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Abstract We construct a new order 1 invariant for knot diagrams. We use it to
determine the minimal number of Reidemeister moves needed to pass between certain
pairs of knot diagrams.
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1 Introduction

Oriented knots in R
3 are usually represented by knot diagrams. Projecting a knot

to a plane or 2-sphere in a generic direction gives an immersed oriented planar or
spherical curve with finitely many double points, or crossings. A knot diagram is
obtained by marking a neighborhood of each crossing to indicate which strand lies
above the other. The higher strand is called the overcrossing and the lower one the
undercrossing. Starting with a knot diagram, one can recover the original knot up to
isotopy by constructing a curve with the overcrossing arcs pushed slightly above the
plane of the diagram.

A central issue is to determine whether two knot diagrams represent the same knot,
i.e., whether the curves in R

3 corresponding to each diagram are isotopic. If they
represent the same knot we say that the two diagrams are equivalent. Alexander and
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Briggs [1] and independently Reidemeister [14] showed that equivalent diagrams can
be connected through isotopy and a series of three types of moves, usually referred to as
Reidemeister moves. The number of such moves required to connect two equivalent
diagrams, is difficult to estimate. An exponential upper bound for the number of
Reidemeister moves required to connect two equivalent diagrams is obtained in [7].
We can get some lower bounds by looking at crossing numbers, writhes and winding
numbers of diagrams since each Reidemeister move changes these numbers by 0, 1
or 2. Less obvious bounds are obtained in [3,9]. See also [4–6,11].

In this paper we define a new family of knot diagram invariants, and focus on one
of them in particular. We found these invariants by following the program of Arnold
and Vassiliev for finite order invariants. Our invariants are of order one.

As an application, for each n we present two diagrams Dn, En for the unknot, each
with 2n + 1 crossings. For these two diagrams, which are almost identical, the writhe,
cowrithe, crossing number and winding number give a lower bound of 2 for the number
of Reidemeister moves required to pass from one to the other. Using our new invariant,
we show that the minimal number of Reidemeister moves required to pass from Dn

to En is 2n + 2. We also obtain restrictions on which Reidemeister moves may appear
in any sequence of Reidemeister moves which realizes this minimum.

Our invariant takes values in a very large abelian group. It is natural to investi-
gate Z valued invariants obtained by composing it with homomorphisms into Z. The
“cowrithe” introduced in [9] is obtained in this way. We obtain a relation of the cowrithe
to Arnold’s spherical curve invariants and the Alexander–Conway polynomial, which
clarifies the limitations of the cowrithe for studying Reidemeister moves.

In [8] we apply our invariant to give the first non-linear lower bound for the number
of Reidemeister moves needed for unknotting. We construct a sequence of diagrams
of the unknot for which the minimum number of Reidemeister moves required to pass
to the trivial diagram is quadratic with respect to the number of crossings.

2 The invariant

In what follows we consider two different types of geometric objects. The first objects,
which are the subject of study in this paper, are knot diagrams in S2. Two such diagrams
are considered the same if they differ by an ambient isotopy of S2. We denote the set
of all such diagrams by D. Our goal is to construct invariants of knot diagrams.
Towards that end we construct from a diagram a second geometric object, namely a
two component link in R

3. This is a smooth embedding of S1 ∐
S1 in R

3. Two such
embeddings are considered the same if they differ by an ambient isotopy of R

3. We
denote the set of all two component links by L, and the term links in this paper always
refers to two component links.

Our basic construction relating knot diagrams to links is the following. Given a
knot diagram D ∈ D and a crossing a in D, define the smoothing Da ∈ L, to be
the link obtained by smoothing the crossing a, i.e., performing a cut and paste on the
four strands at the crossing that preserves the orientation of the arcs. The smoothing
operation is independent of the orientation of the curve, since reversing orientation
results in a change of orientation of both strands at the crossing. The diagram resulting
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2

Fig. 1 A smoothing results in a 2-component link

from the smoothing is the diagram of an oriented 2-component link in R
3, the link

Da . We order the components so that the first S1 in S1 ∐
S1 is the component that

enters a neighborhood of the crossing along the overcrossing arc and leaves it along
the undercrossing arc, see Fig. 1. We define the sign of a crossing in a diagram in the
usual way using the right-hand rule, so that each crossing in Fig. 1 is negative.

We now show how each invariant of 2-component links gives rise to an invariant of
knot diagrams. Given a knot diagram D, denote by D+ the set of all positive crossings
in D and by D− the set of all negative crossings. Given an invariant φ : L → S where
S is any set, let GS denote the free abelian group with basis {Xs, Ys}s∈S . We then
define the invariant Iφ : D → GS as follows:

Iφ(D) =
∑

a∈D+
Xφ(Da) +

∑

a∈D−
Yφ(Da).

A particularly interesting example occurs when φ is taken to be lk : L → Z, the
linking number of the two components of a link in L. The resulting invariant is applied
in the next section.

We now compute how Iφ(D) changes under Reidemeister moves on D. Reidemeis-
ter moves RI, RII, RIII, are illustrated in Fig. 2.
RI: The contribution of all previously existing crossings is unchanged, and one new
term is added. The added term is Xs if the new crossing created by the Reidemeister
move is positive and is Ys if the new crossing is negative, where s is the value of φ on
the link. See Fig. 3a. In the case where φ = lk, the added term is X0 or Y0, since the
linking number of the smoothed link is 0.
RII: Again the contribution of all previously existing crossings is unchanged, but this
time two new crossings are added. There are two cases, depending on whether the
orientations of the two strands participating in the Reidemeister move coincide or are
opposite. We call these a matched or unmatched RII move, respectively.

For an unmatched RII move each of the two smoothings gives the same link (see
Fig. 3b), so the addition to the value of Iφ due to the Reidemeister move is of the
form Xs + Ys . For φ = lk this gives Xn + Yn , where n is the linking number of this
two-component link.

For a matched RII move, two different links appear from the two smoothings,
differing from each other by one crossing change between the two components (see
Fig. 3c). The addition to the value of Iφ is of the form Xs + Yt where s and t are the
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RI

RII

RIII

Fig. 2 Reidemeister moves

ba c

Fig. 3 Links arising from smoothing after RI and RII moves

values of φ on these two links. When φ = lk, the negative smoothing produces a link
with linking number greater by 1 than that produced by the positive smoothing, and
so the added term is of the form Xn + Yn+1.
RIII: To each crossing before the Reidemeister move there corresponds a crossing after
the move. For all crossings other than the three crossings participating in the move,
the contribution to Iφ is clearly unchanged. As to these three crossings, the crossing
between the top and middle strand also gives the same contribution before and after
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Fig. 4 Links arising from smoothings of RIII moves involving the top and middle strand

the move, since one can slide the bottom strand below the smoothed crossing, to show
that the same link type is produced. An instance of this is demonstrated in Fig. 4 where
diagrams D, E are the diagrams before and after an RIII move. The crossing between
the top and middle strands is marked a and Da, Ea are seen to be the same link, via
an isotopy corresponding to the original RIII move between D and E . By the same
argument, the same is true for the crossing between the middle and bottom strands.

The only contribution that changes is that of the crossing between the top and
bottom strands. If the crossing of the top and bottom strands is positive, then a term
Xs is replaced by some term Xt , and so the change in the value of the invariant is of
the form Xt − Xs . In the same way, if the crossing of the top and bottom strands is
negative, the change is of the form Yt −Ys . For the case φ = lk, one checks directly that
the linking numbers of these two links differ by precisely 1. Characteristic examples
of the two basic cases appear in Fig. 5. For the links Da, Ea in Fig. 5, three strands
appear. The two that participated in the smoothing belong to different components,
while the third strand (corresponding to the middle strand in D, E) belongs to one
or the other component. From this it is clear that lk(Da) and lk(Ea) differ by ±1. A
similar analysis applies to the links Fa, Ga in Fig. 5. It follows that the change in the
value of Ilk due to an RIII move is of the form ±(Xn − Xn+1) or ±(Yn − Yn+1).

We may use the above analysis to show that for any φ, the invariant Iφ is an order
one invariant of knot diagrams. Rather than giving a general definition of order n
invariants and then taking n = 1, we give the following equivalent definition.

Definition An invariant on knot diagrams has order one if whenever we may simulta-
neously perform two Reidemeister moves on a diagram, in two disjoint discs A, B ⊆
S2 (that is, configurations as in Fig. 2 appear in A and B), then the change in the
invariant due to the move in A is not affected by whether we first perform the move
in B.
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Fig. 5 The links arising from smoothings of RIII moves involving the top and bottom strand

Theorem 1 For any link invariant φ : L → S, the invariant Iφ : D → GS is an
order one invariant.

Proof As seen in the analysis above, the change in the value of Iφ due to the Rei-
demeister move in A, is determined by the link types obtained by smoothing either
one or two crossings in A, before and/or after the move in A. The Reidemeister move
performed in B, if done first, does not affect the link type of these smoothed links,
since a Reidemeister move in B corresponds to an isotopy on the smoothed links.

In the cases where φ is unchanged when permuting the two components of a link
and when reversing the orientation of a link, as is true for the invariant lk, then Iφ(D)

is independent of the orientation of D. This is true since reversing the orientation of
D does not effect the smoothing and the sign at each crossing. It only reverses the
orientation of the smoothed links, and interchanges their two components. So, though
the orientation of D is used in the computation of Ilk , the invariant Ilk is an invariant
of unoriented diagrams.

The mirror image of a diagram D is the diagram obtained from D by reversing
all of its crossings. Taking the mirror image of a knot diagram D has the following
effect on Ilk . The smoothing at each crossing is the same, but the sign of all crossings
is reversed. This interchanges the X ’s and Y ’s, and reverses all linking numbers. So,
the effect of taking mirror image is given by mapping Xn �→ Y−n and Yn �→ X−n .
We also note that Ilk is additive with respect to the operation of connected sum of
diagrams.

3 Application to knot diagrams

Let R be the set of elements in GZ of the form X0, Y0, Xn +Yn , Xn +Yn+1, Xn − Xn+1,
Yn − Yn+1, and their negatives. By the analysis of Sect. 2, the elements of R are
precisely the elements of GZ that may appear as the change in the value of Ilk(D)

when performing a Reidemeister move on D. Note that R generates GZ. The length
of an element of GZ with respect to the generating set R is called its R-length. Given
two diagrams D, E of the same knot, the R-length of Ilk(E)− Ilk(D) is a lower bound
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Fig. 6 An unknot Dn and its mirror image En

on the number of Reidemeister moves needed to get from D to E . In particular, if D
is a diagram of the unknot, then the R-length of Ilk(D) gives a lower bound on the
number of Reidemeister moves needed to get from D to the trivial diagram. We point
out that though we are working in the setting of spherical diagrams, the same lower
bounds apply, a fortiori, to planar diagrams.

We now use the above procedure to determine the minimal number of Reidemeister
moves needed to pass between certain pairs of diagrams of the unknot.

Let Dn be the knot diagram appearing in Fig. 6 (for n = 4). It has 2n +1 crossings,
where the first n + 1 crossings, from left to right, are negative, and the following n
crossings are positive. Let En be the knot diagram obtained from Dn by reversing the
middle crossing, so that En has from left to right, n negative crossings followed by
n + 1 positive crossings. Note that En is a mirror image of Dn . The writhes of Dn

and En differ by two. Their winding numbers, crossing numbers and cowrithes are the
same (for definition of cowrithe see Sect. 4). So these invariants can only tell us that
at least two Reidemeister moves are needed to pass between these diagrams. It is easy
to see how to arrive from Dn to En with 2n + 2 Reidemeister moves, namely, perform
n RII moves and one RI move to arrive from Dn to the trivial diagram, and then one
RI move and n RII moves to create En . We now prove that there is no shorter way:

Theorem 2 Let Dn, En be the two knot diagrams with 2n + 1 crossings appearing in
Fig. 6. Then the minimal number of Reidemeister moves required to arrive from Dn to
En is 2n+2. Furthermore, any sequence of Reidemeister moves realizing this minimum
involves precisely two RI moves. The other 2n moves are of type corresponding to the
following four elements of R: X0 +Y1, −(X−1 +Y0), X0 − X−1, Y1 −Y0. In particular,
no unmatched RII move may appear.

Proof By direct computation we see that

Ilk(Dn) = (n + 1)Y0 + nX−1,

and

Ilk(En) = (n + 1)X0 + nY1,
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so

Ilk(En) − Ilk(Dn) = (n + 1)X0 + nY1 − (n + 1)Y0 − nX−1.

We denote this element by v. We first show that the R-length of v is 2n + 2. Let
g : GZ → Z be the homomorphism defined by setting g(X0) = 1, g(Y0) = −1, and
g(Xm) = g(Ym) = 0 for all m �= 0. Then g(v) = 2n + 2, and |g(r)| ≤ 1 for any
r ∈ R. It follows that the R-length of v is at least 2n+2. The sequence of Reidemeister
moves described above realizes this minimum, namely v = −n(X−1 + Y0) − Y0 +
X0 + n(X0 + Y1).

We now show that any presentation of v as a sum of 2n + 2 elements of R involves
precisely two terms of the form X0 and/or −Y0, and all other 2n terms are of the four
types appearing in the statement of the theorem.

Let f : GZ → Z be the homomorphism defined by f (Xm) = 1, f (Ym) = −1 for
all m. Then f (X0) = 1, f (Y0) = −1 and the value of f on all other elements of R is
0. Since f (v) = 2 we see we need at least two terms of the form X0 or −Y0 to present
v. (This is simply a writhe argument, since f ◦ Ilk is the writhe).

Now, let e : GZ → Z be the homomorphism defined by setting e(X0) = e(Y1) = 1,
e(X−1) = e(Y0) = −1, and e(Xm) = e(Ym) = 0 for all other Xm, Ym . Then e(v) =
4n + 2. We have e(X0) = 1, e(Y0) = −1, and for all elements of R, |e(r)| ≤ 2,
where the only elements in R for which the value of e is precisely 2 are X0 + Y1,
−(X−1 + Y0), X0 − X−1, Y1 − Y0. We already know that at least two terms of the
form X0,−Y0 appear in any presentation of v, each contributing only 1 to e, and so
the other 2n terms of a minimal presentation must each contribute 2 in order to get to
4n + 2. So, the other 2n terms must be of the form X0 + Y1, −(X−1 + Y0), X0 − X−1,
Y1 − Y0.

As to the concluding remark, since none of these four elements are of the form
Xn + Yn , no unmatched RII move may appear.

4 Relation to curve and knot invariants

In the proof of Theorem 2 we have used three different homomorphisms g, f, e :
GZ → Z in order to analyze the element v. g and e were ad hoc choices constructed
especially for this specific v. But as noted, f is of general interest, f ◦ Ilk being the
writhe of the diagram. Another such substitution is k(Xn) = 1, k(Yn) = 1 for all n.
The resulting diagram invariant k ◦ Ilk is then the crossing number of the diagram.
In this section we are interested in the substitution h : GZ → Z given by h(Xn) =
−n, h(Yn) = n for all n. For a knot diagram D we denote H(D) = h ◦ Ilk(D). This
invariant of knot diagrams appears in [13] and in [9] (with opposite sign) where it is
named the cowrithe. We now study the properties of H , and understand its limitations
in establishing lower bounds for the number of Reidemeister moves between knot
diagrams. We will see that H may be presented as H = G1 + G2 where G1 depends
only on the knot type of D, and G2 depends only on the underlying spherical curve
of D. Now, if we are interested in the number of Reidemeister moves between two
diagrams D, E , then all diagrams considered are of the same knot type, so for the sake
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Fig. 7 The invariant A is normalized to have value 0 on these two curves

of this analysis G1 is a constant and we are left with G2 which is only an invariant of
the underlying spherical curves. So any lower bound obtained from H to the number
of Reidemeister moves required to pass between D and E is in fact a lower bound to
the number of moves on curves required to pass between the underlying curves of D
and E . For example, for the pair Dn, En of Sect. 3, H(Dn) = H(En) since they are
each diagrams of the same knot type and have the same underlying curve, so H gives
0 as lower bound.

The invariants G1, G2 referred to, are well known invariants. G1 is −4 times the
coefficient of x2 in the Conway polynomial, and G2 is Arnold’s invariant of spherical
curves St + J+/2, normalized to have value 0 on the two curves appearing in Fig. 7, the
circle and the figure eight curve. (These are representatives of the two regular homotopy
classes of immersions of S1 into S2.) We denote by A the invariant St + J+/2 with
this normalization. We mention that Arnold originally considered curves in the plane
in [2], but then observed that his invariants may be defined for curves in S2. Indeed
they are well defined on S2, since they are locally well defined, as in the plane, and
since the components of the space of “normed” immersions of S1 into S2 defined in
[2] are simply connected.

Let D̂ denote the underlying spherical curve of a knot diagram D, and let c2(D)

denote the coefficient of x2 in the Conway polynomial of the knot represented by D.
Then the relation mentioned is

H(D) = −4c2(D) + A(D̂).

This relation follows from [12], as we will show. (Various similar observations appear
in [13].) We then give a self contained proof of this relation, which demonstrates the
special properties of H and A and their relation to the properties of Ilk .

We first show that H indeed coincides (up to sign) with the cowrithe defined in [9].
To a knot diagram D there is attached a chord diagram, where we connect two points
of the domain S1 ⊂ R

2 by a straight chord in R
2, if they are mapped into the same

point in the diagram D. For two crossings a, b in D, b is a crossing between the two
distinct components of Da precisely when the chords corresponding to a and b cross
in the chord diagram. We denote this (symmetric) relation between a and b by x(a, b).
So b contributes ±1/2 to lk(Da) according to the sign of b which we denote sgn(b),
precisely when x(a, b). It follows that

lk(Da) = 1

2

∑

{b:x(a,b)}
sgn(b).
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From this it follows that

H(D) =
∑

{{a,b}:x(a,b)}
−sgn(a)sgn(b)

(Note that {a, b} appearing under the summation sign is a set, not an ordered pair.) We
see that indeed H is minus the cowrithe.

From these formulas for lk(Da) and H(D) we can see how H changes under a
crossing change. Let Da+, Da− be two diagrams differing only by a crossing change
at a, the crossing at a for Da+, Da− being positive and negative, respectively, and let
Da be the common smoothing of Da± at a. Then the following is clear from the above
two formulas:

Proposition 1 H(Da+) − H(Da−) = −4lk(Da)

If an invariant i of diagrams satisfies the skein relation appearing in Proposition 1,
and in addition i(D) = 0 for any diagram of the unknot, then by [10, Chap. III] it
must coincide with −4c2(D). In fact it is enough that i(D) = 0 for any descending
knot diagram. Define

i(D) = H(D) − A(D̂).

Our goal is to show that i(D) = −4c2(D). Since D̂a+ = D̂a− then by Proposition 1 we
have i(Da+)− i(Da−) = −4lk(Da). It remains to show that i(D) = 0 for descending
diagrams. This follows directly from [12] Corollary 2, if one chooses the basepoint
required there at the initial point of descent.

We now present a self contained proof that i is a knot invariant, by showing that
it is invariant under all Reidemeister moves. The proof is independent of [12] and of
the fact that c2 is a knot invariant. Knowing that i(D) is a knot invariant will also
reprove that i(D) = −4c2(D) using the above argument, since i(D) = 0 for the
trivial diagram, and therefore for any diagram of the unknot.

We first note the values of h on R: h(X0) = 0, h(Y0) = 0, h(Xn +Yn) = 0, h(Xn +
Yn+1) = 1, h(Xn − Xn+1) = 1 and h(Yn − Yn+1) = −1. We thus see that H remains
unchanged when a diagram changes by an RI move and an unmatched RII move,
and increases by 1 when a diagram changes by a matched RII move. Furthermore,
H changes by ±1 when the diagram changes by an RIII move, and inspection shows
that the change of 1 or −1 precisely coincides with the change of 1 or −1 of Arnold’s
“strangeness” invariant St for the underlying curve. Two cases are indicated in Fig. 5.
For each case one needs to check both possible cyclic orderings of the three strands
along S1. All other cases are obtained from these two by reversing the orientation of
the middle strand, and by reversing the crossing between the top and bottom strands
while adjusting the middle strand accordingly. So, using the same names for the moves
on curves as for the corresponding moves on knot diagrams, we have shown that the
change in H(D) and A(D̂) is the same under moves RII, RIII.

As to RI moves, the change in H is 0, and we now check the change for A. We
point out that an RI move on spherical curves changes the regular homotopy class of
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Fig. 8 A kink slides across an arc

=+1 −1

+1 −1=

Fig. 9 The value of A is invariant under these moves

Fig. 10 A kink is created

the curve, and so asking about the change under an RI move is only meaningful when
a specific normalization is chosen for the two regular homotopy classes.

We refer to a small loop in a curve as a kink.

Proposition 2 The invariant A is invariant under a move that slides an arc across a
kink, as in Fig. 8.

Proof See Fig. 9 for the two cases to be checked.

Proposition 3 The invariant A is invariant under an RI move, that is, the introduction
of a kink, the move shown in Fig. 10.

Proof One first checks directly that the introduction of a kink to the embedded circle
or to the figure eight curve leaves A unchanged, as shown in Fig. 11.
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Fig. 11 A is unchanged by the introduction of a kink

Now given a smooth general position curve C ⊂ S2, there is a regular homotopy F
in S2 taking C either to the circle or to the figure eight. Such regular homotopy involves
only RII and RIII moves, and the sum of contributions of all these moves along F is
precisely −A(C). Let C ′ be a curve obtained from C by an RI move, and apply the
same regular homotopy F to C ′, carrying along the added kink. We experience the
same moves along F except that occasionally a strand needs to pass the additional
kink as in Fig. 8. By Proposition 2 this occurrence does not change the value of A, and
so the total contribution of all moves is again −A(C). We arrive at a curve which is
obtained from the embedded circle or figure eight by an RI move, and we have verified
that the value of A on such a curve is 0. We conclude that A(C ′) = A(C).

Proposition 3 establishes that the change due to an RI move is the same for H(D)

and A(D̂). Together with the above similar observation regarding RII and RIII moves,
we see that i(D) = H(D)− A(D̂) is invariant under all Reidemeister moves, proving
that i(D) is a knot invariant.
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