollary 1.12. For any $\varepsilon > 0$ there exists $M_{\varepsilon} > 0$ such that every segment of $W^u(\mathbf{0})$ of length $\geq M_{\varepsilon}$ is ε -dense in \mathbb{T}^2 .

Definition 1.13. A topological dynamical system (X, T) is called *topologically mixing* if for any $U, V \neq \emptyset$ open, there exists $n_0 \in \mathbb{N}$ such that

$$T^nU \cap V \neq \emptyset$$
, for all $n \geq n_0$.

Proposition 1.14. A hyperbolic toral automorphism T_A is topologically mixing.

Remark. Observe that T_A is NOT typologically exact.

Lemma 1.15. If (X,T) is topologically mixing, then (X,T) has sensitive dependence on initial conditions.

Proposition 1.16. The following are equivalent for a continuous dynamical system (X, T) on a separable complete metric space:

- (i) there is a dense orbit;
- (ii) for any $U, V \neq \emptyset$ open, there exists $n \in \mathbb{N}$ such that $T^nU \cap V \neq \emptyset$. In this case we say that (X,T) is transitive.

Obviously, "topologically mixing" implies "transitive"; thus, combining all of the above we obtain that T_A is chaotic.

2. Strange attractors

Definition 2.1. Suppose $f: X \to X$ is a map. A compact set $K \subset X$ is called an *attractor* for f if there exists a neighborhood U of K such that $f(U) \subset U$ and $\bigcap_{n \in \mathbb{N}} f^n(U) = K$. We usually require K to have no proper subsets with the same property.

The simplest attractors are attracting fixed points. (Attracting limit cycles are attractors for *continuous* dynamical systems, but here we are talking about *discrete* dynamical systems.) "Strange" attractors are attractors that have a complicated "fractal" structure (we do not give a formal definition).

2.1. Solenoid, or Smale attractor, see [1, §2.5]. Consider the solid torus $M := S^1 \times B^2$, where B^2 is the unit disk in \mathbb{R}^2 and S^1 is the unit circle. On it we define the coordinates (θ, p) such that $\theta \in S^1$ and $p \in B^2$, that is, p = (x, y) with $x^2 + y^2 \leq 1$. Using these coordinates we define the map by doubling up and shrinking the thickness by 5.

Proposition 2.2. The map

$$f: M \to M, \quad f(\theta, p) = \left(2\theta, \frac{1}{5}p + \frac{1}{2}e^{2\pi i\theta}\right)$$

is well-defined and injective.

Theorem 2.3. The map f has an attractor $K = \bigcap_{n>0} f^n(M)$. Moreover, $f|_K$ is chaotic.

Remark. A similar stretching and refolding procedure is used in practice: (a) candy machines making "taffy", which consists of molasses and sugar; the candy has "stringy" structure; (b) production of Japanese swords [2, p.333].

Denote
$$B(\theta^*) = \{e^{2\pi i\theta}\} \times B$$
. Observe that $f(B(\theta^*)) \subset B(2\theta^*)$ and $f(B(\theta^*+1/2)) \subset B(2\theta^*)$.

Proposition 2.4 (without proof). (i) The attractor K is connected, but not locally connected and not path-connected.

- (ii) Locally, K is homeomorphic to the Cartesian product of a line segment and a Cantor set.
- 2.2. **Hénon map.** Let $H = H_{a,b}$ be the map of the plane given by

$$H(x,y) = (a - by - x^2, x).$$

Observe that det(DH) = b.

- For $b \neq 0$ the map H is invertible.
- For 0 < |b| < 1 the map H is area-contracting.
- For |b| = 1 the map H is area-preserving.
- For |b| < 1 and a > c(b) a non-linear horseshoe appears.
- For some parameters H has a "strange attractor"; the classical parameters are b = 0.3, a = 1.4, for which it was observed numerically.

References

- [1] R. Devaney, An Introduction to Chaotic Dynamical Systems, Taylor and Francis, 2003 (2nd edition).
- [2] B. Hassellblatt and A. Katok, A First Course in Dynamics, Cambridge, 2003.