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Abstract

Given a pair of incompressible surfaces I and S in an irreducible 3-manifold M, we define a
directed graph T which expresses the way F' may be isotoped with respect to S. We study the
properties of 7. We use our results about 7' to study properties of the intersection between F'
and S. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given two incompressible orientable surfaces F' and S in an irreducible orientable
3-manifold M, we investigate how F' may be isotoped relative to 5.

We define [y to be the set of all embeddings of F' in M, that are isotopic to the
inclusion, and are transversal with respect to S. Since we are dealing with embeddings
of F into the pair (M. S), the following is the natural equivalence relation on Iy: Two
embeddings in I are equivalent if there is an isotopy between them of the form K;cioh;
where i: F' — M is an embedding and h;: I' — F, Ky : (M, S) — (M, S) are isotopies.
This is equivalent to the following: Two embeddings in Iy are equivalent if we can move
from one to the other through embeddings that are all transversal with respect to S, i.e.,
within I itself. The set of equivalence classes will be called I.

We orient M and F. This determines a preferred side of i(F") in M for any embedding
i: ' — M. An isotopy h; will be called a directed isotopy, if at any time ¢, all points
of F are moving into the preferred side of h:(F). We give I the structure of a directed
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graph as follows: For any A, B € I there will be a directed edge A — B if there is a
directed isotopy h; with hg € A, h| € B.

Our [ includes many (equivalence classes of) embeddings for which the intersection
between F' and S says nothing about the relation between F and S in M. For example,
one can always add a circle of intersection by simply changing the embedding of a small
disc of I, as to intersect S. We would like to exclude this and more: We define Ty C I
(respectively T' C I) to be the set of all embeddings (respectively equivalence classes
of embeddings) in which there are no product regions between F' and S. (It is known
that least area surfaces satisfy this property.) T" inherits the structure of a directed graph
from I. The directed graph 7" will be our subject of interest.

Our main results about 7 are:

(1) Though the directed graph structure of 7' was induced upon it from I, T is
selfcontained in the following sense: If ¢, j € Ty and there is a directed isotopy hs
from i to j, then there is a directed isotopy ¢; from i to j satisfying g, € Tp for
all ¢ where the intersection of ¢,(F’) and S is transverse (Theorem 6.1).

(2) T is a connected graph (Theorem 6.3). Furthermore, T is isometrically embedded
into I with respect to the standard metric on connected graphs (Theorem 6.5). The
geometric meaning of this is as follows: Given an isotopy between two embeddings
t,J € Ty, we may approximate it by an isotopy h; which is a concatenation
h} * h? % -+ x h¥ of isotopies ki which are alternately directed and anti-directed.
(Anti-directed meaning that F' is moving into it’s nonpreferred side.) Theorems 6.1,
6.3, and 6.5 combined together will say, that we may replace h; by an isotopy
gt = gl x g7 % --- * g such that g, € Ty for all ¢ where the intersection of g;(F)
and S is transverse, and [ < k.

(3) If M is not “circular” (Definition 7.1) then T is a “graded graph” (Theorem 7.13).
This means geometrically, that for any g; as above (which is sufficiently generic),
if we count the number of times g; passes from one equivalence class in T to
another, each such passage being counted as 1 or —1 according to whether we
are at a directed or anti-directed portion of gy, then this number depends only on
the pair of embeddings 7, j and not on the choice of g;. If M is circular, then we
show T is a complete graph (Theorem 7.16).

We then use T to study properties of the intersection between F' and S:

In [1, Theorems 6.6 and 6.7] it is shown that if either F or S is a torus then for
any Riemannian metric on M, any pair of least area surfaces homotopic to F' and S
must intersect transversely, and the number of intersection curves between them will
be the minimal possible for the homotopy classes of F' and S. We translate these two
properties of a pair F', S into our setting, and ask what is the most general assumption
on the pair F', S (rather than assuming that one of them is a torus), that will guar-
antee each one of these two special properties. We show that the two properties are
both equivalent to the property that F' and S may be isotoped to satisfy the one line
property. We show this by proving that each one of these three properties is equiva-
lent to 7" having at most one element (Theorem 8.1). The distinction between one and
zero elements is given by Theorem 2.12 stating that T = @ iff F is isotopic to S. We
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will also show that indeed if either F' or S is a torus, then T has at most one element
(Theorem 6.7).

In [1] some further minimality properties are shown for the intersection of two least
area surfaces (Theorems 6.3 and 6.2). We show that the corresponding results in our
setting, are immediate consequences of the connectivity of 7" (Theorem 8.11 and Corol-
lary 8.12).

The structure of the paper is as follows:

In the remainder of this section, we give the basic definitions and assumptions of the
paper. In Section 2 we study the basic properties of the surface L = H~'(S) where
H:F x[0,1] — M is a directed isotopy. What we will need for our purposes is that
L C F x [0, 1] will have no extremum points (Definition 2.24). And so in Sections 3-5
we describe ways of changing a directed isotopy H so as to avoid extremum points. In
Section 6 we show the selfcontainedness and connectedness of T'. In Section 7 we define
a “graded graph” and show that T is a graded graph, except for when M is circular, in
which case T is a complete graph. In Section 8 we prove all the geometric applications
mentioned above. In Section 9 we investigate the connection between 7" and the graph
obtained by reversing the roles of F and S.

In any result titled “Theorem™ we will always give reference to the definitions of the
terms that appear, except for the definitions of this section.

Assumptions and notation 1.1.
(i) M will always denote an orientable irreducible closed 3-manifold.

(ii) F and S will be two orientable incompressible closed surfaces in M.

(iii) If H(x,t) is a map then for a fixed ¢ the map H; will be defined by Hy(z) =
H(x,t).

Gv) If H:F x [0,1] — M is an isotopy, we will always assume that there are only
finitely many ¢’s where the intersection of H;(F) with S is nontransversal and
in those ¢’s we always assume the nontransversality is of generic type (i.e., there
is only one point where the intersection is not transversal and in a neighborhood
of that point the intersection is like between z = x> — y? and z = 0, or between
z =1z’ +y* and z = 0 in R?). The points in F x [0, 1] and the times where this
occurs, wili be called the singular points and singular times of H.

(v) When needed we will also assume generic relation between the sets Hy, (F) N S
of the different singular times ¢;. (In particular, for a singular point a at time #;
we will have H(a) ¢ H;;(F) NS for the singular times ¢; # t;.)

Assumptions (iv) and (v) constitute no restriction, since arbitrarily close to any
isotopy there is an isotopy satisfying these assumptions.

(vi) If G is a surface (G will be F' or S), then we will denote the two projections of
Gx[01]by: 7e:G x[0.1) = G and ¢: G x [0,1] — [0, 1].

Definitions 1.2.
(i) Iy will denote the set of all embeddings i: F' — M that are isotopic to the
inclusion map of F', and are transversal with respect to S.
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(ii) We define an equivalence relation ~g on Iy as follows: i} ~g i if there is an
isotopy from ¢, to ¢, via embeddings that are in Iy. [¢] will denote the equivalence
class of ¢ and I will denote the set of equivalence classes.

(iii) For ¢ € Iy we will say there is a product region between i¢(F') and S if there is
a surface K (with or without boundary) and an embedding »: K x [0,1] — M
such that h(K x {0}) C i(F) and h(K x {1} UdK x [0,1]) C S.

(iv) Ty C Iy (respectively T' C I) will be the set of all ¢ (respectively [¢]) such that
there is no product region between ¢(F') and .S.

(v) We define a directed isotopy as follows: We choose once and for all, an orientation
for F' and for M and this induces a choice of a preferred side of i(F") for every
embedding i: F — M. A directed isotopy will be an isotopy H: F x [0,1] - M
such that 9H/dt(x,t) # 0 and points to the preferred side of H;(F) for all
zeF, tel0,1].

(vi) We give [ the structure of a directed graph as follows: Let A, B € I, there will
be a directed edge from A to B if there are i; € A, 4, € B and a directed isotopy
from #; to 7. 7" then inherits the structure of a directed graph from 7. Note that
for any A € I there is a directed edge from A to itself (represented by a directed
isotopy moving F only slightly into the preferred side).

2. Foundations

Lemma 2.1. Let H:F x [0,1] — M be an isotopy. Then H is directed iff H is an
orientation preserving local diffeomorphism.

Proof. 0H/dt(x,t) # 0 and pointing to the preferred side of H.(F') is equivalent to
dH (x,t) being nonsingular and orientation preserving. O

Lemma 2.2. Let H: F x [0,1] — M be a directed isotopy. If Hy(F') separates M then
H is an embedding.

Proof. Assume not. Let to = inf{t € [0, 1]: H|pyxo,¢ is not 1-1}. Let (zn, tn), (27,,1,,)
be two sequences such that (x,,,t,) # (x),,t),), H(zn,t,) = H{x,,t,) and t,,t) <
to + 1/n. By compactness we may assume the two sequences converge to (z,t) and
(x',t'), respectively, and we have H(z,t) = H(z',t'). H is a local diffeomorphism so
we cannot have (z,t) = (2, ). Since H is an isotopy we can also not have ¢ = t’. So at
least one is < to. Say t < tg. Now ¢’ < ty will contradict the definition of #y. So t' = t,.
If 0 < t < tp then a small neighborhood of (z,t) will be mapped onto a neighborhood of
H(z,t), but there will also be points (z”,¢”) close to (z/,t') with t” < ¢/, mapped into
this neighborhood of H(z,t) contradicting again the definition of ¢. So the only case left
is ¢ = 0 and the images of half ball neighborhoods in F' x [0, to] of (z,t), (¢/,t’) intersect
only in points coming from 0(F x [0, ¢y]), among these, the point H{z,0) = H(z', o).
This will give us a loop in M intersecting Ho(F) transversally in one point, contradicting
our assumption that Hy(F') separates M. O
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Corollary 2.3. Let H: F x [0,1] — M be a directed isotopy. If M’ is a covering of M
such that H lifts to a map H': F x [0, 1] — M’ with H|(F') separating M’, then H' is
an embedding.

Definition 2.4. We define the homomorphism 1) : (M) — Z by the intersection number
with F. We denote by M ¥ the covering space of M related to kerv. (If F separates M
then M¥ = M. If F does not separate M then M ¥ is the covering obtained by taking
a Z indexed collection of copies of M, cutting each one along F' and gluing one side of
F in the ith copy to the other side of F' in the (¢ + 1)st copy.) We denote the covering
map by p: M — M.

Note that F lifts to M¥ and is separating there, and so Corollary 2.3 applies to M*'.

Given a directed isotopy H : F'x[0,1] — M, we candefine H" : Fx[0, 1] — M x[0, 1]
by H"(z,t) = (H(x,t),t). H" is an embedding. We also have S x [0,1] € M x [0, 1].
We now define L = L(H) = H"(F x [0,1])nS x [0, 1]. We will think of L as contained
in Fx[0,1] (via H"), in S x [0, 1], and due to Corollary 2.3, also in M¥'. When necessary
we will give L a subscript to say where we consider it to be contained (e.g., Lrxo.1)»
L)

Remark 2.5.

(a) When identifying Lpyo,1] and Lgx|o,1], the maps H‘pr[o,u ‘Lpxp— SCM
and wg|L sxpo - Lsxjo,] — S become the same map. So, anything we prove about
one of these maps, will be true for the other.

(b) The restriction to Ly o,;) of the projection I x [0, 1] — [0, 1] coincides with the
restriction to Lgyo,1) of the projection S x [0, 1] — [0, 1]. And so we have a well
defined function ¢: L — [0, 1].

Lemma 2.6.
(a) HILFX[O.I] :Lpxjo) — S € M is a local diffeomorphism.
(b) WS}LSX[M : Lsxo,1) — S is a local diffeomorphism.

Proof. (a) and (b) are equivalent by Remark 2.5.
(a) is true since H is a local diffeomorphism, and Lz o) is simply H “1(8). O

Corollary 2.7. L is an orientable surface.

Our definition above of product region (Definition 1.2(iii)), is very inclusive. For
example, if ¢ is a circle of 0K, then it is allowed that the product region h(K x [0, 1])
will contain a neighborhood in #(F) and in S of A{c x {0}). (The situation here is that
h(K x [0,1]) contains three quarters of a neighborhood in M of h(c x {0}), instead of
just one quarter.) See Fig. 1.

We will now show that whenever there is any product region, then there is also a
convenient one:
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Fig. 1.

Lemma 2.8. Assume there is a product region between i(F) and S. Then there is a
product region h: K x [0,1] — M between i(F) and S satisfying one of the following:
() A(K x [0,1]) N (i(F) U S) = 0h{K x [0,1]).
(2) K is a disc and h(K x [0,1)) Ni(F) = h{K x {0}).
(In particular, the situation described before the lemma does not occur.)

Proof. Assume there is a null-homotopic circle of intersection between i(F') and S.
S is incompressible, so this circle bounds a disc in S. Take a minimal such disc D.
0D bounds a disc D’ in i(F) since i(F) is incompressible too. Since D was minimal,
DUD' is an embedded sphere. It bounds a ball B in M. We parameterize B as K x [0, 1]
with K a disc, K x {0} = D’ and K x {1} U3K x [0,1] = D. We have then that
K x [0,1]Ni(F) 2 K x {0}. If the inclusion was strict, then since int D N(F) = §,
we would have i(F) C B. So K x [0,1]Ni(F) = K x {0}, and (2) is satisfied.

So now assume there are no null-homotopic circles of intersection. It follows that
any component A of SN A(K x [0,1]) is incompressible in A(K x [0, 1]). Since A4 C
h(K x {0}), then by Proposition 3.1 of [4], A is parallel to h(K x {0}). Take an A
such that the region U bounded by A and h(K x {0}) contains no other component
of SN A(K x [0,1]). We replace h(K x [0, 1]) by U. We now do the same thing with
W(F)YNU,toget(l). O

Remark 2.9. In the proof above, in the case there is a null-homotopic circle of intersec-
tion, we did not use the prior assumption that there is a product region. And so we have
shown that whenever there is a null-homotopic circle of intersection, there is a product
region.

Lemma 2.10. Lpy o, is incompressible in F' x [0,1] iff Lgyx(o,1] is incompressible in
S x [0, 1].

Proof. Since H is m; injective, and S is incompressible in M: Lz (o,1) is incompressible
in F x [0,1] iff H|r, 00 Lrxjon) — S (€ M) is m injective on each component.
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That is iff 757, .,
incompressible in S x [0,1]. O

:Lgxp) — S is m injective on each component, iff Lgyo.1) I8

Lemma 2.11. If A is a closed component of L .1) then A is incompressible, and thus
boundary parallel, in F x [0.1]. Furthermore H|5:A — S C M is a homeomorphism.

Proof. Look at A in S x [0, 1]. mg|4 is a local homeomorphism. In the proof of Propo-
sition 3.1 of [4] we see that a surface A C S x [0, 1] for which 7|4 is a local homeo-
morphism, and such that AN S x {0} = @, is actually embedded by 75. So 7s|4 is a
homeomorphism, and A is incompressible in S x [0, 1]. Back to F' x [0, 1], this means
that H|4 is a homeomorphism onto S, and A is incompressible in F' x [0, 1]. O

Our first calculation of 7" will be in the following:

Theorem 2.12. T = 0 iff I is isotopic to S iff there exists a directed isotopy H (in the
isotopy class of the inclusion), such that L(H) has a closed component.

Proof. If i(F) is isotopic to S then by Proposition 5.4 of [4], there must be a product
region between i(F) and S, and so if F is isotopic to S, T' = {.

if T = () then there is a product region between F' and S, and so there is a product
region of a type described in Lemma 2.8. Such a region can be canceled by an isotopy.
But we must then still have product regions. We continue until ' and S are disjoint.
A product region now means £ and S are parallel, and so isotopic.

Let H be a directed isotopy in the isotopy class of the inclusion, such that L(H) has
a closed component. By Lemma 2.11, Hy is homotopic to a homeomorphism onto S.
And so by Corollary 5.5 of [4] F is isotopic to S.

Now assume F is isotopic to S. There is an embedding 7 of F isotopic to the inclusion
such that S is disjoint from, and parallel to i(F") from the preferred side. Now take a
directed isotopy H that moves F across S to the other side. L(H) will be a closed
surface in F' x [0,1]. O

Definition 2.13. Let A C F' x [0.1] be a surface. A will be called “lower” (respectively
“upper”) if § #£ 0A C F x {0} (respectively F' x {1}).

Definition 2.14. For an upper surface A C F' x [0, || we define m(A) = ming(A).

Definition 2.15. Let A C G x [0, 1] be a lower or upper surface. (G will be F' or S.)
We will say that A is very well embedded in G x [0, 1] if the projection

W(;IGX[O,I]‘*G,

embeds A into G.

We will say that A is just well embedded, if after a level preserving homeomorphism
of (7 x [0,1], A will become very well embedded. (A level preserving homeomorphism
of (G x [0. 1] is a homeomorphism where each G x {t} is mapped into itself.)
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Lemma 2.16.
(a) Any upper component A of Lgyo,1) is very well embedded in S x [0, 1]. (Upper
component meaning a connected component which is an upper surface.)
(b) Any upper component A of Ly 1) is embedded by H.

Proof. (a) and (b) are equivalent by Remark 2.5 so we show (a). By Lemma 2.6, mg|a
is a local diffeomorphism. Again by the proof of Proposition 3.1 of [4] we know that an
upper surface for which the projection is a local diffeomorphism is actually embedded
byit. O

Definition 2.17. Let A C G x [0, 1] be an upper surface. (G will be F or S.) We denote
by Ug(A) or Ugxp,11(A) or Ugx{1}(A), the region bounded by A and G x {1}. (This
region exists by homological considerations.) And similarly for a lower component. It
will be called “A’s region”.

Remark 2.18. Let A C G x [0,1] be a very well embedded upper surface, and let
A" = ng(A). Then A may be viewed as the graph of a function f: A" — (0, 1] with
f@4)=1.

Ug(A) is then {(z,t) € G x [0,1]: z € A" and f(x) <t < 1}.

Lemma 2.19. If A # B are two upper components of Lpy o) then H(A) and H(B)
are either disjoint or one is contained in the interior of the other.

Proof. Leta € A, b€ B and H(a) = H(b). Now look at A and B in S x [0, 1]. Then
we have mg(a) = mg(b) and so we must have ¢(a) # ¢(b) and assume ¢(b) > ¢(a).
Then b € Us(A) and so B C Ug(A). It follows that 7s(B) C intws(A) and so (back
to FF x [0,1]) H(B) Cint H(A). O

The above considerations make the following lemma clear:

Lemma 2.20. If A # B are two upper components of L such that H(A) N H(B) # 0
then the following are equivalent:

(1) B C Us(A). (This is in S x [0,1].)

(2) H(B) C H(A). (This and the following are in F x [0,1].)

(3) H(B) C H(int A).

@) m(B) > m(A).

We now characterize the case of an A having no such B.

Lemma 2.21. For an upper component A of L, the following are equivalent:
(1) intUs(A) N L = 0. (This is in S x [0,1].)
(2) There is no upper component B # A with H(B) C H(A). (This and the following
are in F x [0,1].)
(3) H(int A)n H(F x {1}) = 0.
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@) Hint(ANF x [0, ))NH(F x {t}) =0 forall t € [0,1].
(5) F x {1}V Ur(A) is embedded by H.

Proof. (1) & (2) follows from Lemma 2.20. Now if in S X [0, 1], there is a component
B of L in intUg(A), then B is an upper component (by Lemma 2.11 and Remark 2.5
or directly from the proof of Lemma 2.11). So if there is a B C Ug(A), then § # 9B C
int(mg(A) x {1}), and so intUg(A)N L # @ iff int(wg(A) x {1}) N L # @. But the latter
means that at time 1, there is intersection (in M) between F and intwg(4) C § C M.
This is equivalent to H{int A) N H(F x {1}) # 0. So we have (1) & (3).

But now using (1) & (3) for F x [0,¢], the claim (3) ¢ (4) becomes equivalent to:
intUg(A)yNL =@ iff (intUs(A)NSx [0, i) N(LNSx[0.¢]) =0 forall t € [0,1],
which is obvious.

Now since (3) = (3) is trivial, it remains to show (1)-(4) = (5):

Let U = Up(A)and A" = UNF x {1}, then 83U = AU A’. We first show U is
embedded by H: Let ¢ € A and assume b € U, b # a and H(a) = H(b). Then b ¢ A
(Lemma 2.16(b)). Let B be the component of b in L, then B C U. It follows that B is
an upper component with H(B) C H(A), since H(AYNH(B) # 0 and m(B) > m(A).
(B cannot be closed by Lemma 2.11.)

On the other hand, Let @’ € A’, and assume b € U, b # o’ and H(a’) = H(b). Think
of F' x [0,1] as contained in M via a lifting of H. Then we must have a covering
translation 7 of M ¥ bringing a’ to b. 7(F x {1})N A’ = 0 so 7(F x {1}) must intersect
int A, and so H(F x {1})N H(int A} # @. (We cannot have 7(F x {1}) C intU since U
is compact with connected boundary, and 7(F x {1}) separates M " into two noncompact
pieces.)

We have shown that for every o € 08U = AU A’ thereis no b % a in U with
H{a) = H(b). Since H is a local homeomorphism, it follows that U is embedded by
H. (Take {a € U: thereis b € U, b # a, H(a) = H(b)}. It is closed and open and
thus empty.)

Now H(F x {1} — AYn H@U) = 0, so H(F x {1} - A)n H(U) = @, and so
Fx {1} UU is embedded by H. O

Remark 2.22. Lemmas 2.16-2.21 become trivial when F separates M, by Lemma 2.2.

Lemma 2.23. Let H{(x,t) be a directed isotopy with Hy,H, € Ty. Let L = L(H).
Then:

(a) L is incompressible in F x [0, 1].

(b) All components of L intersect both F x {0} and F x {1}.

Proof. (a) Let H': F x [0,1] — M7F be a lifting of H. Then Ly r is just H'(F x
[0, 1)) np~'(S). Since p~'(S) is incompressible in M T, it is enough to show that there
is no circle in 3H'(F x [0,1]) N p~'(S) that bounds a disc in p~'(S). But that would
give a null-homotopic circle of intersection between either Ho(F) or Hi{F) and S,
contradicting Hy, H; € T, by Remark 2.9.
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(b) By Theorem 2.12, there are no closed components. So assume there are upper or
lower components. Take such a component A, say upper, with maximal m(A). And so
by Lemma 2.20, there is no upper component B # A with H(B) C H(A), and so by
Lemma 2.21, U = Up(A) is embedded by H. This region U is a product region by
Proposition 3.1 of [4] since A is incompressible and upper in F' x [0, 1]. And so H(U)
is a product region between H,(F) and S. 0O

Definition 2.24. Let H: F x [0,1] — M be an isotopy. A birth point, is a point in
F x [0,1] where a new circle of intersection between F' and S is created. Similarly,
a death point is a point where a circle of intersection shrinks to a point and disappears.
Birth and death points will be called extremum points.

Definition 2.25. We will say an isotopy H “moves in T if H; € Tj for all nonsingular ¢.

Lemma 2.26. Letr H(z,t) be a directed isotopy with Hy, Hy € Ty. Then H moves in T
iff H has no extremum points.

Proof. A bit after (respectively before) a birth (respectively death) point there is a ball
region between H,(F) and S.

Assume now that for some nonsingular 0 < ¢ < 1 there is a product region U between
Hy(F) and S, with 3U = AUB, AC Hy(F), BC S.Let H': F x [0,1] — M¥ be
a lifting. This induces a lifting of A to M ¥, Lift the whole of U accordingly. Call the
lifted sets U’, A’, B’. We claim B’ C H'(F x [0, 1]).

If not, then say H'(F x {1})NB' # 0. H'(F x{1})N A’ =0 and H'(F x {1})n B’
has no null-homotopic circles (in particular, U’ is not a ball). And so F' x {1} N U’ is
incompressible in U’ and so parallel to B’. The projection back to M gives a product
region between H,(F') and S, contradicting H; € Tp.

So B’ C H'(F x [0,1]). Pull it into F x [0,1] and call it B”. Then B” C L and
dB" C F x {t} and so the projection ¢ : F' x [0, 1] — [0, 1] must have a local minimum
or maximum in int B”, i.e., an extremum point. O

3. Changing L, part 1

In view of Lemma 2.26, and of our goal, which is Theorem 6.1, we describe ways of
changing L so as to avoid extremum points.

Lemma 3.1. Let H:F x [0,1] — M be a directed isotopy, and let L = L(H). Let
0 < to < 1, and let A be a well embedded upper component of L N F x [0, to]. Assume
further that H(int A) N H(F x {to}) = 0. Let U = Up o 1, (A). Then:
(a) We can change H in a small neighborhood of U, such that the effect on L will
be that A, and any parts of L inside U, will be pushed up into the other side of
F x {to}, without changing the structure of singular points of L (in particular,
the number of extremum points will be unchanged).
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(b) If furthermore ty is a singular time, and the singular point is a point on the
boundary of A that connects A to another component B of L N F x [0, tg], with
B € U, then we may actually reduce the number of extremum points.

Proof. (a) By a level preserving change of coordinates in F' x [0, #p] we may assume
that A is very well embedded, and by Lemma 2.21, F x {to} U U is embedded by H.

Let V; be a product neighborhood of A in F x [0, fp] such that F' x {t,} UU UV, is
still embedded by H. Let U, = U U V. By Lemma 2.21, for every ¢ € [0,tp], H(F x
{t} ~U))NH(ANF x [0,t]) = §. By compactness there is a product neighborhood
Vo C Vi of Ain F x [0,to] such that H(F x {t} —U;) N H(V>NF x [0,t]) = 0, for
every t € [0,%o]. We choose V5 such that also A" = C1(0V> — (F' x {to} UU)) is very
well embedded. Let U, = U U V5,

Since A’ is very well embedded, there is a function f:F — (0,¢o] such that A" =
Cl{(x,t) € F x [0,t]: t < to, t = f(x)}. (The value of f outside mp(A’) is tp.) And
so Uy = CH{(z,t) € F x [0,t0]: f(z) <t <t}

We define h: F x [0.to] — F x [0, to] by h(z,t) = (z, min(t, f(x))), and on F' < [0, to]
we define G = H o h. We now show G is an isotopy. Let t € [0, fg], we must show
G|px ey is an embedding. K, = F' x {t} N U, is embedded by G since h maps it into
Uy. K; = F x {t} — U, is embedded by G since there G = H. And so it remains to
show that G(K| — K;) N G(K; — K) = {. But this follows from the definition of V5.

Strictly speaking, G is not a directed isotopy. Every x € F' moves into the preferred
side while it is moving, but any x € 7p(A’) stops moving at time f(x). We can fix this
by letting them continue moving into the preferred side, inside a very thin neighborhood
of G, (F'). We denote this altered isotopy by G again.

We now define h': Fx[0,to] — F x[0,¢] by b/ (x,t) = (z,max(t, f(x))). G’ = Hoh’
is an isotopy since h’ embeds each F x {t} in F x {to} UU, and H embeds F x {to}UU,.
{Again a slight modification of G/ will make it directed in the strict sense.)

We have G, = Gjy and G} = Hy, and so G+ G’ * H|p[y,.1) is well defined and is the
required isotopy since L(G) = L(H|pxjo,,,)) — U and L(G") = (L(H|pxjo,)) NU) U
(U, Ai) where {A;} are vertical annuli.

(b) We use the isotopy G as above. Just before time #; an intersection circle com-
ing from B, is moving towards the boundary of H(A). We let it reach H(A) and
touch it at a point a € 0H(A). Let A” = np(A’), i.e., that piece of F that at this
stage is situated at H(A’). We start moving A" vertically across H(A), but we want
to dictate the timing of passage of every point of A” across H(A), such that there will
be no birth or death of intersection circles. This amounts to defining a Morse func-
tion on A (or A’ or A”) that has no local minimum or maximum in the interior of
A, and no local minimum on the boundary of A except for in a. Such a Morse func-
tion can be defined, for example, by the height function on an embedding of A in
R? as in Fig. 2. After A” has passed H(A), we proceed as before. The only differ-
ence is that in the preceding case, in this stage, A” was close and parallel to H(A),
from the outside of H(U), and now it is close and parallel to H(A) from the inside
of H(U).
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Fig. 2.

Since the original A had at least one birth point, and now it has no birth or death
points, we have reduced the number of extremum points of L. O

Let H(z,t) be a directed isotopy such that 0 and 1 are nonsingular times, let L = L(H)
and let a = (zg,%) € L be a birth point.

For t € [0, 1] let AY be the connected component of a in L N F x [0,1]. Let t(a) be
the supremum of the ¢’s for which:

(a) Af is well embedded.

(b)y Af N F x [0, s] is connected for any s < t (i.e., the component of a does not

merge with any other component until time ¢).

If t(a) = 1 then the connected component of ¢ in L is a well embedded upper
component with @ it’s unique birth point. Such a birth point will be called “of type 0”.

Assume then that ¢(a) < 1, and so #(a) is the first time where either A? is not well
embedded, or it merges with another component. (And so #(a) must be a singular time.)

Let A C A;’( o) be defined as follows: If Ag(a) = AU B where A, B are two surfaces
touching each other in a point, with a € A, then A* = A, Otherwise simply A% = Afay

We now analyze the various possibilities for the nature of the singular point b =
(x1,t(a)) at time t(a).

b is not a death point. If it was, look at A? for close ¢ < t(a) (“close” meaning
that the times ¢ < s < t(a) are nonsingular). Assume (by level preserving change of
coordinates in F' x [0, 1]), that A} is very well embedded in F' x [0,¢]. Let D be the
disc in LN F x [t, 1] where b lies. Assume D is very well embedded in F x [¢, 1]. There
are two possibilities: Either #np(Af) C wp(D), or np(Af) Nwrp(D) = dnp(D). In the
first case, since there are no singular times in the time interval [¢,¢(a)), Af must also be
a disc, and together we get a sphere, which is impossible by Lemma 2.11. So we have
7r(A¢) N wp(D) = drp(D), and so Af(a) is still well embedded. There was also no
merging with another component, and this will still be true for #’s a bit larger than ¢(a).
This contradicts the definition of ¢(a).

b is also not a birth point since that would not have affected Af.
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b is thus a “saddle point”. There are two distinctions now to be made. The first is
whether in the saddle point b, A® touches another component B, or touches itself. The
second is whether the points of F' x [0, 1] directly under the saddle are contained in
U= pr[oﬁt(a)](Aa) or not.

We analyze each of the four combinations:

(1)

(2)
(3)

“4)

Two components, U not under saddle: This means that B is not contained in U,
so this is the situation described in Lemma 3.1(b).

Two components, U under saddle: Here B is contained in U.

One component, {J not under saddie: Here A“ touches itself from the outside, and
so Af for close t > t(a) is still well embedded, and so this case is impossible.
One component, U under saddle: Here A® touches itself from the inside, and so
it is not well embedded. In U we take a small disc D modeled by z =0, —¢ <
z < —y® in R® where z = x> — y*> models L in a neighborhood of b. Say
z = —¢ in R? corresponds to time ¢ < t(a) in F' x [0,1]. Look at A. Since it
is well embedded, the arc D N Upyjo,(Af) can be continued by an arc in Af to
a circle that bounds a disc D' in Up,jo,(A7). E = DU D' is a disc in U with
0F C A“.

We now think of F' x [0, 1] as contained in M via a lifting of H. L is then
simply F' x [0,1] np~'(S).

Since p~!(S) is incompressible in AM*, the disc E that we have found im-
plies the existence of a disc K in p~'(S) bounded by OF. There are two
circles of L N F x {t{a)} that touch 9K at b. They intersect 0K only at b
since that is the only point of 3K (= OF) at level t(a). So one of them
~1 is contained in K, and the other -, is not. v, bounds a disc K| in
p~'(S) — A% (K, C K). In particular, we see here that at time ¢(a), the case
is, that one intersection circle splits into two, and not that two circles merge
into one.

A birth point @ will be called of type 1, 2 or 4 according to the type of singularity
that appears at b as described above. (Birth points of type 0 were defined earlier.) For a
death point ¢ we define A7, A%, t(a}, and the type of a, analogously.

We summarize the above discussion about birth points of type 4 in the following
lemma:

Lemma 3.2, If a is a birth point of type 4, then at time t(a), one intersection circle
splits into two, and at least one of these circles bounds a disc in p~'(S) — A“.

We will find ways to reduce the number of extremum points when having extremum
points of type | and 4, under certain conditions. (Lemmas 3.4 and 5.6.) The following
lemma will help us avoid type 2.

Lemma 3.3. Ler A C F x [0, o] be an upper surface.

(a)
(b)

The first death point of A (if there are any), is not of type 2.
If the last birth point a of A is of type 2, then t(a) > tg and so A®* D A and A is
well embedded with a its unique birth point.
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Proof. (a) Call the first death point e. If e is of type 2 then Upyy(e),1,] (A®) contains a
lower component B that touches A¢. So A°U B is connected and so must all be contained
in A. Now, a death point of B must come before e.

(b) Assume t(a) < to. Again, in Ug0,4(a)](A®) there is a component B that touches
A?® and so must be contained in A, and has a later birth point than ¢. O

With Lemma 3.1(b) we may reduce the number of extremum points, in the presence
of a birth point of type 1 satisfying a certain strong condition. We now weaken that
condition.

Lemma 3.4. Let a be a birth point of type 1. Assume that for any birth point b of an
upper component B of LNF x [0, t(a)] such that H(B) C H(A®), either (1) t(b) > t(a)
or (2) b is not of type 4. Then the number of extremum points may be reduced.

Proof. By induction on the number of B’s. If there are none then we are done by
Lemma 3.1(b). Otherwise take a B that is minimal, i.e., H(B) C H(A®) but there is no
upper component C # B of LN F x [0,t(a)] such that H(C) C H(B). If B is well
embedded then by Lemmas 2.21 and 3.1(a) we can push B above level ¢(a). In doing
so we did not alter A° since it is impossible that A* C Up0,1(a))(B) since by Lemma
2.20, m(b) > m(a). (It is also impossible that B is the component that is touching A®
at time t(a), since then A* U B would be an upper connected component that is not
embedded by H.) So we have reduced the number of B’s and the conclusion follows by
induction.

So assume B is not well embedded. Let b be the last birth point of B. t(b) < t(a)
since otherwise B would be well embedded. So b is not of type 4 and not of type 0. By
Lemma 3.3(b) it is also not of type 2. So it is of type 1. By Lemma 2.21,

H(int A)NH(F x {t(b)}) = 0.
And so by Lemma 3.1(b) applied to A%, we are done. O

4. Changing L, part 2

Lemma 4.1. Let H: F x [0,1] — M be a directed isotopy. If 0 < t) < t; £ 1 and
N C F x [t1,t2] is a (bounded) 3-manifold, such that Hlpx[thh]_l(H(n)) = {n} for
every n € N, then one can change H, such that the effect on L will be a change by an
arbitrary homeomorphism G : N — N which is the identity on ON (and no change in
L —intN).

Proof. Let h: F x [0,1] — F x [0, 1] be defined by the identity on F' x [0,1] — int N
and by G~ on N. H o h is the required directed isotopy. O

We will use this technique with N a ball, and so we now study embeddings of surfaces
in R3, and the way they may be isotoped.
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Lemma 4.2. Let D C R3? be a disc such thar:
(1) (Neighborhood of 9D in D) N {z =0} = 0D.
(2) D is in general position with respect to {z = 0}.
(3) Each component of DN {z 2 0} or DN {z < 0} is boundary parallel in {z >
0}, {z < 0}, respectively.
Call these components E;, i = 1,...,n. Let U; be the region bounded by E; and
{z =0} and let P, = U;N{z = 0}. We assume the numbering of the E;’s is such
that if E; is contained in a disc component of D — int E;, then ¢ > j. Our last
assumption will be:
4 N);int P; 0.
Then E\, ..., E,_y are annuli, E, is a disc and P, C P,y for all i, i.e., D is of the
form of the rotation surface described in Fig. 3.

Proof. By induction on n. Look at E;. D is one of it’s k boundary circles, and the
other k — 1 circles bound discs Dy,...,Dk_,in D — E.

If K =1 then F, = D and we are done.

If £k = 2 then E; is an annulus and there is only D). D; satisfies the induction
hypothesis, so we must only show P, C P,. Let ¢ be the circle E; N E,. P and P> must
lie on the same side of e in {z = 0} otherwise we would have int P, Nint P, = . If
n =2, P> is a disc and we are done. If n > 3 then by the induction hypothesis ¢ C Uz
and so £y C U;. So Py C P; and is on the same side of e as . It follows that P, C P».

If k > 3, let E;; be the outermost E; of D; (i.e., i; is the minimal 7 of E;’s contained
in D). Dy,..., D satisfy the induction hypothesis and so exactly as in the previous
case we get P C P, for j =1,...,k — 1. It follows that 9D, C P;, and 0D, C P,,.
But then it follows that F;, C U;, and E;, C U,,, which is impossible. O

I
s

©

Fig. 3.
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Definition 4.3. A disc satisfying the hypothesis of Lemma 4.2 will be called a “curled”
disc. A regular neighborhood of a curled disc will be called a “thick curled disc” (TCD).

Lemma 4.4. Let A be a (compact) surface. Let f: A — R be a nonnegative Morse
function with f(0A) = 0. Then for any point © € A there is a path u:[a,b] — A, with
u(a) =z, (fou)(t) >0 forallte (a,b), and u(b) is a local maximum point for f.

Proof. Let y,...,y, be the singular points of f, i.e., the points where df = 0. For
i=1,...,n,let U; be a small neighborhood of y;. In A— (U, U---UU,) we let u be an
integral curve of grad f (assuming some metric on A). And so there, surely (fou) > 0.
If we reach one of the U;’s, it must be along an inward vector (i.e., a vector at the
boundary of U; that is pointing into U;), and so y; cannot be a local minimum. If y; is a
local maximum, we know how to make the last step inside U;. If y; is a saddle point, we
also know how to move inside U; with (f o »)’ > 0 and such that we exit U; along an
outward vector. Then continue with an integral curve again. (If our initial point happened
to be itself a minimum point y;, we also know how to make the first step as to exit U;
along an outward vector.) This process must end since there are only finitely many U;’s
and since || grad f|| has a positive minimum in A — (U; U---UU,). O

Lemma 4.5. Let A be a lower surface in G x [0,1], where G is a surface (with or
without boundary), and let x € G x {0} — dA. Then there is a path u: [a,b] — G x [0, 1]
with

(1) ula) = z.

(2) (qou)(t) >0 foralte[a,b] (qg:G x [0,1] — [0, 1] is the projection.)

(3) u(b) € G x {1}.

(4) u intersects A only at local maximum points of q|a. (We assume the embedding

of A is generic, i.e., that q| 4 is a Morse function.)

Proof. From x go straight up. Stop just before intersecting A, and then move very close
to A, but not touching it, according to a path in A that is given by Lemma 4.4 with
f = gla. You are now outside A but very close to a local maximum point of ¢| 4. If
you happen to be above A at this stage, start everything again by just going up. If you
happen to be under A, cross A right at the local maximum point, and then start going
straight up. This procedure will terminate at G x {1}. O

Lemma 4.6. Let B C R3 be a TCD (thick curled disc), and assume (for convenience of
presentation), that 0B is made of horizontal and vertical discs and annuli.

Call one of the two discs (which are necessarily horizontal) A,. Call it’s neighboring
annulus Ay. Call A;’s other neighbor As etc. until finally the other disc will receive the
name Ayny1. (See Fig. 6(a) for the case n = 1.)

Let L C B be a surface with 0L C D where D C 0B is a small disc situated in A;,
or Aanis, (Which are both vertical). Let U be a small ball in B with U N 3B = D.
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Then there is an isotopy of L inside B, not moving 0L, that brings L into U, and such
that in the final stage q|, has the same number of local minimum and maximum points.
(q: R — R is the projection (1), x2,13) = I3.)

Proof. We first show that there is an isotopy of B itself in R?, not moving D, in the
end of which the whole of B is situated on one side of a vertical plane containing D,
and the number of local minima and maxima of ¢|; is unchanged. (D is actually not
flat, and so this vertical plane is not completely flat either.)

We show this by induction on n. For n = 1, either B is already on one side of D
(Fig. 4(a)) and we are done, or it is not (Fig. 4(b)). We will perform a “flipping over” of
B as to “expose” D (Fig. 5). We must do this without changing the number of minima
and maxima of ¢|;. (We will call this property, “being kind to L")

Let the numbering be as in Fig. 6(a), and let K and K’ be defined by Fig. 6(b). Let
« be the midpoint of As. Let u be a path connecting = to A,, with (g ou)’ > 0 and
with « intersecting L only in local maximum points of ¢|;. (Lemma 4.5 for K.) By a
level preserving isotopy of K, fixing 0K — Ay, we can assume u is actually vertical. By
another level preserving isotopy of K which pushes everything away from u, we can
assume L M (neighborhood of K} is just a union of well-embedded discs with a unique

{a) {b)

Fig. 4.

Fig. 5.
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singular point, which is a maximum, and with the boundary of these discs contained in
the vertical part of 0(neighborhood of K’) (Fig. 7).

It is now possible to perform the flipping over, being kind to L, as is shown in Fig. 8.
We describe this flipping over transformation in detail (call it F'): We divide B into 2
parts X and Y as in Fig. 9, which describes B as a rotation body around the depicted
axis. We choose X such that LNY contains nothing but the well embedded discs obtained
in the previous paragraph. (See Fig. 10(a).)
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77

Fig. 8.

Fig. 9.

On X, F will be of the form (xy, 22, %3) — (f(x1,x2), x3), where [ is the complex
function:

( 1), 1
z—r+-)i+ -
r z

restricted to the annulus {1/r < |z| < r} with D located around (1/7)i. (With the
additional requirement that D actually stands in place, and so in that area f must differ
abit from z — (r +1/7r)i+ 1/2)

As an intermediate stage, F' is defined on Y, such that F(B) is congruent as a set
to B. (Fig. 10(b).) Finally we move F(L NY’) (which by our construction is simply a
union of discs), inside F(Y') until each such disc has a unique singular point, that being
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a maximum point. (Figs. 10(c) and 8.) In B each such disc had the shape {z?+z3+7% =
1, 23 > 1/2} (Figs. 10(a) and 7), and in F(B) they have the shape {2? + 23 + 23 =
I, z3 > ~1/2} (Figs. 10(c) and 8 again). Note that this fits smoothly with the definition
of Fon X.

Since F is level preserving on X, and F(LNY') has a unique singular point, which is
a maximum, for each of its discs, just like in L NY" itself, we did not change the number
of local minima and maxima of ¢|y..

Assume now n > 2. We enlarge B as described in Fig. 11(a), which brings us back to
n = 1. So we perform the flipping over as in Fig. 11. Then an isotopy that is kind to L,
as in Fig. 12, and another isotopy, that does not move L at all, as in Fig. 13, will let us
use induction. (The next step of the recursion will of course use a reversed formulation
of Lemma 4.5.)
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So we now have B on one side of D. It is necessarily the side in which U lies. And
so we can now shrink B, by a level preserving isotopy and then by pushing it from the
top and from the bottom, until it is contained in U.

We conclude, that we can deform B in R?, without moving D, such that at the final
map, B is contained in U, and such that we are kind to L.

On the other hand, we can surely deform B inside itself, without moving D, and such
that at the final map B is contained in U. The proof is complete if we notice that any
two embeddings of B in U such that their restriction to D is the inclusion, are isotopic
inside U with an isotopy not moving D. O

S. Changing L, part 3
Definition 5.1. For a birth point a, let A%* be the union of A® and the disc components

of p~!(S) —int A%. (Again we are thinking of F' x [0, 1] as embedded in M ¥ via a lifting
of H.)
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In general it is possible that A®* is not contained in F' x [0, 1], but eventually we will
be interested only in the case that it is.

Lemma 5.2. A%" is embedded by p. (And so if A** C F x [0,1], A*" is embedded by
H)

Proof. We know A% is embedded by H. This means that after lifting F' x [0,1] to
MPF, A® is embedded by p. Let D be a disc component of p~!(S) — A%. 9D C A
and so it is embedded by p. It follows by Lemma 5.3 bellow that D is embedded by p.
p(A*) € p(D) since then p would not be a local homeomorphism in a neighborhood of
aD. So p(A%)Np(D) = p(dD), and so p embeds A* U D. Adding the discs one by one
we get A®* is embedded by p. O

In the above proof we used the following easy fact (with n = 2):

Lemma 5.3. Ler N be a smooth n-manifold that is covered by R", and let B™ be the
n dimensional ball. If f: B™ — N is a local diffeomorphism such that flap~ is an
embedding, then f is an embedding.

If K C S is a subsurface we define similarly K* to be the union of K and the disc
components of S — int K.

Lemma 5.4. Let a € L be a birth point. Then p(A**) = p(A®)". (And so if A** C
F x [0,1], H(A®) = H(A%)")

Proof. We have seen A®* is embedded by p. This implies p(A®*) C p(A®)". Now let
D be a disc component of S — p(A%). Lift D to p~!(S) to get a disc component of
p~1(S) — A® that is mapped onto D. O

Lemma 5.5. Let H(x,t) be a directed isotopy, and let L = L(H). Let a € L be a birth
point of type 4, and assume A** C F x [0, 1] and 9A** # 0. (The latter is automatically
satisfied when T # § by Theorem 2.12.) Then:
(a) For any birth or death point b € A**, b+ a, we have A"" C A%*.
(b) For any birth or death point b € L with H(A®) C int H(A®*), we have p(A®*) C
p(A®")(= H(A)).

Proof. (a) If A® C int A%* then since p~!(S) — A®* has no disc components we must
have A" C int A%*. So assume A® ¢ int A%* and so A®NJA®* # (. If b is a birth point
(respectively death point), then look at B = A’NF x [0, t(a)] (respectively N F'x [t(a), 1]).
Since 0A4%* C F'x {t(a)}, we have dBNAA** # 0 (in particular, B # (). It also follows
that F'x {t(a)} cuts A®* into upper components of LNF x [0, t(a)] and lower components
of LNF x [t(a), 1], and B must be one of these components (since b € B). Since b # a
(and q is the only birth point in A%), B is contained in one of the discs of A%* — A% If
it is attached to a boundary circle of A® then that circle is not in the boundary of A%*.
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So the only way we can have 0B N 0A%" # ( is that it is attached to one of the two
touching circles of the boundary of A* while the other one does not bound a disc in
p~1(S) — A®. (We see in particular that b was a death point.) So B merges at time t(a)
with another component of L N F x [t(a), 1], and so A’ = B. Since it is contained in a
disc component of A%* — A%, A?" is contained in that same disc, and so A®™ C A%*.

(b) p(A®) C intp(A?™). But p(A**) = p(A%)* so S —p(A®") has no disc components,
so p(A") = p(A®)* Cintp(A®*). O

In Lemma 3.4 we simplified L given a singular point of type 1. Now we do the same
for type 4:

Lemma 5.6. Let H be a directed isotopy, and assume there is a birth point a of type 4
such that p(A**) N H;(F') contains no null-homotopic circle for i = 0,1 (in particular,
A% C F x [0,1]), and 9A*" # (). Then the number of extremum points of H may be
reduced.

Proof. Let a be a birth or death point of type 4 that satisfies the hypothesis of the lemma,
and such that in addition p(A®*) is minimal with respect to set inclusion, among the
birth and death points of type 4. (This exists since if A** satisfies the hypothesis, and
p(AY") C p(A%*) then also A" satisfies it.)

Assume a is a birth point. If there is some birth or death point a’ in A** of type 1,
we show Lemma 3.4 applies to a’. Say o’ is a birth point. Let B be an upper component
of F x [0,t(a’)] such that H(B) C H(A%), and let b € B be a birth point with
t(b) < t(a’). We will show p(A®™) C p(A®*) and so by the minimality condition on a,
b is not of type 4. A® C B since t(b) < t(a’), and so H(A®) C H(B) C int H(A%).
By Lemma 5.5(a), A* C A%*, so H(A?) C int H(A%) C int H(A**). So by Lemma
5.5(b), p(A"") & p(A°).

So assume there are no birth or death points of type 1 in A%*. And so (by Lemma 5.5(a)
and the minimality of A®*) all birth and death points of A%* are of type 2, except for a
itself which is of type 4. By Lemma 3.2, there is at least one disc in A** — A%, Since the
boundary of these discs lie in F x {t(a)}, F' x {t(a)} cuts them into upper components of
F %[0, t(a)] and lower components of F x [t(a), 1]. By Lemma 3.3, all these components
are well embedded, and all of them including A®, have a unique extremum point. We
will refer to them as “the pieces of A%* — A®”. (Or, if we want to include A® itself we
will say the pieces of A%*.)

Let ¢ and ¢’ be the two circles of 9 A% meeting at the singular point o’ € F x {t(a)}.
If they both bound discs in p~'(S) — A% (and so in A%* — A%), then if E and E’ are
the lower components of F' x [t(a), 1] having ¢ and ¢’ in their boundary, then at least
one of them is of type 1. (Or rather it’s death point is of type 1.) So at most one of ¢
and ¢’ bounds a disc in p~!(S) — A%, and we know at least one of them does, say it is
I ¢ € Urx(i(a),1)(E'). then again, E’ is of type 1. So ¢ € Upyt(a),1)(E'). It follows
that ¢ is null-homotopic (since it may be isotoped into E’), and so it bounds a disc in
p~'(S). Since ¢ does not bound a disc in p~!(S) — A?, this disc must contain A%, and
so A%* is simply a disc, with ¢ = 0A*™.
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We now show all the pieces of A" have ¢ contained in their region. We know this
for A® and for the £’ mentioned above. All other pieces are disjoint from ¢ and so
it is enough to show c¢ intersects their region, and it will follow that the whole of ¢
is there. Assume there are pieces that are say, upper components in F' x [0,¢(a)] that
do not have points of ¢ in their region. Let F be a minimal one, i.e., one that does
not contain other pieces of A%” in its region. (Such exists since if £ does not have
points of ¢ in its region, then any piece inside its region cannot have points of ¢ in
its region.) Now E’s unique birth point e, is of type 2. Let B be the component in
Urxo,i(e)) (A®) that touches A°. A° C A** (Lemma 5.5) and so BN A%" # . On the
other hand if B C A%*, then BN F x [0,t(a)] would contradict the minimality of E.
(It is not empty since all of A**’s birth points are under ¥ x {t(a)}.) So we must have
BN aA® #£ (. So there are points of ¢ in Up jo,¢(e)) (A°), and so there are points of ¢
in Upxjo,t(a)](E) = Upxo,(e))(A°) N F x [0, t(a)] since ¢ C F x {t(a)}. As we said, it
follows that the whole of ¢ is there.

Now let E be a piece of A** — A%, and let P = Upy (a3 (E) N F x {t(a)}. Then
P C Fx{t(a)} is a planar surface (since it is homeomorphic to F), with null-homotopic
boundary circles (since they are contained in F). And so it is contained in a disc P’ C
F x {t(a)}. By a level preserving isotopy, we may have £ C wp(P’) x [0,1]. We may
do this with all E’s together, and also with A%, by thinking of a regular neighborhood of
Urx[o,t(a)}(A?) instead of just Ug [0,¢(a)] (A?) itself. It is clear now from the connectivity
of A~ that there is one maximal P’ such that A** C wg(P’) x [0, 1]. We fix an open
disc K C F with A" C K x [0,1].

So by Lemma 4.2 each of the discs Dy,..., D,, of A** — A% is a curled disc. (Our
pieces satisfy more than is assumed in Lemma 4.2, they are well embedded with unique
extremum point. And so Fig. 3 is an almost accurate model for our D;. Assumption 4 is
satisfied since we have shown ¢ or ¢ — {pt} is in that intersection.)

We first show m < 2. Assume D) is the disc who’s boundary touches c¢. Look at
A®* — Dy. This is a disc with two of its boundary points touching each other. Separate
these two points only a very small distance inside K x {¢(a)}, as to get a nonsingular
disc which we will call D’. D’ is made of all the pieces of D, ..., D,,, and a modified
A%, a modification which brings A% back to the form of A¢, for close ¢ < t{a). Now c¢ is
in the region of all the pieces of D»,..., Dy, but does not touch the pieces themselves.
(c only touches the outermost piece of D;.) And so points close to ¢ are also inside all
these regions. So take a point that is close to ¢, and also inside the region of the modified
A“. This point will be in the regions of all pieces of I, and so we conclude D’ is a
curled disc. And so the modified A%, which is the outermost piece of D’ is either a disc
or an annulus, and so has either 1 or 2 boundary components. It follows that the real A*
has 2 or 3 boundary circles (two of which touch each other), and so m = 1 or 2.

If m = 1 there is only one possibility for A**: A% is a disc touching itself from the
inside, and D is cut by K x {t(a)} into two pieces, a lower annulus in K X [t(a), 1],
and an upper disc in K x [0,t(a)]. (See Fig. 14.)

If m = 2, then A® is an annulus, with one of it’s boundary circles touching itself from
the inside. There are two cases:
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Case (a)

Case (b)

Fig. 15.

Case (a): The inner circle of the annulus is touching itself. (Inner in K x {t(a)}, i.e.,
the circle such that the disc bounded by the other circle in K x {t(a)} contains it.)

Case (b): The outer circle of the annulus is touching itself. (See Fig. 15.)

Given n, = the number of pieces in D, then D, U A® is determined completely, since
the modified D, U A® (which we called D"), is a curled disc. It remains to determine D;.
First we must find out which of the two touching circles of dA4® is 9D, and which is c.
Call the circle closer to 0D;: ej, and the one further: ey, i.e., e; separates in K x {t(a)}
between 0D, and e,. (See Fig. 16.)

We show 0D; = e; and ¢ = e;. Assume on the contrary, that 0D = e; and ¢ = ¢;.
Call the outermost piece of D,: E, and the outermost and second outermost pieces of
Dy: E' and E".

For case (a): ¢ C Upx(ya),](£) and so e; U ey C Upyjyay,j(E£) and so £’ C

Urxjt(a),)](E). Also ¢ = €1 C Upyjy(a),))(E'). So QE’ = €3 U e3 where e3 is essential
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Case (a)

Fig. 16.

in Upyxo,t(a)](A%). But then E” C Upy(0,4(a))(A%), E" is not a disc, and OE" = e3Ueq4
where e4 is enclosed in e; and so null-homotopic in A%, contradiction.

For case (b): E must be an annulus with e; U ez C Upyjya),1)(E). So E' C
Upxit(a),1](E), and OE" = ey U e3 where e; is null-homotopic in U [¢(a),1](¥), and e3
is not, since it must enclose ¢ = ¢;, contradiction.

Now that we know which circle is 8D, we can determine [)| and thus the whole of
A%*: D, is determined by 1, which must be odd for case (a) and even for case (b). Given
D,, there are two possibilities for Dj, one with n; = n,, and one with n; = ny + 2
(where n; = the number of pieces in D;). And so the pair (n;,n;) (where n; = n; or
ny + 2), determines A%* completely. (This includes the pair (2,0) for the case m = 1.)
See Fig. 17 for the four possible combinations. In these figures, there is one part that is
drawn as it is, and this is the little bump of A%, the rest is a rotation surface around the
depicted axis. Compare to the actual drawing of A® in Fig. 15. The shaded area is the
ball B’ bounded by the sphere A U C where C is the disc in K x {t(a)} bounded
by c.

Denote by B the apple shaped ball which is the union of the regions of all the pieces
of A®* (Fig. 18). Then B’ C B. The boundary of B is made of three parts: Two pieces of
A®* which are a disc and an annulus, and a disc which is contained in K x {¢(a)}. Call
them E', E”, and N, respectively. (E’ and E" are the innermost and second innermost
pieces of Dy or Dy, and N is the disc in K X {t(a)} bounded by 3(E’ U E”).) For
the case (1,1), A® is in the boundary of B and so B is actually a ball with a pinch at
the singular point a’ of A*. E” is A% itself, and so it is a singular annulus, and N is a
singular disc. This will cause us no disturbance.

We continue the proof of the lemma by induction on the number £ of circles in
H(A** YN H(F x {t(a)} — A%™).
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Q{b (3,3) (Case a, n, = n2) ds (3,1) (Casea, ny=mny+2)

(2,2) (Case b, ny = ny)

Assume ¢ = 0. We show H embeds B. N C F x {t(a)} and so is embedded by
H. E'UE" C A% and so is also embedded by H (Lemma 5.2). £ = O implies
H(E'UE")N H(int N) = 0, and so B is embedded by H, and so finally, by Lemma
5.3, B is embedded by H. It follows also that B U F x {t(a)} is embedded by H
since H(F x {t(a)} — B) N H(dB) = 0, by the assumption £ = 0. And so also some
neighborhood of BU F x {t(a)} is embedded. By using Lemma 3.1 twice, once with
E’ and once with E” we can turn this neighborhood into a neighborhood of the form
F x [t1, 2] without changing the structure of the singular points of L. So now we have
B C F x [t),ta), with F x [ti, t2] embedded by H. So we can use Lemma 4.1 to change
L N B’ inside B’ in any way we please. (N of Lemma 4.1 may be taken here as the
whole of F x [t1, 2], or just a neighborhood of B)

So we will now look into the structure of B'. (Fig. 17.) For the case n; = ny, the
shape of B’ is of a TCD with an additional flat headed bump. (See Fig. 20 and the left
side of Fig. 17.)
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1

Fig. 19.

For ny = ny 4+ 2, this bump is drilled out of the TCD. (See right side of Fig. 17.) We
cut B above ¢ (Fig. 21), and think of the ball that is cut off B’ as the bump, and all the
rest, as the TCD.

So in any case, B’ is a TCD with a bump. Call the TCD B”, and call the intersection
of B” and the bump, D”. By a level preserving change of coordinates we can assume
0B" is made of horizontal and vertical pieces, as in Lemma 4.6, or almost so (Fig. 22).
We notice that D" is situated in dB” exactly in the place as assumed in Lemma 4.6.

What we now want to do, is to shrink A** inside B’ until it has just one birth point
and one death point. (In case B’ reaches C from beneath, which happens when n; = n,
we can actually get just one birth point. But if B’ reaches C' from above, which happens
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Fig. 20.

Fig. 21.

when n) = n; + 2, the best we can get is one birth point and one death point. This is
because A%* reaches 0C from beneath.) But A®* has at least three extremum points in
all cases. So if we do this without changing the number of extremum points in the rest
of L, we will reduce the number of extremum points of L.

We can perform such a shrinking of A%* by moving only A*" N B” inside B”. Let
U" be the ball bounded by the shrunken A%* N B”, and D", though we did not perform
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Fig. 22.

the shrinking yet. Let L” = LNint B”. Now use Lemma 4.6, with B”, L, D", U" to
deform L” inside B”, until it is contained in U”, and such that the number of extremum
points is unchanged. Finally we shrink A%* N B” inside B” to the position we planned
for it, thus reducing the number of extremum points.

So now assume ¢ > 0.

By Lemmas 2.21 and 2.20 there is either an upper component A in F x [0, ¢(a)] or
a lower component A in F' x [t(a), 1] with A € A** and H(A) C int H(A%"). If there
is such an A which is not well embedded, say it is upper in F x [0,¢(a)], we look at
its last birth point e. By Lemmas 3.3(b), 5.5(b), and the minimality property of A%*, we
can use Lemma 3.4 to reduce the number of extremum points.

So assume from now on that they are all well embedded. If there is such an A, such
that there is no point of A** in its region, and such that H (int A) N H(F x {t(a)}) = 0,
we can use Lemma 3.1(a) to push it to the other side of F' x {¢(a)} and thus reduce Z.
We do not move A®* by doing so since we assumed there are no points of A%* in A’s
region.

If when doing this, A%* loses its minimality property, i.e., if after this process, there is
an extremum point b with H(A®") C H(A®") then take an A°* with H(A*) C H(A""),
such that H(A°") is minimal, and start all over again. The induction here will be on the
number of singular points in 5 ' (5(A%*)) (where A** is now viewed in S x [0, 1]). This
number is reduced, since A** has the singular point o’ in it’s boundary. (Remember our
Assumption 1.1(v), this property can also be preserved whenever we perform a change
in H;. Note also that the procedure of Lemma 3.1(a) does not change the location in S
of the singular occurrences, only their time, and also does not change Hy and H;.)

We now show that in fact there is always such an A, with no point of A%* in its
region, and such that H(int A) N H(F x {t(a)}) = 0. We will work with case (b), as in
Fig. 18. (Case (a) will follow exactly the same.) Denote U = BN F x [0,t(a)], V =
CI(BNF x (t(a), 1]). Then U is the region of a well embedded disc, and V is the region
of a well embedded annulus.

Look at A** in S X [0, 1], and look at 7~ 1(7(A%*)) (7 = mg). It includes A%* itself,
and some sheets above and under A®**. They are all embedded by 7 (as in the proof
of Proposition 3.1 of [4], since A*" separates each one of them from either S x {0} or
S x {1}). Take such a sheet £ and assume it is above A%*. (E is a disc since otherwise
there was a disc bounding circle of intersection between L and m(A°*) x {1}, and so
a null-homotopic circle of intersection between H(A®*) and H,(F) contradicting our



T. Nowik / Topology and its Applications 92 (1999) 15-6] 45

assumption on A%*.) E lies above A** in S x [0. 1], and so OE is above S x {t(a)}. (If
OF has parts in S x {1} then they are surely above S x {t(a)}. All other parts lie exactly
above 0A%*, which is in S x {t(a)}, and so are also above S x {t(a)}.) Furthermore, the
fact that E is above A%* implies that the maximal point of £ is higher than the maximal
point of A%*, and the minimal point of E is higher than the minimal point of Ac* Al
the above applies of course also to the sheets E that are under A%, only now of course
OF is under S x {t(a)}, and the minimal and maximal points of E are lower than the
minimal and maximal points of A%*, respectively.

In this setting ¢ is simply the number of intersection circles between all the sheets of
7 (m(A%")) except A% itself, and S x {t(a)}.

Assume first that there are sheets which are under A*”, that intersect S x {t(a)}.
Take a lowest one, call it E. S x {t(a)} cuts E into pieces. Since 0F is under level
t(a), any piece A above S x {t(a)} is a lower surface in S x [t(a), 1], and we have
7(A) C intmw(A*™). Looking at A in F' x [0, 1], this means that A is a lower surface
in F x [t(a), 1] and H(A) C int H(A®*), and so by our assumption above, A is well
embedded in F' x [t(a), 1]. In § x [0, 1] we have intUgy(a),11(A) N L = 0 since E was
chosen lowest. and so by Lemma 2.21, H(int A) N H(F x {t(a)}) = 0.

So we must only show that such an A (when viewed in F x [0, 1]), does not have points
of A%* in its region. Such an A cannot have V' in its region since then E would have a
point above the highest point of A%". In particular, there is no such A that intersects both
F x {t(a)} — B and N. Without such an A, it is impossible to get (in £) from points
of F x [0,t(a)] — B into B. Since E has points lower than the lowest point of A%", it
follows that E' has no points in B. We conclude that all the pieces of E in F' x [t(a), 1]
do not have V in their region, and are not contained in V. And so their region is disjoint
from V. In particular, they do not have points of A** in their region.

So we may assume that there is no sheet of 7= (7(A%*)) below A*" that intersects
S x {t(a)}. So now A" itself is the lowest sheet intersecting S x {¢(a)}, and so as above
it follows that all pieces A of A%* which are above S x {t(a)} satisfy int Ug, ¢(a).1(A)N
L = {. In particular, that piece A that when viewed in F x [0, 1], has V as it’s region.
By Lemma 221, VUF x {t(a)} is embedded by H.

Since ¢ > 0, there must be sheets of 77! (m(A%*)) above A% that intersect S x {t(a)}.
Take a highest one E. If there is a piece of F under F' x {t(a)} (i.e., which is an upper
component in F' x [0, #(a)]) that does not have points of A** in it’s region then we are
done as before. So assume there are none such. In particular, there are none with their
region disjoint from U. There may also be none that contain U in their region since then
E would have points below the lowest point of A**. We conclude that all such pieces
are inside U. In particular, E does not intersect F' x {t(a)} — B. 0F is above time t(a).
In S x [0, 1] its points are either in S x {1} or in 7~ (7(dA%")). And so in F x [0, 1] its
points are either in F' x {1}, or mapped by H into H(dA*"). Since V is embedded by
H, and 3A%* C V, OF cannot intersect V. So OF is above F' x {t{(a)} and outside B.

We show E does not intersect B’ (or else we may finish). It is enough if we show
E does not intersect C (the disc in F' x {¢(a)} bounded by ¢). Since dF is outside 53,
the piece of F that contains 3F may intersect F' x {t(a)} only in N, and so does not
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intersect C'. And so if E intersects C, then there is a piece of E which is an upper
component in F' x [0,¢(a)] or a lower component in F' x [¢(a), 1] that intersect C, These
are assumed to be well embedded.

A well embedded upper component A in F' x [0,¢(a)] that intersects C' must be
contained in Upyo,¢(a))(A*). But then Upyg.4(a))(A4) can intersect F' x {t(a)} only in
C, and so has no points of A%” in its region, and we are done. (Actually we assumed
this does not happen.)

On the other hand, a well embedded lower component A in F x [t(a), 1] that intersects
C, must be contained in the region of the piece of A** that touches c. Again A’s region
can intersect F' x {t(a)} only in C, and we have no points of A** in A’s region. We
are done again, since now A C V, and V U F x {t(a)} is embedded by H, and so
H(intA) N H(F x {t(a)}) = 0.

So we now have E disjoint from B’. On the other hand in order for it to intersect
F x {t(a)}, it must intersect B. (Since it does not intersect ¥ x {t(a)} — B.) And so
it intersects B — B’. B — B’ is more or less a TCD with a bump (or missing a bump),
only that the innermost part of it, when cut by F' x {¢(a)} (the part containing N), is
mushroom shaped (upside-down mushroom), rather than being thick-disc shaped. (See
Fig. 19.)

Call this mushroom part K7, call its neighboring part of B — B’, K>, etc. Let i be the
maximal such that E intersects K;. Let A be a piece of E there. Since ¢ is maximal,
0A C K;_1, and so A contains no part of B’ in its region, and so no points of A**. A is
either under F' x {t(a)} or in V. In both cases we are done as before. O

6. Selfcontainedness and connectedness

Theorem 6.1. If iy,%; € Ty and there is a directed isotopy H(x,t) from i) to i, then
there is a directed isotopy from i\ to i, that moves in T (Definition 2.25). Thus having
no extremum points (by Lemma 2.26).

In this sense, T is selfcontained. Alternatively, we may say that this theorem justifies
our defining the directed graph structure of 7' by simply inducing it from 1.

Proof. By Lemma 2.26 it is enough to show that there is a directed isotopy from ¢, to
i, with no extremum points.

If there is a birth or death point of type 4, then by Remark 2.9 and Theorem 2.12, we
can use Lemma 5.6 to reduce the number of extremum points.

So assume there are no extremum points of type 4. Take the last birth point ¢ in L. It
is not of type 4 since we assumed there are none such. It cannot be of type 2 since then
there must be a later birth point. It can also not be of type 0 by Lemma 2.23(b). So it is
of type 1. There are no upper components B of L x [0,%(a)] such that H(B) C H(A?)
since that would again imply (by Lemma 2.20), that there are later birth points. So by
Lemma 2.21 we may use Lemma 3.1(b) to reduce the number of extremum points. U
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Proposition 6.2. T and I are transitive, i.e., if there are directed edges A — B — C
then there is a directed edge A — C.

Proof. Let H(x,t), G(x,t) be directed isotopies such that H; ~g Gp. Then there
is an isotopy K :F x [0,1] — M from H, to Go with no singular points. Since K
has no singular points, there is an isotopy k;:F — F (with ky = Idp), such that
K| = Ky ok has K{“'(S) a fixed set, not changing with ¢. And so there will be an
isotopy K" : M x [0,1] — M with K] = Idy, K} o Hy = K| and K{'(S) = § for all
t.Let G, = Gyoky. (K| o H)x G’ is then a directed isotopy from K{' o Hy to G{. But
K{,O HQ ~g H() and G’] ~g G]. a

I is a connected graph, i.e., between any two elements of 7 there is a nondirected path.
This is true since in the PL category, any isotopy is a sequence of basic isotopies, which
occur inside a single simplex, and these basic isotopies are directed. (Actually they are
not. But like in the proof of Lemma 3.1 we can boost them with a very slow movement
of the rest of F' in the right direction.)

We will now prove:

Theorem 6.3. T is a connected graph.

Proof. Let A)B € T. Since I is connected, there is a nondirected path in / from A
to B, i.e., there are A = A, As,..., 4, = B, with edges say A; — A4y, 4; — Aj,

Ay — A4,.. .. (We used transitivity here.) To each such path we associate a pair of
natural numbers (k, 1), where k is the total number of intersection circles of ' and S in
Aj...., A, and [ is the total number of extremum points in some choice of isotopies

representing the edges A, — Aj, A; — Az etc. The proof will be by induction on
the (k,1)’s which will be well ordered by lexicographic ordering. Let H} ™2, H}™2,
H}~*, ... be the chosen representing directed isotopies. By the proof of Proposition 6.2
we can assume H! 7?2 = H}=2 H3™2 = H3™* etc.

If As,...,A,—y are all in T, we are done since our path is actually in 7. So assume
that is not the case. Assume first that there exist null-homotopic circles of intersection
between F' and S for some of the A;’s.

Let ¢ be such a circle, such that the disc D it bounds in S is minimal related to set
inclusion among all such circles, and assume c appears in A;. Say the two edges in
our sequence are pointed to Ay (rather than being both pointed from Ayg), i.e., we have
HE =% and HFYY7F Call them H, and H, respectively.

There is adisc E C H (F) (= H{(F)) such that 0E = 9D, and since D was minimal,
intDNintE = 0 and so D U E is a sphere. Let B be the ball it bounds in M. If the
preferred side of H|(F') is pointing from F into B, then there is a directed isotopy K;
with Ko = H,, that moves E across B (note that H,(F) N B = E by the minimality of
D) and thus reduces the number of intersection circles of F' and S. We replace H and
H' by H* K and H' « K. (k is reduced and ! is increased.)

So assume now that the preferred side is pointed outward from B. The meaning of this
is that if we consider F x [0, 1] as contained in M’ via a lifting of H, and if we lift B to
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M¥ such that E is contained in F' x {1}, then a neighborhood in D of 3D will be lifted
into F x [0, 1]. (The minimality of D was used here again.) But since D is minimal,
int D may not intersect F' x {0} and F x {1} and so the whole of D is contained in
F x [0,1]. So we can consider D as an upper component of L = L(H) C F x [0, 1].
For the same reason H(int D) N H(F x {1}) = 0. All this is true also for H' (with
L' = L(H')). So if D is well embedded in F x [0, 1], both as an upper component
of L, and as an upper component of L', then we can use half of the proof of Lemma
3.1(a) to get rid of D, and whatever it bounds together with ¥ x {1}, both for H and
for H'. The effect on both H,(F) and H|(F') will be that they will be pushed across
B, and so the new H and H' will satisfy H, ~g H; as needed. (Here both k and [ are
reduced.)

So now assume D is not well embedded say as an upper component of L. If there
is a birth or death point a of type 4 in L with H(A*) C H(D), then it will satisfy the
assumptions of Lemma 5.6 by the minimality of D, and so we can reduce the number
of extremum points. (k is unchanged and [ is reduced.)

So assume there are no extremum points of type 4 with H(A%*) C H(D). Let a be
the last birth point in D. It must be of type 1, and it will satisfy the assumptions of
Lemma 3.4. So again we may reduce the number of extremum points.

So we can now assume there are no null-homotopic intersection circles for any of the
A;’s. Not all A; are in T so for some of them there is a product region N between F' and
S.Let Fiy C F, Sy C S be the two parts of 0N. Take N such that S is minimal among
all N’s in all A;’s. We will now repeat everything we did in the previous case, with Sy
and N in place of I and B. The only difference is that in the previous case, we always
ruled out intersection with D by the simple fact that a circle in a disc bounds a smaller
disc, contradicting the minimality of D). In the new case, we will rule out intersections
with Sy by the fact that an incompressible surface in N who’s boundary is contained in
Sn is boundary parallel, and so will give us a product region with smaller Sx. 0O

Corollary 6.4. Let [i],[j] € T. Then there is a (nondirected) isotopy H, between i and
j that moves in T and with no extremum points.

Proof. This is clear from the proofs of Theorems 6.3 and 6.1. It also follows from
Theorems 6.3 and 6.1 themselves together with the fact that we can fit isotopies together
as in the proof of Proposition 6.2. O

There is a standard metric defined on connected graphs, namely, the distance between
two elements is the minimal length of a path between them. With respect to this metric
we have:

Theorem 6.5. T is isometrically embedded into I.

Proof. This is clear from the proof of Theorem 6.3, where we start with a path in /
between two elements of T, and replace it by a path in T of the same length. O
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Lemma 6.6, Let (i) € T and assume T has more than one element. Then there is a
directed isotopy Hy: F' — M that satisfies:

(1) H has exactly one singular point, that being a saddle point.

(2) H moves inT.

(3) H() ~g i or H] ~g 7.

(4) H is an embedding.

Proof. T is a connected graph with more than one element. So any element must have
at least one edge connecting it to another element. Say there is an edge coming out of [¢]
into another element. By Theorem 6.1 this edge may be represented by a directed isotopy
(; having no extremum points, and such that G; € T; for all nonsingular {. G; does
have singular points since it connects two distinct elements. Let £y be the first singular
point. Take G|py[ty—e. ty4e)- O

Theorem 6.7. If either F' or S is a torus then T has at most one element.

Proof. Assume there is more than one element. Take H; of Lemma 6.6 and let L =
L(H). L has a component which is a sphere with three holes. But by Lemmas 2.23(a)
and 2.10, L is incompressible in both F' x [0,1] and S x [0, 1], so if either F' or S is a
torus, we have a contradiction. O

7. Structure of T’

We now go a little deeper into the structure of 7. By Theorem 6.7, if either F' or S
1s a torus then T has at most one element, so whenever it is needed or comfortable we
will assume that ' and S are not tori.

Definition 7.1. M will be called circular with respect to F, if M is homeomorphic to
F x{0,1]/(z,0) ~ (¢(z),1) where ¢: F — F is a homeomorphism of finite order up
to isotopy, and F corresponds to F' x {0}.

Shortly we will see that if M is circular with respect to F' then it is circular with
respect to any other incompressible surface in M (not a torus), and so we may just say:
M is circular.

Lemma 7.2. Let H: F x [0,1] — M be a homotopy, with Hy = H,| an embedding in
the isotopy class of the inclusion. Let H': F x [0,1] — MT be a lifting, and assume
Hy # H|. Then M is circular with respect to F.

Proof. Take ¢ = {*} x [0,1] C F x [0,1]. H{(F') is a nontrivial translation of H}(F)
in M¥, and so H'(c) is an open path, and so by definition of M, H(c) has nonzero
intersection number with Ho(F). In particular, any power of H(c) as an element of
71(M) does not lie in Ho, (m (F)). It follows that the map h: F x S! — M induced by



50 T. Nowik / Topology and its Applications 92 (1999) 15-61

H is m injective, and so by Theorem 6.1 of [4], h is homotopic to a covering map &'
By the proof of that theorem, we can have &’ '(F) = F x K with finitt K C S', and
with /| gy (x} a homeomorphism for each k € K (which is automatic if F # torus).
Since [’ is nonseparating, the conclusion follows. O

Theorem 7.3. If M is circular with respect to F (Definition 7.1) then it is circular with
respect to any other incompressible S # torus, in M.

Proof. By a theorem of Nielsen, we may assume ¢ is actually of finite order k (not
just up to isotopy). And so the isotopy K :M x [0,1] — M moving each point with
uniform constant speed along its fiber, k times around M, has Ky = K; = Idy,. And
$0 G = K|sx[o,1] is an isotopy with Gy = G;. By Lemma 7.2 it is enough to show that
for a lifting G': S x [0,1] — M® of G, G # G!. By definition of M it is enough
to show that the intersection number of ¢ = G({*} x [0,1]) and S is # 0. The circle ¢
lifts to the natural k-fold covering : F x S’ — M as a fiber {*} x S'. The intersection
number of ¢ and S in M is equal to that of {*} x S' and 7~'(S) in F x S'. But this
intersection number is nonzero since 7~!(S) is not a torus and so by Theorem 5.2 of
[3], 7~ !(S) is isotopic in F' x S' to a surface S’ such that the restriction to S’ of the
projection F' x S' — F, is a covering map. O

We will first consider the structure of T for M that is not circular,

Definition 7.4. For two vertices A, B in a directed graph G, we will write A — B if
A # B and there is a directed edge from A to B. (The distinction between A — B and
A — B is like between A < B and A < B in a partially ordered set.)

Definition 7.5. A sequence ap — a; — -+ — ay in a directed graph G will be called
a chain if for all 1 < i < n, there is no z with a;_; — z — a;.

Definition 7.6. A directed graph G will be called graded, if there exists a function
d:G — Z such that for any A — B € G-

(a) There exists a chain A =ag— a; — ---»» a, = B in G.

(b) Any such chain has n = d(B) — d{ A).

Assume F' separates M. For i € Ty let M'(i) be the part of M on the preferred side
of i(F). For [i] € T define:
D([]) = x(S " M'(3)).

Lemma 7.7. Assume F' separates M. If H: F x [0,1] — M is a directed isotopy with
a unique singular point, that point being a saddle point, then D(H,) = D(Hp) + 1.

Proof. By Lemma 2.2, H is an embedding. So, in the process of H, the change taking
place in SNM’(Hy), is that a sphere with three holes is removed from it. The conclusion
follows since the Euler characteristic of a sphere with three holes is —1. O
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Corollary 7.8. Assume F separates M. If H: F x [0, 1] — M is a directed isotopy with
n singular points, all being saddle points, then D(H,) = D(Hp) -+ n.

Corollary 7.9. Assume F separates M. If A B € T then D(A) < D(B).

Proof. There is a directed isotopy H: F x [0,1] — M with Hy € A and I, € B. By
Theorem 6.1 we can take an H that has only saddle points. Since A # B there is at least
one, so by Corollary 7.8, D(A) < D(B). O

Lemma 7.10. Assume E separates M. Let A — B € T. Then D(B) = D(A) + 1 iff
there is no x € T with A — © — B.

Proof. If there is an z € T with A — z — B, then D(A) < D(z) < D(B) and
so D(B) = D(A) + 2. Assume now D(B) > D(A) + 2: By Theorem 6.1 there is a
directed isotopy H with Hy € A and H, € B such that H moves in 7" and has only
saddle points. By Corollary 7.8 there are exactly D(B) — D(A) > 2 singular points.
Take any nonsingular o after the first singular time and before the last one and we will
get: A — [Hy| — B and D(A4) < D([Hy,]) < D(B) andso A — [Hy]| — B. O

Corollary 7.11. Assume F' separates M. Then ap = a) — - — an € T is a chain iff
D(an) — D(ap) = n.

Now assume F' does not separate A but M is not circular:

Choose iy € Ty, and one lifting of ig, i: ' — M ¥ Now let i € Ty be arbitrary. Take
an isotopy H; with Hy = ig, H, = i. Take the lifting H; to M with H| = iy. By
Lemma 7.2, any two such Hs will give the same lifting H{ of 7. So for any i € Ty we
have chosen a canonical lifting to M¥ which will be denoted 7.

We now define d on Tj as follows: Let ¢ € Ty. Take two translations Fy, F5 of i{(F)
in M¥ such that the part N of M* bounded by F| U F, contains both ig(F) and #'(F).
Define D on N as above, and define d(i) = D(i') — D(if). It is clear d does not depend
on the translations F; and F,. We must show that if ¢ ~g j then d(z) = d(j). Let H;
be an isotopy between ¢ and j with no singular points. A lifting H] will also have no
singular points. Again by Lemma 7.2, if we choose H’ such that Hj = ¢, then H| = j'.
And so d(i) = d(j), and so d is defined on T. Now Lemmas/Corollaries 7.7-7.11 will
all go through for F' nonseparating and M not circular, with d in place of D.

So we now reformulate Lemmas/Corollaries 7.7-7.11 for the general case where M
is not circular (setting d = D when F does separate M ):

Theorem 7.12. If M is not circular (Definition 7.1), then:
(1) If H: Fx[0,1] — M is a directed isotopy with n singular points, all being saddle
points, then d(Hy) = d(Ho) + n.
) If A— B e T then d(A) < d(B).
(3) ap — ay — -+ — an € T is a chain iff d(a,,) — d(ag) = n.
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We are now ready to show T’ is graded:

Theorem 7.13. If M is not circular (Definition 1.1), then T is a graded graph (Defini-
tion 1.6). If F separates M, then d is bounded on T and maxd — mind < |x(S)|.

Proof. (b) of the definition is true by Theorem 7.12(3).

For (a): If A — B € T, take a directed isotopy H with Hy € A, H, € B and such
that H has only saddle points, and H; € T for all nonsingular ¢ (Theorem 6.1). By
Theorem 7.12, if we take 0 = ¢y < £; < --- < ¢, = | nonsingular times such that there
is exactly one singular time between ¢;_; and ¢; for all ¢, then A = [Hy| — [Hy,] —
-++»> [Hy ] = B is a chain.

For the bound on max d — mind when F’ separates M: For any i € Tp, both SN M'(i)
and S — int M’(i) have no disc components, and so they both have nonpositive Euler
characteristic. So from (SN M’'(3)) + x(S — int M'(2)) = x(S) it follows that x (S} <
D) <0. O

Corollary 7.14. If M is not circular then there are no A+ B € T with A — B — A.
Proof. If there were, then we would get d(A) < d(B) < d(A), contradiction. O

Corollary 7.15. If M is not circular, then if we replace the relation — by the relation
< we obtain a partially ordered set.

We now deal with the case M is circular:

Theorem 7.16. If M is circular (Definition 7.1) then T is a complete directed graph
(i.e., there is an edge A — B for any pair A, B).

Proof. We will show that if there is a directed edge A — B then there is also a directed
edge B — A. The conclusion will follow by the connectivity and transitivity of 1.

Let H: F x [0,1] — M be a directed isotopy with Hy € A, Hy € B. Let 0 =ty <
t; <--- <t, =1 be, such that H|pyy, ) is an embedding for all 4. It is enough that
we show that for all 4, there is a directed isotopy from Hy, , to Hy,. Since H|py (s, ¢,,]
is an embedding, M — int H(F' x [t;, t;+1]) is also of the form F' x [0, 1]. So there is a
directed isotopy from H;,,, to an embedding j with j(F) = Hy, (F'). By going now a
finite number of times around M we can arrive at H;,. O

So if M is circular, T cannot be graded.

We would like to define a sort of grading on 7" after all. Let the homeomorphism
¢! F — F that defines M be of order k and let n = k-|x(S)|. We will define a “grading”
d:T — Z/n such that if H: F x [0, 1] — M is a directed isotopy with a unique singular
point that being a saddle, with Hy € A, H| € B then d(B) = d(A) + 1 (modn).

The following is the complementary to Lemma 7.2:
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Lemma 7.17. Let M be circular, and k the order of the homeomorphism ¢: F — F
defining M. Let H: F x [0, 1} — M be a homotopy, with Hy = H, an embedding in the
isotopy class of the inclusion. Let H' : Fx[0,1] — MY be a lifting, then H] = (%)™ cH},
for some integer m, where T is the generating deck transformation of M¥ — M.

Proof. MY = F x R, with 7: F x R — F x R given by (z,t) — (p(x),t + 1).
Since Hy = H,, H| = o Hj, for some [. Let m: F x R — F be the projection, then
moT=gom. Sowe get o H| = ' oro H}. Since wo H] (i =0, 1) are homotopic
to Idg, we get o=Idpandsol=m -k O

So we repeat the construction of the grading, with the single difference that the lifting
of an i € Ty is defined only up to 7 and so d(i) is defined only mod k - |x(S)|. d will
be called a “circular” grading.

Note that there is a basic difference between the grading for noncircular M and the
circular grading for circular M. A grading on a connected graph, if it exists, is unique up
to an additive constant. So though in the case of noncircular M we defined the grading
via the geometry, it could have been read (up to a constant) from the directed graph T'
alone. This is not true for the cyclic grading of a cyclic M, since nothing can be read off
a complete graph. (So the cyclic grading embodies additional geometric information.)

We conclude this section with the following, which holds in all cases:

Corollary 7.18. If H is a directed isotopy moving in T with a unique singular point
(that being a saddle), then [Hy) # [H,].

Proof. If either F' or S is a torus then such an H does not exist, as in the proof of
Theorem 6.7. If M is not circular, the conclusion is true by the grading. If M is circular,
it is true by the circular grading since as we have said, S cannot be a torus, and so
n==k-|x(S)|=22 O

8. Applications

If I and S are least area surfaces in a Riemannian manifold, and F' and S are
transverse, then there are no product regions between F' and S. In case F' and S are least
area but not transverse then the situation is as follows: F'N S is a graph whose vertices
are precisely the points of tangency between F' and S, and with any slight movement
that resoives the tangencies, product regions will not appear.

In [1] it is shown that if F and S are least area surfaces, and either F or S is a
torus, then the intersection between them must be transverse, and the number of circles
of intersection between them is the minimal possible in their homotopy classes. (In fact
[17 deals with immersed surfaces and so curves of intersection rather than circles, are
counted.)
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In view of the above discussion, we would like to know:

(A) What is the most general topological condition on F' and S that will guarantee
that whenever we isotope them to be nontransverse (but with F NS a graph
as described above), then there will be arbitrarily small movements which will
create product regions (and so any least area surfaces isotopic to them must be
transverse).

(B) What is the most general topological condition on F' and S that will guarantee
that whenever we isotope them to be transverse and without product regions, then
the number of circles of intersection will be the minimal possible for the isotopy
classes of F' and S. (And so any transverse least area surfaces isotopic to them
must have the minimal possible number of intersection circles.)

The answer to both questions is given in the following:

Theorem 8.1. The following four conditions on F and S are equivalent.

(1) T has at most one element.

(2) F and S may be isotoped to satisfy the one line property (Definition 8.2 below).

(3) Whenever i(F) and S are not transverse (i an embedding in the isotopy class of
the inclusion), but {(F') N S is a graph whose vertices are precisely the tangency
points between i(F') and S, then there are embeddings of F, arbitrarily close to
1, and with product regions.

(4) For any i € Ty, the number of circles of i(F) N S is the minimal possible in I,.

Note that by Theorem 6.7, if either F' or S is a torus then indeed the conditions of
the theorem hold. We will prove the theorem by showing for each of conditions (2)—(4)
separately, that it is equivalent to condition (1). And so we break the theorem into three
separate Theorems 8.6, 8.7 and 8.9.

Definition 8.2. Let p: M — M be the universal covering of M. [i] € I will be said to
satisfy the one line property, if the intersection of any component of p~!(i(F)) with any
component of p~!(S), is empty or consists of one line.

Definition 8.3. Let p: M — M be the universal cover. Let i € Ipandlet D C Mbea
disc. D will be called a bigon (with respect to 7), if 0D = ¢; U ¢; where

(a) ¢ and ¢, are arcs and ¢ N¢; = d¢y = Ocs.

(b) ¢ Cp~'(i(F)) and ¢, C p~'(9).

(c) D is transversal with respect to p~!(i(F)) and p~'(S).

If both points of ¢; N ¢ lie in lines of p~!(i(F)) N p~!(S) (rather than circles), then
they may lie in the same line, or in two distinct lines. D will then be called a 1-line
bigon or a 2-line bigon, respectively.

If DNp~!'(i(F)US) = dD, then D will be called a minimal bigon.

The above terms will also be applied to a disc D C M simply by lifting it to M.

Lemma 8.4. Assume T # 0. If [i] € I satisfies the one line property then [i] € T.
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Proof. Assume [i] satisfies the one line property but there is a product region between
i(F) and S. If there are null-homotopic circles of intersection between ¢(F') and S then
they will lift to the universal cover, contradicting the one line property. So we have a
product region as in (1) of Lemma 2.8 with K not a disc, and by Theorem 2.12, 0K # 0.
Take an arc (v, dv) C (K,0K) that may not be homotoped into 0K. Let D C M be
the disc corresponding to 7' () where 7: K x [0,1] — K is the projection. D is a
minimal bigon in M. We lift D to the universal covering space M. . Let F and S be the
components of p~'(i(F)) and p~ ! (), respectively, that touch D in M. F and S intersect
in a line ¢ containing ¢; N ¢z (¢1, ¢; of Definition 8.3). Let E be the disc in F bounded
by ¢, together with the segment of ¢ bounded by ¢| N ¢;. Project E to K x {0} C M.
E gives a homotopy of v x {0} into 8K x {0}. Contradiction. O

Lemma 8.5. Assume i € Ty and i does not satisfy the one line property, then there is a
minimal 2-line bigon in M.

Proof. We will first find a 2-line bigon in M , then a minimal 2-line bigon in M and
finally a minimal 2-line bigon in M.

2-line bigon in M:

Take a component F' of p~!(i(F)) and a component S of p~'($) that intersect each
other in more than one line. F cuts S into pieces. Take one such piece A which intersects
F at more than one line (those are boundary lines of A). In F let ~ be an arc with
~N A = 3y and « connects two distinct lines of AN F.Let BC M be a ball contained
in the same side of F as A, and such that U = BN F (=0BnN F), is a small regular
neighborhood of ~ in F, so that AN U consist of just two little segments a and b
(forming with ~ the shape of the letter I). Assume 9B intersects A transversally and
OB — intU intersects F transversally. Furthermore assume that B is large enough such
that it contains a path in A connecting the two endpoints of ~, meaning that there is a
component A" of AN B connecting the two endpoints of v. The segments a and b lie on
the boundary of A’. We will now show that a and ¥ are contained in the same boundary
circle of A’. Assume on the contrary that a and b are contained in distinct circles a’ and
b of 0A’. Let a” be a circle in int A" which is _close and parallel to a'. a’ bounds a
disc E in S and ¢” N F = {), and so also EN F = § since otherwise we would have
a circle of intersection between S and F, contradicting ¢ € 7. Since £ N F=0E
cannot contain @’ (@' N F = a # (), so it lies on the other side of a” than a’. So the
disc £’ which is F together with the thin annulus between a” and o’ must contain A’.
But then F must contain b, contradicting the fact that £ N F = @. So we have shown
@ and b lie in the same boundary circle of A’. This means that there is an arc ¢ in 9A’
connecting an endpoint of a to an endpoint of b (¢ lies in 0B — intU). ¢ together with
the appropriate arc ¢’ of U bound together a piece of 3B which is a 2-line bigon in M.

Minimal 2-line bigon in M:

Take a 2-line bigon in M. If it is minimal we are done. We proceed by induction on the
number of points in DNp~!(i(F)) N p~'(S). Assume there is a circle of intersection of
D with p~'(i(F)) which does not intersect p~'(S) (or vice versa). And so the whole disc
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it bounds in p~!(i(F)) is disjoint from p~'(S). Take a minimal such disc in p~'(i(F))
and homotope D to the other side of it, to reduce the number of such circles. So assume
there are none such circles, so there must be a minimal bigon D’ in D. If it is a 2-line
bigon we are done. Otherwise it bounds a ball B together with a piece f C p~!(i(F))
and a piece s C p~!(S). Isotope D’ together with any other parts of D in B to the other
side of fUs. (If D'NAD # 0 and so D' N 3D is one of the arcs of D’ then the
isotopy is assumed to move this arc in p~!(i(F)) or p~!(S).) The number of circles or
arcs of intersection might go up, but the number of points of D Np~'(i(F)) N p~1(S)
is reduced.

Minimal 2-line bigon in M:

Take a minimal 2-line bigon D in M. D need not be embedded into M by p. But we
do know that (p|p)~!(i(F) U S) = 3D and (p|p)~!(i(F) N S) consists of exactly two
points. By moving D a bit if necessary, we may assume that these two points are not
mapped by p into the same point. Cut M along i(F') U S, and let the component where
p(D) lies be called N. p|ap : 0D — ON is essential, since it being null-homotopic would
imply that 8D bounds a disc in the boundary of the manifold N obtained by cutting up
M along p~' (i(F)US). But such a disc must contain an arc of intersection of p~!(i(F))
and p~'(S) connecting the two points of p~!(i(F)) N p~'(S) on 3D, contradicting the
fact that D was a 2-line bigon. So by the more detailed formulation of the loop theorem
[2, 4.10], there is an embedded disc D’ in N with 0D’ essential in 9N and 0D’ crosses
i(F)NS at most twice. If there are no such crossings, then 8D’ is contained in say 7(F),
and must bound a disc there, contradicting the fact that 9D’ is essential in /N and i(F')
and S do not intersect in null-homotopic circles. So 8D’ crosses i(F) N .S at least once.
Just once is impossible, so we have exactly two crossings. So D’ is a minimal bigon in
M. 1t is infact a minimal 2-line bigon, since if it was 1-line, then when lifting D’ to N
we would find a disc bounded by 9D’ in dN. Projecting that disc back to N would be
a null-homotopy of 0D’ in dN. O

Theorem 8.6. T' has at most one element iff there is an [i| € I satisfying the one line
property. (Definition 8.2.)

Proof. If T = { this is clear by Theorem 2.12, so assume 7" # .

Assume there is an [i] € T satisfying the one line property, then by Lemma 8.4 [i] € T..
If T' has more than one element, take the isotopy H; given by Lemma 6.6. Say Hy ~g 1,
and so Hy satisfies the one line property. The saddle point means that there is a minimal
bigon D in M and H; moves F' along D. We lift D to the universal covering space M.
Let F and S be the components of p~'(Ho(F)) and p~'(S), respectively, that touch D
in M. F and S intersect in a line containing ¢; N ¢;. (¢1, ¢z of Definition 8.3.) Look at
all the translations of D in M that touch F and S. They will all be on the same side
of F and on the same side of S since these sides are well defined by the orientations of
F, S and M. So they will all lie in the same quarter space defined by the pair of planes
F, S. Call the boundary of this quarter space N. (IV is a bent plane made of half of
F and half of S.) Any such translate of D bounds with N a ball region U. Take such
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a translate D’ with minimal region. (Actually one can show that these regions are all
disjoint and so they are all minimal.) Now, as H, moves F along D, F moves along D'
and creates a circle of intersection between F' and S, and so there is a null-homotopic
circle of intersection between H;{F') and S. This contradicts H, € 7. (One can show
that U is embedded by p, and so p(U) becomes the ball region between H,(F') and S.)

We now prove the converse: Assume there is no [i] € [ satisfying the one line property.
Take some ¢ € Tp. i does not satisfy the one line property, so there is a minimal 2-line
bigon D in M (Lemma 8.5). Take a directed isotopy with Hy = i (or H, = ), moving
F along D to create one saddle move, and with H an embedding. If also H, € Ty then
by Corollary 7.18 we are done. So assume H, ¢ Tp. So there is a product region U
between H;(F) and S, as in (1) of Lemma 2.8, since even if K of the lemma is a disc
(which will actually turn out to be impossible), the number of null-homotopic circles of
intersection at time 1 is at most one, since at time O there are none, and times 0 and |
differ by a single saddie. U must lie on the other side of H(F) than H(F x [0, 1]) since
otherwise U would intersect Ho(F') and we would get a product region between Hy(F')
and S. Moving back in time from H| to the saddle point, we examine what might happen
to U. There are essentially the four possibilities described in the discussion preceding
Lemma 3.2, where A = SN U is in place of the well embedded surface in ' x [0, 1]
and time is going backwards.

Type 4 is impossible since by the analog of Lemma 3.2, we would have a null-
homotopic circle of intersection between Hy(F') and S.

Types 3 and 0 are impossible since we would then still have a product region at time 0.

Type 2 i1s impossible since that would contradict the fact that we are in (1) of
Lemma 2.8.

So we have shown that we must have type 1. In particular, D N S separates the
component of S — Ho(F) in which it lies.

A is not a disc since that would contradict the fact that D is a 2-line bigon. So there
is a minimal bigon D' C U which does not separate U and which does not touch 94 in
the area that is about to merge (in reversed time), with another piece of S. This may be
extended to a minimal bigon D" between Hy(F) and S which is disjoint from D. Now
use D" inplace of D to define an H with a single saddle. H; must be in T since this
time D” NS does not separate S — Hy(F'). So we are done by Corollary 7.18. O

Theorem 8.7. T' has at most one element iff whenever the intersection between i(F)
and S is nontransverse, but i(F')N S is a graph whose vertices are the tangency points,
then we can change i in arbitrarily small neighborhoods of the tangency points (and
without introducing new little circles of intersection in those neighborhoods), to get an
embedding which is transverse and with product regions.

Proof. Assume 7" has at most one element. Move i (according to the restrictions) such
that there will be a single point p where the intersection is not transverse, that point being
a saddle point. There are two sides to which we can move F' in a neighborhood of p to
resolve this singularity. If both of them are in T then we would have a directed isotopy
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moving in 7" having exactly one singular point that being a saddle. By Corollary 7.18
this isotopy connects two distinct elements of T, contradicting our assumption. So we
move I (according to the restrictions) to a side which is not in 7j, which means we will
have product regions.

Now assume T has at least two elements. Take H; of Lemma 6.6. Take ¢ = H;, where
to is the time of the unique saddle. Then any small movement will move us into either
[Ho| or [H;] which are both in 7. O

Definition 8.8. For ¢ € Iy, d(¢(F),S) will denote the number of intersection circles
between ¢(F) and S.

Theorem 8.9. T has at most one element iff for any [i] € T, d(i(F), S) is the minimal
possible in Iy. (Definition 8.8.)

Proof. Assume 7T has at most one element. If T = ) then the conclusion is (vacuously)
satisfied. So assume T has exactly one element. Due to Lemma 2.8, given any 7 € I
we can eliminate the product regions one by one, by isotopies, each time reducing the
number of intersection circles. We finally must arrive at the unique element [i] of T'. So
d(i(F),S) is the minimal possible in o.

Now if T has at least two elements. Take H; of Lemma 6.6. Then d(Hy(F), S) and
d(H,(F), S) differ by exactly 1, so at least one of them is not minimal. O

This completes the proof of Theorem 8.1.
We now consider a second type of intersection number between F' and S:

Definition 8.10. Let p: M’ — M be the covering of M corresponding to m(F). Let
i:F — M be isotopic to the inclusion and ¢': F — M’ a lifting to M’. D(i(F), S) is
defined to be the number of components of p~'(S) that intersect ' (F'). (See [1].)

Theorem 8.11. For any [i| € T, D(i(F), S) is the minimal possible for any embedding
isotopic to the inclusion. (Definition 8.10.)

Proof. First we show that for any [i],[j] € T, D(i(F),S) = D(j(F),S). By Corol-
lary 6.4 there is an isotopy H; between ¢ and j with only saddle points. Let H; be a
lifting of H; to M’. H] too has only saddle points. Such a “saddle move” is something
happening within one component of p~!(.S), this component intersects H,(F") before and
after the move, and so the number of components intersecting H;(F') remains the same.

We now show that if i:F — M is isotopic to the inclusion and ¢ ¢ Tp then
D(@i(F),S) = D(§(F),S) for some j € Tp. By a small isotopy not changing D we
can assume 7 € Iy. Due to Lemma 2.8, we can eliminate the product regions one by one,
by isotopies, until there are no product regions. Every such move, when looking in M’,
involves only components of p~!(S) that were already intersecting the lifting of F at
that time, and so D can only be reduced. O
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The following may be viewed as a special case of Theorem 8.6 or Theorem 8.11. We
will deduce it directly from Corollary 6.4.

Corollary 8.12. Let [i] € T, j isotopic to i, and j(F) NS = (. Then
(1) T has one element. (In particular, [i] = [j] and ¢(F)N.S = 0.)
(2) There is an isotopy between i and j in M — S.

Proof. j(F) NS = ( and so a product region between j(F') and S would imply F
is isotopic to S and so by Theorem 2.12, T = {, contradicting [i] € T. So [j] € T.
By Corollary 6.4 there is an isotopy H; from j to ¢ with no extremum points. Since
J(F)NS =, we must have H;(F)N S = { for all t. (The first t where H,(F)N S # 0
must be a birth point.) In particular, [i] = [j]. And since any i’ € T is isotopic to this
same j, T has just one element. O

Note that in case 7" = 0, we have (unless M = S x S!) two isotopic embeddings of
I with images disjoint from .S, but not isotopic in M — S.

9. Reversing the roles of " and S

In the definition of the directed graph 7', F' and S had different roles. Denote by
T the graph obtained when the roles of F' and S are reversed. We will give a natural
bijection between the set of vertices of T and T. Given T, we will define r(T'), which
will be a new, nondirected graph structure on the set of vertices of T, closely related to
the directed graph structure T'. We will show that the above bijection is an isomorphism
of graphs between r(T') and r(T'). Since this is trivial when either F or is S is a torus
(Theorem 6.7), we will assume throughout this section that F' and S are not tori.

We first prove the following, which is probably well known. (In the proofs of [4]
something a bit different appears.)

Lemma 9.1. Assume F is not a torus. Let h: M — M be a homeomorphism that is
isotopic to the identity and such that h(x) = x for all & € F. Then there is an isotopy
K:M x [0,1] — M from the identity to h with K(x,t) = forall z € F, t € [0,1].

Proof. Assume first that M is not circular. By the proof of Theorem 7.1 of [4], it is
enough to show that there is a homotopy K satisfying the conclusion. For this it is
enough to show that if H:F x [0,1] — M is a map with Hy(z) = H(x) = x for all
x € F then H is homotopic, keeping d(F x [0, 1]) fixed, to the map F x [0,1] — M
given by (z,t) — x. For this it is enough to show that a circle ¢ = H({*} x [0,1]) is
null-homotopic in M. If no power of ¢ lies in m(F') then M is circular as in Lemma
7.2. So there is such a power k. If c® # 1 we would get a nontrivial element in the
center of 7| (F) (since {*} x [0, 1] as a circle in F' x S', is in the center of 7 (F' x S")).
Sock=1,and so c=1.

Now assume M is circular. The conclusion now follows from the fact that any home-
omorphism F' x [0, 1] — F x [0, 1] that is the identity on 9(F X [0, 1]) is isotopic to the
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identity with 9(F' x [0, 1]) kept fixed. (By similar reasoning, again using the fact that the
center of m; (F) is trivial.) O

We can now define the map u: T — T. Let [¢] € T. There is an isotopy H : Fx [0, 1] —
M from the inclusion of /" to i. H can be extended to an isotopy H': M x [0,1] — M
with Hy = Idss. Define u([i]) = [H {"I |s|. We must show that the definition does not
depend on the choice of representative i of [i], the choice of isotopy H and the choice
of it’s extension H’. But first we show we get an element of T: H ,’Al 5 is isotopic to
the inclusion of S by the isotopy H! '|¢. H | ~5(S) and F are transversal, and there
are no product regions between them since H| maps them into S and i(F'), respectively.

Now assume G is another isotopy from the inclusion of F to 4, and G’ an extension
to M as above. (The case of two extensions of the same isotopy will just be a special
case of this.) Look at the following isotopy of M: K = H]’_] o(—H'*G") where —H’
is H'(z,1 —t). Then Ko = Idj and K,(x) = x for all z € F. By Lemma 9.1 there
is an isotopy F; between Idy; and K| = H] 1o G| that is constant on F. So finally
J; = F, 0 G}~ is an isotopy between G,~" and H|™" that is constant on i(F), and
maps it onto F. .J|s is the isotopy showing G} "'|s ~p H{*] |ls.

So u is a well defined map from Tj to T. Now assume 1,7 € Ty and i ~g j. Let Hy
be an isotopy from the inclusion of £ to i. Let K be an isotopy between ¢ and j with no
singular point (with respect to S). Let H’ be an extension of H to M with Hj = Idy;.
Let K’ be an extension of K to M with K = H|. Use H' and G’ = H' * K’ to define
u(7) and (). K,f_] |s is an isotopy between H{'l |s and G ~!| with no singular points
(with respect to F), showing u(i) = u(5). So u is a well defined function from 7" to 7.

We define v:7 — T in the same manner. We show v o1 = Id7 (and in the same way
uowv =1Ids) Let [i] € T. Let H': M x [0,1] — M be an isotopy with H{ = Id; and
Hllp =i Sou(li)) = [H"Is] € T, ie., H!™'|s is a representative of u([i]), and so
H!™' can be used to define v(u([])). So v(u(fi))) = [(Hl’*l)7]|p] = [H{|r] = [i].

We now define the nondirected graph structure r(7') on the set of vertices of T as
follows: there is an edge between A and B in (T} if there is a directed isotopy H with a
unique singular point (that point being a saddle point), and with either Hy ¢ A, H, € B
or Hy € B, H, € A. This is equivalent to the following: There is an ¢ € A and a
minimal bigon D C M with respect to 4, such that if one moves £ (i.e., isotopes 1),
along D, one arrives at an element of B. (Note that by Corollary 7.18, an edge in r(T)
is always between distinct elements.)

Since T' is connected, it is clear (using Theorem 6.1} that also r(7') is connected.

We now show that u is an isomorphism of graphs between r(T) and r(T), i.e., we
must show that there is an edge between A and B in r(T) iff there is an edge between
u(A) and u(B) in r(f) It is enough to show the “only if” since the same will be true
for v. So assume there is an edge between A and B in 7(T'). As we have said above,
this means that there is an ¢ € A and a minimal bigon D C M with respect to Z, such
that when we move F along D, we arrive at a representative 7 of B. Call this isotopy
between i and j, H. Let K’ be an isotopy with K| = Idys and K{|r = 4. Let H’ be
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an extension of H to M with H] = K|. So u(A) = [H(’)"'|5] and u(B) = [H] " '|s).
H{"1|S is an isotopy between them, moving S along H(’)*I(D). So there is an edge
between u(A) and u(B).

Again there is a difference between the case of M noncircular and circular. When A
is noncircular, then (7"} may be read off T': There is a nondirected edge between A and
B in r(T) iff there is a directed edge between them in T and |d(A4) — d(B)| = 1. (And
d itself, as we have mentioned, may be read off T'.) Furthermore, given (T} and d, we
may reconstruct T: Each edge of r(T') is given a direction according to the grading, then
we pass to the directed transitive closure, and add all the edges A — A.

When M is circular then again, nothing may be read off T.

For Al noncircular, we may define the double grading (dy,d2):7(T) - Z x Z by
d =d, dy = dou where d, d are the gradings of T, T, respectively. We will write
d(A) = (di(A),dy(A)). Note that if there is an edge between A and B in #(T) then
d(A) differs from d(B) by (£1,+1). #(T) is connected and so it follows that the
parity of d; + d» is constant on r(T'). By adding a constant to say d;, we can have
that d; + ds is always even. So actually d:7(T) — Z x Z where Z x Z = {(21,23) €
Z x 7. z + =z is even}.

r(T) together with this double grading is an object where F' and S have symmetric
roles, and that embodies in it the directed graph structures of both 7" and T.

We may define such a double circular grading on »(T") for M circular too. In this case
it will embody more information than just 7" and T (which are simply complete graphs).
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