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Abstract 

Given a pair of incompressible surfaces F and S in an irreducible 3-manifold 111, we define a 
directed graph T which expresses the way F may be isotoped with respect to S. We study the 
properties of T. We use our results about T to study properties of the intersection between F 
and S. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Given two incompressible orientable surfaces F and S in an irreducible orientable 

3-manifold M, we investigate how F may be isotoped relative to S. 

We define 10 to be the set of all embeddings of F in M, that are isotopic to the 

inclusion, and are transversal with respect to S. Since we are dealing with embeddings 

of F into the pair (M. S), the following is the natural equivalence relation on 10: Two 

embeddings in 10 are equivalent if there is an isotopy between them of the form Kt o 1; o ht 

where i : F 4 M is an embedding and ht : F + F, Kt : (M, S) --) (M, S) are isotopies. 

This is equivalent to the following: Two embeddings in 10 are equivalent if we can move 

from one to the other through embeddings that are all transversal with respect to S, i.e., 

within 10 itself. The set of equivalence classes will be called I. 

We orient Al and F. This determines a preferred side of i(F) in M for any embedding 

i : F + M. An isotopy /lt will be called a directed isotopy, if at any time t, all points 

of F are moving into the preferred side of h,t(F). We give I the structure of a directed 
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graph as follows: For any A, B E I there will be a directed edge A + B if there is a 

directed isotopy ht with ho E A, hl E B. 

Our I includes many (equivalence classes of) embeddings for which the intersection 

between F and S says nothing about the relation between F and S in M. For example, 

one can always add a circle of intersection by simply changing the embedding of a small 

disc of F, as to intersect S. We would like to exclude this and more: We define Ta C 1a 

(respectively T C I) to be the set of all embeddings (respectively equivalence classes 

of embeddings) in which there are no product regions between F and S. (It is known 

that least area surfaces satisfy this property.) T inherits the structure of a directed graph 

from I. The directed graph T will be our subject of interest. 

Our main results about T are: 

(1) Though the directed graph structure of T was induced upon it from 1, T is 

selfcontained in the following sense: If i, j E To and there is a directed isotopy ht 

from i to j, then there is a directed isotopy gt from i to j satisfying gt E TO for 

all t where the intersection of gt (F) and S is transverse (Theorem 6.1). 

(2) T is a connected graph (Theorem 6.3). Furthermore, T is isometrically embedded 

into I with respect to the standard metric on connected graphs (Theorem 6.5). The 

geometric meaning of this is as follows: Given an isotopy between two embeddings 

i, j E TO, we may approximate it by an isotopy ht which is a concatenation 

h; * h; * . . . * hf of isotopies hi which are alternately directed and anti-directed. 

(Anti-directed meaning that F is moving into it’s nonpreferred side.) Theorems 6.1, 

6.3, and 6.5 combined together will say, that we may replace ht by an isotopy 

gt = gt’ * g; * . . . * gi such that gt E To for all t where the intersection of gt (F) 

and S is transverse, and 1 6 k. 

(3) If A4 is not “circular” (Definition 7.1) then T is a “graded graph’ (Theorem 7.13). 

This means geometrically, that for any gt as above (which is sufficiently generic), 

if we count the number of times gt passes from one equivalence class in T to 

another, each such passage being counted as 1 or -1 according to whether we 

are at a directed or anti-directed portion of gt, then this number depends only on 

the pair of embeddings i, j and not on the choice of gt. If M is circular, then we 

show T is a complete graph (Theorem 7.16). 

We then use T to study properties of the intersection between F and S: 

In [l, Theorems 6.6 and 6.71 it is shown that if either F or S is a torus then for 

any Riemannian metric on M, any pair of least area surfaces homotopic to F and S 

must intersect transversely, and the number of intersection curves between them will 

be the minimal possible for the homotopy classes of F and S. We translate these two 

properties of a pair F, S into our setting, and ask what is the most general assumption 

on the pair F, S (rather than assuming that one of them is a torus), that will guar- 

antee each one of these two special properties. We show that the two properties are 

both equivalent to the property that F and S may be isotoped to satisfy the one line 

property. We show this by proving that each one of these three properties is equiva- 

lent to T having at most one element (Theorem 8.1). The distinction between one and 

zero elements is given by Theorem 2.12 stating that T = 0 iff F is isotopic to S. We 
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will also show that indeed if either F or S is a torus, then T has at most one element 

(Theorem 6.7). 

In [l] some further minimality properties are shown for the intersection of two least 

area surfaces (Theorems 6.3 and 6.2). We show that the corresponding results in our 

setting, are immediate consequences of the connectivity of T (Theorem 8.11 and Corol- 

lary 8.12). 

The structure of the paper is as follows: 

In the remainder of this section, we give the basic definitions and assumptions of the 

paper. In Section 2 we study the basic properties of the surface L = H-’ (S) where 

H : F x [0, l] + M is a directed isotopy. What we will need for our purposes is that 

L i F x [0, l] will have no extremum points (Definition 2.24). And so in Sections 3-5 

we describe ways of changing a directed isotopy H so as to avoid extremum points. In 

Section 6 we show the selfcontainedness and connectedness of T. In Section 7 we define 

a “graded graph” and show that T is a graded graph, except for when M is circular, in 

which case T is a complete graph. In Section 8 we prove all the geometric applications 

mentioned above. In Section 9 we investigate the connection between T and the graph 

obtained by reversing the roles of F and 5’. 

In any result titled “Theorem” we will always give reference to the definitions of the 

terms that appear, except for the definitions of this section. 

Assumptions and notation 1.1. 

(i) M will always denote an orientable irreducible closed 3-manifold. 

(ii) F and S will be two orientable incompressible closed surfaces in M. 

(iii) If H(z, t) IS a map then for a fixed t the map Ht will be defined by Ht(s) = 

H(x, t). 
(iv) If H : F x [0, l] + M is an isotopy, we will always assume that there are only 

finitely many t’s where the intersection of Ht(F) with S is nontransversal and 

in those t’s we always assume the nontransversality is of generic type (i.e., there 

is only one point where the intersection is not transversal and in a neighborhood 

of that point the intersection is like between z = 2’ - y2 and z = 0, or between 

z = x2 + y2 and z = 0 in R3). The points in F x [0, l] and the times where this 

occurs, will be called the singular points and singular times of H. 

(v) When needed we will also assume generic relation between the sets Ht, (F) n S 

of the different singular times ti. (In particular, for a singular point a at time t, 

we will have H(a) $f Ht, (F) n S for the singular times tj # ti.) 

Assumptions (iv) and (v) constitute no restriction, since arbitrarily close to any 

isotopy there is an isotopy satisfying these assumptions. 

(vi) If G is a surface (G will be F or S), then we will denote the two projections of 

G x [O. 11 by: 7r~ : G x [O. l] 4 G and Q : G x [0, l] + [0, 11. 

Definitions 1.2. 

(i) 10 will denote the set of all embeddings i : F + M that are isotopic to the 

inclusion map of F, and are transversal with respect to S. 
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(ii) We define an equivalence relation -s on 10 as follows: il NS i2 if there is an 

isotopy from il to i2 via embeddings that are in 10. [i] will denote the equivalence 

class of i and I will denote the set of equivalence classes. 

(iii) For i E 10 we will say there is a product region between i(F) and S if there is 

a surface K (with or without boundary) and an embedding h : K x [0, l] + M 

such that h(K x (0)) g i(F) and h(K x {I} U aK x [0, 11) C S. 

(iv) To 5 &J (respectively T C I) will be the set of all i (respectively [i]) such that 

there is no product region between i(F) and S. 

(v) We define a directed isotopy as follows: We choose once and for all, an orientation 

for F and for M and this induces a choice of a preferred side of i(F) for every 

embedding i : F + M. A directed isotopy will be an isotopy H : F x [0, I] + A4 

such that aH/at(z, t) # 0 and points to the preferred side of H,(F) for all 

z E F, t E [O, I]. 

(vi) We give I the structure of a directed graph as follows: Let A, B E I, there will 

be a directed edge from A to B if there are il E A, i2 E B and a directed isotopy 

from il to iz. T then inherits the structure of a directed graph from 1. Note that 

for any A E I there is a directed edge from A to itself (represented by a directed 

isotopy moving F only slightly into the preferred side). 

2. Foundations 

Lemma 2.1. Let H : F x [0, I] --$ M be an isotopy. Then H is directed iff H is an 

orientation preserving local difleomorphism. 

Proof. aH/&(z,t) # 0 and pointing to the preferred side of Ht(F) is equivalent to 

dH(z, t) being nonsingular and orientation preserving. q 

Lemma 2.2. Let H: F x [0, l] + M be a directed isotopy. If Ho(F) separates M then 

H is an embedding. 

Proof. Assume not. Let to = inf{t E [O, 11: H\F~[Q is not l-l}. Let (x,, t,), (xi&, ti) 

be two sequences such that (z~, tn) # (XL, ti), H(z,, tn) = H(zL, t’,) and t,, tk < 

to + l/n. By compactness we may assume the two sequences converge to (2, t) and 

(CC’, t’), respectively, and we have H(z, t) = H(x’, t’). H is a local diffeomorphism so 

we cannot have (z, t) = (CC’, t’). S’ mce H is an isotopy we can also not have t = t’. So at 

least one is < to. Say t < to. Now t’ < to will contradict the definition of to. So t’ = to. 

If 0 < t < to then a small neighborhood of (CC:, t) will be mapped onto a neighborhood of 

H(z, t), but there will also be points (z”, t”) close to (x’, t’) with t” < t’, mapped into 

this neighborhood of H(z, t) contradicting again the definition of to. So the only case left 

is t = 0 and the images of half ball neighborhoods in F x [0, to] of (IC, t), (cd, t’) intersect 

only in points coming from a(F x [0, to]), among these, the point H(z, 0) = H(z’, to). 

This will give us a loop in M intersecting Ho(F) transversally in one point, contradicting 

our assumption that Ho(F) separates M. 0 



Z Nowik / Topology and ifs Applications 92 (1999) 1541 19 

Corollary 2.3. Let H : F x [0, l] + M be a directed isotopy. If M’ is a covering of M 

such that H lifts to a map H’ : F x [O, l] + M’ with Hi(F) separating M’, then H’ is 

an embedding. 

Definition 2.4. We define the homomorphism r/j : ~1 (M) + Z by the intersection number 

with F. We denote by MF the covering space of M related to ker$. (If F separates M 

then MF = M. If F does not separate M then MF is the covering obtained by taking 

a Z indexed collection of copies of M, cutting each one along F and gluing one side of 

F in the ith copy to the other side of F in the (i + 1)st copy.) We denote the covering 

mapbyp:MP + M. 

Note that F lifts to MF and is separating there, and so Corollary 2.3 applies to MIZ. 

Given a directed isotopy H : F x [0, 11 + M, we can define H” : F x [0, l] -+ M x [0, l] 

by H”(x,t) = (H(z,t),t). H” is an embedding. We also have S x [0, l] C: M x [0, 11. 

We now define L = L(H) = H”(F x [0, 11) n S x [0, 11. We will think of L as contained 

in F x [0, l] (via H”), in S x [0, I], and due to Corollary 2.3, also in MF. When necessary 

we will give L a subscript to say where we consider it to be contained (e.g., LFx[O,,], 

Lhf”). 

Remark 2.5. 

(a) when identifying LF~[O,II and Ls~[o,II, the maps HIL~~[~,,~ : LF~[O,II + S C M 

and ~sIL~~~~,,~ : -&IO,II + S become the same map. So, anything we prove about 

one of these maps, will be true for the other. 

(b) The restriction to LF~[o,~I of the projection F x [0, l] -+ [0, l] coincides with the 

restriction to Lsx LO,,] of the projection S x [0, l] --) [0, I]. And so we have a well 

defined function q : L -+ [O? 11. 

Lemma 2.6. 

(a) HIL~~~,,.,~ : LF~[O,II + S 2 M is a local dijfeomorphism. 

(b) ~&sx~,,,,~ : 4s-,[o,i] 4 S is a local diffeomorphism. 

Proof. (a) and (b) are equivalent by Remark 2.5. 

(a) is true since H is a local diffeomorphism, and LFx [o,,] is simply H-’ (S). 0 

Corollary 2.7. L is an orientable surface. 

Our definition above of product region (Definition 1.2(iii)), is very inclusive. For 

example, if c is a circle of aK, then it is allowed that the product region h(K x [0, 11) 

will contain a neighborhood in i(F) and in S of h(c x (0)). (The situation here is that 

h(K x [0, 11) contains three quarters of a neighborhood in M of h(c x {0}), instead of 

just one quarter.) See Fig. 1. 

We will now show that whenever there is any product region, then there is also a 

convenient one: 
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H H 
Fig. 1. 

Lemma 2.8. Assume there is a product region between i(F) and S. Then there is a 

product region h : K x [0, I] + M between i(F) and S satisfiing one of the following: 

(1) h(K x [0, 11) n (i(F) U S) = Oh(K x [0, 11). 

(2) K is a disc and h(K x [0, 11) n i(F) = h(K x (0)). 

(In particular the situation described before the lemma does not occur) 

Proof. Assume there is a null-homotopic circle of intersection between i(F) and S. 

S is incompressible, so this circle bounds a disc in S. Take a minimal such disc D. 

aD bounds a disc D’ in i(F) since i(F) is incompressible too. Since D was minimal, 

DUD’ is an embedded sphere. It bounds a ball B in M. We parameterize B as K x [0, I] 

with K a disc, K x (0) = D’ and K x {I} U OK x [0, l] = D. We have then that 

K x [0, l] f? i(F) 2 K x (0). If the inclusion was strict, then since int D n i(F) = 0, 

we would have i(F) C B. So K x [0, l] n i(F) = K x {0}, and (2) is satisfied. 

So now assume there are no null-homotopic circles of intersection. It follows that 

any component A of S n h(K x [0, 11) 1s incompressible in h(K x [0, 11). Since OA C 

h(K x {0}), then by Proposition 3.1 of [4], A is parallel to h(K x (0)). Take an A 

such that the region U bounded by A and h(K x (0)) contains no other component 

of S n h(K x [0, 11). We replace h(K x [0, 11) by U. We now do the same thing with 

i(F) n U, to get (1). 0 

Remark 2.9. In the proof above, in the case there is a null-homotopic circle of intersec- 

tion, we did not use the prior assumption that there is a product region. And so we have 

shown that whenever there is a null-homotopic circle of intersection, there is a product 

region. 

Lemma 2.10. LFx[O.l) is incompressible in F x [0, l] ifs Lsx [o,l~ is incompressible in 

s x [O, 11. 

Proof. Since H is 7ri injective, and S is incompressible in M: LFx(O,l~ is incompressible 

in F x LO, 11 iff %FX,O.,l : LF~[O,II + S (C M) is ~1 injective on each component. 
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That is iff ~sIL,,~~~,,~ : Ls~[o.I] + S is 7rl injective on each component, iff LsX [O.II is 

incompressible in S x [0, 11. 0 

Lemma 2.11. !f A is a closed component of LFX [O~li then A is incompressible, and thus 

boundary parallel, in F x [O. I]. Furthermore H]A : A - S C M is a homeomorphism. 

Proof. Look at A in S x [0, 11. TS],J is a local homeomorphism. In the proof of Propo- 

sition 3.1 of [4] we see that a surface A C S x [0, l] for which rrs]~ is a local homeo- 

morphism, and such that A n 5' x (0) = 8, IS actually embedded by xs. So rr~]~ is a 

homeomorphism, and A is incompressible in S x [0, 11. Back to F x [0, 11, this means 

that H]A is a homeomorphism onto S, and A is incompressible in F x [O. 11. 0 

Our first calculation of T will be in the following: 

Theorem 2.12. T = 8 iff F is isotopic to S i$f there exists a directed isotopy H (in the 

isotopp class of the inclusion), such that L(H) has a closed component. 

Proof. If i(F) is isotopic to S then by Proposition 5.4 of [4], there must be a product 

region between i(F) and S, and so if F is isotopic to S, T = 8. 

If T = Q) then there is a product region between F and S, and so there is a product 

region of a type described in Lemma 2.8. Such a region can be canceled by an isotopy. 

But we must then still have product regions. We continue until F and S are disjoint. 

A product region now means F and S are parallel, and so isotopic. 

Let H be a directed isotopy in the isotopy class of the inclusion, such that L(H) has 

a closed component. By Lemma 2.11, Ho is homotopic to a homeomorphism onto S. 

And so by Corollary 5.5 of 141 F is isotopic to S. 

Now assume F is isotopic to S. There is an embedding i of F isotopic to the inclusion 

such that S is disjoint from, and parallel to i(F) from the preferred side. Now take a 

directed isotopy H that moves F across 5’ to the other side. L(H) will be a closed 

surface in F x [O. 11. q 

Definition 2.13. Let A C F x [O. l] be a surface. A will be called “lower” (respectively 

“upper”) if 8 j; aA c F x (0) (respectively F x { 1)). 

Definition 2.14. For an upper surface A C F x [0, 1] we define m(A) = minq(A). 

Definition 2.15. Let A C G x [0, l] be a lower or upper surface. (G will be F or S.) 

We will say that A is veq well embedded in G x [0, l] if the projection 

embeds A into G. 

We will say that A is just well embedded, if after a level preserving homeomorphism 

of G x [O. 11, A will become very well embedded. (A level preserving homeomorphism 

of G x [O. l] is a homeomorphism where each G x {t} is mapped into itself.) 
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Lemma 2.16. 

(a) Any upper component A of Lsx[O,l~ is very well embedded in S x [0, l]. (Upper 

component meaning a connected component which is an upper sugace.) 

(b) Any upper component A of LFx [,-,,I is embedded by H. 

Proof. (a) and (b) are equivalent by Remark 2.5 so we show (a). By Lemma 2.6, ~S]A 

is a local diffeomorphism. Again by the proof of Proposition 3.1 of [4] we know that an 

upper surface for which the projection is a local diffeomorphism is actually embedded 

by it. 0 

Definition 2.17. Let A C G x [0, l] be an upper surface. (G will be F or S.) We denote 

by UG(A) or LJG~[~,~I(A) or l_JGxll)(A), the region bounded by A and G x (1). (This 

region exists by homological considerations.) And similarly for a lower component. It 

will be called “A’s region”. 

Remark 2.18. Let A C G x [0, l] be a very well embedded upper surface, and let 

A’ = xG(A). Then A may be viewed as the graph of a function f : A’ -+ (0, l] with 

f(aA’) = 1. 

UG(A) is then {(~,t) E G x [0, 11: z E A’ and f(x) < t < 1). 

Lemma 2.19. If A # B are two upper components of LF~ [o,~I then H(A) and H(B) 

are either disjoint or one is contained in the interior of the other 

Proof. Let a E A, b E B and H(a) = H(b). Now look at A and B in S x [0, 11. Then 

we have 7rs(a) = rS(b) an so we must have q(u) # q(b) and assume q(b) > q(u). d 

Then b E Us(A) and so B C Us(A). It follows that rs(B) C intns(A) and so (back 

to F x [0, 11) H(B) c int H(A). 0 

The above considerations make the following lemma clear: 

Lemma 2.20. Zf A # B are two upper components of L such that H(A) n H(B) # 0 

then the following are equivalent: 

(1) B C Us(A). (This is in S x [O, 11.) 

(2) H(B) C H(A). (Th is and the following are in F x [0, 11.) 

(3) H(B) C H(intA). 

(4) m(B) > m(A). 

We now characterize the case of an A having no such B. 

Lemma 2.21. For an upper component A of L, the following are equivalent: 

(1) intUs(A) n L = 8. (This is in S x [0, 11.) 

(2) There is no upper component B # A with H(B) c H(A). (This and the following 

are in F x [0, I].) 

(3) H(intA) fl H(F x (1)) = 0. 
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(4) H(int(A n F x [0, t])) n H(F x {t}) = 0for all t E [O, 11. 
(5) F x { 1) U UF(A) is embedded by H. 

Proof. (I) w (2) follows from Lemma 2.20. Now if in S x [O? 11, there is a component 

B of L in int Us(A), then L3 is an upper component (by Lemma 2.11 and Remark 2.5 

or directly from the proof of Lemma 2.11). So if there is a B C Us(A), then 8 # 8s i 

int{~~~(A) x (I}), d an so int Us(A) I’? L # 0 iff int~~~~A) x _i 1)) n L # 0. But the latter 

means that at time 1, there is intersection (in M) between F and int VTS (A) C S C M. 

This is equivalent to H(int A) n H(F x { 1)) # 0. So we have (1) @ (3). 

But now using (1) # (3) for F x [0, t], the claim (3) & (4) becomes equivalent to: 

int lis;(A) n L = 0 iff (int Us(A) f7 S x [O, t]) n (L n S x [OF t]) = 0 for all t E [O, I], 

which is obvious. 

Now since (5) + (3) is trivial, it remains to show (l)-(4) =+ (5): 

Let U = U&A) and A’ = U n F x (11, then aU = A u A’. We first show I: is 

embedded by H: Let a E A and assume b E U, b # a and H(a) = H(b). Then b $ A 

(Lemma 2.16(b)). Let B be the component of b in L, then I3 C U. It follows that B is 

an upper component with H(B) C H(A), since H(A) n H(B) # 0 and m(B) > m(A). 

(B cannot be closed by Lemma 2.11.) 

On the other hand, Let a’ E A’, and assume b E U, b # a’ and H(a,‘) = H(b). Think 

of F x [0, l] as contained in MF via a lifting of H. Then we must have a covering 

translation 7 of MF bringing a’ to b. T(F x {I}) i? K = 0 so T(F x {I )> must intersect 

int -4, and so H(F x { 1)) n H(int A) # 0. (We cannot have T(F x {I}) C int U since U 

is compact with connected boundary, and 7(F x {I >) separates MF into two noncompact 

pieces.) 

We have shown that for every a E 63U = A U A’ there is no b # a in U with 

H(n) = H(b). S ince H is a local homeomorphism, it follows that U is embedded by 

H. (Take {CZ E U: there is b E U, b # a>, H(n) = H(b)}. It is closed and open and 

thus empty.) 

Now H(F x (1) - A’) n H(N) = 0, so H(F x {I} - A’) IT H(U) = 0, and so 

Fx{l}UUisembeddedbyH. 0 

Remark 2.22. Lemmas 2.16-2.21 become trivial when F separates M, by Lemma 2.2. 

Lemma 2.23. Let H(x, t) be a directed isotopy with Ho, H ‘I E To. Let L = L(H). 
Then : 

(a) L is incompressible in F x [O, I]. 

(b) All components of L intersect both F x (0) and F x { 11. 

Proof. (a) Let H’ : F x [O, I] --+ Mp be a lifting of H. Then L&[F is just H’(F x 
[0, 11) np-I (S). Since p-‘(S) is incompressible in MF, it is enough to show that there 

is no circle in aH’(F x IO, 11) n p-‘(S) that bounds a disc in p-‘(S). But that would 

give a null-homotopic circle of intersection between either HO(~) or Hi(F) and S, 

contradicting HO, Hf E To, by Remark 2.9. 
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(b) By Theorem 2.12, there are no closed components. So assume there are upper or 

lower components. Take such a component A, say upper, with maximal m(A). And so 

by Lemma 2.20, there is no upper component B # A with H(B) & H(A), and so by 

Lemma 2.21, U = UF(A) . 1s embedded by H. This region U is a product region by 

Proposition 3.1 of [4] since A is incompressible and upper in F x [0, 11. And so H(U) 

is a product region between HI (F) and S. 0 

Definition 2.24. Let H: F x [0, l] + M be an isotopy. A birth point, is a point in 

F x [0, l] where a new circle of intersection between F and 5’ is created. Similarly, 

a death point is a point where a circle of intersection shrinks to a point and disappears. 

Birth and death points will be called extremum points. 

Definition 2.25. We will say an isotopy H “moves in T” if Ht E To for all nonsingular t. 

Lemma 2.26. Let H(x, t) be a directed isotopy with HO, HI E To. Then H moves in T 

iff H has no extremum points. 

Proof. A bit after (respectively before) a birth (respectively death) point there is a ball 

region between Ht (F) and 5’. 

Assume now that for some nonsingular 0 < t < 1 there is a product region U between 

Ht(F) and S, with i3U = A u B, A C Ht(F), B C S. Let H’: F x [0, l] + MF be 

a lifting. This induces a lifting of A to MF. Lift the whole of U accordingly. Call the 

lifted sets U’, A’, B’. We claim B’ C H’(F x [0, 11). 

Ifnot,thensayH’(Fx{I})~B’#~.H’(Fx{l})~A’=~andH’(Fx{l})~B’ 

has no null-homotopic circles (in particular, U’ is not a ball). And so F x { 1) n U’ is 

incompressible in U’ and so parallel to B’. The projection back to M gives a product 

region between HI (F) and S, contradicting HI E To. 

So B’ & H’(F x [0, 11). Pull it into F x [0, I] and call it B”. Then B” C L and 

8B” C F x {t} and so the projection q : F x [0, l] + [0, I] must have a local minimum 

or maximum in int B”, i.e., an extremum point. 0 

3. Changing L, part 1 

In view of Lemma 2.26, and of our goal, which is Theorem 6.1, we describe ways of 

changing L so as to avoid extremum points. 

Lemma 3.1. Let H: F x [0, l] + M be a directed isotopy, and let L = L(H). Let 

0 < to < 1, and let A be a well embedded upper component of L n F x [0, to]. Assume 

further that H(intA) n H(F x {to}) = 0. Let U = UF~[O,~~I(A). Then: 

(a) We can change H in a small neighborhood of U, such that the effect on L will 

be that A, and any parts of L inside U, will be pushed up into the other side of 

F x {to}, without changing the structure of singular points of L (in particular; 

the number of extremum points will be unchanged). 
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(b) If furthermore to is a singular time, and the singular point is a point on the 

boundary of A that connects A to another component B oj’L n F x [O. to], with 

B 9 U, then we may actually reduce rhe number of extrernum points. 

Proof. (a) By a level preserving change of coordinates in F x [O: to] we may assume 

that A is very well embedded, and by Lemma 2.21, F x {to} U U is embedded by H. 

Let Vi be a product neighborhood of A in F x [0, to] such that F x {to} U U U VI is 

still embedded by H. Let U, = U U VI. By Lemma 2.21. for every t E [0, to], H(F x 

{t} - U,) n H(A n F x [0, t]) = 0. By compactness there is a product neighborhood 

I.$ i K of A in F x [O,to] such that H(F x {f} - Ii,) n H(Vz n F x [O,t]) = 0, for 

every t E [0, to]. We choose VZ such that also A’ = Cl(aVz ~ (F x {to} U U)) is very 

well embedded. Let i7~ = Ii U Vz. 

Since A’ is very well embedded, there is a function f : F - (O! to] such that A’ = 

Cl{ (x, t) E F x [0, to]: t < to, t = f(z)}. (Th e value of f outside YTF(A’) is to.) And 

so Uz = Cl{(z: t) E F x [0, to]: f(z) < t < to}. 

We define h : F x [O. to] --f F x [0, to] by h(z, t) = ( x. min(t! f(z))), and on F x [0, to] 

we define G = H o h. We now show G is an isotopy. Let t E [0, to], we must show 

G(17,~t) is an embedding. h’l = F x {t} n UI is embedded by G since h maps it into 

Ii,. K2 = F x {t} - U2 is embedded by G since there G = H. And so it remains to 

show that G(K) - K2) n G(K2 - K,) = 8. But this follows from the definition of VZ. 

Strictly speaking, G is not a directed isotopy. Every z E F moves into the preferred 

side while it is moving, but any z E YTF(A’) stops moving at time f(z). We can fix this 

by letting them continue moving into the preferred side, inside a very thin neighborhood 

of G,,,(F). We denote this altered isotopy by G again. 

We now define h’ : F x (0. to] + F x [0, to] by h’(:c, t) = (cc, max(t; f(z))). G’ = Hoh’ 

is an isotopy since h’ embeds each F x {t} in F x {to} UU2 and H embeds F x {to}UUz. 

(Again a slight modification of G’ will make it directed in the strict sense.) 

We have G,,,, = Gb and G{,, = H1, and so Ga G’ * HIFx [,,o,l~ is well defined and is the 

required isotopy since L(G) = L(HIFx[O,t(,~) - U and L(G’) = (L(HIFX[oTt,,l) n U) U 

(U, Ai) where {A,} are vertical annuli. 

(b) We use the isotopy G as above. Just before time to an intersection circle com- 

ing from B, is moving towards the boundary of H(A). We let it reach H(A) and 

touch it at a point a E aH(A). Let A” = T.E’(A’), i.e., that piece of F that at this 

stage is situated at H(A’). We start moving A” vertically across H(A), but we want 

to dictate the timing of passage of every point of A” across H(A), such that there will 

be no birth or death of intersection circles. This amounts to defining a Morse func- 

tion on A (or A’ or A”) that has no local minimum or maximum in the interior of 

A, and no local minimum on the boundary of A except for in a. Such a Morse func- 

tion can be defined, for example, by the height function on an embedding of A in 

R” as in Fig. 2. After A” has passed H(A), we proceed as before. The only differ- 

ence is that in the preceding case, in this stage, A” was close and parallel to H(A), 

from the outside of H(U), and now it is close and parallel to H(A) from the inside 

of H(U). 
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Fig. 2. 

Since the original A had at least one birth point, and now it has no birth or death 

points, we have reduced the number of extremum points of L. 0 

Let H(z, t) be a directed isotopy such that 0 and 1 are nonsingular times, let L = L(H) 

and let a = (~0, to) E L be a birth point. 

For t E [0, l] let At be the connected component of a in L 0 F x [O, t]. Let t(a) be 

the supremum of the t’s for which: 

(a) A: is well embedded. 

(b) A: n F x [0, S] is connected for any s < t (i.e., the component of a does not 

merge with any other component until time t). 

If t(u) = 1 then the connected component of a in L is a well embedded upper 

component with a it’s unique birth point. Such a birth point will be called “of type 0”. 

Assume then that t(u) < 1, and so t(u) is the first time where either A: is not well 

embedded, or it merges with another component. (And so t(u) must be a singular time.) 

Let A” C AFca, be defined as follows: If Arca, = A U B where A, B are two surfaces 

touching each other in a point, with a E A, then A” = A. Otherwise simply A” = A:(,,. 

We now analyze the various possibilities for the nature of the singular point b = 

(21, t(u)) at time t(u). 

b is not a death point. If it was, look at A: for close t < t(u) (“close” meaning 

that the times t < s < t(u) are nonsingular). Assume (by level preserving change of 

coordinates in F x [0, l]), that A: is very well embedded in F x [0, t]. Let D be the 

disc in L IT F x [t, l] where b lies. Assume D is very well embedded in F x [t, 11. There 

are two possibilities: Either TF(AF) C rp(D), or TF(AF) n YTF(D) = Ch~(D). In the 

first case, since there are no singular times in the time interval [t, t(u)), AZ must also be 

a disc, and together we get a sphere, which is impossible by Lemma 2.11. So we have 

no n RF(D) = ?hr~(D), and so AFca, is still well embedded. There was also no 

merging with another component, and this will still be true for t’s a bit larger than t(u). 

This contradicts the definition of t(u). 
b is also not a birth point since that would not have affected A:. 
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h is thus a “saddle point”. There are two distinctions now to be made. The first is 

whether in the saddle point b, A” touches another component B, or touches itself. The 

second is whether the points of F x [O. l] directly under the saddle are contained in 

CJ = UFx [~.t(~)l(A~) or not. 

We analyze each of the four combinations: 

(1) Two components, U not under saddle: This means that B is not contained in U, 

so this is the situation described in Lemma 3.1 (b). 

(2) Two components, U under saddle: Here B is contained in U. 

(3) One component, IJ not under saddle: Here A” touches itself from the outside, and 

so A; for close t > t(a) is still well embedded, and so this case is impossible. 

(4) One component, U under saddle: Here A” touches itself from the inside, and so 

it is not well embedded. In U we take a small disc D modeled by z = 0: --E < 

z < -y’ in lR3 where z = :r2 - u2 models L in a neighborhood of b. Say 

z = --E in I@ corresponds to time t < t(a) in F x [0, 11. Look at A:. Since it 

is well embedded, the arc D n lJFx pt] (A:) can be continued by an arc in A;” to 

a circle that bounds a disc D’ in UFx[O,~) (AJ”). E = D U D’ is a disc in U with 

aE C A’“. _ 
We now think of F x [O. I] as contained in Al” via a lifting of H. L is then 

simply F x [0, l] rip-‘(5’). 

Since p-~](S) is incompressible in MF, the disc E that we have found im- 

plies the existence of a disc K in pP ’ (S) bounded by aE. There are two 

circles of L n F x {t(a)} that touch ah’ at b. They intersect aK only at h 

since that is the only point of aK (= 8E) at level f(u). So one of them 

yl is contained in K, and the other 72 is not. 71 bounds a disc Kl in 

p-‘(S) -- A” (K, c K). I n particular, we see here that at time t(n), the case 

is, that one intersection circle splits into two, and not that two circles merge 

into one. 

A birth point a will be called of type 1, 2 or 4 according to the type of singularity 

that appears at h as described above. (Birth points of type 0 were defined earlier.) For a 

death point CL we define A:, A”. t(a), and the type of u, analogously. 

We summarize the above discussion about birth points of type 4 in the following 

lemma: 

Lemma 3.2. y’ a is a birth point of type 4, then at time t(a)), one intersection circle 

splits into two, and at least one of these circles bounds a disc in p-’ (S) - A”. 

We will find ways to reduce the number of extremum points when having extremum 

points of type 1 and 4, under certain conditions. (Lemmas 3.4 and 5.6.) The following 

lemma will help us avoid type 2. 

Lemma 3.3. Let A C F x [0, to] be an upper suface. 

(a) The first death point of A (if there are any), is not of ape 2. 

(b) [f the last birth point a of A is of type 2, then t(u) > to and so A” > A and A is 

well embedded with a its unique birth point. 
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Proof. (a) Call the first death point e. If e is of type 2 then UFx[t(e),to~(Ae) contains a 

lower component B that touches A”. So A” U B is connected and so must all be contained 

in A. Now, a death point of B must come before e. 

(b) Assume t(a) < to. Again, in UF~[O,~(~)~(A~) there is a component B that touches 

A” and so must be contained in A, and has a later birth point than a. 0 

With Lemma 3.1(b) we may reduce the number of extremum points, in the presence 

of a birth point of type 1 satisfying a certain strong condition. We now weaken that 

condition. 

Lemma 3.4. L.et a be a birth point of type 1. Assume that for any birth point b of an 

upper component B of L n F x [0, t( a )] such that H(B) C H(A”), either (1) t(b) > t(a) 

or (2) b is not of type 4. Then the number of extremum points may be reduced. 

Proof. By induction on the number of B’s. If there are none then we are done by 

Lemma 3.1(b). Otherwise take a B that is minimal, i.e., H(B) C H(A”) but there is no 

upper component C # B of L n F x [0, t(a)] such that H(C) C H(B). If B is well 

embedded then by Lemmas 2.21 and 3.1(a) we can push B above level t(a). In doing 

so we did not alter A” since it is impossible that A” 2 UFx[O,t(a)l(B) since by Lemma 

2.20, m(b) > m(a). (It is also impossible that B is the component that is touching A” 

at time t(a), since then A” U B would be an upper connected component that is not 

embedded by H.) So we have reduced the number of B’s and the conclusion follows by 

induction. 

So assume B is not well embedded. Let b be the last birth point of B. t(b) 6 t(a) 

since otherwise B would be well embedded. So b is not of type 4 and not of type 0. By 

Lemma 3.3(b) it is also not of type 2. So it is of type 1. By Lemma 2.21, 

H(intAb) n H(F x {t(b)}) = 0. 

And so by Lemma 3.1(b) applied to Ab, we are done. 0 

4. Changing L, part 2 

Lemma 4.1. Let H : F x [0, l] + M be a directed isotopy. If 0 6 t 1 < t2 < 1 and 

N C F x [tl,tz] zs a (bounded) 3-manifold, such that HIFx[t,,t2~-1(H(n)) = {n} for 

every n E N, then one can change H, such that the effect on L will be a change by an 

arbitrary homeomorphism G: N + N which is the identity on aN (and no change in 

L - int N). 

Proof. Let h : F x [0, l] + F x [0, l] be defined by the identity on F x [0, l] - int N 

and by G-’ on N. H o h is the required directed isotopy. 0 

We will use this technique with N a ball, and so we now study embeddings of surfaces 

in R3, and the way they may be isotoped. 
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Lemma 4.2. Let D C IK3 be a disc such that: 

29 

(1) 
(2) 
(3) 

(4) 

(Neighborhood of a D in D) n { .z = 0) = a D. 

D is in general position with respect to {z = 0). 

Each component of D n {z > 0} or D n {IS < 0} is boundary parallel in {z > 

0}, (2 < 0}, respectively. 

Call these components Ei, i = 1, . , TL. Let Vi be the region bounded by Ei and 

{z = 0) and let P, = Ui n (2 = O}. W e assume the numbering of the E, s is such 

that if Ei is contained in a disc component of D - int Ej, then i > j. Our last 

assumption will be: 

ni int Pi # 0. 
Then Et,.. . , E,_l are annuli, E, is a disc and P, C Pi+, for all i, i.e., D is of the 

form of the rotation St&ace described in Fig. 3. 

Proof. By induction on n. Look at El. aD is one of it’s k boundary circles, and the 

other k - 1 circles bound discs D1, . , Dk-1, in D - El. 

If k = 1 then El = D and we are done. 

If k = 2 then El is an annulus and there is only DI. Dl satisfies the induction 

hypothesis, so we must only show PI C P2. Let e be the circle Et n E2. PI and P2 must 

lie on the same side of e in {z = 0) otherwise we would have int Pt fl int P2 = 0. If 

n = 2, P2 is ;I disc and we are done. If n > 3 then by the induction hypothesis e & U, 

and so El C Uj. So PI C: P3 and is on the same side of e as Pz. It follows that PI C P2. 

If k > 3, let Ei, be the outermost Ei of 03 (i.e., ij is the minimal i of Et’s contained 

in D,). D1, . . , Dk_ 1 satisfy the induction hypothesis and so exactly as in the previous 

case weget 1’1 C Pi, forj = I,..., k - 1. It follows that a D1 2 Pi, and aD2 C P,, . 

But then it follows that Ei, & Ui2 and Ei2 2 Ui,, which is impossible. 0 

Fig. 3. 
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Definition 4.3. A disc satisfying the hypothesis of Lemma 4.2 will be called a “curled” 

disc. A regular neighborhood of a curled disc will be called a “thick curled disc” (TCD). 

Lemma 4.4. Let A be a (compact) suface. Let f : A + R be a nonnegative Morse 

function with f(aA) = 0. Th en or any point x E A there is a path u : [a, b] + A, with f 

u(u) = 2, (f 0 u)‘(t) > Of or all t E (a, b), and u(b) is a local maximum point for f. 

Proof. Let yi, . , yn be the singular points of f, i.e., the points where df = 0. For 

i= l,..., n, let Ui be a small neighborhood of yi. In A - ( UI U. . . U UrL) we let ‘~1 be an 

integral curve of grad f (assuming some metric on A). And so there, surely (f o u)’ > 0. 

If we reach one of the Q’s, it must be along an inward vector (i.e., a vector at the 

boundary of Ui that is pointing into Vi), and so yi cannot be a local minimum. If yi is a 

local maximum, we know how to make the last step inside Ui. If yi is a saddle point, we 

also know how to move inside Vi with (f o u)’ > 0 and such that we exit LJi along an 

outward vector. Then continue with an integral curve again. (If our initial point happened 

to be itself a minimum point yi, we also know how to make the first step as to exit Ui 

along an outward vector.) This process must end since there are only finitely many UZ’S 

and since ]( grad f ]] has a positive minimum in A - (U, U . . . U Un). q 

Lemma 4.5. Let A be a lower su$ace in G x [0, 11, where G is a St&ace (with or 

without boundary), and let x E G x (0) - aA. Then there is a path u : [a, b] + G x [0, l] 

with 

(1) U(a) = 2. 

(2) (4 O u)‘(t) > Of or all t E [a, b]. (q : G x [0, I] + [0, I] is the projection.) 

(3) u(b) E G x (1). 

(4) u intersects A only at local maximum points of q]A. (We assume the embedding 

of A is generic, i.e., that q]A is a Morse function.) 

Proof. From a: go straight up. Stop just before intersecting A, and then move very close 

to A, but not touching it, according to a path in A that is given by Lemma 4.4 with 

f = ql A. You are now outside A but very close to a local maximum point of q] A. If 

you happen to be above A at this stage, start everything again by just going up. If you 

happen to be under A, cross A right at the local maximum point, and then start going 

straight up. This procedure will terminate at G x { 1). 0 

Lemma 4.6. Let B & IR3 be a TCD (thick curled disc), and assume (for convenience of 

presentation), that 8B is made of horizontal and vertical discs and annuli. 

Call one of the two discs (which are necessarily horizontal) Al. Call its neighboring 

annulus AZ. Call A2 S other neighbor A3 etc. until finally the other disc will receive the 

name Adn+l. (See Fig. 6(a) for the case n = 1.) 

Let L C B be a surJace with aL c D where D C aB is a small disc situated in Azn 

or Azn+2, (which are both vertical). Let U be a small ball in B with U f? aB = D. 
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Then there is an isotopy of L inside B, not moving aL, thut brings L into U, and such 

that in the jinal stage q1 L has the same number of local minimum and maximum points. 

(q: R3 4 R is the projection (.I;, , :1’2! ~3) H .x.3.) 

Proof. We first show that there is an isotopy of B itself in IR’, not moving D, in the 

end of which the whole of B is situated on one side of a vertical plane containing D, 

and the number of local minima and maxima of q/L is unchanged. (D is actually not 

flat, and so this vertical plane is not completely flat either,) 

We show this by induction on n,. For 72 = 1, either B is already on one side of D 

(Fig. 4(a)) and we are done, or it is not (Fig. 4(b)). We will perform a “flipping over” of 

B as to “expose” D (Fig. 5). We must do this without changing the number of minima 

and maxima of qIL. (We will call this property, “being kind to L”.) 

Let the numbering be as in Fig. 6(a), and let K and K’ be defined by Fig. 6(b). Let 

:I; be the midpoint of As. Let 1~ be a path connecting .I: to Al, with (q o u)’ > 0 and 

with (1 intersecting L only in local maximum points of qlI1. (Lemma 4.5 for K.) By a 

level preserving isotopy of K, fixing aK - Al, we can assume 11 is actually vertical. By 

another level preserving isotopy of K which pushes everything away from U, we can 

assume L n (neighborhood of A?) is just a union of well-embedded discs with a unique 

(a) 

’ 4 
D 

( b) 

/ 
D 

Fig. 4 

Fig. 5. 
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(Q) 

Fig. 6. 

K’ 

RI 
(b) 

Fig. 7. 

singular point, which is a maximum, and with the boundary of these discs contained in 

the vertical part of a(neighborhood of K’) (Fig. 7). 

It is now possible to perform the flipping over, being kind to L, as is shown in Fig. 8. 

We describe this flipping over transformation in detail (call it F): We divide B into 2 

parts X and Y as in Fig. 9, which describes B as a rotation body around the depicted 

axis. We choose X such that LnY contains nothing but the well embedded discs obtained 

in the previous paragraph. (See Fig. 10(a).) 
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Fig. 8. 

Fig. 9. 

On X, F will be of the form (zt,z~, 53) H (f(x~, q_), XX), where f is the complex 

function: 

1.1 
z++ TS- z+- 

( > r 2 

restricted to the annulus {l/r < J.z 6 r} with D located around (l/r)i. (With the 

additional requirement that D actually stands in place, and so in that area f must differ 

a bit from t H (r + l/r)i + l/z.) 

As an intermediate stage, F is defined on Y, such that F(B) is congruent as a set 

to B. (Fig. 10(b).) Finally we move F(L n Y) (which by our construction is simply a 

union of discs), inside F(Y) until each such disc has a unique singular point, that being 
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Fig. 10. 

r 

Fig. I I. 

tb, 

a m~imum point. (Figs. 10(c) and 8.) In B each such disc had the shape { $ + z$ +x$ = 

1, 23 3 l/2} (Figs. LO(a) and 7), and in F(B) they have the shape (z: + z$ i- g; = 

1, 23 3 - l/2} (Figs. 10(c) and 8 again). Note that this fits smoothly with the definition 

of F on X. 

Since F is level preserving on X, and F(L n Y) has a unique singular point, which is 

a maximum, for each of its discs, just like in L n Y itself, we did not change the number 

of local minima and maxima of qlL_ 

Assume now n 2 2. We enlarge B as described in Fig. 1 l(a), which brings us back to 

n = 1. So we perform the flipping over as in Fig. 11. Then an isotopy that is kind to L, 

as in Fig. 12, and another isotopy, that does not move L at all, as in Fig. 13, will let us 

use induction. (The next step of the recursion will of course use a reversed fo~ulation 

of Lemma 4.5.) 
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r---- --_-_ 
1 

Fig. 12. 

Fig. 13. 

So we now have B on one side of D. It is necessarily the side in which U lies. And 

so we can now shrink B, by a level preserving isotopy and then by pushing it from the 

top and from the bottom, until it is contained in U. 

We conclude, that we can deform B in R”, without moving D, such that at the final 

map, B is contained in U, and such that we are kind to L. 

On the other hand, we can surely deform B inside itself, without moving D, and such 

that at the final map B is contained in U. The proof is complete if we notice that any 

two embeddings of B in U such that their restriction to D is the inclusion, are isotopic 

inside U with an isotopy not moving D. 0 

5. Changing L, part 3 

Definition 5.1. For a birth point a, let A”* be the union of A” and the disc components 

of p-’ (5’) - int A”. (Again we are thinking of F x [O. l] as embedded in MF via a lifting 

of H.) 
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In general it is possible that A a* is not contained in F x [0, 11, but eventually we will 

be interested only in the case that it is. 

Lemma 5.2. A”’ is embedded by p. (And so if A”* C F x [0, 11, A”* is embedded by 

H.1 

Proof. We know A” is embedded by H. This means that after lifting F x [0, l] to 

MF, A” is embedded by p. Let D be a disc component of p-’ (S) - A”. aD C A” 

and so it is embedded by p. It follows by Lemma 5.3 bellow that D is embedded by p. 

p(Aa) g p(D) since then p would not be a local homeomorphism in a neighborhood of 

ao. so p(Aa) flp(D) = p(aq, and so p embeds A” U D. Adding the discs one by one 

we get A”* is embedded by p. 0 

In the above proof we used the following easy fact (with n = 2): 

Lemma 5.3. Let N be a smooth n-manifold that is covered by R”, and let B” be the 

n dimensional ball. If f : Bn + N is a local difleomorphism such that f lawn is an 

embedding, then f is an embedding. 

If K C: S is a subsurface we define similarly K* to be the union of K and the disc 

components of S - int K. 

Lemma 5.4. Let a E L be a birth point. Then p(Aa*) = p(Aa)*. (And so if A”* 5 

F x [O,l], H(A”*) = H(A”)*.) 

Proof. We have seen A”* is embedded by p. This implies p(Aa*) C p(Aa)*. Now let 

D be a disc component of S - p(Aa). Lift D to p-‘(S) to get a disc component of 

p-’ (S) - A” that is mapped onto D. 0 

Lemma 5.5. Let H(x, t) be a directed isotopy, and let L = L(H). Let a E L be a birth 

point of type 4, and assume A a* C F x [0 l] and aA”* # 0. (The latter is automatically _ 
satisfied when T # 8 by Theorem 2.12.) ihen: 

(a) For any birth or death point b E A”*, b # a, we have Ab* 5 A”*. 

(b) For any birth or death point b E L with H(Ab) G int H(A”*), we have p(A’*) 5 
p(Aa*)(= H(Aa*)). 

Proof. (a) If Ab C int A”* then since p-‘(S) - A”* has no disc components we must 

have Ab* C intA”*. So assume Ab g int A”* and so Ab n aA”* # 0. If b is a birth point 

(respectively death point), then look at B = AbnFx [0, t(a)] (respectively n Fx [t(a), 11). 

Since aA”* C F x {t(a)}, we have aBn aA”* # 0 (in particular, B # 0). It also follows 

that F x {t(a)} cuts A a* into upper components of LnF x [0, t(a)] and lower components 

of LnF x [t(a), 11, and B must be one of these components (since b E B). Since b # a 

(and a is the only birth point in A”), B is contained in one of the discs of A”* - A”. If 

it is attached to a boundary circle of A” then that circle is not in the boundary of A”*. 
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So the only way we can have aB n a A”* # 8 is that it is attached to one of the two 

touching circles of the boundary of A” while the other one does not bound a disc in 

p-‘(S) - A”. (We see in particular that b was a death point.) So B merges at time t(a) 

with another component of L n F x [t(u), 11, and so Ab = B. Since it is contained in a 

disc component of A”* - A”, Ab* is contained in that same disc, and so Ab* s A”*. 

(b) p(Ab) C intp(Aa*). But p(A”*) = p(Aa)* so S-p(Aa*) has no disc components, 

so p(Ab*) = p(Ab)* C intp(A”*). 0 

In Lemma 3.4 we simplified L given a singular point of type 1. Now we do the same 

for type 4: 

Lemma 5.6. Let H be a directed isotopy, and assume there is a birth point a of type 4 

such that p(Aa*) n Hi(F) contains no null-homotopic circle for i = 0,l (in particulal; 

A”* c F x [0, I]), and aA”* # 8. Then the number of extremum points of H may be 

reduced. 

Proof. Let a be a birth or death point of type 4 that satisfies the hypothesis of the lemma, 

and such that in addition p(Aa*) is minimal with respect to set inclusion, among the 

birth and death points of type 4. (This exists since if A”* satisfies the hypothesis, and 

p(Ab*) s p(Aa*) then also Ab* satisfies it.) 

Assume a is a birth point. If there is some birth or death point a’ in A”* of type 1, 

we show Lemma 3.4 applies to a’. Say a’ is a birth point. Let B be an upper component 

of F x [0, t(a’)] such that H(B) Cr H(Aa’), and let b E B be a birth point with 

t(b) < t(a’). We will show p(A’*) s p(Aa*) an so by the minimality condition on a, d 

b is not of type 4. Ab Cr B since t(b) < t(a’), and so H(Ab) C H(B) C. intH(A”‘). 

By Lemma 5.5(a), A”’ C A”‘, so H(Ab) C intH(Aa’) C intH(Aa*). So by Lemma 

5.5(b), p(Ab*) g p(A”*). 

So assume there are no birth or death points of type 1 in A”*. And so (by Lemma 5.5(a) 

and the minimality of A”‘) all birth and death points of A”* are of type 2, except for a 

itself which is of type 4. By Lemma 3.2, there is at least one disc in A”’ - A”. Since the 

boundary of these discs lie in F x {t(u)}, F x {t(u)} cuts them into upper components of 

F x [0, t(a)] and lower components of F x [t(a), 11. By Lemma 3.3, all these components 

are well embedded, and all of them including A”, have a unique extremum point. We 

will refer to them as “the pieces of A”* - Aa”. (Or, if we want to include A” itself we 

will say the pieces of A” * .) 

Let c and c’ be the two circles of aA” meeting at the singular point a’ E F x {t(a)}. 

If they both bound discs in p-‘(S) - A” (and so in A”* - A”), then if E and E’ are 

the lower components of F x [t(a), l] h aving c and c’ in their boundary, then at least 

one of them is of type 1. (Or rather it’s death point is of type 1.) So at most one of c 

and c’ bounds a disc in p-‘(S) - Aa, and we know at least one of them does, say it is 

c’. If c g UFx[t(a),l~(E’), then again, E’ is of type 1. So c C UF~[~(~),~I(E’). It follows 

that c is null-homotopic (since it may be isotoped into E’), and so it bounds a disc in 

p-i (S). Since c does not bound a disc in p-i (S) - A”, this disc must contain Aa, and 

so A”* is simply a disc, with c = aA”*. 
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We now show all the pieces of A”* have c contained in their region. We know this 

for A” and for the E’ mentioned above. All other pieces are disjoint from c and so 

it is enough to show c intersects their region, and it will follow that the whole of c 

is there. Assume there are pieces that are say, upper components in F x [0, t(a)] that 

do not have points of c in their region. Let E be a minimal one, i.e., one that does 

not contain other pieces of A”* in its region. (Such exists since if E does not have 

points of c in its region, then any piece inside its region cannot have points of c in 

its region.) Now E’s unique birth point e, is of type 2. Let B be the component in 

U,, [o,t(e)l (A”) that touches A”. A” C A”* (Lemma 5.5) and so B n A”* # 8. On the 

other hand if B C A”*, then B n F x [O,t(a)] would contradict the minimality of E. 

(It is not empty since all of Aa*‘s birth points are under F x {t(a)}.) So we must have 

B n aA”* # 0. So there are points of c in tJ~~[o,~(~)l(A~), and so there are points of c 

in ll~~p~(~)l(E) = UFxpt(e~l(Ae) n F x [O,t(a)] since c CT F x {t(a)}. As we said, it 

follows that the whole of c is there. 

Now let E be a piece of A”* - A”, and let P = UFxit(a)j(E) n F x {t(u)}. Then 

P C F x {t(u)} is a planar surface (since it is homeomorphic to E), with null-homotopic 

boundary circles (since they are contained in E). And so it is contained in a disc PI C 

F x {t(u)}. By a level preserving isotopy, we may have E C TTF(P’) x [0, 11. We may 

do this with all E’s together, and also with Aa, by thinking of a regular neighborhood of 

Up, ~a,~(~)l (A”) instead of just UP, ~a,~(~)] (A”) itself. It is clear now from the connectivity 

of A”“, that there is one maximal P’ such that A’* C YTF (P’) x [0, 11. We fix an open 

disc K C F with A”* C K x [O. 11. 

So by Lemma 4.2 each of the discs DI, . . . , D, of A”* - A” is a curled disc. (Our 

pieces satisfy more than is assumed in Lemma 4.2, they are well embedded with unique 

extremum point. And so Fig. 3 is an almost accurate model for our Di. Assumption 4 is 

satisfied since we have shown c or c - {pt} is in that intersection.) 

We first show m < 2. Assume D1 is the disc who’s boundary touches c. Look at 

A”* - D,. This is a disc with two of its boundary points touching each other. Separate 

these two points only a very small distance inside K x {t(u)}, as to get a nonsingular 

disc which we will call D’. D’ is made of all the pieces of Dz, . . , D,, and a modified 

A”, a modification which brings A” back to the form of AT, for close t < t(u). Now c is 

in the region of all the pieces of D2, . . . ~ D, but does not touch the pieces themselves. 

(c only touches the outermost piece of 01.) And so points close to c are also inside all 

these regions. So take a point that is close to c, and also inside the region of the modified 

A”. This point will be in the regions of all pieces of D’, and so we conclude D’ is a 

curled disc. And so the modified Aa, which is the outermost piece of D’ is either a disc 

or an annulus, and so has either 1 or 2 boundary components. It follows that the real A” 

has 2 or 3 boundary circles (two of which touch each other), and so m = 1 or 2. 

If m = 1 there is only one possibility for Aa*: A” is a disc touching itself from the 

inside, and D1 is cut by K x {t(u)} into two pieces, a lower annulus in K x [t(u), 11, 

and an upper disc in K x [0, t(a)]. (See Fig. 14.) 

If m = 2, then A” is an annulus, with one of it’s boundary circles touching itself from 

the inside. There are two cases: 
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Fig. 14. 

Case (a) 

Case (b) 

Fig. 15. 

Case (a): The inner circle of the annulus is touching itself. (Inner in K x {t(a)}, i.e., 

the circle such that the disc bounded by the other circle in K x {t(a)} contains it.) 

Case (b): The outer circle of the annulus is touching itself. (See Fig. 15.) 

Given n2 = the number of pieces in D2, then 02 U A” is determined completely, since 

the modified 02 U A” (which we called D’), is a curled disc. It remains to determine D1. 

First we must find out which of the two touching circles of i3A” is aD,, and which is c. 

Call the circle closer to i3D2: el, and the one further: e2, i.e., et separates in K x {t(a)} 

between aD2 and e2. (See Fig. 16.) 

We show aD, = el and c = e2. Assume on the contrary, that aD, = e2 and c = el. 

Call the outermost piece of D2: E, and the outermost and second outermost pieces of 

D,: E’ and E”. 

For case (a>: c C u~~[t(~),~l(E) and so el U e2 C UFx[t(a),l~(E) and so E’ C 

UF,[t(,~,l~(E). Also c = er C UFx[t(a),l~(E’). So aE’ = e2 U e3 where e3 is essential 
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Fig. 16. 

in UFxpt(a)~(Aa). But then E” & U F~[o,~(~J~(A~), E” is not a disc, and aE” = ea Ue4 

where e4 is enclosed in e2 and so null-homotopic in Aa, contradiction. 

For case (b): E must be an annulus with el U e2 C UFx[t(a),l~(E). So E’ C 

UF~[~(~),~I(E), and 3E’ = e2 U es where e2 is null-homotopic in UFx[t(a),l~(E), and es 

is not, since it must enclose c = et, contradiction. 

Now that we know which circle is aD,, we can determine DI and thus the whole of 

A”*: 02 is determined by n2 which must be odd for case (a) and even for case (b). Given 

D2, there are two possibilities for DI, one with nt = n2, and one with n1 = n2 + 2 

(where n1 = the number of pieces in 01). And so the pair (nt , n2) (where n1 = n2 or 

n2 + 2), determines A”* completely. (This includes the pair (2,0) for the case m = 1.) 

See Fig. 17 for the four possible combinations. In these figures, there is one part that is 

drawn as it is, and this is the little bump of A”, the rest is a rotation surface around the 

depicted axis. Compare to the actual drawing of A” in Fig. 15. The shaded area is the 

ball B’ bounded by the sphere A”* U C where C is the disc in K x {t(a)} bounded 

by c. 

Denote by B the apple shaped ball which is the union of the regions of all the pieces 

of A”* (Fig. 18). Then B’ C B. The boundary of B is made of three parts: Two pieces of 

A”* which are a disc and an annulus, and a disc which is contained in K x {t(a)}. Call 

them E’, E”, and N, respectively. (E’ and E” are the innermost and second innermost 

pieces of D1 or D2, and N is the disc in K x {t(a)} bounded by d(E’ U E”).) For 

the case (1, l), A” is in the boundary of B and so B is actually a ball with a pinch at 

the singular point a’ of A”. E” is A” itself, and so it is a singular annulus, and N is a 

singular disc. This will cause us no disturbance. 

We continue the proof of the lemma by induction on the number e of circles in 

H(A”*) n H(F x {t(a)} - A”“). 
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I 
* (3,3) (Case a, n1 = n2) + (34 cc a.se a, 721 = 722 + 2) 

c!5 
(2,2) (Case b, n1 = n2) 

I 

I 

I 

Fig. 17 

(4,2) (Case b, n1 = n2 + 2) 

Assume J! = 0. We show H embeds B. N C F x {t(a)} and so is embedded by 

H. E’ u E” c A”* and so is also embedded by H (Lemma 5.2). t = 0 implies 

H(E’ U E”) n H(intN) = 8, and so aB is embedded by H, and so finally, by Lemma 

5.3, B is embedded by H. It follows also that B U F x {t(a)} is embedded by H 

since H(F x {t(a)} - B) f’ H(BB) = 8, by the assumption C = 0. And so also some 

neighborhood of B U F x {t(a)} IS embedded. By using Lemma 3.1 twice, once with 

E’ and once with E” we can turn this neighborhood into a neighborhood of the form 

F x [tl , tz] without changing the structure of the singular points of L. So now we have 

B C F x [tl , tz], with F x [tl: tz] embedded by H. So we can use Lemma 4.1 to change 

L n B’ inside B’ in any way we please. (N of Lemma 4.1 may be taken here as the 

whole of F x [tl, tz], or just a neighborhood of B’.) 

So we will now look into the structure of B’. (Fig. 17.) For the case n] = 712, the 

shape of B’ is of a TCD with an additional flat headed bump. (See Fig. 20 and the left 

side of Fig. 17.) 
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Fig. 18. 

Fig. 19. 

For nr = 722 + 2, this bump is drilled out of the TCD. (See right side of Fig. 17.) We 

cut B’ above c (Fig. 21), and think of the ball that is cut off B’ as the bump, and all the 

rest, as the TCD. 

So in any case, B’ is a TCD with a bump. Call the TCD B”, and call the intersection 

of B” and the bump, D”. By a level preserving change of coordinates we can assume 

CJB” is made of horizontal and vertical pieces, as in Lemma 4.6, or almost so (Fig. 22). 

We notice that D” is situated in aB” exactly in the place as assumed in Lemma 4.6. 

What we now want to do, is to shrink A”* inside B’ until it has just one birth point 

and one death point. (In case B’ reaches C from beneath, which happens when nr = n2, 

we can actually get just one birth point. But if B’ reaches C from above, which happens 
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Fig. 20. 

Fig. 21. 

when nr = n2 + 2, the best we can get is one birth point and one death point. This is 

because A”* reaches 35’ from beneath.) But A”* has at least three extremum points in 

all cases. So if we do this without changing the number of extremum points in the rest 

of L, we will reduce the number of extremum points of L. 
We can perform such a shrinking of A”* by moving only A”* n B” inside B”. Let 

U” be the ball bounded by the shrunken A”* n B”, and D”, though we did not perform 
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_!!!4b 
Fig. 22. 

the shrinking yet. Let L” = L n int B”. Now use Lemma 4.6, with B”, L”, D”, 17” to 

deform L” inside B”, until it is contained in U”, and such that the number of extremum 

points is unchanged. Finally we shrink A”* n B” inside B” to the position we planned 

for it, thus reducing the number of extremum points. 

So now assume f? > 0. 

By Lemmas 2.21 and 2.20 there is either an upper component A in F x [0, t(a)] or 

a lower component A in F x [t(a), l] with A g A”* and H(A) C int H(A”*). If there 

is such an A which is not well embedded, say it is upper in F x [0, t(a)], we look at 

its last birth point e. By Lemmas 3.3(b), 5.5(b), and the minimality property of A”*, we 
can use Lemma 3.4 to reduce the number of extremum points. 

So assume from now on that they are all well embedded. If there is such an A, such 

that there is no point of A”* in its region, and such that H(int A) n H(F x {t(a)}) = 0, 
we can use Lemma 3.1(a) to push it to the other side of F x {t(a)} and thus reduce !. 

We do not move A”* by doing so since we assumed there are no points of A”* in A’s 
region. 

If when doing this, A”* loses its minimality property, i.e., if after this process, there is 

an extremum point b with H(Ab*) g H(A”*) then take an A”* with H(A”*) C H(Ab*), 
such that H(AC*) is minimal, and start all over again. The induction here will be on the 

number of singular points in TS’ (rs(A”*)) (where A”* is now viewed in S x [0, 11). This 

number is reduced, since A”* has the singular point a’ in it’s boundary. (Remember our 

Assumption 1.1 (v), this property can also be preserved whenever we perform a change 

in Ht. Note also that the procedure of Lemma 3.1(a) does not change the location in S 

of the singular occurrences, only their time, and also does not change Ho and HI .) 
We now show that in fact there is always such an A, with no point of A”’ in its 

region, and such that H(intA) n H(F x {t(a)}) = 0. We will work with case (b), as in 

Fig. 18. (Case (a) will follow exactly the same.) Denote U = B n F x [0, t(a)], V = 
Cl(B n F x (t(u), 11). Then U is the region of a well embedded disc, and V is the region 

of a well embedded annulus. 

Look at A”’ in S x [0, I], and look at T-‘(r(A”*)) (TT = ns). It includes A”” itself, 

and some sheets above and under A”*. They are all embedded by 7r (as in the proof 

of Proposition 3.1 of [4], since A”” separates each one of them from either S x (0) or 

S x { 1)). Take such a sheet E and assume it is above A”*. (E is a disc since otherwise 

there was a disc bounding circle of intersection between L and r(A”*) x {l}, and so 

a null-homotopic circle of intersection between H(A”*) and H,(F) contradicting our 
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assumption on Aa* .) E lies above A” * in S x [O. 11, and so aE is above S x {t(a)}. (If 

i3E has parts in S x {l} then they are surely above S x {t(a,)}. All other parts lie exactly 

above aA”*, which is in S x {t(a)}, an d so are also above 5’ x {t (a,)} .) Furthermore, the 

fact that E is above A a* implies that the maximal point of E is higher than the maximal 

point of A” * , and the minimal point of E is higher than the minimal point of A”“. All 

the above applies of course also to the sheets E that are under A”‘, only now of course 

i3E is under 5’ x {t(a)}, and the minimal and maximal points of E are lower than the 

minimal and maximal points of A”*, respectively. 

In this setting P is simply the number of intersection circles between all the sheets of 

c’(T(A”*)) except A a* itself, and S x {t(~)}. 

Assume first that there are sheets which are under A”*, that intersect S x {t(u)}. 

Take a lowest one, call it E. S x {t(a,)} cuts E into pieces. Since aE is under level 

t(u), any piece A above S x {t(n)} is a lower surface in S x [t(n), 11, and we have 

T(A) C intr(A”*). Looking at A in F x [0, 11, this means that A is a lower surface 

in F x [t(a); I] and H(A) C intH(An*), and so by our assumption above, A is well 

embedded in F x [t(a), 11. In S x [O. l] we have int Usx[tca),I](A) f~ L = 0 since E was 

chosen lowest. and so by Lemma 2.21, H(intA) n H(F x {t(n)}) = 0. 

So we must only show that such an A (when viewed in F x [O. I]), does not have points 

of A”* m its region. Such an A cannot have V in its region since then E would have a 

point above the highest point of A” * In particular, there is no such A that intersects both 

F x {t(a)} - B and N. Without such an A. it is impossible to get (in E) from points 

of F x [O; t(u)] - B into B. Since E has points lower than the lowest point of A”*, it 

follows that E has no points in B. We conclude that all the pieces of E in F x [t(u), 1] 

do not have V in their region, and are not contained in V. And so their region is disjoint 

from V. In particular, they do not have points of A”” in their region. 

So we may assume that there is no sheet of Y’ (r(A”*)) below A”* that intersects 

S x {t((l)}. So now A ‘* itself is the lowest sheet intersecting S x {t(u)}, and so as above 

it follows that all pieces A of A”* whichareaboveSx{t(n,)} satisfyintU,Yx[t(a).ll(A)n 

L = 0. In particular, that piece =1 that when viewed in F x [0, 11, has V as it’s region. 

By Lemma 2.21, VU F x {t(o,)} is embedded by H. 

Since 4 > 0, there must be sheets of V’ (n(A”*)) above A”* that intersect S x {t(n)}. 

Take a highest one E. If there is a piece of E under F x {t(u)} (i.e., which is an upper 

component in F x [0, t(u)]) that does not have points of A”* in it’s region then we are 

done as before. So assume there are none such. In particular, there are none with their 

region disjoint from U. There may also be none that contain U in their region since then 

E would have points below the lowest point of A”*. We conclude that all such pieces 

are inside U. In particular, E does not intersect F x {t(u)} - B. aE is above time t(a). 

In S x [O. l] its points are either in S x {l} or in r-‘(r(aA”*)). And so in F x [0, I] its 

points are either in F x {l}, or mapped by H into H(aA”*). Since V is embedded by 

H, and aA”* C V, t3E cannot intersect V. So aE is above F x {t(u)} and outside B. 

We show E does not intersect B’ (or else we may finish). It is enough if we show 

E does not intersect C (the disc in F x {t(a)} b ounded by c). Since aE is outside B, 

the piece of E that contains i3E may intersect F x {t(n)} only in N, and so does not 
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intersect C. And so if E intersects C, then there is a piece of E which is an upper 

component in F x [0, t(a)] or a lower component in F x [t(a), l] that intersect C. These 

are assumed to be well embedded. 

A well embedded upper component A in F x [0, t(a)] that intersects C must be 

contained in UFx[O,t(a)~(Aa). But then UFx[O,t(a)l(A) can intersect F x {t(a)} only in 

C, and so has no points of A”’ in its region, and we are done. (Actually we assumed 

this does not happen.) 

On the other hand, a well embedded lower component A in F x [t(a), l] that intersects 

C, must be contained in the region of the piece of A”* that touches c. Again A’s region 

can intersect F x {t(a)} only in C, and we have no points of A”” in A’s region. We 

are done again, since now A 5 V, and V U F x {t(u)} is embedded by H, and so 

H(int A) n H(F x {t(u)}) = 0. 
So we now have E disjoint from B’. On the other hand in order for it to intersect 

F x {t(u)}, it must intersect B. (Since it does not intersect F x {t(u)} - B.) And so 

it intersects B - B’. B - B’ is more or less a TCD with a bump (or missing a bump), 

only that the innermost part of it, when cut by F x {t(a)} (the part containing N), is 

mushroom shaped (upside-down mushroom), rather than being thick-disc shaped. (See 

Fig. 19.) 

Call this mushroom part K1, call its neighboring part of B - B’, K2, etc. Let i be the 

maximal such that E intersects Ki. Let A be a piece of E there. Since i is maximal, 

l3A & Ki_1, and so A contains no part of B’ in its region, and so no points of A”*. A is 

either under F x {t(a)} or in V. In both cases we are done as before. 0 

6. Selfcontainedness and connectedness 

Theorem 6.1. If il, i2 E To and there is a directed isotopy H(x, t) from il to i2, then 
there is a directed isotopy from il to i2 that moves in T (Definition 2.25). Thus having 

no extremum points (by Lemma 2.26). 

In this sense, T is selfcontained. Alternatively, we may say that this theorem justifies 

our defining the directed graph structure of T by simply inducing it from I. 

Proof. By Lemma 2.26 it is enough to show that there is a directed isotopy from il to 

i2 with no extremum points. 

If there is a birth or death point of type 4, then by Remark 2.9 and Theorem 2.12, we 

can use Lemma 5.6 to reduce the number of extremum points. 

So assume there are no extremum points of type 4. Take the last birth point a in L. It 

is not of type 4 since we assumed there are none such. It cannot be of type 2 since then 

there must be a later birth point. It can also not be of type 0 by Lemma 2.23(b). So it is 

of type 1. There are no upper components B of L x [0, t(u)] such that H(B) C H(A”) 
since that would again imply (by Lemma 2.20), that there are later birth points. So by 

Lemma 2.21 we may use Lemma 3.1(b) to reduce the number of extremum points. 0 
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Proposition 6.2. T and I are transitive, i.e., if there are directed edges A + B + C 

then there is a directed edge A 4 C. 

Proof. Let H(a,t), G(z,t) be directed isotopies such that HI NS Go. Then there 

is an isotopy K: F x [0, l] + M from HI to Go with no singular points. Since K 

has no singular points, there is an isotopy Jet : F + F (with ko = IdF), such that 

KI = K1 o kt has Kt ‘-l(S) a xe se , not changing with t. And so there will be an fi d t 

isotopy K” : M x [0, l] + M with $$’ = IdAl, E(I’ o HI = Ki and K:(S) = S for all 

t. Let Gi = Gtokl. (Ki o H) * G’ is then a directed isotopy from KI’ o Ho to G’, . But 

K;‘oH,, -sHoandG: -sGI. 0 

1 is a connected graph, i.e., between any two elements of I there is a nondirected path. 

This is true since in the PL category, any isotopy is a sequence of basic isotopies, which 

occur inside a single simplex, and these basic isotopies are directed. (Actually they are 

not. But like in the proof of Lemma 3.1 we can boost them with a very slow movement 

of the rest of F in the right direction.) 

We will now prove: 

Theorem 6.3. T is a connected graph. 

Proof. Let A, B E T. Since 1 is connected, there is a nondirected path in I from A 

to B, i.e., there are A = Al, A?, . . . , A, = B, with edges say AI 4 AZ, AZ + Ag, 

A3 + Aa..... (We used transitivity here.) To each such path we associate a pair of 

natural numbers (k, 1), where k is the total number of intersection circles of F and S in 

Al. . . , A,_1 and 1 is the total number of extremum points in some choice of isotopies 

representing the edges AI 4 AT, A2 + A3 etc. The proof will be by induction on 

the (k7 I)‘s which will be well ordered by lexicographic ordering. Let Hi+‘, H:32, 
H&4 be the chosen representing directed isotopies. By the proof of Proposition 6.2 

w: can’ansume H/+* = HF’2, Ho*’ = H”‘” etc. 

If AZ,. . . , A,_, are all in T, we are don: since our path is actually in T. So assume 

that is not the case. Assume first that there exist null-homotopic circles of intersection 

between F and 5’ for some of the Ai’s. 

Let c be such a circle, such that the disc D it bounds in 5’ is minimal related to set 

inclusion among all such circles, and assume c appears in &. Say the two edges in 

our sequence are pointed to Al, (rather than being both pointed from Ak), i.e., we have 
H+‘)*” and Hi”+‘)‘“, 

t Call them Ht and HI, respectively. 

There is a disc E & H,(F) (= Hi(F)) such that aE = aD, and since D was minimal, 

int D f’ int E = 8 and so D U E is a sphere. Let B be the ball it bounds in M. If the 

preferred side of H,(F) is pointing from E into B, then there is a directed isotopy Kt 

with Ko = HI, that moves E across B (note that H1 (F) n B = E by the minimality of 

D) and thus reduces the number of intersection circles of F and 5’. We replace H and 

H’ by H * K and H’ * K. (k is reduced and I is increased.) 

So assume now that the preferred side is pointed outward from B. The meaning of this 

is that if we consider F x [O. l] as contained in MF via a lifting of H, and if we lift B to 
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MF such that E is contained in F x {l}, then a neighborhood in D of dD will be lifted 

into F x [0, 11. (The minimality of D was used here again.) But since D is minimal, 

int D may not intersect F x (0) and F x { 1) and so the whole of D is contained in 

F x [0, 11. So we can consider D as an upper component of L = L(H) & F x [0, 11. 
For the same reason H(int D) rl H(F x { 1)) = 0. All this is true also for H’ (with 

L’ = L(H’)). So if D is well embedded in F x [0, I], both as an upper component 

of L, and as an upper component of L’, then we can use half of the proof of Lemma 

3.1(a) to get rid of D, and whatever it bounds together with F x {l}, both for H and 

for H’. The effect on both HI (F) and H{(F) will be that they will be pushed across 

B, and so the new H and H’ will satisfy HI -JS Hi as needed. (Here both k and I are 

reduced.) 

So now assume D is not well embedded say as an upper component of L. If there 

is a birth or death point a of type 4 in L with H(A”) C H(D), then it will satisfy the 

assumptions of Lemma 5.6 by the minimality of D, and so we can reduce the number 

of extremum points. (k is unchanged and 1 is reduced.) 

So assume there are no extremum points of type 4 with H(Aa) 5 H(D). Let a be 

the last birth point in D. It must be of type 1, and it will satisfy the assumptions of 

Lemma 3.4. So again we may reduce the number of extremum points. 

So we can now assume there are no null-homotopic intersection circles for any of the 

Ai’s. Not all Ai are in T so for some of them there is a product region N between F and 

S. Let FN s F, SN & S be the two parts of dN. Take N such that 5’~ is minimal among 

all N’s in all Ai’s. We will now repeat everything we did in the previous case, with SN 

and N in place of D and B. The only difference is that in the previous case, we always 

ruled out intersection with D by the simple fact that a circle in a disc bounds a smaller 

disc, contradicting the minimality of D. In the new case, we will rule out intersections 

with 5’~ by the fact that an incompressible surface in N who’s boundary is contained in 

SN is boundary parallel, and so will give us a product region with smaller 5’~. 0 

Corollary 6.4. Let [i], [j] E T. Then there is a (nondirected) isotopy Ht between i and 

j that moves in T and with no extremum points, 

Proof. This is clear from the proofs of Theorems 6.3 and 6.1. It also follows from 

Theorems 6.3 and 6.1 themselves together with the fact that we can fit isotopies together 

as in the proof of Proposition 6.2. 0 

There is a standard metric defined on connected graphs, namely, the distance between 

two elements is the minimal length of a path between them. With respect to this metric 

we have: 

Theorem 6.5. T is isometrically embedded into I. 

Proof. This is clear from the proof of Theorem 6.3, where we start with a path in I 

between two elements of T, and replace it by a path in T of the same length. 0 
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Lemma 6.6. Let [i] E T and assume T has more than one element. Then there is a 

directed isotopy Ht : F + M that satisjes: 

(1) H has exactly one singular point, that being a saddle point. 

(2) H moves in T. 

(3) Ho -S i or HI NS i. 

(4) H is an embedding. 

Proof. T is a connected graph with more than one element. So any element must have 

at least one edge connecting it to another element. Say there is an edge coming out of [i] 

into another element. By Theorem 6.1 this edge may be represented by a directed isotopy 

Gt having no extremum points, and such that Gt E To for all nonsingular t. Gt does 

have singular points since it connects two distinct elements. Let to be the first singular 

point. Take Gl~~~t~-~,~t~+~]. 0 

Theorem 6.7. If either F or S is a torus then T has at most one element. 

Proof. Assume there is more than one element. Take Ht of Lemma 6.6 and let L = 

L(H). L has a component which is a sphere with three holes. But by Lemmas 2.23(a) 

and 2.10, L is incompressible in both F x [0, l] and S x [0, 11, so if either F or S is a 

torus, we have a contradiction. q 

7. Structure of T 

We now go a little deeper into the structure of T. By Theorem 6.7, if either F or S 

is a torus then T has at most one element, so whenever it is needed or comfortable we 

will assume that F and S are not tori. 

Definition 7.1. A4 will be called circular with respect to F, if M is homeomorphic to 

F x [0,11/(x, 0) N (P(Z), 1) where ‘p : F + F is a homeomorphism ofjnite order up 

to isotopy, and F corresponds to F x (0). 

Shortly we will see that if M is circular with respect to F then it is circular with 

respect to any other incompressible surface in M (not a torus), and so we may just say: 

M is circular. 

Lemma 7.2. Let H: F x [0, l] --) M be a homotopy, with Ho = HI an embedding in 

the isotopy class of the inclusion. Let H’ : F x [0, l] + MF be a lifing, and assume 

Hh # H(. Then M is circular with respect to F. 

Proof. Take c = { *} x [0, l] C F x [0, 11. H,‘(F) 1s a nontrivial translation of H;(F) 

in MF, and so H’(c) is an open path, and so by definition of MF, H(c) has nonzero 

intersection number with Ho(F). In particular, any power of H(c) as an element of 

7rl (M) does not lie in Ho*(rl (F)). It follows that the map h : F x S’ + M induced by 
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H is X’ injective, and so by Theorem 6.1 of [4], h is homotopic to a covering map h’. 

By the proof of that theorem, we can have h’-‘(F) = F x K with finite K C S’, and 

with h’lFx{k) a homeomorphism for each k E K (which is automatic if F # torus). 

Since F is nonseparating, the conclusion follows. q 

Theorem 7.3. If M is circular with respect to F (Dejinition 7.1) then it is circular with 

respect to any other incompressible S # torus, in M. 

Proof. By a theorem of Nielsen, we may assume cp is actually of finite order k (not 

just up to isotopy). And so the isotopy K: M x [0, l] + M moving each point with 

uniform constant speed along its fiber, k times around M, has Ko = K’ = IdM. And 

so G = K 1 s x ~0, ,I is an isotopy with Ga = G’ . By Lemma 7.2 it is enough to show that 

for a lifting G’ : S x [0, I] + MS of G, Gb # G{. By definition of MS it is enough 

to show that the intersection number of c = G( { *} x [0, 11) and 5’ is # 0. The circle c 

lifts to the natural k-fold covering 7r : F x 5” 4 M as a fiber {*} x S’. The intersection 

number of c and S in M is equal to that of {*} x S’ and 7r-I (S) in F x S’ . But this 

intersection number is nonzero since X- ‘(S) is not a torus and so by Theorem 5.2 of 

[31, Tr- ‘(S) is isotopic in F x S’ to a surface S’ such that the restriction to S’ of the 

projection F x S’ + F, is a covering map. 0 

We will first consider the structure of T for M that is not circular. 

Definition 7.4. For two vertices A, B in a directed graph G, we will write A ++ B if 

A # B and there is a directed edge from A to B. (The distinction between A H B and 

A 4 B is like between A < B and A < B in a partially ordered set.) 

Definition 7.5. A sequence a0 H al H . . . ++ a, in a directed graph G will be called 

a chain if for all 1 < i < n, there is no 2 with ai_, - I?: - ai. 

Definition 7.6. A directed graph G will be called graded, if there exists a function 

d:G-+ZsuchthatforanyAkBEG: 

(a) There exists a chain A = a0 H a’ H . - a, = B in G. 

(b) Any such chain has n = d(B) - d(A). 

Assume F separates M. For i E TO let M’(i) be the part of M on the preferred side 

of i(F). For [i] E T define: 

D([i]) = x(S n M’(i)). 

Lemma 7.7. Assume F separates M. If H : F x [0, l] + M is a directed isotopy with 

a unique singular point, that point being a saddle point, then D(H’ ) = D(Ho) + 1. 

Proof. By Lemma 2.2, H is an embedding. So, in the process of H, the change taking 

place in Sn M’(Ho), is that a sphere with three holes is removed from it. The conclusion 

follows since the Euler characteristic of a sphere with three holes is - 1. 0 
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Corollary 7.8. Assume F separates M. If H : F x [0, l] --f AX is a directed isotopy with 

n, singular points, all being saddle points, then D(H,) = D(HO) + 71. 

Corollary 7.9. Assume F separates AL. If A H B E T then D(A) < D(B). 

Proof. There is a directed isotopy H : F x [0, 1] + M with Ho E A and HI E B. By 

Theorem 6.1 we can take an H that has only saddle points. Since A # B there is at least 

one, so by Corollary 7.8, D(A) < D(B). 0 

Lemma 7.10. Assume F separates M. Let A z--+ B E T. Then D(B) = D(A) + 1 ijf 

there is no x E T with A H .C H B. 

Proof. If there is an 2 E T with A H 5 H B, then D(A) < D(z) < D(B) and 

so D(B) 3 D(A) + 2. Assume now D(B) > D(A) + 2: By Theorem 6.1 there is a 

directed isotopy H with Ho E A and HI E B such that H moves in T and has only 

saddle points. By Corollary 7.8 there are exactly D(B) - D(A) 3 2 singular points. 

Take any nonsingular to after the first singular time and before the last one and we will 

get: A + [H,,,] + B and D(A) < D([H,,,]) < D(B) and so A H [H,,,] H B. 0 

Corollary 7.11. Assume F separates M. Then an )i al H . H a, E T is a chain iff 

D(a,) - D(Q) = n,. 

Now assume F does not separate Al but M is not circular: 

Choose io E To, and one lifting of in, ib : F --) MF. Now let i E TO be arbitrary. Take 

an isotopy Ht with HO = io, HI = i. Take the lifting Hl to MF with Hh = ib. By 

Lemma 7.2, any two such Hs will give the same lifting HI of i. So for any 7; E To we 

have chosen a canonical lifting to MF which will be denoted i’. 

We now define d on To as follows: Let i E To. Take two translations 6, F2 of i;(F) 

in MF such that the part N of MF bounded by FI U F2 contains both i;(F) and i’(F). 

Define D on N as above, and define d(i) = D(C) - D(l:b). It is clear d does not depend 

on the translations Ft and F2. We must show that if i NS j then d(i) = d(j). Let Ht 

be an isotopy between i and j with no singular points. A lifting HI will also have no 

singular points. Again by Lemma 7.2, if we choose H’ such that HA = i’, then H,’ = j’. 

And so d(i) = d(j), and so d is defined on T. Now Lemmas/Corollaries 7.7-7.11 will 

all go through for F nonseparating and M not circular, with d in place of D. 

So we now reformulate Lemmas/Corollaries 7.7-7.11 for the general case where M 

is not circular (setting d = D when F does separate M): 

Theorem 7.12. If M is not circular (Definition 7.1), then: 

(1) IfH:Fx[O,l] 4 M is a directed isotopy with n singular points, all being saddle 

points, then d(H1) = d( Ho) + n. 

(2) If A )--i B E T then d(A) < d(B). 

(3) (Lo H al H ... H a, E T is a chain ifSd(a,) - d(ao) = n. 
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We are now ready to show T is graded: 

Theorem 7.13. If M is not circular (Definition 7.1), then T is a graded graph (Defini- 

tion 7.6). If F separates M, then d is bounded on T and maxd - mind < Ix(S)I. 

Proof. (b) of the definition is true by Theorem 7.12(3). 

For (a): If A ++ B E T, take a directed isotopy H with HO E A, HI E B and such 

that H has only saddle points, and Ht E TO for all nonsingular t (Theorem 6.1). By 

Theorem 7.12, if we take 0 = to < tl < . < t, = 1 nonsingular times such that there 

is exactly one singular time between ti-1 and ti for all i, then A = [Ht,] H [Ht,] H 
. . . H [H,,] = B is a chain. 

For the bound on max d - mind when F separates M: For any i E To, both S n M’(i) 

and S - int M’(i) have no disc components, and so they both have nonpositive Euler 

characteristic. So from x(S n M’(i)) + x(S - int M’(i)) = x(S) it follows that x(S) < 

D(i) < 0. 0 

Corollary 7.14. If M is not circular then there are no A # B E T with A + B + A. 

Proof. If there were, then we would get d(A) < d(B) < d(A), contradiction. 0 

Corollary 7.15. If M is not circular; then if we replace the relation --) by the relation 

< we obtain a partially ordered set. 

We now deal with the case M is circular: 

Theorem 7.16. If M is circular (Definition 7.1) then T is a complete directed graph 

(i.e., there is an edge A 4 B for any pair A, B). 

Proof. We will show that if there is a directed edge A + B then there is also a directed 

edge B -+ A. The conclusion will follow by the connectivity and transitivity of T. 

Let H:F x [O,l] + M be a directed isotopy with Ho E A, HI E B. Let 0 = to < 

tl < ... < t, = 1 be, such that HIFx[t,,t,+,~ is an embedding for all i. It is enough that 

we show that for all i, there is a directed isotopy from Hti+, to Htt. Since H(F~[~,,~,+,I 

is an embedding, M - int H(F x [ti, &+I]) is also of the form F x [0, 11. So there is a 

directed isotopy from Ht,,, to an embedding j with j(F) = Hti (F). By going now a 

finite number of times around M we can arrive at H,<. •I 

So if M is circular, T cannot be graded. 

We would like to define a sort of grading on T after all. Let the homeomorphism 

cp : F 4 F that defines M be of order lo and let n = k. Ix(S) 1. We will define a “grading” 

d : T -+ Z/n such that if H : F x [0, I] -+ M is a directed isotopy with a unique singular 

point that being a saddle, with Ho E A, HI E B then d(B) = d(A) + 1 (modn). 

The following is the complementary to Lemma 7.2: 
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Lemma 7.17. Let n/r be circular, and k the order of the homeomorphism cp: F + F 

defming M. Let H : F x [0, l] -+ M be a homotopy, with Ho = HI an embedding in the 

isotopy class of the inclusion. Let H’ : F x [0, l] + MF be a lifting, then H,’ = (r”)“oHA 

for some integer m, where r is the generating deck transformation of MF + M. 

Proof. MF = F x R, with T: F x R + F x R given by (1c, t) +-+ (cp(z),t + 1). 

Since Ho = HI, HI = 71 o H& for some I. Let 7r : F x R + F be the projection, then 

~or=cp~~.Soweget~oH,‘=cp~orroH~.S mce 7r o H: (i = 0, 1) are homotopic 

to IdF, we get cp’ = IdF and so l = rn, . k. Cl 

So we repeat the construction of the grading, with the single difference that the lifting 

of an i E TO is defined only up to rli and so d(i) is defined only mod k . Ix(S) I. d will 

be called a “circular” grading. 

Note that there is a basic difference between the grading for noncircular M and the 

circular grading for circular n/f. A grading on a connected graph, if it exists, is unique up 

to an additive constant. So though in the case of noncircular M we defined the grading 

via the geometry, it could have been read (up to a constant) from the directed graph T 

alone. This is not true for the cyclic grading of a cyclic M, since nothing can be read off 

a complete graph. (So the cyclic grading embodies additional geometric information.) 

We conclude this section with the following, which holds in all cases: 

Corollary 7.18. If H is a directed isotopy moving in T with a unique singular point 

(that being a saddle), then [Ho] # [Hi]. 

Proof. If either F or S is a torus then such an H does not exist, as in the proof of 

Theorem 6.7. If M is not circular, the conclusion is true by the grading. If M is circular, 

it is true by the circular grading since as we have said, S cannot be a torus, and so 

72 = k Ix(S)l 3 2. 0 

8. Applications 

If F and S are least area surfaces in a Riemannian manifold, and F and S are 

transverse, then there are no product regions between F and S. In case F and S are least 

area but not transverse then the situation is as follows: F n S is a graph whose vertices 

are precisely the points of tangency between F and S, and with any slight movement 

that resolves the tangencies, product regions will not appear. 

In [l] it is shown that if F and S are least area surfaces, and either F or S is a 

torus, then the intersection between them must be transverse, and the number of circles 

of intersection between them is the minimal possible in their homotopy classes. (In fact 

[l] deals with immersed surfaces and so curves of intersection rather than circles, are 

counted.) 



54 T. Nowik / Topology and its Applications 92 (1999) 15-61 

In view of the above discussion, we would like to know: 

(4 What is the most general topological condition on F and S that will guarantee 

that whenever we isotope them to be nontransverse (but with F n S a graph 

as described above), then there will be arbitrarily small movements which will 

create product regions (and so any least area surfaces isotopic to them must be 

transverse). 

What is the most general topological condition on F and S that will guarantee 

that whenever we isotope them to be transverse and without product regions, then 

the number of circles of intersection will be the minimal possible for the isotopy 

classes of F and 5’. (And so any transverse least area surfaces isotopic to them 

must have the minimal possible number of intersection circles.) 

The answer to both questions is given in the following: 

Theorem 8.1. The following four conditions on F and S are equivalent: 

(1) T has at most one element. 

(2) F and S may be isotoped to satisfy the one line property (De$nition 8.2 below). 

(3) Whenever i(F) and S are not transverse (i an embedding in the isotopy class of 

the inclusion), but i(F) n S is a graph whose vertices are precisely the tangency 

points between i(F) and S, then there are embeddings of F, arbitrarily close to 

i, and with product regions. 

(4) For any i E TO, the number of circles of i(F) n S is the minimal possible in IO. 

Note that by Theorem 6.7, if either F or S is a torus then indeed the conditions of 

the theorem hold. We will prove the theorem by showing for each of conditions (2)-(4) 

separately, that it is equivalent to condition (1). And so we break the theorem into three 

separate Theorems 8.6, 8.7 and 8.9. 

Definition 8.2. Let p: z 4 A4 be the universal covering of M. [i] E I will be said to 

satisfy the one line property, if the intersection of any component of p-‘(i(F)) with any 

component of p-‘(S), is empty or consists of one line. 

Definition 8.3. Let p : % + M be the universal cover. Let i E 10 and let D & % be a 

disc. D will be called a bigon (with respect to i), if aD = CI U c2 where 

(a) cl and c2 are arcs and cl n c2 = aci = &3. 

(b) cl C P-‘(i(F)) and c2 C p-‘(S). 

(c) D is transversal with respect to p-’ (i(F)) and p-‘(S). 

If both points of CI n c2 lie in lines of p-’ (i(F)) n p-’ (S) (rather than circles), then 

they may lie in the same line, or in two distinct lines. D will then be called a l-line 

bigon or a 2-line bigon, respectively. 

If D n p-’ (i(F) U S) = aD, then D will be called a minimal bigon. 

The above terms will also be applied to a disc D C M simply by lifting it to ii?. 

Lemma 8.4. Assume T # 0. Zf [i] E I satisjes the one line property then [i] E T. 
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Proof. Assume [i] satisfies the one line property but there is a product region between 

i(F) and 5’. If there are null-homotopic circles of intersection between i(F) and S then 

they will lift to the universal cover, contradicting the one line property. So we have a 

product region as in (1) of Lemma 2.8 with K not a disc, and by Theorem 2.12, aK # 8. 

Take an arc (7, ay) C (K, dK) that may not be homotoped into dK. Let D Cr M be 

the disc corresponding to r-’ (y) where 7r : K x [O, I] + K is$e pro@ction,D is a 

minimal bigon in h/l. We lift D to the universal covering space AJ. Let F and S be the _- 
components of p-’ (*i(F)) and p-’ (S), respectively, that touch D in M. F and S intersect 

in a line P containing ci n cz (cl, c2 of Definition 8.3). Let E be the disc in F bounded 

by CI together with the segment of ! bounded by ~1 n ~2. Project E to K x (0) C M. 

E gives a homotopy of y x (0) into aK x (0). Contradiction. 0 

Lemma 8.5. Assume i E To and i does not sat@ the one line property, then there is a 

minimal 2-line bigon in ill. 

Proof. We will first find a 2-line bigon in %?, then a minimal 2-line bigon in G and 

finally a minimal 2-line bigon in M. 

2-line bigon in G: 

Take a component F of p-‘(i(F)) an d a component S of p-’ (S) that intersect each 

other in more than one line. F cuts S into pieces. Take one such piece A which intersects 

F at more than one line (those are boundary lines of A). In F let y be an arc with 

y n A = ay and y connects two distinct lines of A n F. Let B C %! be a ball contained 

in the same side of F as A, and such that U = B fl F (= dB n F), is a small regular 

neighborhood of y in F, so that A f? U consist of just two little segments a and b 

(forming with y the shape of the letter I). Assume dB intersects A transversally and 

aB - int U intersects F transversally. Furthermore assume that B is large enough such 

that it contains a path in A connecting the two endpoints of y, meaning that there is a 

component A’ of A n B connecting the two endpoints of y. The segments a and b lie on 

the boundary of A’. We will now show that a and b are contained in the same boundary 

circle of A’. Assume on the contrary that a and b are contained in distinct circles a’ and 

b’ of aA’. Let a” be a circle in int il’ which is close and parallel to a’. u” bounds a 

disc E in S and u” n F = 8, and so also E n F = 0 since otherwise we would have 

a circle of intersection between S and F, contradicting i E To. Since E n F = 0, E 

cannot contain a’ (a’ n F = a # 0), so it lies on the other side of u” than a’. So the 

disc E’ which is E together with the thin annulus between a” and a’ must contain A’. 

But then E must contain b, contradicting the fact that E n 5 = 0. So we have shown 

a and b lie in the same boundary circle of A’. This means that there is an arc c in i3A’ 

connecting an endpoint of a to an endpoint of b (c lies in i3B - int U). c together with 

the appropriate arc c’ of aU bound together a piece of aB which is a 2-line bigon in ,c. 

Minimal 2-line bigon in G: 

Take a 2-line bigon in n/r. If it is minimal we are done. We proceed by induction on the 

number of points in DRIP-‘(i(F)) flp-‘(S). A ssume there is a circle of intersection of 

D with p-’ (i(F)) which does not intersect p-’ (S) ( or vice versa). And so the whole disc 
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it bounds in p-‘(i(F)) is disjoint from p-‘(S). Take a minimal such disc in p-‘(i(F)) 

and homotope D to the other side of it, to reduce the number of such circles. So assume 

there are none such circles, so there must be a minimal bigon D’ in D. If it is a 2-line 

bigon we are done. Otherwise it bounds a ball B together with a piece f & p-‘(i(F)) 

and a piece s C p-’ (S). Isotope D’ together with any other parts of D in B to the other 

side of f u s. (If D’ n i3D # 0 an so D’ n Elo is one of the arcs of aD’ then the d 

isotopy is assumed to move this arc in p- ’ (i(F)) or p- ’ (S).) The number of circles or 

arcs of intersection might go up, but the number of points of D n p-’ (i(F)) n p-‘(S) 

is reduced. 

Minimal 2-line bigon in M: 

Take a minimal 2-line bigon D in z. D need not be embedded into M by p. But we 

do know that (plo)-‘(i(F) U S) = CID and (ply)-‘(i(F) n S) consists of exactly two 

points. By moving D a bit if necessary, we may assume that these two points are not 

mapped by p into the same point. Cut M along i(F) U S, and let the component where 

p(D) lies be called N. p]a~ : 3D + 3N is essential, since it being null-homotopic would 

imply that CID bounds a disc in the boundary of the manifold fi obtained by cutting up 

G along p-‘(i(F) US). But such a disc must contain an arc of intersection of p-‘(i(F)) 

and p-‘(S) connecting the two points of p-’ (i(F)) n p-’ (S) on aD, contradicting the 

fact that D was a 2-line bigon. So by the more detailed formulation of the loop theorem 

[2, 4.101, there is an embedded disc D’ in N with 3D’ essential in i3N and aD’ crosses 

i(F) n S at most twice. If there are no such crossings, then aD’ is contained in say i(F), 

and must bound a disc there, contradicting the fact that aD’ is essential in aN and i(F) 

and S do not intersect in null-homotopic circles. So aD’ crosses i(F) n S at least once. 

Just once is impossible, so we have exactly two crossings. So D’ is a minimal bigon in 

M. It is infact a minimal 2-line bigon, since if it was l-line, then when lifting D’ to fi 

we would find a disc bounded by aDf in dfi. Projecting that disc back to aN would be 

a null-homotopy of aD’ in dN. 0 

Theorem 8.6. T has at most one element iff there is an [i] E I satisfying the one line 

property. (Dejinition 8.2.) 

Proof. If T = 0 this is clear by Theorem 2.12, so assume T # 8. 
Assume there is an [i] E I satisfying the one line property, then by Lemma 8.4 [i] E T. 

If T has more than one element, take the isotopy Ht given by Lemma 6.6. Say Ha NS i, 

and so Ha satisfies the one line property. The saddle point means that there is a minimal 

bigon D in M and Ht moves F along D. We lift D to the universal covering space z. 

Let F and g be the components of p-’ (Ha(F)) and p-’ (S), respectively, that touch D 
in %. F and s intersect in a line containing cl n ~2. (cl, c2 of Definition 8.3.) Look at 

all the translations of D in z that touch F and 5. They will all be on the same side 

of F and on the same side of 5 since these sides are well defined by the orientations of 

F, S and M. So they will all lie in the same quarter space defined by the pair of planes 

F, 5. Call the boundary of this quarter space N. (N is a bent plane made of half of 

F and half of s.) Any such translate of D bounds with N a ball region U. Take such 
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a translate D’ with minimal region. (Actually one can show that these regions are all 

disjoint and so they are all minimal.) Now, as Ht moves F along D, F moves along D’ 

and creates a circle of intersection between F and S, and so there is a null-homotopic 

circle of intersection between H,(F) and 5’. This contradicts HI E To. (One can show 

that CJ is embedded by p, and so p(U) becomes the ball region between HI (F) and S.) 

We now prove the converse: Assume there is no [i] E I satisfying the one line property. 

Take some i E To. i does not satisfy the one line property, so there is a minimal 2-line 

bigon D in JU (Lemma 8.5). Take a directed isotopy with Ho = i (or HI = i), moving 

F along D to create one saddle move, and with H an embedding. If also HI E TO then 

by Corollary 7.18 we are done. So assume HI $ To. So there is a product region 11 

between HI (F) and S, as in (1) of Lemma 2.8, since even if K of the lemma is a disc 

(which will actually turn out to be impossible), the number of null-homotopic circles of 

intersection at time 1 is at most one, since at time 0 there are none, and times 0 and I 

differ by a single saddle. U must lie on the other side of HI (F) than H(F x [0, 11) since 

otherwise U would intersect Ho(F) and we would get a product region between Ho(F) 

and S. Moving back in time from HI to the saddle point, we examine what might happen 

to U. There are essentially the four possibilities described in the discussion preceding 

Lemma 3.2, where A = S f? U is in place of the well embedded surface in F x [O. I] 

and time is going backwards. 

Type 4 is impossible since by the analog of Lemma 3.2, we would have a null- 

homotopic circle of intersection between Ho(F) and S. 

Types 3 and 0 are impossible since we would then still have a product region at time 0. 

Type 2 is impossible since that would contradict the fact that we are in (I) of 

Lemma 2.8. 

So we have shown that we must have type 1. In particular, D n S separates the 

component of S - Ho(F) in which it lies. 

A is not a disc since that would contradict the fact that D is a 2-line bigon. So there 

is a minimal bigon D’ C U which does not separate U and which does not touch 3A in 

the area that is about to merge (in reversed time), with another piece of S. This may be 

extended to a minimal bigon D” between Ho(F) and S which is disjoint from D. Now 

use D” inplace of D to define an H with a single saddle. HI must be in To since this 

time D” n S does not separate S - Ho(F). So we are done by Corollary 7.18. q 

Theorem 8.7. T has ut most one element $F whenever the intersection between i(F) 

cmd S is nontransverse, but i(F) n S is a graph whose vertices ure the tangency points, 

then we can change i in arbitrarily small neighborhoods oj’ the tangency points (und 

without introducing new little circles of intersection in those neighborhoods), to get an 

embedding which is transverse and with product regions. 

Proof. Assume T has at most one element. Move i (according to the restrictions) such 

that there will be a single point p where the intersection is not transverse, that point being 

a saddle point. There are two sides to which we can move F in a neighborhood of p to 

resolve this singularity. If both of them are in To then we would have a directed isotopy 
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moving in T having exactly one singular point that being a saddle. By Corollary 7.18 

this isotopy connects two distinct elements of T, contradicting our assumption. So we 

move F (according to the restrictions) to a side which is not in TO, which means we will 

have product regions. 

Now assume T has at least two elements. Take Ht of Lemma 6.6. Take i = Ht, where 

to is the time of the unique saddle. Then any small movement will move us into either 

[HO] or [HI] which are both in T. 0 

Definition 8.8. For i E lo, d(i(F), S) will denote the number of intersection circles 

between i(F) and 5’. 

Theorem 8.9. T has at most one element ifffor any [i] E T, d(i(F), S) is the minimal 

possible in IO. (Definition 8.8.) 

Proof. Assume T has at most one element. If T = 0 then the conclusion is (vacuously) 

satisfied. So assume T has exactly one element, Due to Lemma 2.8, given any j E 10 

we can eliminate the product regions one by one, by isotopies, each time reducing the 

number of intersection circles. We finally must arrive at the unique element [i] of T. So 

d(i(F), S) is the minimal possible in IO. 

Now if T has at least two elements. Take Ht of Lemma 6.6. Then d(Ho(F), S) and 

d(H1 (F), S) differ by exactly 1, so at least one of them is not minimal. 0 

This completes the proof of Theorem 8.1. 

We now consider a second type of intersection number between F and S: 

Definition 8.10. Let p : Ad’ + M be the covering of M corresponding to ~1 (F). Let 

i : F + M be isotopic to the inclusion and i’ : F --+ M’ a lifting to M’. D(i(F), S) is 

defined to be the number of components of p-‘(S) that intersect i’(F). (See [l].) 

Theorem 8.11. For any [i] E T, D(i(F), S) is th e minimal possible for any embedding 

isotopic to the inclusion. (Definition 8.10.) 

Proof. First we show that for any [i], [j] E T, D(i(F), S) = D(j(F), S). By Corol- 

lary 6.4 there is an isotopy Ht between i and j with only saddle points. Let Hi be a 

lifting of Ht to M’. Hi too has only saddle points. Such a “saddle move” is something 

happening within one component of p-t (S), this component intersects Hl( F) before and 

after the move, and so the number of components intersecting H,(F) remains the same. 

We now show that if i : F + M is isotopic to the inclusion and i $ TO then 

D(i(F),S) 3 %(F),S) f or some j E TO. By a small isotopy not changing D we 

can assume i E 10. Due to Lemma 2.8, we can eliminate the product regions one by one, 

by isotopies, until there are no product regions. Every such move, when looking in M’, 

involves only components of p-’ (S) that were already intersecting the lifting of F at 

that time, and so D can only be reduced. 0 
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The following may be viewed as a special case of Theorem 8.6 or Theorem 8.11. We 

will deduce it directly from Corollary 6.4. 

Corollary 8.12. Let [i] E T, j isotopic to i, and j(F) n S = 0. Then 

(1) T has one element. (In particular; [i] = [j] and i(F) n S = 0.) 

(2) There is an isotopy between i and j in M - S. 

Proof. j(F) n 5' = 0 and so a product region between j(F) and S would imply F 

is isotopic to S and so by Theorem 2.12, T = 0, contradicting [i] E T. So [j] E T. 

By Corollary 6.4 there is an isotopy Ht from j to i with no extremum points. Since 

j(F) n S = 0, we must have Ht (F) n S = 0 for all t. (The first t where Ht (F) n S # 0 

must be a birth point.) In particular, [i] = [j]. A n since any i’ E To is isotopic to this d 

same j, T has just one element. 0 

Note that in case T = 0, we have (unless M = S x S1) two isotopic embeddings of 

F with images disjoint from S, but not isotopic in M - S. 

9. Reversing the roles of F and S 

In the definition of the directed graph T, F and S had different roles. Denote by 

T^ the graph obtained when the roles of F and S are reversed. We will give a natural 

bijection between the set of vertices of T and T^. Given T, we will define r(T), which 

will be a new, nondirected graph structure on the set of vertices of T, closely related to 

the directed graph structure T. We will show that the above bijection is an isomorphism 

of graphs between r(T) and r(F). Since this is trivial when either F or is S is a torus 

(Theorem 6.7), we will assume throughout this section that F and S are not tori. 

We first prove the following, which is probably well known. (In the proofs of [4] 

something a bit different appears.) 

Lemma 9.1. Assume F is not a torus. Let h: M + M be a homeomorphism that is 

isotopic to the identity and such that h(x) = x or all x E F. Then there is an isotopy f 

K: M x [0, I] + M from the identity to h with K(x, t) = x for all x E F, t E [0, 11. 

Proof. Assume first that M is not circular. By the proof of Theorem 7.1 of [4], it is 

enough to show that there is a homotopy K satisfying the conclusion. For this it is 

enough to show that if H: F x [0, l] + M is a map with Ho(x) = H,(x) = x for all 

:c E F then H is homotopic, keeping a(F x [0, 11) fixed, to the map F x [0, l] + hil 

given by (2, t) H x. For this it is enough to show that a circle c = H({*} x [0, 11) is 

null-homotopic in M. If no power of c lies in nl(F) then M is circular as in Lemma 

7.2. So there is such a power Ic. If ck # 1 we would get a nontrivial element in the 

center of 7ri (F) (since { *} x [0, l] as a circle in F x S’, is in the center of rri (F x 5”)). 

Sock= 1 andsoc= 1. 

Now assume M is circular. The conclusion now follows from the fact that any home- 

omorphism F x [O: l] + F x [0, l] that is the identity on a(F x [0, 11) is isotopic to the 
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identity with a(F x [0, 11) kept fixed. (By similar reasoning, again using the fact that the 

center of 7r1 (F) is trivial.) 0 

We can now define the map u : T + ?. Let [i] E T. There is an isotopy H : F x [0, l] -+ 

A4 from the inclusion of F to i. H can be extended to an isotopy H’ : M x [0, I] + M 

with HL = IdAt. Define u([i]) = [HI-‘Is]. W e must show that the definition does not 

depend on the choice of representative i of [i], the choice of isotopy H and the choice 

of it’s extension H’. But first we show we get an element of ?: Hi-‘js is isotopic to 

the inclusion of S by the isotopy H,‘-’ 1s. H,‘-’ Is(S) and F are transversal, and there 

are no product regions between them since H,’ maps them into S and i(F), respectively. 

Now assume G is another isotopy from the inclusion of F to i, and G’ an extension 

to M as above. (The case of two extensions of the same isotopy will just be a special 

case of this.) Look at the following isotopy of M: K = H,‘-’ o (-H’ * G’) where -H’ 

is H’(z, 1 - t). Then Ka = Id M and K’ (x) = II: for all 2 E F. By Lemma 9.1 there 

is an isotopy Ft between IdA{ and K’ = Hi-’ o G{ that is constant on F. So finally 

Jt = Ft o G’,-’ is an isotopy between G’, -’ and H(-’ that is constant on i(F), and 

maps it onto F. Jtls is the isotopy showing G{ -’ ]s NF HI-’ 1~. 

So u is a well defined map from To to T^. Now assume i, j E To and i -S j. Let Ht 

be an isotopy from the inclusion of F to i. Let Kt be an isotopy between i and j with no 

singular point (with respect to 5’). Let H’ be an extension of H to M with H,!, = IdhI. 

Let K’ be an extension of K to M with KA = H(. Use H’ and G’ = H’ * K’ to define 

u(i) and u(j). Ki-’ 1s is an isotopy between Hf -’ IS and G/, -’ ]s with no singular points 

(with respect to F), showing u(i) = u(j). So u is a well defined function from T to T^. 

We define v : T^ + T in the same manner. We show ‘1 o u = IdT (and in the same way 

u o 71 = Id,-.) Let [i] E T. Let H’ : M x [0, l] + M be an isotopy with HA = IdM and 

Hilp = i. SO u([i]) = [HI-‘Is] E T^, i.e., H,‘-’ IS is a representative of u([i]), and so 

H,‘-’ can be used to define v(u([i])). So v(u([i])) = [(H{-‘)p’l~] = [HIIF] = [il. 

We now define the nondirected graph structure r(T) on the set of vertices of T as 

follows: there is an edge between A and B in r(T) if there is a directed isotopy H with a 

unique singular point (that point being a saddle point), and with either HO E A, H’ E B 
or HO E B, H’ E A. This is equivalent to the following: There is an i E A and a 

minimal bigon D C M with respect to i, such that if one moves F (i.e., isotopes i), 

along D, one arrives at an element of B. (Note that by Corollary 7.18, an edge in r(T) 

is always between distinct elements.) 

Since T is connected, it is clear (using Theorem 6.1) that also T(T) is connected. 

We now show that u is an isomorphism of graphs between r(T) and r(p), i.e., we 

must show that there is an edge between A and B in r(T) iff there is an edge between 

u(A) and u(B) in r(T). It is enough to show the “only if” since the same will be true 

for v. So assume there is an edge between A and B in r(T). As we have said above, 

this means that there is an i E A and a minimal bigon D C M with respect to i, such 

that when we move F along D, we arrive at a representative j of B. Call this isotopy 

between i and j, H. Let K’ be an isotopy with KA = IdhI and K{~F = i. Let H’ be 



an extension of H to M with HI, = Ki. So u(A) = [H,!-‘Is] and U(B) = [H;p’Is]. 

Hi-‘lLy is an isotopy between them, moving S along H;-‘(D). So there is an edge 

between ,u(A) and U(B). 

Again there is a difference between the case of iU noncircular and circular. When iU 

is noncircular, then r(T) may be read off T: There is a nondirected edge between A and 

B in r(T) iff there is a directed edge between them in T and Id(A) - d(B) / = 1. (And 

d itself, as we have mentioned, may be read off T.) Furthermore, given r(T) and d, we 

may reconstruct T: Each edge of r(T) is given a direction according to the grading, then 

we pass to the directed transitive closure, and add all the edges iz + A. 

When M is circular then again, nothing may be read off T. 

For n/ noncircular, we may define the double grading (dt ~ d2) : r(T) + Z x 2% by 

dl = d, d2 = d o u where d, d are the gradings of T. T, respectively. We will write 

z(A) = (dl (A). d*(A)). Note that if there is an edge between A and B in r(T) then 

d(A) differs from d(B) by (il.+l). r(T) ‘. I$ connected and so it follows that the 

parity of dt + d2 is constant on r(T). By adding a constant to say dl, we can have 

that tit + (12 is always even. So actually d: T(T) 4 Z x Z where Z x Z = { (zt ( z2) E 

z x z: ZI + 22 is even}. 

r(T) together with this double grading is an object where F and S have symmetric 

roles, and that embodies in it the directed graph structures of both T and ?. 

We may define such a double circular grading on r(T) for AJ circular too. In this case 

it will embody more information than just T and T^ (which are simply complete graphs). 

References 

[I] M. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in 3-manifolds, Invent. 
Math. 7 1 (1983) 609-642. 

[2] J. Hempel, 3-manifolds, Ann. of Math. Stud. 86 (Princeton Univ. Press, Princeton, NJ, 1976). 
[3] W. Jaco, Surfaces embedded in M’ x S’, Canad. J. Math. XXII (3) (1970) 553-568. 
[4] F. Waldhausen, On irreducible 3-manifolds that are sufficiently large. Ann. of Math. 87 (1968) 

56-88. 


