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IMMERSIONS OF SURFACES
INTO ASPHERICAL 3-MANIFOLDS

TAHL NOWIK

Abstract. We study finite order invariants of null-homotopic immersions of
a closed orientable surface into an aspherical orientable 3-manifold. We give
the foundational constructions and classify all order 1 invariants.

1. Introduction

Finite order invariants of immersions of a closed orientable surface into R3 have
been introduced in [N3], where all order 1 invariants have been classified. Explicit
formulae for the majority of order 1 invariants have been given in [N2], [N5]. All
higher order invariants have been classified in [N4], and the analogue of all the
above for non-orientable surfaces has appeared in [N6]. A first step in the study of
finite order invariants of immersions of surfaces into general 3-manifolds appears in
[N1], where one specific order 1 invariant has been studied.

In the present work we study finite order invariants of null-homotopic immersions
of a closed orientable surface F into an aspherical orientable 3-manifold M . We
develop the foundations for the study of finite order invariants in our setting, as has
been done in [N3] for the case M = R3, and analogous to chord diagrams and the
1-term and 4-term relations in knot theory. We then classify all order 1 invariants.
The structure of the set of order 1 invariants will depend on π1(M) in an involved
way. We will also identify the subset of invariants which are common to all M and
give examples of large families of order 1 invariants appearing when π1(M) = Zk,
which do not appear for π1(M) = 0.

Our procedure for studying finite order invariants is as follows. We try to classify
all order n invariants up to order n − 1 invariants; that is, if Vn denotes the group
of all invariants of order at most n with values in some Abelian group G, then
we would like to understand Vn/Vn−1. This we do in two steps. We first embed
Vn/Vn−1 into the group of all functions from some combinatorially constructed set
Cn into G. The analogous combinatorially constructed set in knot theory is the
set Dn of all chord diagrams with n strands. In our case it will be the set of
all n-tuples of certain symbols involving elements of π1(M), up to an equivalence
relation involving the right and left action of π1(M) on itself. Whereas the set Dn

of chord diagrams is finite and quite readily understood, our set Cn is infinite, and
its complexity depends on the complexity of π1(M). A further difference from the
setting of knot theory is the matter of co-orientation. Given a singular knot with
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n double points, there is a natural way to attach a sign + or − to the two ways
for resolving each double point, and this sign is used when an invariant of order n
induces a function on Dn. In our setting there will sometimes be no natural way
to attach a sign to each of the two possible resolutions, and at other times there
will be no such consistent choice at all; i.e. the stratum in the space of immersions
corresponding to certain singularities is one sided. Which strata are one sided will
depend on the structure of π1(M) (see Examples 3.3, 3.4). So, as mentioned, the
first step for studying finite order invariants is to embed Vn/Vn−1 into C∗

n, the group
of all functions from Cn to G. The second step is to identify precisely what is the
image of Vn/Vn−1 in C∗

n. We will define a certain subgroup ∆n ⊆ C∗
n which contains

the image of Vn/Vn−1. The subgroup ∆n is defined by a certain set of relations that
must be satisfied by a function in C∗

n in order for it to lie in the image of Vn/Vn−1.
These relations are analogous to the 1-term and 4-term relations in knot theory.
We will classify all order 1 invariants by showing that the image of V1/V0 in C∗

1 is
all ∆1 (Theorem 5.2). This in general does not hold for higher order invariants,
as seen in [N4] for the case M = R3, where additional relations appear for higher
order invariants.

2. The universal covering space

Let M be an aspherical orientable 3-manifold, i.e. πn(M) = 0 for all n ≥ 2
(a sufficient condition being that π2(M) = π3(M) = 0). Let r : M̂ → M be the
universal covering, so M̂ is contractible. For a ∈ M denote πa = π1(M, a). In this
section we will define a labeling by elements of πa of all points in M̂ . For each p ∈ M
this labeling will be a bijection between r−1(p) and πa. We will determine in what
way this labeling depends on certain choices and will determine how certain natural
actions on M and r−1(p) are represented in terms of this labeling. These labelings
by elements of πa will be used in Section 3 to construct the symbols mentioned in
the Introduction. Namely, given an immersion i : F → M , the labelings of points
of M̂ will induce such a labeling of the points of F via a lift î : F → M̂ . We will
use the labels of the points of F participating in a given singularity to construct a
symbol characterizing this singularity.

If γ is a path in M with initial point a and if x ∈ r−1(a), then we denote the
lift of γ to M̂ with initial point x by γx. If p ∈ M is another point and γ is a path
from a to p, then we define a bijection F x

γ : πa → r−1(p) by F x
γ (φ) = (φ ∗ γ)x(1),

where ∗ denotes concatenation from left to right.
We choose a ∈ M , x ∈ r−1(a), and for each p ∈ M we choose a path γp from a

to p. We then label the points in each r−1(p) by elements of πa via the bijection
F x

γp
. We now check in what way this labeling depends on our choices. So let

b ∈ M , y ∈ r−1(b) and for each p ∈ M , let δp, a path from b to p, be another such
choice. In order to identify the elements of πa with those of πb we need to make
one additional choice, the dependence on which will be apparent as well. Namely
we choose a path µ from a to b and identify πa with πb by φ �→ µ̄ ∗ φ ∗ µ, where
µ̄ is the path inverse to µ (i.e. µ̄(t) = µ(1 − t)). Finally, let s be the unique
(up to homotopy) path in M from a to b such that sx(1) = y. Now for each
p ∈ M : F y

δp
(µ̄ ∗ φ ∗ µ) = (µ̄ ∗ φ ∗ µ ∗ δp)y(1) = (µ̄ ∗ φ ∗ µ ∗ δp ∗ γ̄p ∗ γp)sx(1)(1) =

(s∗µ̄∗φ∗µ∗δp∗γ̄p∗γp)x(1) = F x
γp

((s∗µ̄)∗φ∗(µ∗δp∗γ̄p)). So given the identification
between πa and πb determined by µ, the labeling of the points in r−1(p) have
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changed by left multiplication by s ∗ µ̄ and right multiplication by µ ∗ δp ∗ γ̄p. Note
that s∗ µ̄ depends only on a, b, x, y, µ, and so we get left multiplication by the same
element for all points p. We summarize this in the following:

Proposition 2.1. The labeling of the points of r−1(p) by elements of πa is well
defined up to left multiplication by one common element in πa for all p, and right
multiplication by an element in πa which may depend on p.

Once the dependence on choices has been established, we fix a, x, {γp}p∈M once
and for all, and so the labeling of the points in r−1(p) for each p ∈ M is from now
on fixed. Note that this labeling is necessarily not locally constant.

There will be two families of bijections that we will have occasion to use, and we
will now see how they are expressed in terms of the labeling. First let D : M̂ → M̂
be a deck transformation; then the restriction of D to each r−1(p) is a bijection
onto itself. Let ψ ∈ πa be the unique element such that ψx(1) = D(x). Then for
any φ ∈ πa and any p ∈ M , D(F x

γp
(φ)) = D((φ ∗ γp)x(1)) = (φ ∗ γp)ψx(1)(1) =

(ψ ∗ φ ∗ γp)x(1) = F x
γp

(ψ ∗ φ), that is, in terms of the labeling, D is given by
common left multiplication by ψ. (By common we mean as above that it is the
same ψ for all p.) Secondly, given p, q ∈ M let δ be a path from p to q; then δ
defines a bijection Gδ : r−1(p) → r−1(q) given by Gδ(y) = δy(1). We have for
any φ ∈ πa, Gδ(F x

γp
(φ)) = Gδ((φ ∗ γp)x(1)) = δ(φ∗γp)x(1)(1) = (φ ∗ γp ∗ δ)x(1) =

(φ ∗ (γp ∗ δ ∗ γ̄q) ∗ γq)x(1) = F x
γq

(φ ∗ (γp ∗ δ ∗ γ̄q)); that is, in terms of the labeling,
Gδ is given by right multiplication by γp ∗ δ ∗ γ̄q.

It is also clear from the above calculations that any common left multiplying
element and any right multiplying element can be realized by appropriately choosing
D and δ respectively. We summarize this in the following:

Proposition 2.2. (1) The effect of a deck transformation is a common left
multiplication, and any such common left multiplication can be realized by
a deck transformation.

(2) The effect of Gδ is right multiplication, and any such right multiplication
can be realized by some δ from p to q.

We have noted that our labeling is not locally constant. By Proposition 2.2(2)
we see that any such discontinuity is always given by right multiplication.

Denote by Z[πa] the group ring of πa with coefficients in Z. We will in fact
not use the full ring structure, but only the left and right actions of πa on Z[πa].
For each p ∈ M , H2(M̂ − r−1(p)) is a free Abelian group with basis in one-to-one
correspondence with r−1(p). This is true by a Mayer-Vietoris sequence, since M̂ is
contractible. So via our labeling, for each p ∈ M we may identify H2(M̂ − r−1(p))
with Z[πa].

Any deck transformation induces an automorphism of H2(M̂−r−1(p)) for each p.
It follows from Proposition 2.2(1) that in terms of the identification of
H2(M̂ − r−1(p)) with Z[πa], this automorphism (of Z[πa] as an Abelian group)
is given by left multiplication by some common ψ ∈ πa. Similarly, given p, q ∈ M ,
a path δ from p to q naturally induces an isomorphism from H2(M̂ − r−1(p)) to
H2(M̂ − r−1(q)), and it follows from Proposition 2.2(2) that in terms of the iden-
tifications with Z[πa], this isomorphism is given by right multiplication by some
element of πa.
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3. Co-oriented AB equivalences

In this section we introduce the local singularities of immersions which will be
used in the next section to define the notion of finite order invariants. These
singularities are the analogue of the double points appearing in the definition of
finite order knot invariants. We will then construct our symbols and define an
equivalence relation on n-tuples of symbols, which will involve both the structure
of the singular points and the labelings by elements of πa appearing in the previous
section. The equivalence classes of n-tuples of symbols are analogous to the chord
diagrams appearing in knot theory.

Let M be an oriented aspherical 3-manifold, let F be a closed oriented surface,
and let A ⊆ Imm(F, M) be a regular homotopy class of immersions i : F → M
which are null-homotopic. A CE point of an immersion i : F → M is a point of
self intersection of i for which the local stratum in Imm(F, M) corresponding to
the self intersection has codimension one. (The letters CE are the first and last
letters of “co-dimension one”.) We distinguish four types of CEs which we name
E, H, T, Q. In the notation of [HK] they are respectively A2

0|A+
1 , A2

0|A−
1 , A3

0|A1, A4
0.

The E and H CEs are the elliptic and hyperbolic tangencies (E and H standing for
elliptic and hyperbolic, respectively). The T CE appears when a line of intersection
is tangent to a third sheet of the surface. Resolving the CE into one of the sides
creates two new triple points (so T stands for triple points). The Q singularity is
a quadruple point (and Q stands for quadruple). The four types of CEs may be
demonstrated by the following local models, where by letting λ vary we obtain a
1-parameter family of immersions which is transverse to the given codimension 1
stratum, intersecting it at λ = 0:

E: z = 0, z = x2 + y2 + λ.
H: z = 0, z = x2 − y2 + λ.
T : z = 0, y = 0, z = y + x2 + λ.
Q: z = 0, y = 0, x = 0, z = x + y + λ.
See Figure 1, which corresponds to some small λ > 0. If R is one of the above

four CE types, then we denote by |R| the number of sheets involved in the given
configuration; that is, |E| = |H| = 2, |T | = 3, |Q| = 4. Let In ⊆ A be the space
of all immersions with precisely n CEs; in particular, I0 is the space of all stable
immersions.

A choice of one of the two sides of the local codimension 1 stratum at a given
point of the stratum is represented by the choice of λ < 0 or λ > 0 in the formulae
above. We will refer to such a choice as a co-orientation for the configuration of
the self intersection. A completely different notion of co-orientation that we will
encounter is a chosen side of i(F ) in M determined by the orientations of F and
M . To avoid confusion between the two notions, we use the term “co-orientation”
only for the former. For the latter we speak of the “preferred side of i(F ) in M”.

For types E and T , the configuration of the self intersection at the two sides
of the stratum is distinct. Namely, for λ < 0 there is an additional 2-sphere in
the image of the immersion, and we permanently choose this side (λ < 0) as our
positive side for the co-orientation. For types H and Q, the configuration of the
self intersection on the two sides of the strata is the same.

We will now further discuss the symmetries of our four configurations. A sym-
metry of a CE configuration is an orientation preserving diffeomorphism from a
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T Q

E H

Figure 1. The four CE types

neighborhood of the CE in M to itself, which maps sheets onto sheets. A symme-
try h will be said to preserve the co-orientation of the CE if the image under h of
motion into some side of the stratum is again motion into the same side (after identi-
fying each sheet with its image). The comment of the previous paragraph may now
be stated as follows: All symmetries of E, T configurations preserve co-orientation,
whereas configurations H, Q admit co-orientation reversing symmetries. We further
notice that configurations E, H, T admit co-orientation preserving symmetries that
realize any given permutation of the sheets, whereas for configuration Q, the co-
orientation preserving symmetries realize only all even permutations of the sheets.
These facts may be seen by slightly resolving the CE into one of the sides, and
attempting to construct the diffeomorphism h for the resolved configurations.

Given an immersion i ∈ In, an n-co-orientation for i is a choice of co-orientation
at each of the n CE points p1, . . . , pn of i. (This is called a temporary co-orientation
in [N3], [N4], [N6].) A proper n-co-orientation for i ∈ In is an n-co-orientation
where at each CE of type E and T , the co-orientation chosen is the permanent one
mentioned above. (This definition is slightly weaker than that in [N4].)

We now define our symbols mentioned above. Note that whereas for knots it is
a singular knot alone that defines a chord diagram, in our setting the symbol will
be defined by an immersion i ∈ In together with a choice of proper n-co-orientation
for i. So, for immersion i ∈ In and proper n-co-orientation T for i, let p ∈ M be
one of its n CE points, and we define Cp(i, T) as the symbol R

g1ε1,...,g|R|ε|R|
d which
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is composed of:
(1) A symbol R ∈ {E, H, T, Q} which is the configuration of the given CE.
(2) A sequence of elements g1, . . . , g|R| ∈ πa which is determined as follows: Let

î : F → M̂ be a lift of i. There are |R| sheets of î(F ) passing through points of
r−1(p) which in turn are labeled by elements g1, . . . , g|R| ∈ πa (Section 2). If the
CE is of type E,H or T , then the order of the gjs is arbitrarily chosen. As to
Q configuration, we choose once and for all a rule by which an orientation on a
simplex determines an ordering on its four faces, up to an even permutation. Now,
we resolve the CE of type Q positively with respect to T, i.e. slightly deform i
(not î) near p, to obtain a stable immersion in a neighborhood of p, and write the
elements g1, g2, g3, g4 in the order determined by the orientation of M restricted to
the small simplex created by this resolution. (This ordering convention is related
to the symmetry properties discussed above).

(3) To each gj , 1 ≤ j ≤ |R|, there corresponds a sign εj ∈ {+,−} which is
determined as follows: We look at i : F → M (not the lift), and resolve the CE at
p according to T. For types E, T, Q this creates a little sphere in the image of i,
which bounds a little 3-cell V in M (for Q this is a simplex, and for E, T recall that
T is proper). Each gj we have corresponds to a sheet involved in the CE. This sheet
may have V on its non-preferred side (determined by the orientations of F and M),
in which case we set εj = +, or otherwise V is on its preferred side, in which case
εj = −. For type H the region V is not bounded by the local configuration but
may still be defined, e.g. for λ > 0 in the formula for H above, V will be a region
consisting of points close to the origin and satisfying 0 ≤ z ≤ x2 − y2 + λ. Now the
signs εj are determined by the opposite convention than above. Namely, a sheet
having V on its preferred side will have εj = +, and if V is on its non-preferred side
we set εj = −. The reason for the opposite convention is to obtain slightly nicer
formulae in the end. (It is consistent with the conventions in [N3], chosen there in
a similar way for the same reason).

(4) The subscript d ∈ Z[πa], which will be called the degree of the CE, is de-
termined as follows: Let î : F → M̂ be the same lift as used in (2). Wherever
î(F ) passes through a point of r−1(p), we push it slightly into the preferred side of
î(F ) in M̂ , obtaining a map F → M̂ − r−1(p). This map represents an element of
H2(M̂ − r−1(p)) which we identify with an element d ∈ Z[πa] (Section 2).

If p1, . . . , pn are the n CEs of i ∈ In, then choose a lift î : F → M̂ of i and define
C ′(i, T) to be the n-tuple (Cp1(i, T), . . . , Cpn

(i, T)), where the same lift î is used for
all pk. Then C ′(i, T) ∈ C′

n, where C′
n is the set of all n-tuples of symbols of the form

R
g1ε1,...,g|R|ε|R|
d . In addition to the permanent choices of Section 2, C ′ also depends

on the choice of lift î, and various ordering choices. We thus define an equivalence
relation on C′

n to be the equivalence relation generated by the following operations:
(1) Any permutation of the n symbols.
(2) For R = E, H, T , any permutation of the |R| elements g1ε1, . . . , g|R|ε|R|

(each pair gjεj goes together).
(3) For R = Q, any even permutation of the four elements g1ε1, . . . , g4ε4.
(4) Given h ∈ πa, replace each one of the n symbols R

g1ε1,...,g|R|ε|R|
d of the

n-tuple by R
(hg1)ε1,...,(hg|R|)ε|R|
hd (the same h for all n symbols).

(5) Given h ∈ πa, replace one of the n symbols R
g1ε1,...,g|R|ε|R|
d by

R
(g1h)ε1,...,(g|R|h)ε|R|
dh (it is of course the same h multiplying gj and d on
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the right within one symbol, h being allowed to vary only between the n
symbols).

Denote by Cn the set of equivalence classes of C′
n under this equivalence relation.

Note that because of the common left action in item (4), Cn is not simply the
set of unordered n-tuples of elements of C1. We now define C(i, T) ∈ Cn to be
the equivalence class of C ′(i, T). So C is well defined, independent of all choices,
including the choice of lift î (Proposition 2.2(1)). Denote by IP

n the set of all pairs
i, T, where i ∈ In and T is a proper n-co-orientation for i. Then C : IP

n → Cn and
we claim:

Lemma 3.1. The map C : IP
n → Cn is surjective.

Proof. We are given an n-tuple x of symbols of the form R
g1ε1,...,g|R|ε|R|
d . Begin

with any immersion i ∈ A and lift it to î : F → M̂ . Choose points p1, . . . , pn ∈ M
as locations for the n CEs we will construct. Deform î by regular homotopy so that
pieces of F will pass the right points of M̂ above each pk, to produce the correct
labelings appearing as superscripts in the symbols in x. Continue the deformation
near each such point so that for the projection back to M the right configurations
will be created with the right signs and inducing the right ordering in case of
CE of type Q. Finally, move some other pieces of F across the right points of⋃

1≤k≤n r−1(pk) to obtain the correct degrees d ∈ Z[πa]. The projection back to M
gives the desired immersion. �

We also note that for types H, Q, the relation between the symbols obtained for
a given co-orientation of a CE and that obtained for the opposite co-orientation
is as follows: For H, all remains the same except for the signs εj which are all
reversed. For Q, all signs are reversed, and in addition an odd permutation is
performed on g1ε1, . . . , g4ε4. (The degree d remains unchanged since its definition
does not involve the co-orientation.) We call the symbol obtained from a symbol of
type H or Q in this way the reversed symbol. (Recall that Cp(i, T) is only defined
for proper T, and so for E, T the co-orientation may not be reversed.)

We recall the definition of an AB equivalence, appearing in [N3]: A regular
homotopy between two immersions i, j ∈ In is called an AB equivalence if it is
alternatingly of type A and B, where

(1) Jt : F → M (0 ≤ t ≤ 1) is of type A if it is of the form Jt = Ut◦i◦Vt, where
i : F → M is an immersion and Ut : M → M , Vt : F → F are isotopies.

(2) Jt : F → M (0 ≤ t ≤ 1) is of type B if J0 ∈ In and there are little
balls B1, . . . , Bn ⊆ M centered at the n CE points of J0 such that Jt fixes
U = (J0)−1(

⋃
k Bk) and moves F − U within M −

⋃
k Bk.

Given two immersions i, j ∈ In and n-co-orientations T, T′ for i, j respectively,
we now define co-oriented AB equivalence, or CAB equivalence, between i, T and
j, T′ to be an AB equivalence between i and j which respects T, T′; i.e. if we carry
T at each CE of i continuously along the AB equivalence, then we arrive at j with
n-co-orientation T′.

The analogue of AB equivalence in knot theory is the motion of a singular knot
which keeps the structure of the double points but allows the knot to cross itself at
other regions of the knot. Chord diagrams are precisely those combinatorial objects
which classify singular knots up to this motion. In our setting, the elements of Cn
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will be the combinatorial objects which classify properly n-co-oriented immersions
i ∈ In up to CAB equivalence. Indeed we now prove:

Proposition 3.2. Let i, j ∈ In and T, T′ n-co-orientations for i, j respectively.
Then i, T and j, T′ are CAB equivalent iff C(i, T) = C(j, T′).

Proof. If i, T and j, T′ are CAB equivalent, let Jt (0 ≤ t ≤ 1) be the given CAB
equivalence and let Tt (0 ≤ t ≤ 1) be the n-co-orientation carried continuously
along (so T1 = T′). If a lift Ĵ of J is used for defining C ′(Jt, Tt) at each t, and all
choices of orderings are also carried along continuously, then by Proposition 2.2(2),
C ′(Jt, Tt) may only change along the way by right multiplication. We may still
have that J1 is different than the lift of j used to define C ′(j, T′), in which case
we will gain a common left multiplication. The choices of ordering may also be
different, but all together we get C(i, T) = C(j, T′).

For the converse, assume C(i, T) = C(j, T′). Since our allowed ordering of su-
perscripts and equivalence of ordering all correspond to the possible symmetries
of the configurations, there is an ambient isotopy Ut : M → M which brings
the CEs of i onto the CEs of j, such that the n-co-orientation T carried contin-
uously along coincides with T′, such that the orientations of the corresponding
sheets match (since the signs εj coincide) and such that all labelings in πa and de-
grees in Z[πa] coincide up to right multiplication by an element in πa and common
left multiplication by an element in πa. Since the orientations of corresponding
sheets match, we may continue with a regular homotopy of the form i ◦ Vt for iso-
topy Vt : F → F until we have the same discs in F participating in the CEs of
i and j and the restriction of i and j to those discs coincides precisely, and we
still have matching labeling and degrees up to right and common left multiplica-
tion. By Proposition 2.2 any right multiplication can be realized by dragging a
CE by an ambient isotopy of M around some loop in M and back to its place
to match j, and any common left multiplication can be realized by changing the
choice of lift. So we perform such ambient isotopies and change of lift until we have
that all labelings and degrees coincide precisely. This means that now not only
i, j but also their chosen lifts î, ĵ coincide on the discs participating in the CEs,
and that if we slightly deform i and j by pushing each sheet of the CEs slightly
into its preferred side, then î, ĵ : F → M̂ −

⋃
1≤k≤n r−1(pk) represent the same

element in H2(M̂ −
⋃

1≤k≤n r−1(pk)). (Note that H2(M̂ −
⋃

1≤k≤n r−1(pk)) =⊕
1≤k≤n H2(M̂ − r−1(pk)), where the projections are induced by inclusion.) From

this point on we may proceed exactly as in the proof of [N3], Proposition 3.4, where
instead of working in R3 with a set of designated points {p1, . . . , pn}, we work in
M̂ with a set of designated points

⋃
1≤k≤n r−1(pk). Note that as in the case of R

3,

we have π2(M̂ −
⋃

1≤k≤n r−1(pk)) = H2(M̂ −
⋃

1≤k≤n r−1(pk)), and that since M̂ is
parallelizable, the obstructions for regular homotopies implied by the Smale-Hirsch
Theorem are precisely the same as for R

3.
We then compose the obtained regular homotopy with r, obtaining the desired

CAB equivalence in M . �

As already seen in [N3], a CE of type H or Q may be CAB equivalent to itself
with the opposite co-orientation, which means that the stratum corresponding to
this CE in Imm(F, M) is one sided. From Proposition 3.2 we see that this happens
iff the corresponding symbol is equivalent to its reversed symbol. For this to happen



IMMERSIONS OF SURFACES INTO ASPHERICAL 3-MANIFOLDS 1841

clearly the number of + and − signs should be equal, as this number is preserved
under equivalence. So a one sided stratum may occur only for symbols of the
form Hg1+,g2−

d and Qg1+,g2+,g3−,g4−
d . If all gj are equal, then we clearly do get

a symbol equivalent to its reversed, and so a one sided stratum. In [N3] where
π1 is trivial (M = R

3), it is thus clear which are the one sided strata. But for a
general aspherical manifold this is intricately related to the structure of π1(M). In
the following two examples we show a case where the stratum for Hg1+,g2−

d is one
sided though g1 	= g2, and then a case of an M (with non-trivial π1(M)) where the
stratum is one sided only when g1 = g2.

Example 3.3. Let M be the orientable line bundle over the Klein bottle. Then M

is aspherical and π1(M) = 〈a, b | a2b2 = 1〉. We look at the symbol H1+,ab−
0 ∈ C′

1

(the subscript is the zero element of Z[π1]). We have H1+,ab−
0 = Hab+,a2b2−

0 =
Hab+,1−

0 = H1−,ab+
0 . The first equivalence is by left multiplication by a and right

multiplication by b, the second (which is an actual equality of symbols) is by the
relations in π1, and the third by permuting the superscripts. So the symbol H1+,ab−

0

is equivalent to its reversed symbol and so the H1+,ab−
0 stratum is one sided, though

1 	= ab.

Example 3.4. Let M = S1 × R2. Let x be a generator of π1(M) and say k < r.
Then Hxk+,xr−

0 ∈ C′
1 is not equivalent to the reversed symbol Hxk−,xr+

0 since the
property of having the + sign attached to the smaller power of x will be preserved
under any left or right multiplication by element xs ∈ π1(M).

4. Finite order invariants

In this section, we first define the notion of finite order invariant. We then show
how an invariant of order n with values in an Abelian group G induces a function
from Cn to G. Finally we will find a family of relations on such functions which
must be satisfied in order for a function to be induced by some order n invariant.

Given an n-co-orientation T for i ∈ In and a subset A ⊆ {p1, . . . , pn}, we define
iT,A ∈ I0 to be the immersion obtained from i by resolving all CEs of i at points of
A into the positive side with respect to T, and all CEs not in A into the negative
side. Now let G be any Abelian group and let f : I0 → G be an invariant; i.e. a
function which is constant on each connected component of I0. Given i ∈ In and
an n-co-orientation T for i, fT(i) is defined as follows:

fT(i) =
∑

A⊆{p1,...,pn}
(−1)n−|A|f(iT,A),

where |A| is the number of elements in A. If T, T′ are two n-co-orientations for the
same immersion i, then fT(i) = ±fT

′
(i), and so having fT(i) = 0 is independent

of the n-co-orientation T. An invariant f : I0 → G is called of finite order if there
is an n such that fT(i) = 0 for all i ∈ In+1. The minimal such n is called the order
of f . The group of all invariants on I0 of order at most n is denoted Vn = Vn(G).

Let C∗
n denote the group of all functions from Cn to G. We will now embed

Vn/Vn−1 into C∗
n. An invariant f ∈ Vn induces a function µn(f) : Cn → G as follows:

Given x ∈ Cn take (i, T) ∈ IP
n with C(i, T) = x. Such i, T exists by Lemma 3.1.

Now define µn(f)(x) = fT(i). This is well defined since if j, T′ also has C(j, T′) = x,
then by Proposition 3.2, i, T and j, T′ are CAB equivalent, from which it follows
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that fT(i) = fT
′
(j), the argument being the same as in [N3], Proposition 3.8. It is

easy to see that the map f �→ µn(f) is a group homomorphism, and by definition
of the order of an invariant its kernel is precisely Vn−1, so it induces an injection
µn : Vn/Vn−1 → C∗

n. This injection was the purpose for defining Cn and the notion
of CAB equivalence. Classifying all order n invariants up to order n− 1 invariants
is now the same as determining the image of this injection. The rest of this section
is dedicated to defining a certain subgroup ∆n ⊆ C∗

n which contains the image of
µn. It will be defined by a set of relations to be satisfied by functions in C∗

n.
The first two families of relations are obtained as follows. Let i ∈ In and let T, T′

be two proper n-co-orientations for i which differ at precisely one CE, necessarily
of type H or Q, and located say at p ∈ M . On the one hand, from the definition
of fT(i), we have for any f ∈ Vn: fT(i) = −fT

′
(i). On the other hand, we

have already noticed the relation between Cp(i, T) and Cp(i, T′) in such a case
(paragraph following the proof of Lemma 3.1). We thus get equations that must
be satisfied by any g ∈ C∗

n in order for it to lie in the image of µn. Namely, if
Z2, . . . , Zn are any n − 1 symbols, then for any symbol Hg1ε1,g2ε2

d , g must satisfy
g(Hg1ε1,g2ε2

d , Z2, . . . , Zn) = −g(Hg1 ε̂1,g2 ε̂2
d , Z2, . . . , Zn), where ε̂j denotes the sign

opposite to εj and where by g(Z1, . . . , Zn) we mean the value of g on the equivalence
class of the n-tuple (Z1, . . . , Zn). We will write such an equation in the short form
Hg1ε1,g2ε2

d = −Hg1 ε̂1,g2 ε̂2
d . For Q configuration we similarly get Qg1ε1,g2ε2,g3ε3,g4ε4

d =
−Qg2 ε̂2,g1 ε̂1,g3 ε̂3,g4 ε̂4

d (note the transposition 1 ↔ 2). Also note that in the above
two equations, the operation which produces the n-tuple of symbols on the right
from the n-tuple of symbols on the left is indeed well defined on the classes in Cn.

In addition to the above two families of equations, we will now find six more
such families by observing small loops in the space of immersions going around
co-dimension 2 strata. Let i ∈ A be an immersion with a self intersection of local
codimension 2 at p and n − 1 additional self intersections of local codimension 1
(i.e. CEs) at p1, . . . , pn−1. We look at a 2-parameter family of immersions which
moves F only in a neighborhood of p, such that the immersion i corresponds to
parameters (0, 0) and such that this 2-parameter family is transverse to the local
codimension 2 stratum at i. In this 2-parameter family of immersions we look at
a loop which encircles the point of intersection with the codimension 2 strata; i.e.
a circle around the origin in the parameter plane. This circle crosses the local
codimension 1 strata some r times. Between each of the two intersections we have
an immersion in In−1 with the same n−1 CEs at p1, . . . , pn−1. At each intersection
with the local codimension 1 strata, an nth CE is added, obtaining an immersion in
In. Let i1, . . . , ir be the r immersions in In so obtained. For each 1 ≤ k ≤ r, choose
a proper n-co-orientation Tk for ik, such that the co-orientation chosen for each pj ,
1 ≤ j ≤ n−1, is the same in all T1, . . . , Tr. Let ek, k = 1, . . . , r, be + or − according
to whether we are passing the nth CE of ik in the direction of its co-orientation
determined by Tk or in the opposite direction, respectively. For an invariant f , it
is easy to show that the following equation holds:

∑r
k=1 ekfTk(ik) = 0. Looking at

µn : Vn/Vn−1 → C∗
n we thus obtain additional equations that must be satisfied by a

function in C∗
n in order for it to lie in the image of µn. We will now find all equations

on C∗
n obtained in this way. As above, the equations will be written in short form as

equations on the symbols. We may assume (by moving the codimension 2 singular
point p if necessary) that there is a neighborhood U of p such that the labeling by
elements of πa is locally constant in r−1(U) and such that all motion involved in
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our 2-parameter family of immersions takes place inside U . Therefore, we will be
able to follow the labelings during our loop of immersions.

The local codimension 2 strata may be divided into six types which we name
after the types of CEs appearing in a 2-parameter family of immersions, transverse
to the given stratum: EH, TT , ET , HT , TQ, QQ. In the notation of [HK] they
are respectively: A2

0|A2, A3
0|A2, (A2

0|A+
1 )(A0), (A2

0|A−
1 )(A0), (A3

0|A1)(A0), A5
0.

For each of the first five types we give the following:
(1) Formula for a local representative.
(2) Sketch of the configuration for some value (λ1, λ2) of the parameters.
(3) Diagram of the 2 dimensional parameter space, where the intersection with

the codimension 1 strata is depicted, including some choice of proper co-
orientations (this is called a bifurcation diagram).

(4) The relation arising, using the given proper co-orientation.
The symbol · · · appearing in a diagram or equation represents a string of gjεjs of
the appropriate length (the same string for all appearances of · · · within the same
diagram or equation). For these five types, the bifurcation diagram is obtained
from the sketch and formula in a straightforward manner. We then go on to type
QQ; it requires special analysis which will be done in detail.

...

...

dH

Ed

Figure 2. EH configuration

EH: z = 0, z = y2 + x3 + λ1x + λ2.

(1) 0 = E···
d − H ···

d

Figure 3. TT configuration

TT : z = 0, y = 0, z = y + x3 + λ1x + λ2.

(2) 0 = T g1ε1,g2ε2,g3ε3
d − T g1ε̂1,g2 ε̂2,g3 ε̂3

d
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...g-
dT

...
dE d-g

...E

d
...g+T

Figure 4. ET configuration

ET : z = 0, x = 0, z = (x − λ1)2 + y2 + λ2.

(3) 0 = T ···g−
d − T ···g+

d − E···
d−g + E···

d

d
...g-Td

...g+T

d-g
...HdH...

Figure 5. HT configuration

HT : z = 0, x = 0, z = (x − λ1)2 − y2 + λ2.

(4) 0 = −T ···g+
d + T ···g−

d − H ···
d−g + H ···

d

Q...g-
d

T T

Q

...
d

...
d-g

...g+
d

Figure 6. TQ configuration

TQ: z = 0, y = 0, x = 0, z = y + (x − λ1)2 + λ2.

(5) 0 = Q···g−
d − Q···g+

d − T ···
d−g + T ···

d

QQ: This configuration is a quintuple point; i.e. five sheets passing through a
point, any three of which are in general position. We model this by five planes
passing through a point in R3. A 2-parameter family may be constructed by fixing
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three of the planes and allowing the other two planes to move parallel to themselves.
A loop in the shape of a rectangle around the origin of the parameter plane may be
constructed as follows: The three fixed planes P1, P2, P3 intersect in a triple point
x. Start with the plane P4 very close to x, and P5 somewhat further away. For
the first edge of the rectangle, move P4 across x passing a first quadruple point. In
this process a little simplex S− has vanished and a new little simplex S+ has been
created from the same four planes P1, . . . , P4. For the second edge of the rectangle,
move P5 across the whole of S+, passing four quadruple points on the way, when
crossing the four triple points of S+. For the third edge move P4 back to its original
place, thus crossing x again, in the opposite direction, recreating S− in place of
S+, this being the sixth quadruple point. Finally move P5 back to place, across
S−, adding four more quadruple points, and so completing a total of ten quadruple
points. We co-orient each of these ten quadruple points according to the direction
we are passing it along this loop, and so each of the ten terms in the equation that
we are producing will have a + sign in front of it.

We will call the first and third edges of the rectangle described above “short
edges” (since they pass only one quadruple point) and the second and fourth edges
“long edges”. We will first find the relation between the symbols of two consecutive
quadruple points along a long edge, and then see that the same relation holds when
passing to a short edge, and back. So let p, q be two vertices of the little simplex,
which P5 passes consecutively. Let e be the edge of the simplex connecting p, q.
By affine transformation of R

3 we may assume that p = (0, 0,−1), q = (0, 0, 1),
that the two planes intersecting to create the edge e are the planes {x = 0} and
{y = 0}, and that the plane P5 which is in motion, crossing p and then q, is the
plane {z = t}, where t increases in the range −1 − r < t < 1 + r for some small
r. For concreteness we look at the time t = 0, and so P5 = {z = 0}. As to the
remaining two planes, one must pass p, and the other must pass q. They cannot be
vertical planes (since we already have two vertical planes), and so they are given
by {z = −1 + ax + by} and {z = 1 + cx + dy}. The coefficients a, b must both
be non-zero since if say b = 0, then we get three planes {z = −1 + ax}, {z = 0},
{x = 0} which are not in general position (when moved parallel to themselves to
have a common point). Similarly c, d are non-zero. By rotating the configuration
around the z axis we may assume a, b > 0. We claim that we must then also get
c, d > 0. Indeed, in order that P5 will pass p and q consecutively, it must be that
the other two vertices of the simplex lie outside the region −1 ≤ z ≤ 1 of R3. These
two points are s1 = {z = −1+ax+by}∩{z = 1+cx+dy}∩{x = 0} and s2 = {z =
−1 + ax + by} ∩ {z = 1 + cx + dy} ∩ {y = 0}. The z component of s1 is b+d

b−d , and
this is outside the interval [−1, 1] iff d > 0. (If b = d, then there is no intersection,
which implies that the three planes are not in general position.) In the same way
c > 0, using s2. Therefore, the simplex S+

p created from the passage of P5 across p
(bounded by the planes {x = 0}, {y = 0}, {z = 0}, {z = −1 + ax + by}) lies in the
octant x ≥ 0, y ≥ 0, z ≤ 0, whereas the simplex S−

q that is about to vanish when P5

arrives at q (bounded by the planes {x = 0}, {y = 0}, {z = 0}, {z = 1+cx+dy}) lies
in the octant x ≤ 0, y ≤ 0, z ≥ 0, which is the exact opposite octant. Therefore the
sign εj with which each of the common planes {x = 0}, {y = 0}, {z = 0} appears in
S+

p and S−
q is the opposite sign. But since we have co-oriented all quadruple points

according to our direction of motion, the simplex S−
q is not the one with which we

determine the signs for the symbol Zq of the quadruple point at q, but rather the



1846 TAHL NOWIK

simplex S+
q which will be created after we cross q. As we have already noticed, the

signs of the faces for S+
q are all opposite to the corresponding signs for S−

q , and so
finally the common planes with S+

p will have the same sign as in S+
p .

We apply a similar two step argument to determine the relation between the
orderings of the faces in the two symbols Zp, Zq. We note that if some ordering
of the faces of S+

p is consistent with the orientation of S+
p (restricted from R3),

then the ordering for the faces of S−
q obtained by simply replacing the plane {z =

−1+ax+ by} with the plane {z = 1+ cx+dy} is inconsistent with the orientation
of S−

q . Therefore, this same ordering of these same four planes, now considered as
the faces of S+

q , is consistent with the orientation of S+
q . So for the superscripts

of two consecutive symbols we finally get that the gjεj corresponding to the plane
which appears only in the first quadruple point and not the second (the plane
{z = −1 + ax + by} in our case) should be dropped, and exactly in its place
should be written the gjεj corresponding to the new plane which participates in
the second quadruple point but not in the first (the plane {z = 1 + cx + dy} in
our case). The three gjεjs corresponding to the three common planes (the planes
{x = 0}, {y = 0}, {z = ±1} in our case) must remain in their place, and with the
signs εj unchanged.

We now show that when passing from the last quadruple point of a long edge
to the quadruple point of the next short edge, or from that to the first quadruple
point of the next long edge, then the same relation holds. Indeed, looking say at
the first and second quadruple point in our rectangle described above, let y be the
triple point of S+ which P5 passes first along the long edge, for the occurrence of
the second quadruple point. Let P be one of the planes P1, . . . , P4 such that if P
is moved in the direction such that S+ increases in size, then the point y will move
toward P5 and eventually cross it. So we can start from the same initial position as
before, but instead of moving P4 and then P5, we move only plane P , such that S−

will vanish, passing the first quadruple point, S+ is created and increases in size
until y crosses P5, thus passing the second quadruple point. So we have obtained
the same two quadruple points, where now four of the planes are fixed and only the
plane P is in motion. But this is precisely the motion analyzed above to obtain the
relation between two consecutive quadruple points along a long edge.

Finally it remains to determine the degrees d ∈ Z[πa] of the ten symbols. We
do this again by analyzing the relation between the degrees of two consecutive
quadruple points. Following the intersection point between {x = 0}, {y = 0}, {z =
t} as it continuously moves up from p to q, we see that there is no change in the
degree due to these three planes. (Recall that the labeling is locally constant above
the region of interest.) There may, on the other hand, be a change due to the planes
Pi = {z = −1 + ax + by} and Pj = {z = 1 + cx + dy}. If the preferred side of Pi is
facing upward, which happens iff the corresponding sign εi appearing in the symbol
Zp for the first quadruple point is −, then when computing the degree dp for the
first quadruple point, Pi is slightly pushed upward so as to pass above the point
p. But as P5 moves upward to q, Pi does not participate in the second quadruple
point, and remains below the point q, which is where the degree is now computed.
So in this case there is a change of −gi to the degree due to the plane Pi. If on the
other hand the plane Pi is facing downward, which happens iff the sign εi appearing
in Zp is +, then the plane Pi is pushed downward when dp is computed, and again
it will remain below the point q when the degree of the second quadruple point is
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computed, so there will be no change in the degree due to Pi. The two cases may
be written in one formula as follows. For sign ε ∈ {+,−}, define

|ε| =

{
1 if ε = +,

0 if ε = −;

then the change in degree between the first and second quadruple point, due to
the plane Pi, is −|ε̂i|gi. A similar analysis as to the effect of the plane Pj on the
degree will give +|εj |gj . Together we get that if Pj is the plane missing from the
first quadruple point, Pi appears there with sign εi, Pi is missing from the second
quadruple point, and Pj appears there with sign εj , then the change in the degree
between the first and second quadruple points is +|εj |gj − |ε̂i|gi.

Looking at the circle (or rectangle) of ten quadruple points, we see that the
same 4-tuple of planes participates in a quadruple point twice, and with opposite
co-orientation, and so the ordering of the corresponding giεi at the two times differ
by an odd permutation. They occur at the precise opposite timing along the circle,
i.e. five places apart, and so the ordering of quadruple points along the circle is
that all five possible 4-tuples appear one after the other, and then they appear
again in the same order, to complete the cycle of ten quadruple points. So given
a quadruple point, either it or the matching quadruple point on the opposite side
of the circle have the property that the ordering of superscripts may be chosen
as g1ε1, . . . , g4ε4 so that in the next quadruple point the plane corresponding to
g1 will be missing, in the following quadruple point the plane corresponding to g2

will be missing, and so on. Finally, since the two matching quadruple points (i.e.
those with the same 4-tuple of planes) occur with opposite co-orientation, the sign
attached to each gi will be opposite (i.e. giεi is replaced by giε̂i). Since we have
seen that if a plane is common to two consecutive quadruple points, it appears
in their superscripts with the same sign, and since a given plane will be missing
exactly once between its appearance in a given quadruple point and the occurrence
of the matching quadruple point, it follows that whenever a plane is missing from
a quadruple point, then it appears in the following quadruple point with opposite
sign than it does in the previous one.

To write our final formula, let us choose the first quadruple point and ordering
g1ε1, . . . , g4ε4 as mentioned above, and we may write its degree as d− |ε5|g5, where
g5 corresponds to the plane missing from the first quadruple point and ε5 is the sign
with which it will appear in the second quadruple point. The first symbol is thus
Qg1ε1,g2ε2,g3ε3,g4ε4

d−|ε5|g5
, and the combination of all analysis above produces the following

equation:

(6)
0 = Qg1ε1,g2ε2,g3ε3,g4ε4

d−|ε5|g5
+Qg5ε5,g2ε2,g3ε3,g4ε4

d−|ε̂1|g1
+Qg5ε5,g1 ε̂1,g3ε3,g4ε4

d−|ε̂2|g2
+Qg5ε5,g1 ε̂1,g2 ε̂2,g4ε4

d−|ε̂3|g3

+ Qg5ε5,g1 ε̂1,g2 ε̂2,g3 ε̂3
d−|ε̂4|g4

+ Qg4 ε̂4,g1 ε̂1,g2 ε̂2,g3 ε̂3
d−|ε̂5|g5

+ Qg4 ε̂4,g5 ε̂5,g2 ε̂2,g3 ε̂3
d−|ε1|g1

+ Qg4 ε̂4,g5 ε̂5,g1ε1,g3 ε̂3
d−|ε2|g2

+ Qg4 ε̂4,g5 ε̂5,g1ε1,g2ε2
d−|ε3|g3

+ Qg3ε3,g5 ε̂5,g1ε1,g2ε2
d−|ε4|g4

.

We summarize what we have achieved in the following definition and proposition:

Definition 4.1. Let ∆n = ∆n(G) ⊆ C∗
n be the subgroup consisting of all functions

g ∈ C∗
n which satisfy equations (1) – (6) together with our first two equations

Hg1ε1,g2ε2
d = −Hg1 ε̂1,g2 ε̂2

d and Qg1ε1,g2ε2,g3ε3,g4ε4
d = −Qg2 ε̂2,g1 ε̂1,g3 ε̂3,g4 ε̂4

d .
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Proposition 4.2. The image of the injection µn : Vn/Vn−1 → C∗
n is contained in

∆n.

Finding the precise image of µn for all n (as has been done for the case M = R3

in [N3], [N4]) would give a full classification of all finite order invariants. In the
next section we will show that the image of µ1 is all ∆1, by this classifying all order
one invariants.

5. Order one invariants

We define a “universal” Abelian group GU by the Abelian group presenta-
tion which takes as generators the elements of C1 and as relations the set of all
equations used above to define ∆n (and in particular ∆1). Note that for defin-
ing ∆1, an expression such as Hg1ε1,g2ε2

d = −Hg1 ε̂1,g2 ε̂2
d is merely a short form

for writing g(Hg1ε1,g2ε2
d ) = −g(Hg1 ε̂1,g2 ε̂2

d ), this being a condition on an element
g ∈ C∗

1 for being included in the subgroup ∆1, whereas, in the definition of GU ,
Hg1ε1,g2ε2

d = −Hg1 ε̂1,g2 ε̂2
d is an actual relation in the presentation of GU by gen-

erators and relations. We define the universal element gU ∈ ∆1(GU ) to be the
function that assigns to each element in C1 the generator corresponding to it in
GU . By definition of GU , indeed gU ∈ ∆1(GU ). We will now establish the exis-
tence of an order 1 invariant fU : I0 → GU satisfying µ1(fU ) = gU . This will prove
our desired result, that for any Abelian group G, µ1 : V1(G) → ∆1(G) is surjective.
Indeed, given g ∈ ∆1(G), there is a (unique) homomorphism ϕ : GU → G such that
g = ϕ ◦ gU , and we get µ1(ϕ ◦ fU ) = g.

For constructing fU we will need a convenient “base immersion” in A, the exis-
tence of which we now show.

Lemma 5.1. There exists i0 ∈ A whose image is contained in a ball B ⊆ M .

Proof. Let i ∈ A be some immersion and Ht : F → M a null-homotopy from i
to a constant map k : F → M with k(F ) = p ∈ B. Using the parallelizability
of M we extend H to a homotopy of bundle monomorphisms, from di to a bun-
dle monomorphism b which covers k. By the Smale-Hirsch Theorem applied to
Imm(F, B), there is an immersion i0 : F → B with di0 homotopic to b as bundle
monomorphisms. Now by the Smale-Hirsch Theorem applied to Imm(F, M), i is
regularly homotopic to i0, and so i0 ∈ A. �

Fix an immersion i0 ∈ I0 with image contained in a small ball B ⊆ M , as
provided by Lemma 5.1. For any i ∈ I0 take a generic regular homotopy Jt from
i0 to i, and to each CE which occurs along Jt choose a proper co-orientation. Let
fU (i) be the sum of the elements in GU corresponding to the co-oriented CEs
occurring along Jt, each taken with a sign ± according to whether Jt passes it in
the direction of its co-orientation. An opposite choice of co-orientation for a CE
along Jt (relevant for types H, Q) will produce the negative element in GU , but
this element will appear with an opposite sign in the sum, and so this sum is well
defined, for given Jt. We would like to show that in fact fU is independent of the
regular homotopy Jt, and so fU is a well defined invariant. This is equivalent to
showing that this sum is 0 along any closed Jt, i.e. Jt such that J0 = J1 = i0. Once
we know fU is well defined, it is clear that it is of order 1, and µ1(fU ) = gU .
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The fact that the sum of values is 0 along any null-homotopic loop follows from
the definition of ∆1 and GU as demonstrated in [N3], and so the sum along loops
induces a well defined homomorphism φ : π1(A, i0) → GU . We must show φ = 0.

Fix a disc D ⊆ F , and let S : A → Imm(D, M) be given by restriction, S(i) =
i|D. Then S is a fibration with fiber AD = {i ∈ A : i|D = i0|D}. So we get an
exact sequence

π1(AD, i0)
inc∗−→ π1(A, i0)

S∗−→ π1(Imm(D, M), i0|D).

Let K ⊆ π1(A, i0) be the subgroup consisting of loops obtained by composing
i0 : F → B with a motion of B in M through embeddings, beginning and ending
with the inclusion of B in M . It is clear that S∗ maps K onto π1(Imm(D, M), i0|D),
and so the elements of K and those coming from π1(AD, i0) generate π1(A, i0). Now
φ is 0 on elements of K, since no CEs occur along such loops, and so it remains to
show that φ is 0 on π1(AD, i0). It is shown in the proof of [N1], Theorem 3.4, that
π1(AD, i0) is generated by a loop which only moves a small disc U ⊆ F which is
disjoint from D, and U moves only within a small ball B′. In our case we may take
B′ ⊆ B, and so we finally need only to check the value of φ on loops moving F in
B. If we take our labeling to be locally constant above B, then we can have all lifts
used to define our symbols to be contained in the same lift of B, constantly labeled
by some fixed element h ∈ πa, and so all symbols will be of the form Rhε1,hε2,...

mh . By
a permutation of the superscript, which is even in case R is Q, we may assume that
all + signs appear first, and so the superscript is characterized only by the number
of + signs, which is precisely the way the superscript of a symbol is defined in [N3]
for immersions F → B = R3. The subscript is characterized by the coefficient m
of mh which is also simply the degree as defined in [N3] for immersions F → B.
Therefore, φ being 0 on all loops moving F in B follows from the fact that fU

appearing in [N3] for the case M = R3 is well defined. Indeed, for fU of [N3], the
sum of symbols along a loop of immersions in B is 0 in the group GU of [N3]. We
have noticed that our symbols of the form Rhε1,hε2,...

mh correspond to the symbols
of [N3], but furthermore, any equation on the symbols appearing in [N3] has a
corresponding equation on our symbols of the form Rhε1,hε2,...

mh by considering the
same codimension 2 configuration in B. Therefore, the sum in our present GU must
also be 0. This completes the proof of our main result, which classifies all order 1
invariants for any orientable aspherical 3-manifold:

Theorem 5.2. Let F be a closed orientable surface, M an aspherical orientable 3-
manifold, and A a regular homotopy class of null-homotopic immersions of F into
M . Then for any Abelian group G, the injection µ1 : V1/V0 → ∆1 is surjective.

6. Examples

Our classification of order 1 invariants (Theorem 5.2) is in terms of the group
∆1(G) which as we have seen is the same as the group Hom(GU , G). In [N3] where
M = R

3 and so π1(M) = {1}, the structure of GU is completely understood and
accordingly the group of order 1 invariants. In the general case presented here,
the structure of GU depends on the structure of π1(M), most notably through the
equivalence relation which produces C1 from C′

1. The complexity of this dependence
may be seen in Examples 3.3 and 3.4, where the question is whether a given symbol
is equivalent to its reversed symbol. Therefore, a closed explicit classification as
appears in [N3] for M = R3 will require an extensive analysis of π1(M) for any
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given M . In this section we first find the set of all order 1 invariants which are
common to all M . We then use one such invariant to prove a pair of equalities
satisfied by any immersion in our setting. Finally, for M with π1(M) = Z

k, k ≥ 1,
we demonstrate two large families of order 1 invariants that do not appear when
π1(M) = 0.

We first ask, what is the set of invariants that are common to all orientable
aspherical 3-manifolds. For this we must eliminate the role of π1(M). Given a
symbol R

g1ε1,...,g|R|ε|R|
d , we define its reduced symbol Ra

m, where a is the number of
+ signs in g1ε1, . . . , g|R|ε|R| and m is the sum of the coefficients in d. Accordingly,
we define the reduced degree dr

p(i) of an immersion i with respect to a point p ∈ M
as the sum of the coefficients of the degree in Z[πa] defined in Section 3. We define
the reduced universal Abelian group G

r
U to be the quotient group of GU with the

added relations identifying any two symbols if they correspond to the same reduced
symbol. The group Gr

U is the same group for all M , and it is equal to GU itself
when π1(M) = {1}; i.e. it is the group GU of R3 appearing in [N3]. If ρ : GU → Gr

U

is the natural map, then ρ ◦ fU is an order one invariant which is common to all
3-manifolds M , which in the case π1(M) = {1} is the universal order 1 invariant
itself. The conclusion is that all order 1 invariants existing in R3 and thoroughly
studied in [N3], [N5] exist in all M . More precisely, let GM

U , fU
M be the universal

group and universal order 1 invariant for M . Then any order 1 invariant on R3 is
given up to a constant as ϕ ◦ fU

R3 for some homomorphism ϕ : GR
3

U → G, and the
corresponding invariant on M will be ϕ ◦ ρ ◦ fU

M . The invariant fU
R3 is presented in

detail in [N5], Section 3, and the geometric meaning of each of its components is
explained. The same geometric meaning applies to the components of ρ ◦ fU

M for
general M .

We give an example of one explicit order 1 invariant appearing in [N5] with an
application. We will not present the invariant in terms of such ϕ but rather give
an explicit formula for it presented in [N5]. This explicit formula applies to any M
for which the Euler characteristic of the subsets appearing below is always finite, so
assume M may be presented as the interior of a compact manifold (which includes
the case where M is closed).

Let i ∈ I0. For every m ∈ Z let Um = Um(i) = {p ∈ M − i(F ) : dr
p(i) =

m}. Denote by Nm = Nm(i) the number of triple points p ∈ M of i having
dr

p(i) = m. We define the group O to be the free Abelian group with generators
{xn}n∈Z ∪ {yn}n∈Z. For i ∈ I0 we define k(i) ∈ O as follows:

k(i) =
∑
m∈Z

χ(Um)xm +
∑
m∈Z

1
2
Nmym.

The same proof as in [N5] shows that this is indeed an order 1 invariant. In this
case, to show that the coefficients appearing in the formula are indeed integers (and
never half integers), we must again show that there is some immersion in any regular
homotopy class for which the coefficients are integers. By Lemma 5.1 above, there
exists i ∈ A whose image is contained in a ball B. We may continue by regular
homotopy in B to an immersion j as appearing in [N5], Lemma 5.2. This j in a
general M gives k(j) = (χ(M) + 1 − g)x0 + (1 − g)x−1, where g is the genus of F .

We present an application of the invariant k. As in [N5], let θ0 : O → Z be
the homomorphisms defined by θ0(x2m) = 1, θ0(x2m+1) = 0, θ0(ym) = −1 for all
m and θ1 : O → Z defined by θ1(x2m) = 0, θ1(x2m+1) = 1, θ1(ym) = −1 for all m.
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Then as in [N5] we have that θ0 ◦ k and θ1 ◦ k are constant invariants, which are
given explicitly by θ0 ◦ k(i) =

∑
χ(U2m)− 1

2N and θ1 ◦ k(i) =
∑

χ(U2m+1) − 1
2N ,

where N = N(i) =
∑

Nm(i) is the total number of triple points of i. To find the
value of these constants we need to evaluate them on a single immersion in every
regular homotopy class. For the immersion j above, θ0 ◦ k(j) = χ(M) + 1 − g and
θ1 ◦ k(j) = 1 − g, so we get the following two identities:

Proposition 6.1. Let g be the genus of F . For any i ∈ I0,∑
m

χ(U2m) − 1
2
N = χ(M) + 1 − g and

∑
m

χ(U2m+1) −
1
2
N = 1 − g.

Note that this pair of equalities is finer than what can be deduced from the result
of Izumiya and Marar in [IM], which for immersions is χ(i(F )) = χ(F )+N . Indeed,
think of M as the union of a regular neighborhood of i(F ), and a slightly diminished⋃

m Um. The intersection of the two is ∂
⋃

m Um − ∂M (recall we assume for our
formula that M is the interior of a compact manifold, so we include the boundary
here if it exists). We get χ(M) = χ(i(F )) +

∑
χ(Um)−

∑
χ(∂Um) + χ(∂M). Now

using the fact that for any compact 3-manifold L, χ(∂L) = 2χ(L), we get χ(i(F )) =∑
χ(Um) − χ(M). This shows that the Izumiya Marar equality is equivalent to∑
χ(Um) − N = χ(M) + χ(F ), which is the sum of our two equalities.
Finally, we look at M so that π1(M) is a finitely generated Abelian group. By

standard considerations concerning group homology, the only finitely generated
Abelian groups that may appear as the fundamental group of an aspherical 3-
manifold are Zk, 0 ≤ k ≤ 3. For k > 0 we will now construct two large families
of order 1 invariants that do not appear for k = 0. (These groups are indeed
realized by orientable aspherical 3-manifolds, namely, S1 × R2, S1 × S1 × R and
S1 × S1 × S1.) Choose an ordering � on Z

k which is invariant under the action of
Zk on itself, e.g. the lexicographical ordering induced by the usual ordering of Z.
Let A = {v ∈ Zk : 0� v}; then any symbol of the form Hg1ε1,g2ε2

d is equivalent to
a symbol of the form H0ε1,vε2

d for unique v ∈ A, and the same is true for Eg1ε1,g2ε2
d .

Now let h : A → G be an arbitrary function. We will use h to define an order 1
invariant f . We first define g ∈ C∗

n as follows: For symbol x of the form Hg1+,g2+
d ,

let g(x) = h(v) for the unique v mentioned above. For x of the form Hg1−,g2−
d let

g(x) = −h(v), and for x of the form Hg1+,g2−
d let g(x) = 0. For any x of the form

Eg1ε1,g2ε2
d , define g(x) in the same way. Finally, for any symbol x of configuration

T or Q define g(x) = 0. One can easily check that g is well defined on equivalence
classes of symbols and satisfies all eight relations defining ∆1, and so by Theorem
5.2 there is an order 1 invariant f with values in G such that µ1(f) = g. So, for
any choice of function h : A → G we have constructed an order 1 invariant f , and
note that f belongs to the set of invariants which are common to all M only if h is
a constant function.

We now define a second such family of invariants. Let B = {(v, w) ∈ Zk ×
Zk : 0� v�w}; then any symbol of the form T g1ε1,g2ε2,g3ε3

d is equivalent to a
symbol of the form T 0ε1,vε2,wε3

d for unique (v, w) ∈ B. Now let h : B → G be an
arbitrary function. We use it to define g ∈ C∗

n as follows: For symbol x of the
form T g1ε1,g2ε2,g3ε3

d let g(x) = h(v, w) for the unique (v, w) mentioned, and, for
any symbol x of configuration E, H or Q define g(x) = 0. Again, one can easily
check that g is well defined on equivalence classes of symbols and satisfies all eight
relations defining ∆1, and so there is an order 1 invariant f such that µ1(f) = g.
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Again, f belongs to the set of invariants which are common to all M only if h is a
constant function.
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