LECTURE NOTES:
IMMERSIONS OF SURFACES IN 3-SPACE

TAHL NOWIK

1. THE SMALE-HIRSCH THEOREM

This section is based on [T].

Let F, M be two smooth manifolds. An immersion ¢ : F' — M is a smooth map such that
at each p € F', the differential map df : T,F' — T,,M is a monomorphism. It follows that 7 is
locally a smooth embedding, i.e. each p € F' has a neighborhood U such that i|y : U - M
is a smooth embedding. Globally, though, ¢ may have self intersection, i.e. globally ¢ may
not be 1-1.

In this section we will discuss the Smale-Hirsch Theorem, which is the fundamental theo-
rem of immersion theory. It has been originally proved by Smale and Hirsch in [S1],[S2],[H].
We will follow the proof of Thurston sketched in [T]. Let F, M be two smooth manifolds.
Imm(F, M) will denote the space of all immersions of F' into M, where the topology on
Imm(F, M) is the C* topology. A path in Imm(F, M) is called a regular homotopy. A bun-
dle monomorphism b : T'F — T'M is a map which is a linear monomorphism on each fiber
of TF. Mon(TF,TM) will denote the space of all bundle monomorphisms b : TF — TM
where the topology on Mon(TF,TM) is the compact-open topology. There is a natural
map d : Imm(F,M) — Mon(TF,TM) given by 7 + di. This map is clearly 1-1 since a
bundle map b : TF — T'M in particular determines the map b: F — M which it covers.
Furthermore, the topology on Imm(F, M) being the C* topology, precisely means that the
map d : Imm(F,M) — Mon(TF,TM) is a topological embedding. So we may think of
Imm(F, M) as a subspace I C Mon(TF,TM). Note that there are bundle monomorphisms
b € Mon(TF,TM) whose underlying map b:F — M is an immersion, but who are not
members of the subspace I since b is not db.

When working in local coordinates z4,...,z, for U C F and vy1,...,y, for V.C M, we
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space of m x n matrices), gives the matrix of each linear map with respect to the above
bases.

‘We now state the Smale-Hirsch Theorem:

Theorem 1.1. Let F', M be compact smooth manifolds with dim F' < dim M .
Then the map d: Imm(F, M) — Mon(TF,TM) is a homotopy equivalence.

This theorem extremely simplifies the computation of the homotopy groups of Imm(F, M),
in particular, we will be interested in 7y and 7;. Before proving SHT (= the Smale-Hirsch
Theorem), we give a first example of application, namely, that S? may be ”turned inside
out” by regular homotopy in R3. Such regular homotopy is called an eversion of the sphere.
The question of whether this is indeed possible was open before Smale developed his theory,
and was a major motivation for this development. Let e : S? — R3 be the inclusion and
let ¢ = —e. We need to show that there is a regular homotopy between e and €’ i.e. a
path in Imm(S? R3) from e to €. By SHT it is enough to show that there is a path in
Mon(TS? TR3) from de to de’. Such path b, is easy to construct: As first step take b, to be
(1 —t)e + te’ while b; carries each tangent plane parallelly. by is indeed ¢’ but b; is —de’. So
as a second step, keeping b fixed, we rotate each tangent plane say in the clockwise direction
(using an orientation on S?), until they all arrive at de’.

We now prove SHT. We will prove it for F' a surface and M = R3, and leave as exercise the
extension of the proof to general F, M (Exercise 4, see discussion there). Denoting Mon =
Mon(TF,TR?) and I = d(Imm(F,R*)) C Mon as before, we prove SHT by constructing
a homotopy h; : Mon — Mon (0 <t < 1), such that hg = Idason, he(I) C I for all £, and
hi(Mon) C I. We will construct h; by describing b; = h(b) for given b € Mon, and it will
be clear that the construction can be made to vary continuously in Mon, since the constants
that we will choose for given b, may be chosen as continuous functions of b.

So, given b € Mon we describe how to construct a path b, with by = b and b; € I and such
that if b € I, then b; € I for all t. We will perform all our constructions in one coordinate
chart U of F'. We will leave as an exercise how to diminish all matters toward the boundary
of U and how to pass from one coordinate neighborhood to the next (Exercise 3). The path
b; will be constructed in three steps, i.e. in three segments which we will name 1,23, until
indeed b, € I. If F' has boundary then we will have a preliminary step, segment 0, where we
slightly shrink a given collar neighborhood of OF within itself, leaving an ”outside collar”,

and so all (finitely many) coordinate neighborhoods may be taken as open discs.



Segment 1 will smooth out the bundle map b € Mon, i.e is a b, as above such that b; is
smooth in the sense that in local coordinates, when thinking of b as a pair of maps b:U — v,
b:U — M;jy2(R), then l;, b are both smooth. We may indeed achieve this via the technique
of convolution with a smooth ”bump function” as appears e.g. in [F] Theorem 8.14. The
point to notice is that differentiation commutes with convolution ([F] Proposition 8.10), and
so if the same bump function is used for b and b, then whenever b is smooth and b = dl;,
then this property will indeed continue to hold.

The general plan now is as follows. From the previous step, our initial b is assumed smooth.

We will use b to construct ¢; : U — R® (0 < ¢ < 1) which will satisfy:

1. (,250 =0
2. b+ d¢; is a bundle monomorphism for all 0 < ¢ < 1.
3. (1—t)b+ tdb + d¢, is a bundle monomorphism for all 0 < ¢ < 1

Segment 2 of our path will then be (3 + ¢t , b+ d¢;) and segment 3 will be (I; +¢1, (1—
t)b + tdb + dgy ).

Ezxercise 1. Check that indeed we always end up in I, and that if we started in I we remain

in [ all along.

So the problem is to find such path ¢;. This itself will be done in two steps corresponding
to the two coordinates z,y in our coordinate chart U. We name these two subsegments 2.1
and 2.2. We describe segment 2.1, corresponding to the first coordinate, z.

As above, we write b as a pair b : U — R® and b : U — Msyo(R) such that for each
p € U, b(p) is of rank 2. We define A : U — GLF(R) (The space of 3 x 3 matrices of positive
determinant) as follows: The two first columns of A(p) will be the two columns vy, vy of b(p),

and the third column vz will be the unique vector which is

1. perpendicular to vy, vs.
2. lvs|| = [joa]l-

3. the matrix A = (v, v,,v3) has positive determinant.

We define the “wave function” W = (Wi, Ws) : R — R? to be a periodic smooth function
which traces a figure 8 as in Figure la. The range of the derivative vector of W is depicted
in Figure 1b. The property to be noticed is that there is a constant & such that if e; denotes
the unit vector in the z direction then, |le; + t2%(s)|| > k, for any s € R and ¢ > 0.
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FIGURE 1. The wave function
Define W (s) = (Wi(s),0, Wa(s)) (written as a column). We then define ¢ : U — R? by
¢(z,y) = aA(z,y)W (cz) where a is a small constant and c is a large constant, both to be
determined.
We look at b+ tdp (0 < ¢ < 1). This is a matrix whose columns are the following pair of

vectors:

dp 0A - dW
v + t% =v; + ta%W(cx) + tacAE(c:c)

0 0A _
vy + tg—z =vy + taa—yW(c:c).

We choose a so small so that |[aZ2W|| < ¢ and ||a%V_V|| < e on U, for ¢ defined in the

following exercise:

Fzxercise 2. 1. Let 21,25 € R® be independent vectors. Show that for any u;,uy; € R3
satisfying ||u1]| < 3dist(z1,span(z2)) and |lus|| < 3dist(z, span(z1)), the pair z; +

U1, 29 + Uy 1s also independent.
2. For vy, v9,v3, k appearing above, show that there is € > 0 such that for any wu;,us with
|lui]] <€, ||uz|| < € and for any v € span(vq,vs) with ||v|| > k||v1]|, the pair v4uq, vo+us

is everywhere independent.

So since by definition of k£ and A, v; + tacA% > k||v1]| for any choice of positive ¢, qa,c,
the above choice of a guarantees that the pair v; + tacA% + ta?)—‘:W,vg + ta%W will be
independent for any t,c > 0.

What we have just done is to choose a so small so that the terms tag—f;‘W,ta%W will not
damage the independence of the pair v; + tacA%, vg which is indeed independent since 0 #

U1 —I—tacA% € span(vy,vs). In what follows we will simply drop the terms tag—fW, ta%W, S0



will approximate the pair vy -I—t%‘f, Uy -I—t%‘g by the pair vy -I—tacA%, vy, with the understanding
that a is taken small enough to allow this in all following considerations.

Now we will choose ¢ to be so large so that the distance from v; + acA% to span(v,)
will be large with respect to the vectors v; and g—g. Note that since w3 is perpendicular to
v1, Vg, the distance from vy to span(v; + acA%) may only be larger than its distance to
span(vy). This is important to note with reversed roles for segment 2.2, when we perform
the same procedure on v, and want to know that we are not undoing our achievements for
v1. So indeed segment 2.1 will be defined by (b + tp,b + tdyp), (0 < t < 1). Segment 2.2
will use the final b we approached, namely (I; + ¢,b+ dyp) and begin the whole process with
this bundle monomorphism and with the second variable y. We will have a new function
U(z,y) = d A(z,y)W(cy), this time with W = (0, Wy, Ws) and A defined with |jvs|| = ||va|.
We will then achieve that also the distance from vy + a'¢ A% to span(v;) be large with
respect to the vectors v, and g—z, (where v; here denotes the new v; produced by segment
2.1). As noted, this will not damage the corresponding property already achieved in segment
2.1.

Segments 2.1, 2.2 may be written as: (b+te, b+tdp) (0 < t < 1) and (b+p+t, b+dp+tdi))
(0 <t <1). (So ¢ referred to at the outset is the concatenation of tp (0 < t < 1) and
v+t (0 <t <1)). We finally arrive at the bundle map (Z)-I—gé, b+ d¢p) where ¢ = ¢+, and
since b+ d¢ has the property that the distance of each of its columns to the span of the other
column, is very large with respect to vy, g—i and vo, 3—3 respectively, the path (1 —t)b+tdl3-|—d¢
is always a matrix with independent columns, which is what we were trying to achieve. This

completes the proof of SHT, recalling that two tasks remain for you:
Exercise 3. Extend the construction from one coordinate neighborhood to the whole of F'.

Ezxercise 4. Extend the proof to the general case stated in Theorem 1.1.

Remark: The substantial difficulty is the ability in step 2, to choose the one additional
vector normal to the given frame, with respect to a Riemannian metric we choose for M. It
is impossible in general that this choice will depend on the frame alone as may be seen for
Imm([0,1],R?). (That would imply a non-vanishing vector field on S2.) Hint for solution:
Let U C F be the given coordinate neighborhood, and being after step 1, we assume our
b€ Mon(TU,TM) are all smooth. We would like to cover Mon(TU,T M) with some finitely
many contractible open subsets. Choose a basepoint p € U, and for b € Mon(TU, T M) define
F(b) = (b(Z],), - - - ,b(%b)). This is an independent n-tuple of vectors in TM|3(p). The

Ozt
space of all such n-tuples, at all points of M, is a manifold X. The map F' : Mon(TU,TM) —



X is a fiber bundle with contractible fiber (since U may be contracted to p). Now X is not
compact, but itself is a fiber bundle with contractible fiber over a compact manifold (namely,
the manifold of all orthonormal n-tuples at all points of M). So X has a finite cover by
contractible open sets V;, and then G; = F~1(V;) gives the desired cover of Mon(TU,TM)
by contractible open sets. For given G; look at the space Y; of all pairs (b, u) where b € G,
and u : U — T'M is a smooth choice of normal for b (i.e. u is smooth, and for all z € U,
0 # u(z) € T|,;(x)M and is normal to the image of b(z)). Then Y; is a fiber bundle over G,
and since G; is contractible, there exists a section for this bundle, that is, on G there is a
choice of normal with which to build the waves. So we build the waves for each G; at a time
(diminishing all matters toward F~*(9V;)). We use the exponential map of the Riemannian

metric to transform the wave function from T M into M.

Ezxercise 5. Show that the assumption dim F' < dim M is needed, by showing that the
statement of SHT is false for Imm/(S*, S).

We concentrate from now on only on Imm(F,R3), F' a surface. We will further simplify
matters by replacing Mon(TF,TRR®) by an even simpler space. We first note that for any
F, the space Imm(F,R?) is non-empty. Indeed if F' is orientable or has boundary then it
may even be embedded into R®, and any closed non-orientable surface may be immersed as
a connect sum of Boy’s surfaces. This implies that also Mon(TF,TR?) is non-empty for any
F. (For a clear description of Boy’s surface, see [E].)

Since there is a natural identification TR?® = R® x R® we may think of a bundle map
be Mon(TF,TR?) as (b,b) : TF — R® x R®. Via contracting the first factor R® to a point,
we get that Mon(TF, TRR?) is homotopy equivalent to the space of maps b : TF — R3 which
are a linear monomorphism on each fiber of TF. This is the same as X = Mon(TF, pt x R?)
where pt x R?® is the R® vector bundle over a single point pt. Define Y = Map(F, GLT (R)),
the space of all continuous maps from F to GLF(R). We will now show that X is homotopy
equivalent to Y. Choose a base point by € X once and for all (X # @), and define f : X - Y
as follows: Let b € X then for any p € F, b(p) and by(p) are two linear embeddings of the
plane P = T,F into R®. Now f(b)(p) is defined to be the unique A € GIJ(R) such that
A oby(p) = b(p) and A maps a unit vector perpendicular to by(p)(P) into a unit vector
perpendicular to b(p)(P). We define g : Y — X as follows: for v € Y and p € F let

g(u)(p) = u(p) o bo(p).

FEzercise 6. Show that go f = Idx and f o g is homotopic to Idy.



Our last simplification is to notice that GIF(R) is homotopy equivalent to SOj; (hint:
the Gram-Schmidt process). Adding all steps together, we get that Imm(F,R?) is ho-
motopy equivalent to Map(F,SO;3). (The essential ingredients were SHT and the fact
that Mon(TF,TR®) # @.) In what follows we will be interested in mo(/mm(F,R?*)) and
71 (Imm(F,R3)), so will compute mo(Map(F, SO3)) and w1 (Map(F, SO3)). For this we need

to know several homotopy groups of SOj itself, namely:
70(503) = O, 71'1(503) = Z/Q, 71'2(503) = O, 71'3(503) = 7.
These are true since SOj3 is homeomorphic to RP3, which is double covered by S3.

Exercise 7. Prove the following relative version of SHT. Let S C F' be a subsurface and let
ig : ' — RR? be an immersion. Let A be the space of all immersions ¢ : /' — R? such that
ils = ig|s and let B be the space of all bundle monomorphisms b : TF — TR3 such that

bls = dig|s. Then the map d: A — B is a homotopy equivalence.

Exercise 8. For the definitions appearing in the previous exercise, show that B is homotopy
equivalent to the space of all maps f: F' — SOj3 such that f(S) =1 (I € SO; the identity

element).

Ezxercise 9. Let i : F — R® be an immersion and S C F' a subsurface. Let h; : S — R? be a
regular homotopy with hy = i|s. Show that h; can be extended to F' i.e. there is a regular
homotopy g; : F' — R® with gy = ¢ and g;|s = h; for all ¢. (Hint: First show that dh; can be
extended to a path of bundle monomorphisms b; € Mon(TF,TR?).)

Ezercise 10. Show that Imm(S*,R?) is homotopy equivalent to Map(S?, S') and compute
all homotopy groups of this space (including ).

2. REGULAR HOMOTOPY AND COBORDISM
This section is based on [P].

2.1. Regular homotopy. Recall that a path in Imm(F,R?) is called a regular homo-
topy. Accordingly, the path components are called regular homotopy classes, and two
immersions in the same component are called regularly homotopic. For given surface F
we would like to classify the regular homotopy classes in Imm(F,R*). From the pre-
vious section we know that once we choose a base immersion %y, the path components
of Imm(F,R*) correspond to the path components of Map(F,SO;), i.e. the homotopy
classes of maps from F to SO3. The set of homotopy classes is denoted [F,SO;]. For



h: F — SO3 let h, denote the homomorphism it induces on Hy(-,Z/2). Then h — h, is a
map ¢ : [F,SO3] - Hom(H(F,7Z/2),H(S03,Z/2)) = Hom(H(F,Z]2),7]2).

FExercise 11. Show that ¢ is bijective. (Hint: Use a CW structure on F, and the list of

homotopy groups of SO3; appearing above).

So the composed map mo(Imm(F,R®)) = Hom(H,(F,7/2),7/2)is a bijection. In partic-
ular we get that there are 2" regular homotopy classes of immersions of F' into R® where n =
dim H,(F,Z/2). (Note, for F' = S? this gives that there is just one regular homotopy class,
i.e. any two immersions of S? into R® are regularly homotopic, in particular there exists an
eversion of the sphere.) We see from the bijection mo(Imm(F,R?)) - Hom(H(F,Z/2),7Z]2)
that the regular homotopy class of an immersion i : ' — R? is determined by the relative
twisting between ¢ and the base immersion 7y along loops in F. Instead of looking at the
relative twisting between ¢ and 7y we will define a notion of “absolute” twisting for embedded
loops in F', and the function h, characterizing ¢ will then be replaced by a new function on
H,(F,Z/2) which does not depend on a base immersion 7. The new function will not be a
homomorphism but will have other special algebraic properties. From now on we will denote
H,(F,7Z/2) by Hy and Hom(H(F,7Z/2),7/2) by Hf. (H{ is naturally identified with the
cohomology H(F,7Z/2).)

(Abstractly, the situation is as follows: for any two elements of my(Imm(F,R?)) we have
defined their “difference” h,, an element in the linear space Hj. This gives a structure
of affine space to mo(Imm(F,R?)), and so once an origin for mo(Imm(F,R%)) is chosen,
mo(Imm(F,R?)) is identified with H;, which is the identification appearing above. What we
would now like to do is to find some “absolute” model for this affine space, which does not
depend on choice of origin.)

Let A be the annulus and M the Mobius band, then [4, SO3] = [S*, SO3] = [M, SO3] has
precisely two elements. (This explains the “belt trick”.) Denote H = (1Z)/2. For A, there
is one regular homotopy class which includes an embedding contained in a plane in R?, and
we assign the value 0 € ‘H to this regular homotopy class and the value 1 € H to the other
regular homotopy class. As for M we assign the value % € M to one of the classes (once and
for all), and —% € H to the other regular homotopy class. Now given any surface ' and
immersion i : F' — R? we define ¢' : H; — H as follows: For z € H; take an embedded loop

~ in F' which represents x.

Ezxercise 12. Show that such embedded loop always exists.



Let U be a thin neighborhood of v in F', then U is either an annulus or Mobius band. We
defined g'(z) € H as the value in H assigned above to i|y.

Exercise 13. Show that this value does not depend on the choice of identification of U with A
or M and does not depend on the choice of embedded loop 7 in F' representing the homology

class z.
We denote by z - y the intersection form on H,(F,Z/2).

FEzercise 14. Let i : F — R3 be an immersion, then for any z,y € H;:

g(z+y)=g'(x)+d'(y) +z v

(Note that z -y € Z/2 C H.)

A function g : H; — H satisfying the above property will be called a quadratic form on
H,.

Ezercise 15. Let Q(F') denote the set of all quadratic forms on H;. Show that
1. If g,¢' € Q(F) then g — ¢’ € Hf.
2. If g € Q(F),p € H then g+ ¢ € Q(F).

It follows that if an origin gy € Q(F') is chosen then the map ¢ — gg + ¢ is a bijection
between H; and Q(F). We now note that if iy € Imm(F,R?) is chosen as base immersion
then for any i € Imm(F,R®), if h, € H} is the homomorphism we have originally attached

to i using the base immersion g, then ¢* = ¢* + h,. All put together we obtain:
Theorem 2.1. The map mo(Imm(F,R?)) — Q(F) given by i — g', is a bijection.

2.2. Regular homotopy up to diffeomorphism of I'. Assume from now on that F'is
closed, and so the intersection form on H; is non-degenerate. For a € H the number e*™ € C
is well defined and a — €®™ maps sums to products. For g € Q(F) we define

Arf(g) = _ Z ed(@)mi

dim Hj
\/5 € Hq

This gives a new invariant of immersions, namely i — Arf(g'), which we will call the Arf
invariant of the immersion ¢. An automorphism u : H; — H; which preserves the intersection
form will be called intersection preserving. Clearly, if v : H; — H; is an intersection

preserving automorphism, then g o u is a quadratic form and Arf(g o u) = Arf(g).



Exercise 16. 1. Show that the Arf invariant is multiplicative in the following sense: If g
is a quadratic form on H; and H; = V; @ V, with 2 -y = 0 for any = € V},y € V5, then
Arf(g) = Arf(g|v; ) Arf(gv,)

2. Show that Arf(g) is always an eighth root of unity.

3. Show that if g;, g2 are two quadratic forms on H; with Arf(g;) = Arf(gz) then there is
an intersection preserving automorphism u of Hy, such that ¢; = goou. (Hint: Separate
the cases of I’ orientable and non-orientable, and concentrate first on dim H; < 4.)

4. Show that for any intersection preserving automorphism u of H; there is a diffeomor-
phism h: F' — F with h, = u.

5. Show that if ¢ : £ — R® is an immersion and h : ' — F a diffeomorphism then
¢ = g o h,.

6. Conclude the following theorem:

Theorem 2.2. Leti,j: F — R? be two immersions. Then Arf(g*) = Arf(g) iff there exists
a diffeomorphism h : F' — F such that i and j o h are regularly homotopic.

2.3. Cobordism. Let F,, F; be two closed surfaces and iy : F; — R3, 4y : F; — R3
be immersions. A cobordism between 7, and ¢; is a 3-dimensional manifold M, a proper
immersion j : M — R? x [0, 1], and identification of the disjoint union Fy U F; with OM such
that j|g, =9 x {0} and j|m =143 x {1}.

Fxercise 17. Show that if ¢, : F — R® are immersions, h : F' — F is a diffeomorphism, and

¢ and j o h are regularly homotopic, then ¢ and j are cobordant.

If 5 is a cobordism between g, ¢;, then by slightly perturbing ; we may assume that the
projection of j to the [0, 1] factor, is a Morse function. And so if we follow the sections
J7H(R® x {t}) then except for some finitely many times they are smooth closed (perhaps
non-connected) surfaces moving around via regular homotopy, and at the special times,
precisely four types of surgery may appear (see [Mi]), they are the disappearance of a small

sphere, the pinching down of a thin tube, and the two reverse operations.

Ezercise 18. Show that the Arf invariant is invariant under cobordism. (Hint: show that it

is invariant under each of the above four surgeries.)
We will now prove the converse and thus obtain:

Theorem 2.3. Two immersions iy : Fy — R3, i1 : F; — R3 have the same Arf invariant iff

they are cobordant.



We first show that if ¢ : F — R® is an immersion and there is 0 # z € H(F,Z/2)
with ¢'(z) = 0, then ¢ is cobordant to an immersion j : S — R3 with dim H,(S,7Z/2) <
dim H,(F,7Z/2): Realizing = as an embedded loop ~, then 7 is non-separating (since = # 0)
and a neighborhood A of v is an annulus (since g’(z) = 0). Since - is non-separating, there is
an embedded loop 4’ which intersects v transversally at exactly one point. A neighborhood
U of yU~' is either a punctured torus or punctured Klein bottle. (The two cases occur when
a neighborhood of 4 is an annulus or Mobius band, respectively). Let ¢ = OU. Then since
cis 0 in Hy(F,Z/2), then g*(c) = 0 and so there is a regular homotopy of a neighborhood
of ¢ bringing it to the shape of a thin tube. By Exercise 9 this regular homotopy may be
extended to the whole of /. We may pinch off this tube, disconnecting F' into a torus or
Klein bottle G, and another closed surface S with dim H,(S,Z/2) = dim H,(F,Z/2) — 2.
Now the the loop v which has g*(y) = 0 is contained in G, and the same procedure may
be performed on it to pinch it off, Turning G into a sphere. Any immersion of a sphere is
regularly homotopic to an embedded sphere, which may be made to shrink and disappear,

leaving us only with the immersed surface S.

FEzercise 19. Show that if dimH; > 4 and ¢ : ' — R3? is an immersion then there is

0 # z € H, with ¢g*(z) = 0.

So for any F' and immersion i : ' — R?, ¢ is cobordant to an immersion j : S — R® with

dim H,(S,Z/2) < 3.
Ezercise 20. Establish Theorem 2.3 for all ' with dim H,(F,Z/2) < 3.

All steps combined, Theorem 2.3 is proved.

‘We conclude this section with two remarks on convention.

1. In [P] the values of a quadratic form are not taken in H = (3Z)/2 but rather in the
isomorphic Z /4. The defining relation then becomes g(z +vy) = g(z) + g(y) + 2z -y and
an extra % appears in the exponent in the definition of the Arf invariant.

2. For an orientable surface, all terms in the sum defining the Arf invariant are +1, and so
the Arf invariant itself is real and so is £1. In this case traditionally the Arf invariant

is considered as additive values 0,1 € Z/2 in place of 1,—1 € C respectively.

3. THE FUNDAMENTAL GROUP AND FINITE ORDER INVARIANTS

In sections 3 and 4 we assume F' is closed and orientable. The analogous results for

non-orientable surfaces appear in [N6].



3.1. The fundamental group. This subsection is based on [N1].

We start by computing m (Imm(F,R?),4) for i € Imm(F,R3) a base point. Using
the same ¢y as base immersion in the correspondence Imm(F,R3) — Map(F, SO3) ap-
pearing in Section 1, we get that m (Imm(F,R?),i0) = m(Map(F,SO3), fo) where f, €
Map(F,SO;3) is the map defined by fo(F) = {I} where I € SOj3 is the identity element.
But m (Map(F, SO3), fo) is the same as the group of all maps h : F' x [0, 1] — SOj such that
h(p,0) = h(p,1) = I for all p € F', and where the operation is concatenation along the [0, 1]

factor.

FExercise 21. Show that this group (for F' closed orientable) is Z /2 @ Z. Describe the order
2 element. Show that the generator of the Z factor may be realized by a regular homotopy
which keeps all of F' fixed except for a small disc.

We will now construct a generator of the Z factor in 71 (Imm(F,R?)), starting first with
F = 52 Let D,U C S? the unit discs in the two standard coordinate charts for S? as the
Riemann sphere, so DUU = S? DNU = 8D = OU, and on a neighborhood of AU, the

change of coordinates function is z — I, that is, ¢(z,y) = ﬁ(w, —y).

Fzercise 22. Show that when moving from any (z,y) € 9U along 9U to (—z,—y), d¢
performs precisely one full rotation with respect to the fixed frame in D. In particular
dé(z,y) = dp(—z,—y) for any (z,y) € OU.

(Note that when going all the way around AU, the number of rotations of d¢ is 2 = x(.5?).

This is a special case of a general phenomenon regarding vector fields on manifolds.)

Let ig : S* — R® be an immersion such that 4y|p, in the coordinates of D, is the natural
inclusion (z,y) — (z,y,0). Let A be the space of all immersions of i : S* — R? such that
i|p = ig|p. Using Exercise 8, m1(A) = m3(S03) = Z which may be identified with the Z factor
of m1(Imm(S? R?)). So we are looking for the generator of m(A). We define an involution

7 : A — A using the coordinates of U as follows: For ¢ € A, 7(i)(z,y) = —i(—z, —y).

Ezercise 23. 1. Show that for ¢ € A, the formula above for 7(¢) matches smoothly with
ig|p and so indeed 7(i) € A is well defined.

2. Show that 7 is a free involution, i.e. 72 = Id4 and 7(3) # 7 for any i € A.

Now let h(t) be any path in A from iy to 7(ig) (so if 7y is an embedding then A(t) is an
eversion of the sphere) and let g(¢) be the loop h* (7 0h). We will show that the loop g is an
odd power of the generator of m(A). When denoting g as a regular homotopy g; : FF — R3



(0 < ¢ < 1), then g, fixes D and on U it satisfies g¢(,y) = —g141)moar(—%, —¥) and so
dg(z,y) = dg(t+%)m0d1(—m,—y). Since g; fixes D, we have on OU that dg; = dij for all ¢.
Define S to be the space obtained from U X [0, 1] by identifying (p,0) with (p,1) for any
p € U and identifying {p} x [0, 1] to a point for each p € 9U.

FEzercise 24. Show that S is homeomorphic to S, and with a right choice of homeomorphism,
the antipodal map on S® will correspond to the map ¢ : S — S defined by ((z,y),t) —
((—z,—y), (t + 1) mod 1).

Let K : M3x2(R) — SO3 be the map assigning to A € M342(R) the unique matrix in SO3
whose first two columns are obtained from the columns of A by the Gram-Schmidt process.
By all the above, K o dg; induces a well defined function g : S — SOj3 satisfying go c = g.
So g defines a map G : S/c = RP3 — SOz = RP3. The degree of the lift of § to the double
cover S3 of SOz, determines the element that § represents in m3(S03), and so the element
that g, represents in 71(A). But this is the same as the degree of G : RP® — RP?. So it

remains to show that the degree of GG is odd.

Ezercise 25. Show that h : RP?® — RP? has odd degree iff h, : m(RP?) — 7 (RP?) is

non-trivial.

Ezxercise 26. Use Exercise 22 to show that indeed G induces the non-trivial homomorphism

Wl(RPB) — Wl(RPB).

This completes the proof that g; represents an odd power of the generator in m1(A). As
you shall see, this is all we will need in the sequel, nevertheless, we will now show that for a
right choice of h;, g, represents an actual generator, not just an odd power. Let A’ = A/7
then by Exercise 23 A is a double cover of A’ and so Z = m(A) is a subgroup of index 2 in
H = m(A’). Furthermore, h; defines an element h € H, and what we have shown above is

that h? is an odd power of the generator of m(A) C m(A').

Exercise 27. Let H be a group and C' C H an infinite cyclic subgroup of index 2. Assume
there is h € H such that h? is an odd power of the generator of C. Then H is cyclic.

FExercise 28. Conclude from the previous exercise that there exists an h; from i to 7(ip)

such that the g; as constructed above from h;, represents the generator of m(A).

We mention that in [MB] a similar construction on one specific eversion of the sphere is
shown to produce a generator, via a lengthy analysis of a sequence of 19 drawings describing

that eversion.



Fzxercise 29. Show that if the regular homotopy g; : S? — R3 of Exercise 28 is connect
summed at the interior of D with any fixed immersion ¢ of a closed orientable surface F,

then the loop in Imm(F,R%) thus obtained is a generator of the infinite cyclic factor of

m (Imm(F,R%)).

3.2. Finite order invariants. This subsection is based on [N3]

A CE point of an immersion i : F — R3 is a point of self intersection of ¢ for which
the local stratum in Imm(F,R®) corresponding to the self intersection, has codimension
one. The codim 1 strata are divided into four types which we call: E, H, T, (). The four
types may be demonstrated by the following local representatives, where formulae in 3-space
defining the different sheets involved in the self intersection, are given. Representatives of
the codim 1 strata are obtained from the formulae below by setting A = 0. Letting A vary, we
obtain a 1-parameter family of immersions which is transverse to the given codim 1 stratum.

E: z=0, z=2z%+y*+ )\ See Figure 4, ignoring the vertical plane.

H: z=0, z=z?—y>+ )\ See Figure 5, ignoring the vertical plane.

T: 2z=0, y=0, z=1y+2%+ ). See Figure 6, ignoring the vertical plane z = 0.

Q: 2=0, y=0, =0, z=2za4y+ A This is simply four planes passing through
one point, any three of which are in general position.

The four types of CEs are further divided into twelve types, according to the relative orien-
tations of the sheets involved. We name them: E°, B, B2, H', H2,T° T, T% T3, Q% Q3, Q*.
This set of twelve symbols is denoted C. A co-orientation for a CE is a choice of one of the
two sides of the local stratum corresponding to the CE. All but two of the above CE types
are non-symmetric in the sense that the two sides of the local stratum may be distinguished
via the local configuration of the CE, and for those ten CE types, permanent co-orientations
for the corresponding strata are chosen once and for all. The two exceptions are H' and
@Q? which are completely symmetric. In fact, there does not exist a consistent choice of
co-orientation for H! and Q% CEs since as we shall see the global strata corresponding to
these CE types are one sided in Imm(F,R?).

We fix a closed oriented surface F' and a regular homotopy class A of immersions of F' into
R® (that is, A is a connected component of Imm(F,R*)). We denote by I,, C A (n > 0) the
space of all immersions in 4 which have precisely n CE points (the self intersection being
elsewhere stable). In particular, I; is the space of all stable immersions in .A.

Given an immersion ¢ € [,,, a temporary co-orientation for ¢ is a choice of co-orientation

at each of the n CE points pq,...,p, of i. Given a temporary co-orientation ¥ for ¢ and a



subset A C {p1,...,ps}, we define ix 4 € I to be the immersion obtained from ¢ by resolving
all CEs of 7 at points of A into the positive side with respect to ¥, and all CEs not in A
into the negative side. Now let G be any Abelian group and let f : [y — G be an invariant,
i.e. a function which is constant on each connected component of I,. Given ¢ € [, and a

temporary co-orientation ¥ for i, f*(i) is defined as follows:

Fiy= ) ()M (isa)

Ag{p17'“7pn}

where |A| is the number of elements in A. The statement f*(i) = 0 is independent of the
temporary co-orientation T so we simply write f(¢) = 0. An invariant f : Iy — G is called of
finite order if there is an n such that f(:) = 0 for all ¢ € ;. The minimal such n is called
the order of f. The group of all invariants on I of order at most n is denoted V,, = V,,(G).

For an immersion 7 : ' — R?® and any p € R?, we define the degree d,(i) € Z of ¢ at
p as follows: If p & i(F') then d,(7) is the (usual) degree of the map obtained from ¢ by
composing it with the projection onto a small sphere centered at p. If on the other hand
p € i(F) then we first push each sheet of F' which passes through p, a bit into its preferred
side determined by the orientation of F', obtaining a new immersion 7" which misses p, and
we define d,(1) = d,(7').

For p a CE point of i : F' — R* we define C,(¢) to be the expression R%, where R* € C
is the symbol describing the configuration of the CE of i at p (one of the twelve symbols
above) and m = d,(i¢). C, denotes the set of all un-ordered n-tuples of expressions R,
with R* € C,m € Z. (So C, is the set of un-ordered n-tuples of elements of C;.) A map
C : I, = C, is defined by C(i) = [Cp,(7),...,C,,(1)] € C, where py,...,p, are the n CE

points of <.

Exercise 30. Show that the map C' : I, — C, is surjective, that is, any n-tuple may be

realized by some immersion, in any regular homotopy class.

A regular homotopy between two immersions in [, is called an AB equivalence if it is
alternatingly of type A and B, where J; : FF — R® (0 <t < 1) is of type A if it is of the
form J; = U, 0i0V, where i : F — R® is an immersion and U, : R? - R® V, : F — F
are isotopies, and J; : F' — R® (0 < ¢ < 1) is of type B if Jy € I, and there are little balls
Bi,..., B, C R centered at the n CE points of J; such that J; fixes U = (Jy)"*(U, Bx) and
moves F' — U within R® — |J, B.

We will now prove:



Theorem 3.1. Leti,j € I, then i and j are AB equivalent iff C(i) = C(j).

If i and j are AB equivalent then clearly C(i) = C(j). For the converse, assume C(i) =

C(j). One can order the CEs of ¢ and j, respectively p),...,p), and pi,...,p,, such that

Cyp, (i) = Cp,(4), k = 1,...,n. This means in particular, that if By,..., B, and By,..., B,
are neighborhoods of the p)s and pgs respectively, then for each k there is an orientation
preserving diffecomorphism from Bj, to Bj which takes each sheet of i(F') N B}, orientation
preservingly onto the corresponding sheet of j(F') N By. These diffeomorphisms may all be
realized by one ambient isotopy U; : R® — R3. There is then an isotopy V; : F — F such
that the final immersion i’ of the regular homotopy U; o ¢ o V; satisfies that ¢/ and j have
the same n CE points pi,...,p, € R®, (U, Bx) = 5-(U,, Br) which we name U, and
i'lv = jlu. Also dp, (i) = d,,(j) for k =1,...,n. Now U is a union of some discs Dy,...,D,.
We construct the following handle decomposition of F. Dy, ..., D, will be the 0-handles. If
g is the genus of F' we will have 1-handles hi, ..., hogy,—1 as follows: hy,...,hy, will each
have both ends glued to D; such that F' — (D; U hy U --- U hy,) will be a disc containing
Ds,...,D,. Then for k = 1,...7 — 1, hggys will have one end glued to D), and the other to
Dp41. The complement of all 0- and 1-handles is again one disc, which will be the unique
2-handle. We will now construct a regular homotopy of the form i’ oV} (V/ : FF — F an
isotopy) from ¢’ to an immersion " which will have the property that the restrictions of "
and j to all 1-handles, are regularly homotopic keeping all 0-handles fixed. Since ¢ and j
are regularly homotopic (recall ¢,j € I,, C A), this is already true for hy,..., hy,. Now take
hogy1. If @'|p,,,, and j|p,,,, are not regularly homotopic keeping D; and D fixed, then V/
performs one full rotation of D5, creating one full twist in a thin annulus around Dj in F'.
hag+1 will now satisfy the needed property. Note also that this rotation of Dy moves only
hag+1 and hogyo, keeping all other 0- and 1-handles fixed. We continue this way along the
chain of 1-handles, rotating Dy, if necessary for the sake of hoyyr. For & < r — 1 this will
also move hog4r+1, but we never need to move 1-handles that have previously been taken care
of. Also d,, (") = dp, (1) = dp, (j) for all k =1,...,n. We now perform a regular homotopy
H; on the union of 0- and 1-handles which fixes the 0-handles, and regularly homotopes
each 1-handle h, from 7’|, to j|, avoiding |J, Bi. This is possible by the construction of 7”.
Denote our 2-handle by D. So far we have constructed H; only on F' — D. By Exercise 9
H; may be extended to D, still avoiding | J, By, arriving at an immersion ¢"’. And so, we

are left with regularly homotoping i"|p to j|p (relative D). Since d,, (i) = d,, (j) for all



k=1,...,n, these maps are homotopic in R? — |J, By. It then follows from SHT that they
are also regularly homotopic in R* — J, By (since m3(SO;3) = 0).

The regular homotopy from i to ¢" was of type A, and that from " to j was of type B.
This completes the proof of Theorem 3.1.

Exercise 31. 1. Use the construction appearing in the proof of Theorem 3.1 to show that
for a CE of type H! or Q? of i € I,, located at p, there is an AB equivalence from i to
itself such that when carrying the co-orientations along, it will come back to itself at
p with the reversed co-orientation, and will come back at all other n — 1 CEs with the
original co-orientation.

2. Conclude that if f € V,, and i € I,, has at least one CE of type H' or Q% and T is a
temporary co-orientation for 4, then 2f*(i) = 0, and so in this case f*(7) is independent

of .

This fact is used to extend any f € V, to I, by setting for any i € I,,, f(i) = f*(i), where
if ¢ includes at least one CE of type H! or Q* then ¥ is arbitrary, and if all CEs of i are not
of type H' or @Q? then the permanent co-orientation is used for all CEs of i. We will always
assume without mention that any f € V,, is extended to [, in this way. (If f € V,, then we
are not extending f to Iy for 0 < k < n).

Ezxercise 32. For f € V,, and 4,5 € I,,, if C(¢) = C(j) then f(i) = f(j). (Hint: Theorem
3.1.)

So any f € V,, induces a well defined function u(f) : C, = G. The map f + u(f) induces
an injection w : V,,/V,,_1 — C where C} is the group of all functions from C, to G. Finding
the image of u for all n gives a classification of all finite order invariants.

A subgroup A, = A,(G) C C which contains the image of u is defined as the set
of functions in C; satisfying relations which we write as relations on the symbols R?,
e.g. T) = T3 will stand for the set of all relations of the form g¢([T, Ro?,. .., Rag']) =
9([T3, R, - .., Ryg]) with arbitrary Ryf?,..., R,g" € Ci. The relations are obtained from
examining the CEs occurring when going in Imm(F,R?) around strata of codimension 2.
There are six types of such strata as presented below. The classification of the possible
codimension 2 strata relies on [HK].

For each of the first five types we give the following:

1. Formula for a local representative.

2. Sketch of the configuration for some value (A1, A3) of the parameters.



3. Diagram of the 2 dimensional parameter space, where intersection with the codim 1
strata is depicted, including their co-orientations (this is called a bifurcation diagram).

4. The relation arising.

For these five types, the bifurcation diagram is obtained from the sketch and formula in
a straight forward manner. Whenever the plane z = 0 appears in a configuration below,
we assume (by rotating the configuration if necessary) that its preferred side is 2 > 0. The
integer m in terms of which the degrees of the CEs are given, is the degree of the central
codim 2 immersion at its codim 2 self intersection. The sixth type is named QQ); it requires

special analysis which appears in [N3].

FIGURE 2. EFH configuration
EH: 2=0, z=9*+2z34+ X Nz + \o.

(1) 0=E% — H®

77\/ T

FIGURE 3. T'T configuration
TT: 2z=0, y=0, z=y+ 234+ Mz + .
) 0=T2 T3
ET: 2=0, 2=0, z2=(z—M)*+v*+ Ao

(3) 0=T* T _E*  +E*
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FIGURE 5. HT configuration

HT: 2=0, z=0, z=(z—X\)*—9*+ X

(4) 0=-T%' 41 —H° |+ H®
A |m Tn‘:-l |
H L( V4 * |
—\ / On !
ﬂ \/

FIGURE 6. T'Q) configuration
TQ: Z:O, y:()) .’L’:O, Z=y+($—)\1)2—|—)\2.
(5) 0=0Q5 - Q" —Tny+Tn

The sixth type QQ, whose analysis appears in [N3], leads the to the following relation:

(6) an = zn—l

These six relations, together with the relations coming from Exercise 31, are the relations

with which we define A,,. They may be summed up as follows:

o 2 =—E) =H2, E; =H..



o 70 =73

m="Tn, Tn=T5.
e 2H! =0, H! =H! ..
©2Q;, =0, Q=@

o H2 — H2 ,=T3 -T2,

¢ Qn—Qn=To-T,, @, -Qn=T,-T7_,

Let B C G be the subgroup defined by B = {z € G : 2z = 0}. To obtain a function g € A
one may assign arbitrary values in G for the symbols {72 },.cz, { HZ }mez (here we use the
convention of [N5] not [N3],[N4]) and arbitrary values in B for the two symbols Hj, Q3. Once
this is done then the value of g on all other symbols is uniquely determined, namely:

El! = H! = H} for all m.

E2 = —E° = H2 for all m.

T, =T,+H., —H.
T =73, T} =T2 for all m.

Q2% = Q2 for all m.

Q=@+ 10 —Th_1) = Qp + T — T, for all m.

Q*(=Q3 +T3 —T3_)=Q° +2T2 —2T2_, + H? —2H?_| + H? _, for all m.

m
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We will refer to this procedure as the ”7-step procedure”.

Let gq € A1(Z/2) be defined by go(QF) = 1 € Z/2 and go(H;) = 90(177) = go(H,) =0
for all m. By the 7-step procedure this extends to go(Q%) = 1 € Z/2 for all a,m and
90(EL) = go(HE) = go(T%) = 0 for all a,m. We would like to establish the existence of an
order 1 invariant @) : Iy — A satisfying u(Q) = g¢. Along a regular homotopy in A, such
@ will change by 1 € Z /2 whenever we pass a quadruple point, and will remain unchanged
whenever we pass a CE of other type. So we may try to construct such ) by choosing a base
immersion ¢ € I and for any j € I define Q(j) to be the number mod 2 of quadruple point
occurring in a regular homotopy from ¢ to 5. This is well defined iff the number of quadruple

points along any closed loop in A is 0 mod 2.

FExercise 33. Show that since g9 € A1(Z/2), the number mod 2 of quadruple points occurring
in any null-homotopic loop in A is 0 € Z /2.

So the number mod 2 of quadruple points is well defined on 7;(.A) and so it is enough
to verify that it is 0 on generators of m;(.A). The order 2 generator corresponds to rigid
rotation of an immersion by one full rotation. This produces no quadruple points at all. As

to the generator of the infinite cyclic factor C, let us begin with the case of F' = S2. By



Exercise 28 there exists a generating loop g such that the second half of g is obtained from
the first half by the involution 7. But then it is clear that the number of quadruple points
occurring in the first and second halves of g is equal, and so the total number is 0 mod 2.
(Note that since we are interested in a homomorphism into Z /2, g; being some odd power
of the generator would have sufficed.)

For general F, take the loop g we have for S?, and choose a point z on a ray perpendicular
to the fixed image of D in R?®, z being far enough so that the image of g; never passes z.
Now change the constant embedding of D to be one with a thin “thorn” pulled out of D
and embedded along this ray, reaching . The new loop g; obtained in this way must also
have 0 mod 2 quadruple points, and has the property that a given point in the fixed disc D
(namely, the tip of the thorn) does not participate in any self intersections throughout g;.
Now take a tiny immersion of F' in I, located near the tip of our fixed thorn, and connect
sum it with g} (for all ¢), obtaining a loop f; : F' — R®. By Exercise 29 this loop f; : F — R®
represents a generator of the infinite cyclic factor C' for F. Since the tip of the thorn was
far away from any self intersections occurring in g, the tiny fixed immersion of F' will not
contribute any additional quadruple points, and so this remains 0 mod 2. This completes
the proof that @ is well defined for any surface F.

We now repeat this procedure for another 7 /2 valued order 1 invariant. Let gy € A1(Z/2)
be defined by gy (H}) =1 € Z/2 and gy (Q3) = gu(T2) = gu(HZ) = 0 for all m. By the
7-step procedure this extends to gy (Hy,) = gu(Es,) = 1 for all m, gy (HE) = gu(EL) =0
for a # 1 and any m and gy (7%) = gu(Q%) = 0 for all a,m. As for @, we would like to
establish the existence of an order 1 invariant M : Iy — A satisfying u(M) = gu. Along
a regular homotopy in A, such M will change by 1 € Z/2 iff the CE we are passing is a
"matching tangency”, i.e. tangency of two sheets of the surface where the orientations of
the two sheets match at time of tangency. (Thus the name M for this invariant). As before,
M exists iff the number of matching tangencies along any closed loop in A is 0 mod 2. The
same argument as for () shows that this is also true for M.

The Abelian group Gy is defined as follows (again this is the convention of [N5] not
N3] IN4)):

GU = <{t3n}m627 {hzn}m€27 hé)‘]g | 2hé = 2qg = O> .

The universal element g € A;(Gy) is defined by gV (T2) = t2,, gV (HZ) = k2, gV (H}) =
hy, gV (Q3) = 2 and the value of gV on all other symbols of C; is determined by the 7-

step procedure. We will prove the existence of an order 1 invariant fY : I, — Gy with



u(fY) = g¥. Our proof will somewhat differ from that appearing in [N3]. We have already
proved the existence of the Z/2 valued invariants @ and M, and so the existence of the
projection of fU to the subgroup of Gy generated by h}, g2. We will establish the existence
of the complementary projection of fY to the subgroup K generated by {t2 },nezU{hZ }mez,
by giving an explicit formula for this invariant in the following section. The invariant fU, if

exists, is a universal order 1 invariant, meaning the following:

Definition 3.2. A pair (G, f) where G is an Abelian group and f : Iy — G is an order n
invariant, will be called a universal order n invariant if for any Abelian group G’ and any
order n invariant f': Iy — G’ there exists a unique homomorphism ¢ : G — G’ such that

f'— @ o fis an invariant of order at most n — 1.

In [N4] all higher order invariants are classified, and for every n a universal order n invariant
is constructed as F, o fY where F,, : Gy — M, is an explicit function (not homomorphism)

into a certain Abelian group M,,.

4. FORMULAE FOR ORDER ONE INVARIANTS

4.1. Formula for f¥. This subsection is based on [N5].

Recall K C Gy is the subgroup generated by {t2 }.ez U {h2 }mez and let g% € A;(K)
be the projection of gV to K. We will now establish the existence of order 1 invariant
& Iy - K satisfying u(f%) = g%. We will do this by explicitly constructing f¥. This
will complete the proof of the existence of fU.

Let ¢ € Iy. For every m € Z let U,, = U,,(i) = {p € R* —i(F) : d,(i) = m}. This is an
open set in R which may be empty, and may be non-connected or unbounded, but in any
case, the Euler characteristic x(U,,) is defined. Denote by N,, = N,,(¢) the number of triple
points p € R® of ¢ having d,(7) = m.

We define the group O to be the free Abelian group with generators {2, }nez U {¥n}nez-
For ¢ € I we define k(i) € O as follows (the sums are always finite):

k(i) = %X(Um)xm + mEE:Z %Nmym.
Indeed this is an element of O since as we shall see below, V,, is always even. In the mean

time say k attains values in the QQ vector space with same basis.

FExercise 34. The invariant k is an order 1 invariant, with u(k) given by:

o u(k)(Ep) = w(k)(H}) = Tmia2 = Tm—a



o u(k)(ngL) = Tm4a-3 + Tm—a + Ym
o u(k:)(an) = Tm+a—4 — Tm—a + (a - Q)ym + (2 - a)ym—l

We can now verify that indeed the values of k£ are in © i.e. no half integer coefficients
appear (which means N,, is always even). From Exercise 34 we see that the change in the
value of £ is in @ along any regular homotopy, and so it is enough to show that the value is

in @ for one immersion in any given regular homotopy class.

FExercise 35. Let g be the genus of F. Any immersion i : ' — R? is regularly homotopic to

an immersion j with k(j) = (2 — g)zo + (1 — g)z_1.

We define a homomorphism ¢ : Gy — O on generators as follows:

o o(h2) =T — T2

o o(th) = Tm-1 + Tz + Ym

o o(hg) = ¢(g5) =0

By Exercise 34, u(k) = ¢ o gV. We define the following homomorphism F : O — K
satisfying that F o ¢ is the projection of Gy onto K, and so u(Fok) = Fopog? = g¥. So

f¥ = F ok is the invariant we are seeking. We define F' on generators of O as follows:
Flan)= Y, hhy Flyn) =t — >, h
—3<k<|Z]+3 —LI<k<m—1

where for a € R, |a] denotes the greatest integer < a, and for a,b € R the sum .,

means the following: If @ < b then it is the sum over all integers a < k < b, if a = b then the
sum is 0, and if a > b then Y ;) = — D icrca-

Exercise 36. Check that indeed F' o ¢ maps each generator of K to itself.

Composing the formula for F' with the formula for £ we obtain our formula for f¥:
. 1
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meZ —I<k<|Z]+3 meZ —Ll<k<m—1
The existence of f¥ together with the existence of @ and M (which we have proved in a

completely different way), establishes the existence of the invariant fU satisfying u(fY) = gv.

Ezercise 37. Use the existence of fU to show that for any G, the map u : V;(G) — A(G)

is surjective.



4.2. A formula for @. This subsection is based on [N2]

A general explicit formula as we have for f¥, is not known for Q and M. We will present
a formula for one specific cases, others may be found in [N2] (for Q) and [N5] (for M). (And
as mentioned, all analogous results for non-orientable surfaces may be found in [N6].) We
emphasize that as opposed to our formula for fX, which itself proved the existence of f¥, in
the case of Q and M the formulae rely on the existence. Another difference between f* and
Q, M is that, as may be seen from the formula for f¥, its value on an immersion ¢ depends
only on the oriented image of i. For () and M this is not so. Their value does change when
composing ¢ with orientation preserving diffeomorphisms of F'. Indeed we will now present
the dependence of ) on composition with diffeomorphisms of F.

For two regularly homotopic generic immersions 7,5 : F' — R?® we denote Q(4,5) = Q(i) —
Q(j), that is Q(7,J) is the number mod 2 of quadruple points in any regular homotopy
between ¢ and j. The following holds (for F' closed orientable): For any generic immersion

i : I — R® and any diffeomorphism h : F' — F such that i and ioh are regularly homotopic,
Q(i,ioh) = (rank(h* —Id)+ (n+ 1)e(h)> mod 2,

where h, is the map induced by h on H,(F,Z/2), n is the genus of F and €e(h) is 0 or 1
according to whether A is orientation preserving or reversing, respectively.

We will present a certain fragment of the proof. The rest may be found in [N2]. (Note
that the Arf invariant there is taken as 0,1 € Z/2.) For given immersion i : F — R® we are
considering the group of all diffeomorphisms i : F' — F' (up to isotopy in F') such that ¢ and

1o h are regularly homotopic. We name this group M;. By Exercise 16.5 this is the group of
all h such that h, : Hi(F,Z/2) — Hy(F,7/2) preserves g'.

Fzercise 38. The map M; — 7 /2 given by h + Q(i,7 0 h) is a homomorphism.

It is shown in [N2] that the map M; — 7Z/2 given by h + rank(h, — Id) also defines a
homomorphism, and h + €(h) is clearly a homomorphism, and so it is enough to verify the
proposed formula for Q(z,i 0 h) only on a set of generators of M,;.

In [N2] a set of generators for this group is found, and for each such generator h (except for
one special case) there is an embedded loop ¢ in F', which separates F' into two subsurfaces
Fy, F5 of smaller genus, such that A(Fy) = F; and h(Fy) = F,. This allows an inductive
argument, and we will present the inductive step here.

Let h be a generator and ¢, F, F5 be as described above. Let A be a neighborhood of ¢
in F'. Slightly diminishing I, F; to be the components of F' — intA, we may still assume



[
D

FIGURE 7

h(F}) = Fy, k = 1,2. Since c is separating in F, [c] = 0 in H1(F,Z/2), so ¢g*([c]) = 0 and so
il is regularly homotopic to a standard embedding of A, in the shape of a thin tube. By
Exercise 9 we may extend such a regular homotopy of A to the whole of F'. We now stretch
this tube to be very long, at the same time pulling F; and F5 rigidly away from each other

until they are disjoint. See Fig. 7a. By taking a smaller A if necessary, we may assume i(A)

is disjoint from i(F — A), Fig. 7b.

FExercise 39. If h € M; and j is regularly homotopic to ¢ then h € M; and Q(i,i 0 h) =
Q(j,joh).

By Exercise 39, we may assume that the new immersion that we obtained is in fact our
immersion i. Let Fy, F5 be the closed surfaces obtained by gluing a disc Dy, to F}, and let
hy : F, — F} be an extension of h|p, : F, — Fy. If the tube i(A) is very thin, then there
is also a naturally defined extension ij : £}, — R? of i|F,. We may further assume that the
thin ball B in R® which is bounded by the sphere i1(D;) U i(A) U i2(Dy), is disjoint from
i(F — A).

Since h|p, preserves gi| H:(F,z/2) then hy preserves g'*. It follows that there is a regular
homotopy HF between i) and ij 0 h;. We perform H} and H? inside disjoint balls, and we let
the thin tube A be carried along. We can make sure that no quadruple point of H} occurs
in Dy (k = 0,1) and that the very thin tube A does not pass triple points. The regular
homotopy H; induced on F' in this way will then have the sum of the numbers of quadruple

points of H} and H2.
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Now if h is orientation preserving then so are hy, in particular hy|p, is orientation preserv-
ing. So if we had carried the thin ball B along with the tube A, then it would now approach
the Dys from the same side it had for 7. And so we may continue the regular homotopy on
the tube A, still not passing through triple points, and cancelling all knotting by having the
thin tube pass itself, until it is back to its original place, and this will not contribute any
quadruple points. However, the new embedding of A may differ from ¢oh|4 by some number
of twists as in Fig. 7c. We may resolve this by rigidly rotating say /) around the axis of the
tube.

If on the other hand h is orientation reversing, then after applying H;! and H? and carrying
the tube along, the thin ball B will approach both Dys from the wrong side. And so after we
cancel all knotting, the tube A will be as in Fig 7d. Fig. 8 presents a regular homotopy that
resolves this, and has 1 mod 2 quadruple points. Fig. 8a depicts the relevant part of Fig.
7d, where the regular homotopy will take place. Fig. 8a—b—c is a regular homotopy with
no singular occurrences, or alternatively may be thought of as an ambient isotopy of R3. It
shows that we may view the immersion of A as a sphere with two rings facing outward, each

of which has a tube attached to it.



FIGURE 9

Exercise 40. Show that Fig. 8c is regularly homotopic to Fig. 8d by showing that the
two immersions of a disc appearing in Fig. 9 are regularly homotopic while keeping a

neighborhood of the boundary fixed. (Hint: m5(S03) = 0.)

Then by ambient isotopy, the ring may be brought to the equator, Fig. 8d—e. Finally
we exchange the northern and southern halves of the sphere, arriving at an embedding, Fig.
8e—f. We then continue to bring A back to place. As above, the new embedding of A may
differ from 7 o h|4 by some number of twists, and those may be cancelled by rigidly rotating
Fi.

We will now show that the number of quadruple points occurring in the regular homotopy
just described is necessarily 1 mod 2. Indeed, this number does not depend on the Fi, Iy
attached on the two sides, so imagine they are simply discs. Then this gives a certain regular

homotopy of S? which we would now like to analyze.

Fzxercise 41. Show that this regular homotopy of S? that we have obtained, necessarily has

the same number mod 2 of quadruple points as an eversion of the sphere.

So we must check what this number is for an eversion of the sphere. Since @ is well
defined, indeed for all eversions this value is the same, and it is enough to look at one such
eversion. In [Ma] an explicit eversion is described with precisely 1 quadruple point, and so
the number is 1 mod 2 for any eversion.

Back to our F' and h: We have constructed a regular homotopy between ¢ and ¢ o h such
that the number mod 2 of quadruple points, is the sum of the numbers occurring in the Fjs

in case h is orientation preserving, and the sum plus 1, in case h is orientation reversing. In

other words Q(i,i0 h) = Q(i1,%1 0 hy) + Q(ia, i3 0 ho) + €(h).



FExercise 42. Assuming the truth of the formula for Q(i1,7; o hy) and Q(is, iz 0 hs), deduce
its truth for Q(i,7 0 h).
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