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Abstract. Given a surfacé”, we are interested ifi /2 valued invariants of
immersions off" into R3, which are constant on each connected component
of the complement of the quadruple point discriminant/inm(F, R3).
Such invariants will be calledg*invariants.” Given a regular homotopy
classA C Imm(F,R?), we denote by/,(A) the space of alj-invariants

on A of order< n. We show that iff" is orientable, then for each regular
homotopy classt and eac, dim( V,,(A)/V,—1(4) ) < 1.

1. Introduction

Let F be a closed surface. Léthm(F, R?) denote the space of all immer-
sions of F into R? and letl, C I'mm(F, R?) denote the space of all generic
immersions.

Definition 1.1. A functionf : Iy — Z/2 will be called a “g-invariant” if
wheneverl; : F — R3 (0 < t < 1) is a generic regular homotopy with no
quadruple points, therfi(Hy) = f(H1).

Definition 1.2. LetI,, C I'mm(F,R3) denote the space of all immersions
whose unstable self intersection consists of precigafgneric quadruple
points, and letl = [ J;7, I,.

Definition 1.3. Given ag-invariant f : Iy — Z/2 we extend it tol as
follows: Fori € I, letiy,...,ion € Iy be the2™ generic immersions that
may be obtained by slightly deformingDefine
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For anyg-invariant, we will always assume without mention that it is
extended to the whole dfas in Definition 1.3.
The following relation clearly holds:

Proposition 1.4. Let f be ag-invariant. Leti € I,,,n > 1, and letp € R3
be one of it3: quadruple points. Therf. (i) = f(i1) + f(i2) whereiy, iy €
1,1 are the two immersions that may be obtained by slightly deforming
in a small neighborhood qf.

(Or equivalently, since we are /2, f(i2) = f(i1) + f(4).)

Definition 1.5. A g-invariant f will be called “of finite order” if f|;, =0
for somen.

The “order” of a finite orderg-invariant f is defined as the minimal
such thatf|z,,, = 0.

(Compare our Definitions 1.3 and 1.5 with 2.2 of [O].)

An example of @-invariant of order 1 is the invariad which is defined
by the property that if; : ' — R3 (0 < ¢t < 1) is a generic regular
homotopy in whichm quadruple points occur, the(H,) = Q(Hy) +
m mod2. In other words?) is defined by the property thét|;, = 1. It was
proved in [N] thatQ) indeed exists for any surfade.

As a side remark we mention the following: In addition to quadruple
points, there are three other types of unstable self intersection that may occur
during a generic regular homotop¥; : F' — R3. For F orientable, “local”
invariants arising from such occurrences have first been studied in [G] (see
[G] for the definition.) The above invaria is such a local invariant and
though the actual existence §f has not been established in [G], certain
facts relating ta) have been shown there. A rough statement of those may
be as follows: 1. A locdf-valued invariant analogous €@does not exist. 2.
Qis, in a sense, the only local invariant on immersiong'afito R3, which
is not a restriction of a local invariant on general mapg ofto R3.

There arel/ = 22-x(F) regular homotopy classes (i.e. connected com-
ponents) infmm(F,R?). Given a regular homotopy clas¢ C Imm
(F,R3), we may repeat all our definitions with in place ofImm(F,R3).

Let thenV,,(A) (respectivelyl/,,) denote the space of ajtinvariants onA
(respectivelylmm(F, R?)) of order< n. V,,(A) andV,, are vector spaces
overZ/2, andV,, = @ | V,.(A,) whereA,, ..., Ay, are the regular ho-
motopy classes ifimm(F, R?). More precisely, a functiofi : Iy — Z/2is
ag-invariant of ordex n iff forevery 1 < a < M, f|1,na,, iS ag-invariant
of order< n. And so studyingj-invariants onfmm(F, R3) is the same as
studyingg-invariants on the various regular homotopy classes.

The purpose of this work is to prove the following:

Theorem 1.6. If F'is orientable thenlim( V,,(A)/V,,—1(A4) ) < 1 for any
A andn.
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By [N] dim( V1 (A)/Vu(A) ) > 1 for any A (for all surfaces, not neces-
sarily orientable) and so we get:

Corollary 1.7. If F'is orientable thenlim( V1 (A)/Vp(A) ) = 1 forany A.
Since as mentioned, = @le Vi(Ag), we get:

Corollary 1.8. If F'is orientable of genug thendim(V;,/V;,_1) < 229 for
everyn, anddim(Vy /Vp) = 2%,

2. Generalg-invariants

The results in this section will not assume that gh@variant f is of finite
order.

Theorem 2.1 (The 10 Term Relation)Leti : F — R3 be any immersion
whose non-stable self intersection consists of one generic quintuple point,
and some finite number of generic quadruple points. Let the quintuple point
be located ap € R? and letS, ..., S5 be the five sheets passing through

p. Leti} andi? (k = 1,...,5) be the two immersions obtained franby
slightly pushingS; away fromp to either side. Then for anytinvariant f:

5 2
>N fi) =o.
k=1 I1=1

Proof. Starting withi, takeS; and push it slightly to one side. Then takge
and pushitaway on a much smaller scale. Whatwe now have is animmersion
j where sheet$,, ..., S5 create a little tetrahedron, arty passes outside
this tetrahedron. We define the following regular homotégy: F — R3
beginning and ending witl, we describe it in four steps: (&) sweeps to
the other side of the tetrahedron. In this step four quadruple points occur.
(b) S, sweeps across the triple point of she€isSy, S5. This results in the
vanishing of the tetrahedron and its inside-out reappearance. One quadruple
point occurs here. (c¥; sweeps back to its place. Four more quadruple
points occur. (d)S; sweeps back to its place. One more quadruple point
occurs.

All together we have ten quadruple points, and saysttth quadru-
ple point occurs at time,,. It is easy to verify that the ten immersions
H,,...,H; , are precisely (equivalent to) the ten immersidp@ =12,
k=1,..,5.)Also, f(Hy, ) = f(Ht,,—e) + f(Ht,,+c) and so:

10 10
Z fliy) = Z f(Hy,) = Z (f(Htp—e) + f(Hipte))-
kl m=1 m=1

But f(Hy,,+c) = f(Hy,,,,—e) (Wherem + 1 means(m + 1) mod10) and
so this sum is 0. O
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Proposition 2.2. LetB(1) C R3 betheunitball. LeD; (1), ..., D4(1) C F
be four disjoint discs which will each be parameterized as the unit disc, and
let D(1) = J,_, Dr(1). Leti € I and assumeé~!(B(1)) = D(1) and
i| p1y maps eachDy (1) linearly onto somée., N B(1) whereLy is a plane
through the origin, and.4, ..., L4 are in general position. Let : D(1) —
B(1) be animmersion of the same sortigs,) but with planed.’s, ..., L's.

For0 <r < 1letB(r) C B(1) and Di(r) C Dy(1) be the ball and
discs of radius- and letD(r) = U;_, Dx(r).

Then: There exists an immersign ' — R3 satisfying:

1. jisregularly homotopic tévia a regular homotopy that fixds— D(1).
2.1 (B(3)) = D(3)

3. Jlp) =7lp)

4. f(y) = f(4i) for anyg-invariant f.

Proof. Slightly perturb: if necessary so that the eight plangg, L’ will
all be in general position. We define a regular homotéhyfrom ¢ to an
immersion: as follows: Say: is the point inD; (1) which is mapped to the
origin. Keepinga and ' — D1 (1) fixed, we isotopeD; (1) within B(1) to
geti with i~*(B(Z)) = D(3) andilp, 1y = 7'[p, (7).

Let i',i? be the two immersions obtained froirby slightly pushing
D (1) off of the origin, and let!, 72 be the correspondmg sllght deforma-
tions ofi. H; induces regular homotoplei%t (I = 1,2) from ! to 4!, and
such thatH{| , (1) avoids the origin.

Now, the only triple point of{ Ly, L3, L4} is the origin, andHtl]Dl(l)
is an isotopy which avoids the origin, and & will have no quadruple
point, and sof (i') = f(i!) (l = 1,2). And so (By Proposition 1.4j (i) =
FG) + £(2) = FG) + £G2) = £G).

We now repeat this process in the b&ll%) and withD,(%), obtaining

an immersion with z\D (8)uDy(8) = 1 "I py(&)ups(s)- After four iterations
8 8 8
we get the desiregl. a

3. g-invariants of order n

We now prove the following theorem, which clearly implies Theorem 1.6
(our main theorem):

Theorem 3.1. AssumeF' is orientable and letf be ag-invariant of order
n.

Then for any regular homotopy clags C I'mm(F,R3), f is constant
onl, N A.
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Proof. Leti € I andp € R3 a quadruple point of A ball B C R3 centered
atp as in Proposition 2.2, i.e. such that' (B) is a union of four disjoint
discs intersecting ifB as four planes, will be called “a good neighborhood
foriatp.”

Fori € I, letpy,....,p, € R3 be then quadruple points of in some
order, and letBy, ..., B, be disjoint good neighborhoods foat p1, ..., p,.
We definery (i) : F' — 0By, asfollows: Push each one of the four discBin
slightly away frompy, into the preferred side determined by the orientation
of F. We now have a map that avoigg. Definen (i) as the composition
of this map with the radial projectioR® — {p;.} — 0By

Let dx (i) denote the degree of the map(i).

Let the symmetric groug,, act onZ" by o (a1, ..., an) = (ay(1y; -
Uy(ny), @and letZ" = 7 /S,. Let the class ofay, ..., a,,) in Z" be denoted
by a1, ..., a,]. Fori € I,, we defined(i) € Z™ by d(i) = [d1(3), ..., dn(7)].

We break our proofinto two stefStep 11f i, j € I,NAandd(i) = d(j)
thenf(i) = f(j). Step 2:For any(ay, ...,a,) € Z", there are immersions
i,7 € In N Awith d(i) = [a1, a2, ...,a), d(j) = [a1 + 1, ag, ..., a,] and
f(@) = f(j). The theorem clearly follows from these two claims.

Proof of Step 1By composingi with an isotopylU; : R? — R? we may
assume thap,, ..., p, € R? are the quadruple points of botrandj and
thatdy (i) = di(y) for eachl < k < n. Let By, ..., B,, be disjoint good
neighborhoods for bothandj atps, ..., p,. By composing with an isotopy
V; : F — F we may further assume that!(B;,) = j~!(By) for everyk.
We name the four discs iRl corresponding te;, by D, 1 =1, ..., 4.

Using Proposition 2.2 we may now changaich that (for smalleBy’s)
we will havei|pr = jlpw foralll < k < n,1 <[ < 4. The process
of Proposition 2.2 indeed does not chanfgéi), since the slightly pushed
discs appearing in the definitionof (i) can follow the regular homotopy of
Proposition 2.2 and this will induce a homotopy between the corresponding
W}c(i)’S.

So we may assumépi = jlpm foralll <k <n,1 <1 <4 We
will now show that there exists a regular homotopy frono j such that
eachD* moves only within its image ii?, and " — (J,, D* moves only
within R3 — Uy Br- We will then be done since such a regular homotopy
cannot changg (i). Indeed, no sheet will pass, ..., p, and so the only
singularities that might be relevant are the quadruple points occurring in
R3 — |J,, Bx. But whenever such a quadruple point occurs, then we will
haven + 1 quadruple points all together, and so sirfcs of ordern, f(i)
will not change. (Proposition 1.4.)

To show the existence of the above regular homotopy, we construct the
following handle decomposition @f. Our discsD*, (1 <k <n,1 <[ <
4) will be the 0-handles. I§ is the genus of” we will have 2g + 4n — 1
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1-handles as follows2g 1-handles will have both ends gluedfd! such
thatD'! with these2g handles will decomposE in the standard way. Then
choose an ordering of the disé¥® with D! first, and connect each two
consecutive discs with a 1-handle. The complement of the 0- and 1-handles
is one disc which will be the unique 2-handle.

We first define our regular homotopy on the union of 0- and 1- handles.
Take a 1-handlé of the first type. Sinceé andj are regularly homotopic,
their restrictions to the annulu3!! U h are also regularly homotopic. We
can construct such a regular homotopydf' U h fixing D! and avoiding
U, Bg.

kNext consider the 1-handles of the second type. Take the 1-handle
connectingD!! to the second disc in our ordering, callif. Then ifi|;, and
j|» are not regularly homotopic relative the gluing/ofo D'! U D/, then
we perform one full rotation of)’, as to make them regularly homotopic.
(This will require a motion of the next 1-handle too.) Again we perform all
regular homotopies while avoidirig,, B;.. We can now go along the chain
of 1-handles of the second type, and regularly homotope them one by one as
we did the first one. At each step we might need to move the next 0-handle
and 1-handle, but we never need to change what we have already done.

Denote our 2-handle bi. So far we have constructed the desired regular
homotopy onF' — D. By means of [S], this regular homotopy may be
extended taD (still avoiding | J,. Bx.) And so, we are left with regularly
homotopingi|p to j|p (relativedD.) Sincedy (i) = di(j) for all k, these
maps are homotopic &> — | J,, By. It then follows from the Smale-Hirsch
Theorem ([H],) that they are alsegularly homotopic inR? — | J, By, since
the obstruction to that would lie imy(SO3) = 0.

Proof of Step 2Take any immersion € I,, N A with d(i') = [a4, ..., ay]

and letp,...,p, € R? be the quadruple points af, ordered such that
dp(i') = ag, 1 < k < n. (Clearly any[ay, ...,a,] € Z" may be realized
within any regular homotopy class.) Take a disdtirwhich is away from
thepg’s and start pushing it (i.e. regularly homotoping it) into its preferred
side directing it toward®;. Avoid any of thep;’s on the way, and so the
immersion; we will get just before arriving at;, will still have dy (i) = ag,

for all k. We then paspg,; creating a quintuple point, and continue to the other
side arriving at an immersiopwhich is again in/,,. Clearlyd; (j) = a; +1
anddy(j) = ay for k& > 2. We will now use Step 1 and the 10 term
relation (Theorem 2.1) to show th#ti) = f(j). Indeed, let us name the
five sheets of our quintuple point I, ..., S5 whereS; is the sheet coming
from the disc that we have pushed into Letil (m = 1,...,5) denote
the immersion obtained by pushiig, into its non-preferred side, anig,

the immersion obtained by pushiisg, into its preferred side. Thein= i}
andj = i2. Recall thatr(il,) is constructed by pushing all four sheets
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involved in the quadruple point af into their preferred side. And so for
eachl < m < 5, m1(il,) has one sheet pushed into the non-preferred
side and four sheets into the preferred side, and;$¢d.,) are all equal

to each other. Similarly, for each < m < 5, 71(i2,) has all five sheets
pushed into the preferred side and so alg@?,) are all equal to each other.
Clearly all this has no effect ady, for k¥ > 2, and so we havé(il,) = d(i)
andd(i2,) = d(j) forall 1 < m < 5. And so by step 1f(i.) = f(i)

and f(i2,) = f(j) forall 1 < m < 5. And so by the 10 term relation,
0=, f(iL) = 5F() +5£() = F(i) + f(j) e f(i) = f(j). O
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