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Abstract. Given a surfaceF , we are interested inZ/2 valued invariants of
immersions ofF into R

3, which are constant on each connected component
of the complement of the quadruple point discriminant inImm(F,R3).
Such invariants will be called “q-invariants.” Given a regular homotopy
classA ⊆ Imm(F,R3), we denote byVn(A) the space of allq-invariants
onA of order≤ n. We show that ifF is orientable, then for each regular
homotopy classA and eachn, dim( Vn(A)/Vn−1(A) ) ≤ 1.

1. Introduction

LetF be a closed surface. LetImm(F,R3) denote the space of all immer-
sions ofF into R

3 and letI0 ⊆ Imm(F,R3) denote the space of all generic
immersions.

Definition 1.1. A functionf : I0 → Z/2 will be called a “q-invariant” if
wheneverHt : F → R

3 (0 ≤ t ≤ 1) is a generic regular homotopy with no
quadruple points, thenf(H0) = f(H1).

Definition 1.2. Let In ⊆ Imm(F,R3) denote the space of all immersions
whose unstable self intersection consists of preciselyn generic quadruple
points, and letI =

⋃∞
n=0 In.

Definition 1.3. Given aq-invariant f : I0 → Z/2 we extend it toI as
follows: For i ∈ In let i1, ..., i2n ∈ I0 be the2n generic immersions that
may be obtained by slightly deformingi. Define

f(i) =
2n∑

k=1

f(ik).
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For anyq-invariant, we will always assume without mention that it is
extended to the whole ofI as in Definition 1.3.

The following relation clearly holds:

Proposition 1.4. Letf be aq-invariant. Leti ∈ In, n ≥ 1, and letp ∈ R
3

be one of itsn quadruple points. Then:f(i) = f(i1)+ f(i2) wherei1, i2 ∈
In−1 are the two immersions that may be obtained by slightly deformingi
in a small neighborhood ofp.
(Or equivalently, since we are inZ/2, f(i2) = f(i1) + f(i).)

Definition 1.5. A q-invariant f will be called “of finite order” if f |In ≡ 0
for somen.
The “order” of a finite orderq-invariant f is defined as the minimaln

such thatf |In+1 ≡ 0.

(Compare our Definitions 1.3 and 1.5 with 2.2 of [O].)
An example of aq-invariant of order 1 is the invariantQwhich is defined

by the property that ifHt : F → R
3 (0 ≤ t ≤ 1) is a generic regular

homotopy in whichm quadruple points occur, thenQ(H1) = Q(H0) +
m mod2. In other wordsQ is defined by the property thatQ|I1 ≡ 1. It was
proved in [N] thatQ indeed exists for any surfaceF .

As a side remark we mention the following: In addition to quadruple
points, there are three other types of unstable self intersection that may occur
during a generic regular homotopyHt : F → R

3. ForF orientable, “local”
invariants arising from such occurrences have first been studied in [G] (see
[G] for the definition.) The above invariantQ is such a local invariant and
though the actual existence ofQ has not been established in [G], certain
facts relating toQ have been shown there. A rough statement of those may
be as follows: 1. A localZ-valued invariant analogous toQ does not exist. 2.
Q is, in a sense, the only local invariant on immersions ofF into R

3, which
is not a restriction of a local invariant on general maps ofF into R

3.
There areM = 22−χ(F ) regular homotopy classes (i.e. connected com-

ponents) inImm(F,R3). Given a regular homotopy classA ⊆ Imm
(F,R3), we may repeat all our definitions withA in place ofImm(F,R3).
Let thenVn(A) (respectivelyVn) denote the space of allq-invariants onA
(respectivelyImm(F,R3)) of order≤ n. Vn(A) andVn are vector spaces
overZ/2, andVn =

⊕M
α=1 Vn(Aα) whereA1, ..., AM are the regular ho-

motopy classes inImm(F,R3). More precisely, a functionf : I0 → Z/2 is
aq-invariant of order≤ n iff for every1 ≤ α ≤ M , f |I0∩Aα is aq-invariant
of order≤ n. And so studyingq-invariants onImm(F,R3) is the same as
studyingq-invariants on the various regular homotopy classes.

The purpose of this work is to prove the following:

Theorem 1.6. If F is orientable thendim( Vn(A)/Vn−1(A) ) ≤ 1 for any
A andn.
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By [N] dim( V1(A)/V0(A) ) ≥ 1 for anyA (for all surfaces, not neces-
sarily orientable) and so we get:

Corollary 1.7. If F is orientable thendim( V1(A)/V0(A) ) = 1 for anyA.

Since as mentioned,Vn =
⊕M

α=1 Vn(Aα), we get:

Corollary 1.8. If F is orientable of genusg thendim(Vn/Vn−1) ≤ 22g for
everyn, anddim(V1/V0) = 22g.

2. Generalq-invariants

The results in this section will not assume that theq-invariantf is of finite
order.

Theorem 2.1 (The 10 Term Relation).Let i : F → R
3 be any immersion

whose non-stable self intersection consists of one generic quintuple point,
and some finite number of generic quadruple points. Let the quintuple point
be located atp ∈ R

3 and letS1, ..., S5 be the five sheets passing through
p. Let i1k and i

2
k (k = 1, ..., 5) be the two immersions obtained fromi by

slightly pushingSk away fromp to either side. Then for anyq-invariantf :

5∑
k=1

2∑
l=1

f(ilk) = 0.

Proof. Starting withi, takeS1 and push it slightly to one side. Then takeS2
and push it away on a much smaller scale. What we now have is an immersion
j where sheetsS2, ..., S5 create a little tetrahedron, andS1 passes outside
this tetrahedron. We define the following regular homotopyHt : F → R

3

beginning and ending withj, we describe it in four steps: (a)S1 sweeps to
the other side of the tetrahedron. In this step four quadruple points occur.
(b)S2 sweeps across the triple point of sheetsS3, S4, S5. This results in the
vanishing of the tetrahedron and its inside-out reappearance. One quadruple
point occurs here. (c)S1 sweeps back to its place. Four more quadruple
points occur. (d)S2 sweeps back to its place. One more quadruple point
occurs.

All together we have ten quadruple points, and say themth quadru-
ple point occurs at timetm. It is easy to verify that the ten immersions
Ht1 , ..., Ht10 are precisely (equivalent to) the ten immersionsilk (l = 1, 2 ,
k = 1, ..., 5.) Also,f(Htm) = f(Htm−ε) + f(Htm+ε) and so:

∑
kl

f(ilk) =
10∑

m=1

f(Htm) =
10∑

m=1

(f(Htm−ε) + f(Htm+ε)).

But f(Htm+ε) = f(Htm+1−ε) (wherem + 1 means(m + 1) mod10) and
so this sum is 0. �	
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Proposition 2.2. LetB(1) ⊆ R
3 be theunit ball. LetD1(1), ..., D4(1) ⊆ F

be four disjoint discs which will each be parameterized as the unit disc, and
let D(1) =

⋃4
k=1 Dk(1). Let i ∈ I and assumei−1(B(1)) = D(1) and

i|D(1) maps eachDk(1) linearly onto someLk ∩B(1) whereLk is a plane
through the origin, andL1, ..., L4 are in general position. Leti′ : D(1) →
B(1) be an immersion of the same sort asi|D(1) but with planesL

′
1, ..., L

′
4.

For 0 ≤ r ≤ 1 let B(r) ⊆ B(1) andDk(r) ⊆ Dk(1) be the ball and
discs of radiusr and letD(r) =

⋃4
k=1 Dk(r).

Then: There exists an immersionj : F → R
3 satisfying:

1. j is regularly homotopic toi via a regular homotopy that fixesF −D(1).
2. j−1(B(1

2)) = D(1
2)

3. j|D( 1
2 ) = i′|D( 1

2 )

4. f(j) = f(i) for anyq-invariantf .

Proof. Slightly perturbi if necessary so that the eight planesLk, L
′
k will

all be in general position. We define a regular homotopyHt from i to an
immersioñi as follows: Saya is the point inD1(1) which is mapped to the
origin. Keepinga andF − D1(1) fixed, we isotopeD1(1) within B(1) to
get ĩ with ĩ−1(B(7

8)) = D(7
8) andĩ|D1( 7

8 ) = i′|D1( 7
8 ).

Let i1, i2 be the two immersions obtained fromi by slightly pushing
D1(1) off of the origin, and let̃i1, ĩ2 be the corresponding slight deforma-
tions of ĩ. Ht induces regular homotopiesH l

t (l = 1, 2) from il to ĩl, and
such thatH l

t |D1(1) avoids the origin.
Now, the only triple point of{L2, L3, L4} is the origin, andH l

t |D1(1)

is an isotopy which avoids the origin, and soH l
t will have no quadruple

point, and sof(il) = f (̃il) (l = 1, 2). And so (By Proposition 1.4)f(i) =
f(i1) + f(i2) = f (̃i1) + f (̃i2) = f (̃i).

We now repeat this process in the ballB(7
8) and withD2(7

8), obtaining

an immersioñ̃i with ˜̃i|D1( 6
8 )∪D2( 6

8 ) = i′|D1( 6
8 )∪D2( 6

8 ). After four iterations
we get the desiredj. �	

3. q-invariants of order n

We now prove the following theorem, which clearly implies Theorem 1.6
(our main theorem):

Theorem 3.1. AssumeF is orientable and letf be aq-invariant of order
n.
Then for any regular homotopy classA ⊆ Imm(F,R3), f is constant

on In ∩A.
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Proof. Let i ∈ I andp ∈ R
3 a quadruple point ofi. A ballB ⊆ R

3 centered
at p as in Proposition 2.2, i.e. such thati−1(B) is a union of four disjoint
discs intersecting inB as four planes, will be called “a good neighborhood
for i atp.”

For i ∈ In let p1, ..., pn ∈ R
3 be then quadruple points ofi in some

order, and letB1, ..., Bn be disjoint good neighborhoods fori atp1, ..., pn.
We defineπk(i) : F → ∂Bk as follows: Push each one of the four discs inBk

slightly away frompk into the preferred side determined by the orientation
of F . We now have a map that avoidspk. Defineπk(i) as the composition
of this map with the radial projectionR3 − {pk} → ∂Bk.

Let dk(i) denote the degree of the mapπk(i).
Let the symmetric groupSn act onZ

n by σ(a1, ..., an) = (aσ(1), ...,

aσ(n)), and letZ̃n = Z
n/Sn. Let the class of(a1, ..., an) in Z̃n be denoted

by [a1, ..., an]. For i ∈ In we defined(i) ∈ Z̃n by d(i) = [d1(i), ..., dn(i)].
We break our proof into two steps.Step1:If i, j ∈ In∩Aandd(i) = d(j)

thenf(i) = f(j). Step 2:For any(a1, ..., an) ∈ Z
n, there are immersions

i, j ∈ In ∩ A with d(i) = [a1, a2, ..., an], d(j) = [a1 + 1, a2, ..., an] and
f(i) = f(j). The theorem clearly follows from these two claims.

Proof of Step 1:By composingi with an isotopyUt : R
3 → R

3 we may
assume thatp1, ..., pn ∈ R

3 are the quadruple points of bothi andj and
thatdk(i) = dk(j) for each1 ≤ k ≤ n. Let B1, ..., Bn be disjoint good
neighborhoods for bothi andj atp1, ..., pn. By composingiwith an isotopy
Vt : F → F we may further assume thati−1(Bk) = j−1(Bk) for everyk.
We name the four discs inF corresponding topk byDkl, l = 1, ..., 4.

Using Proposition 2.2 we may now changei such that (for smallerBk’s)
we will havei|Dkl = j|Dkl for all 1 ≤ k ≤ n , 1 ≤ l ≤ 4. The process
of Proposition 2.2 indeed does not changedk(i), since the slightly pushed
discs appearing in the definition ofπk(i) can follow the regular homotopy of
Proposition 2.2 and this will induce a homotopy between the corresponding
πk(i)’s.

So we may assumei|Dkl = j|Dkl for all 1 ≤ k ≤ n , 1 ≤ l ≤ 4. We
will now show that there exists a regular homotopy fromi to j such that
eachDkl moves only within its image inR3, andF − ⋃

kl D
kl moves only

within R
3 − ⋃

k Bk. We will then be done since such a regular homotopy
cannot changef(i). Indeed, no sheet will passp1, ..., pn and so the only
singularities that might be relevant are the quadruple points occurring in
R

3 − ⋃
k Bk. But whenever such a quadruple point occurs, then we will

haven + 1 quadruple points all together, and so sincef is of ordern, f(i)
will not change. (Proposition 1.4.)

To show the existence of the above regular homotopy, we construct the
following handle decomposition ofF . Our discsDkl, (1 ≤ k ≤ n , 1 ≤ l ≤
4) will be the 0-handles. Ifg is the genus ofF we will have 2g + 4n − 1
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1-handles as follows:2g 1-handles will have both ends glued toD11 such
thatD11 with these2g handles will decomposeF in the standard way. Then
choose an ordering of the discsDkl with D11 first, and connect each two
consecutive discs with a 1-handle. The complement of the 0- and 1-handles
is one disc which will be the unique 2-handle.

We first define our regular homotopy on the union of 0- and 1- handles.
Take a 1-handleh of the first type. Sincei andj are regularly homotopic,
their restrictions to the annulusD11 ∪ h are also regularly homotopic. We
can construct such a regular homotopy ofD11 ∪ h fixing D11 and avoiding⋃

k Bk.
Next consider the 1-handles of the second type. Take the 1-handleh

connectingD11 to the second disc in our ordering, call itD′. Then ifi|h and
j|h are not regularly homotopic relative the gluing ofh to D11 ∪ D′, then
we perform one full rotation ofD′, as to make them regularly homotopic.
(This will require a motion of the next 1-handle too.) Again we perform all
regular homotopies while avoiding

⋃
k Bk. We can now go along the chain

of 1-handles of the second type, and regularly homotope them one by one as
we did the first one. At each step we might need to move the next 0-handle
and 1-handle, but we never need to change what we have already done.

Denote our 2-handle byD. So far we have constructed the desired regular
homotopy onF − D. By means of [S], this regular homotopy may be
extended toD (still avoiding

⋃
k Bk.) And so, we are left with regularly

homotopingi|D to j|D (relative∂D.) Sincedk(i) = dk(j) for all k, these
maps are homotopic inR3 − ⋃

k Bk. It then follows from the Smale-Hirsch
Theorem ([H],) that they are alsoregularlyhomotopic inR3 −⋃

k Bk, since
the obstruction to that would lie inπ2(SO3) = 0.

Proof of Step 2:Take any immersioni′ ∈ In ∩ A with d(i′) = [a1, ..., an]
and letp1, ..., pn ∈ R

3 be the quadruple points ofi′, ordered such that
dk(i′) = ak, 1 ≤ k ≤ n. (Clearly any[a1, ..., an] ∈ Z̃n may be realized
within any regular homotopy class.) Take a disc inF which is away from
thepk’s and start pushing it (i.e. regularly homotoping it) into its preferred
side directing it towardsp1. Avoid any of thepk’s on the way, and so the
immersioni we will get just before arriving atp1, will still havedk(i) = ak

for all k. We then passp1 creating a quintuple point, and continue to the other
side arriving at an immersionj which is again inIn. Clearlyd1(j) = a1 +1
and dk(j) = ak for k ≥ 2. We will now use Step 1 and the 10 term
relation (Theorem 2.1) to show thatf(i) = f(j). Indeed, let us name the
five sheets of our quintuple point byS1, ..., S5 whereS1 is the sheet coming
from the disc that we have pushed intop1. Let i1m (m = 1, ..., 5) denote
the immersion obtained by pushingSm into its non-preferred side, andi2m
the immersion obtained by pushingSm into its preferred side. Theni = i11
andj = i21. Recall thatπ1(ilm) is constructed by pushing all four sheets
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involved in the quadruple point atp1 into their preferred side. And so for
each1 ≤ m ≤ 5, π1(i1m) has one sheet pushed into the non-preferred
side and four sheets into the preferred side, and sod1(i1m) are all equal
to each other. Similarly, for each1 ≤ m ≤ 5, π1(i2m) has all five sheets
pushed into the preferred side and so alsod1(i2m) are all equal to each other.
Clearly all this has no effect ondk for k ≥ 2, and so we haved(i1m) = d(i)
andd(i2m) = d(j) for all 1 ≤ m ≤ 5. And so by step 1,f(i1m) = f(i)
andf(i2m) = f(j) for all 1 ≤ m ≤ 5. And so by the 10 term relation,
0 =

∑
ml f(ilm) = 5f(i) + 5f(j) = f(i) + f(j) i.e.f(i) = f(j). �	
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