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T
he theories as developed by European
mathematicians prior to 1870 differed
from the modern ones in that none of
them used the modern theory of limits.
Fermat develops what is sometimes

called a “precalculus” theory, where the optimal
value is determined by some special condition such
as equality of roots of some equation. The same
can be said for his contemporaries like Descartes,
Huygens, and Roberval.

Leibniz’s calculus advanced beyond them in
working on the derivative function of the variable x.
He had the indefinite integral whereas his prede-
cessors only had concepts more or less equivalent
to it. Euler, following Leibniz, also worked with
such functions, but distinguished the variable (or
variables) with constant differentials dx, a status
that corresponds to the modern assignment that x
is the independent variable, the other variables of
the problem being dependent upon it (or them)
functionally.
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Fermat determined the optimal value by impos-
ing a condition using his adequality of quantities.
But he did not really think of quantities as func-
tions, nor did he realize that his method produced
only a necessary condition for his optimization
condition. For a more detailed general introduc-
tion, see chapters 1 and 2 of the volume edited by
Grattan-Guinness (Bos et al. 1980 [19]).

The doctrine of limits is sometimes claimed to
have replaced that of infinitesimals when analysis
was rigorized in the nineteenth century. While
it is true that Cantor, Dedekind and Weierstrass
attempted (not altogether successfully; see Ehrlich
2006 [32], Mormann & Katz 2013 [79]) to eliminate
infinitesimals from analysis, the history of the limit
concept is more complex. Newton had explicitly
written that his ultimate ratios were not actually
ratios but, rather, limits of prime ratios (see Russell
1903 [89, item 316, pp. 338-339]; Pourciau 2001
[84]). In fact, the sources of a rigorous notion of
limit are considerably older than the nineteenthth
century.

In the context of Leibnizian mathematics, the
limit of f (x) as x tends to x0 can be viewed as
the “assignable part” (as Leibniz may have put
it) of f (x0 + dx) where dx is an “inassignable”
infinitesimal increment (whenever the answer is
independent of the infinitesimal chosen). A modern
formalization of this idea exploits the standard
part principle (see Keisler 2012 [67, p. 36]).
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In the context of ordered fields E, the standard
part principle is the idea that, if E is a proper
extension of the real numbers R, then every finite
(or limited) element x ∈ E is infinitely close to
a suitable x0 ∈ R. Such a real number is called
the standard part (sometimes called the shadow)
of x, or in formulas, st(x) = x0. Denoting by Ef the
collection of finite elements of E, we obtain a map

st : Ef → R.
Here x is called finite if it is smaller (in absolute
value) than some real number (the term finite is
immediately comprehensible to a wide mathemati-
cal public, whereas limited corresponds to correct
technical usage); an infinitesimal is smaller (in
absolute value) than every positive real; and x is
infinitely close to x0 in the sense that x − x0 is
infinitesimal.

Briefly, the standard part function “rounds off”
a finite element of E to the nearest real number
(see Figure 1).

The proof of the principle is easy. A finite
element x ∈ E defines a Dedekind cut on the
subfield R ⊂ E (alternatively, on Q ⊂ R), and
the cut in turn defines the real x0 via the usual
correspondence between cuts and real numbers.
One sometimes writes down the relation

x ≈ x0

to express infinite closeness.
We argue that the sources of such a relation,

and of the standard part principle, go back to
Fermat, Leibniz, Euler, and Cauchy. Leibniz would
discard the inassignable part of 2x+ dx to arrive
at the expected answer, 2x, relying on his law of
homogeneity (see the section entitled “Leibniz’s
Transcendental Law of Homogeneity”). Such an
inferential move is mirrored by a suitable proxy in
the hyperreal approach, namely the standard part
function.

Fermat, Leibniz, Euler, and Cauchy all used
one or another form of approximate equality, or
the idea of discarding “negligible” terms. Their
inferential moves find suitable proxies in the
context of modern theories of infinitesimals, and
specifically the concept of shadow.

The last two sections present an application of
the standard part to decreasing rearrangements
of real functions and to a problem on divergent
integrals due to S. Konyagin.

This article continues efforts in revisiting the
history and foundations of infinitesimal calculus
and modern nonstandard analysis. Previous efforts
in this direction include Bair et al. (2013 [6]),
Bascelli (2014 [7]), Błaszczyk et al. (2013 [15]),
Borovik et al. (2012 [16], [17]), Kanovei et al. (2013
[55]), Katz, Katz & Kudryk (2014 [61]), Mormann
et al. (2013 [79]), Sherry et al. (2014 [92]), Tall et
al. (2014 [97]).
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Figure 1. The standard part function, st, “rounds
off” a finite hyperreal to the nearest real number.
The function st is here represented by a vertical
projection. An “infinitesimal microscope” is used
to view an infinitesimal neighborhood of a
standard real number rrr , where ααα, βββ, and γγγ
represent typical infinitesimals. Courtesy of
Wikipedia.

Methodological Remarks
To comment on the historical subtleties of judging
or interpreting past mathematics by present-day
standards,1 note that neither Fermat, Leibniz, Euler,
nor Cauchy had access to the semantic founda-
tional frameworks as developed in mathematics
at the end of the nineteenthth and first half of
the twentieth centuries. What we argue is that
their syntactic inferential moves ultimately found
modern proxies in Robinson’s framework, thus
placing a firm (relative to ZFC)2 semantic foun-
dation underneath the classical procedures of
these masters. Benacerraf (1965 [10]) formulated
a related dichotomy in terms of mathematical
practice vs. mathematical ontology.

For example, the Leibnizian laws of continuity
(see Knobloch 2002 [69, p. 67]) and homogene-
ity can be recast in terms of modern concepts
such as the transfer principle and the standard
part principle over the hyperreals, without ever
appealing to the semantic content of the technical
development of the hyperreals as a punctiform con-
tinuum; similarly, Leibniz’s proof of the product
rule for differentiation is essentially identical, at
the syntactic level, to a modern infinitesimal proof
(see, again, the section “Leibniz’s Transcendental
Law of Homogeneity”).

1Some reflections on this can be found in Lewis (1975 [76]).
2The Zermelo–Fraenkel Set Theory with the Axiom of
Choice.
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A-track and B-track

The crucial distinction between syntactic and se-
mantic aspects of the work involving mathematical
continua appears to have been overlooked by
R. Arthur who finds fault with the hyperreal proxy
of the Leibnizian continuum, by arguing that the
latter was non-punctiform (see Arthur 2013 [5]).
Yet this makes little difference at the syntactic
level, as explained above. Arthur’s brand of the syn-
categorematic approach following Ishiguro (1990
[52]) involves a reductive reading of Leibnizian
infinitesimals as logical (as opposed to pure) fic-
tions involving a hidden quantifier à la Weierstrass,
ranging over “ordinary” values. This approach was
critically analyzed in (Katz & Sherry 2013 [65]),
(Sherry & Katz 2013 [92]), and (Tho 2012 [101]).

Robinson’s framework poses a challenge to
traditional historiography of mathematical analysis.
The traditional thinking is often dominated by a
kind of Weierstrassian teleology. This is a view
of the history of analysis as univocal evolution
toward the radiant Archimedean framework as
developed by Cantor, Dedekind, Weierstrass, and
others starting around 1870, described as the
A-track in a recent piece in the Notices (see Bair et
al. 2013 [6]).

Robinson’s challenge is to point out not only
the possibility, but also the existence of a parallel
Bernoullian3 track for the development of analysis,
or B-track for short. The B-track assigns an
irreducible and central role to the concept of
infinitesimal, a role it played in the work of Leibniz,
Euler, mature Lagrange,4 Cauchy, and others.

The caliber of some of the response to Robin-
son’s challenge has been disappointing. Thus, the
critique by Earman (1975 [30]) is marred by a
confusion of second-order infinitesimals like dx2

and second-order hyperreal extensions like ∗∗R;
see (Katz & Sherry 2013 [65]) for a discussion.

Victor J. Katz (2014 [66]) appears to imply
that a B-track approach based on notions of
infinitesimals or indivisibles is limited to “the work
of Fermat, Newton, Leibniz, and many others in
the seventeenth and eighteenth centuries.” This
does not appear to be Felix Klein’s view. Klein

3Historians often name Johann Bernoulli as the first mathe-
matician to have adhered systematically and exclusively to
the infinitesimal approach as the basis for the calculus.
4In the second edition of his Mécanique Analytique dating
from 1811, Lagrange fully embraced the infinitesimal in the
following terms: “Once one has duly captured the spirit of
this system [i.e., infinitesimal calculus], and has convinced
oneself of the correctness of its results by means of the geo-
metric method of the prime and ultimate ratios, or by means
of the analytic method of derivatives, one can then exploit
the infinitely small as a reliable and convenient tool so as
to shorten and simplify proofs.” See (Katz & Katz 2011 [58])
for a discussion.

formulated a condition, in terms of the mean value
theorem,5 for what would qualify as a successful
theory of infinitesimals, and concluded:

I will not say that progress in this direction
is impossible, but it is true that none of
the investigators have achieved anything
positive (Klein 1908 [68, p. 219]).

Klein was referring to the current work on
infinitesimal-enriched systems by Levi-Civita, Bet-
tazzi, Stolz, and others. In Klein’s mind, the
infinitesimal track was very much a current re-
search topic; see Ehrlich (2006 [32]) for a detailed
coverage of the work on infinitesimals around 1900.

Formal Epistemology: Easwaran on Hyperreals

Some recent articles are more encouraging in that
they attempt a more technically sophisticated ap-
proach. K. Easwaran’s study (2014 [31]), motivated
by a problem in formal epistemology,6 attempts to
deal with technical aspects of Robinson’s theory
such as the notion of internal set, and shows an
awareness of recent technical developments, such
as a definable hyperreal system of Kanovei & Shelah
(2004 [57]).

Even though Easwaran, in the tradition of
Lewis (1980 [77]) and Skyrms (1980 [94]), tries to
engage seriously with the intricacies of employing
hyperreals in formal epistemology,7 not all of his
findings are convincing. For example, he assumes
that physical quantities cannot take hyperreal
values.8 However, there exist physical quantities
that are not directly observable. Theoretical proxies
for unobservable physical quantities typically
depend on the chosen mathematical model. And,
not surprisingly, there are mathematical models
of physical phenomena which operate with the
hyperreals, in which physical quantities take
hyperreal values. Many such models are discussed
in the volume by Albeverio et al. (1986 [1]).

For example, certain probabilistic laws of nature
have been formulated using hyperreal-valued prob-
ability theory. The construction of mathematical

5The Klein–Fraenkel criterion is discussed in more detail in
Kanovei et al. (2013 [55]).
6The problem is concerned with saving philosophical
Bayesianism, a popular position in formal epistemology,
which appears to require that one be able to find on every
algebra of doxastically relevant propositions some subjec-
tive probability assignment such that only the impossible
event (∅) will be assigned an initial/uninformed subjective
probability, or credence, of 0.
7For instance, he concedes: “And the hyperreals may also
help, as long as we understand that they do not tell us
the precise structure of credences.” (Easwaran 2014 [31],
Introduction, last paragraph).
8Easwaran’s explicit premise is that “All physical quanti-
ties can be entirely parametrized using the standard real
numbers.” (Easwaran 2014 [31, Section 8.4, Premise 3]).
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Brownian motion by Anderson (1976 [4]) provides
a hyperreal model of the botanical counterpart. It
is unclear why (and indeed rather implausible that)
an observer A, whose degrees of belief about botan-
ical Brownian motion stem from a mathematical
model based on the construction of mathematical
Brownian motion by Wiener (1923 [104]), should
be viewed as being more rational than another
observer B, whose degrees of belief about botanical
Brownian motion stem from a mathematical model
based on Anderson’s construction of mathematical
Brownian motion.9

Similarly problematic is Easwaran’s assumption
that an infinite sequence of probabilistic tests must
necessarily be modeled by the set of standard
natural numbers (this is discussed in more detail in
the subsection “Williamson, Complexity, and Other
Arguments”). Such an assumption eliminates the
possibility of modeling it by a sequence of infinite
hypernatural length. Indeed, once one allows for
infinite sequences to be modeled in this way, the
problem of assigning a probability to an infinite
sequence of coin tosses that was studied in (Elga
2004 [33]) and (Williamson 2007 [105]) allows for
an elegant hyperreal solution (Herzberg 2007 [48]).

Easwaran reiterates the common objection that
the hyperreals are allegedly “nonconstructive”
entities. The bitter roots of such an allegation in the
radical constructivist views of E. Bishop have been
critically analyzed in (Katz & Katz 2011 [59]), and
contrasted with the liberal views of the intuitionist
A. Heyting, who felt that Robinson’s theory was
“a standard model of important mathematical
research” (Heyting 1973 [51, p. 136]). It is important
to keep in mind that Bishop’s target was classical
mathematics (as a whole), the demise of which he
predicted in the following terms:

Very possibly classical mathematics will
cease to exist as an independent discipline
(Bishop 1968 [14, p. 54]).

Zermelo–Fraenkel Axioms and the Feferman–
Levy Model

In his analysis, Easwaran assigns substantial weight
to the fact that “it is consistent with the ZF [Zermelo–
Fraenkel set theory] without the Axiom of Choice”

9One paradoxical aspect of Easwaran’s methodology is that,
despite his anti-hyperreal stance in (2014 [30]), he does en-
vision the possibility of useful infinitesimals in an earlier
joint paper (Colyvan & Easwaran 2008 [27]), where he cites
John Bell’s account (Bell’s presentation of Smooth Infinitesi-
mal Analysis in [9] involves a category-theoretic framework
based on intuitionistic logic); but never the hyperreals. Fur-
thermore, in the 2014 paper he cites the surreals as possible
alternatives to the real number–based description of the
“structure of physical space” as he calls it; see subsection
“Williamson, Complexity, and Other Arguments” for a more
detailed discussion.

Figure 2. Easwaran’s attempted slaying of the
infinitesimal, following P. Uccello. Uccello’s
creature is shown as inhabiting an infinitesimal
neighborhood of 000.

that the hyperreals do not exist (Easwaran 2014
[30, Section 8.4]); see Figure 2. However, on the
same grounds, one would have to reject parts of
mathematics with important applications. There
are fundamental results in functional analysis
that depend on the Axiom of Choice such as the
Hahn–Banach theorem; yet no one would suggest
that mathematical physicists or mathematical
economists should stop exploiting them.

Most real analysis textbooks prove the σ -
additivity (i.e., countable additivity) of Lebesgue
measure, but σ -additivity is not deducible from
ZF, as shown by the Feferman–Levy model; see
(Feferman & Levy 1963 [36]); (Jech 1973 [54,
chapter 10]). Indeed, it is consistent with ZF that
the following holds:

(∗) the continuum R of real numbers is a
countable union R =

⋃
n∈NXn of countable

sets Xn.
See (Cohen 1966 [26, chapter IV, section 4]) for a
description of a model of ZF in which (∗) holds.10

Note that (∗) implies that the Lebesgue measure
is not countably additive, as all countable sets are
null sets whereas R is not a null set. Therefore
countable additivity of the Lebesgue measure
cannot be established in ZF.

Terence Tao wrote:

By giving up countable additivity, one loses
a fair amount of measure and integration
theory, and in particular the notion of the
expectation of a random variable becomes
problematic (unless the random variable
takes only finitely many values). (Tao 2013
[100])

10Property (∗) may appear to be asserting the countabil-
ity of the continuum. However, in order to obtain a bijective
map from a countable collection of countable sets to N×N
(and hence, by diagonalization, to N), the Axiom of Choice
(in its “countable” version which allows a countably-infinite
sequence of independent choices) will necessarily be used.

September 2014 Notices of the AMS 851



Tao’s remarks suggest that deducibility from ZF
is not a reasonable criterion of mathematical
plausibility by any modern standard.

There are models of ZF in which there are
infinitesimal numbers, if properly understood,
among the real numbers themselves. Thus, there
exist models of ZF which are also models of Nelson’s
(1987 [82]) radically elementary mathematics, a
subsystem of Nelson’s (1977 [81]) Internal Set
Theory. Here radically elementary mathematics is
an extension of classical set theory (which may be
understood as ZF11 ) by a unary predicate, to be
interpreted as

“… is a standard natural number,”

with additional axioms that regulate the use of
the new predicate (notably external induction
for standard natural numbers) and ensure the
existence of nonstandard numbers. Nelson (1987
[82, Appendix]) showed that a major part of the
theory of continuous-time stochastic processes
is in fact equivalent to a corresponding radically
elementary theory involving infinitesimals, and
indeed, radically elementary probability theory has
seen applications in the sciences; see for example
(Reder 2003 [85]).

In sum, mathematical descriptions of nontrivial
natural phenomena involve, by necessity, some
degree of mathematical idealization, but Easwaran
has not given us a good reason why only such
mathematical idealizations that are feasible in
every model of ZF should be acceptable. Rather,
as we have already seen, there are very good
arguments (e.g., from measure theory) against
such a high reverence for ZF.

Skolem Integers and Robinson Integers

Easwaran recycles the well-known claim by
A. Connes that a hypernatural number leads to
a nonmeasurable set. However, the criticism by
Connes12 is in the category of dressing down a
feature to look like a bug, to reverse a known
dictum from computer science slang.13 This can be
seen as follows. The Skolem nonstandard integers
NSko are known to be purely constructive; see
Skolem (1955 [93]) and Kanovei et al. (2013 [55]).
Yet they imbed in Robinson’s hypernaturals NRob:

(1) NSko ↩ NRob.

11Even though Nelson would probably argue for a much
weaker system; see Herzberg (2013 [49, Appendix A.1]),
citing Nelson (2011 [83]).
12Note that Connes relied on the Hahn-Banach theorem,
exploited ultrafilters, and placed a nonconstructive entity
(namely the Dixmier trace) on the front cover of his mag-
num opus; see (Katz & Leichtnam 2013 [62]) and (Kanovei
et al. 2013 [55]) for details.
13See https://en.wikipedia.org/wiki/Undocumented_
feature

Viewing a purely constructive Skolem hypernatural

H ∈ NSko \N
as a member of NRob via the inclusion (1), one can
apply the transfer principle to form the set

XH = {A ⊂ N : H ∈ ∗A},
where ∗A ⊂ NRob is the natural extension of A.
The set XH is not measurable. What propels the
set XH ⊂ P(N) into existence is not a purported
weakness of a nonstandard integer H itself, but
rather the remarkable strength of both the Łoś-
Robinson transfer principle and the consequences
it yields.

Williamson, Complexity, and Other Arguments

Easwaran makes a number of further critiques of
hyperreal methodology. His section 8.1, entitled
“Williamson’s Argument,” concerns infinite coin
tosses. Easwaran’s analysis is based on the model
of a countable sequence of coin tosses given by
Williamson [105]. In this model, it is assumed that

… for definiteness, [the coin] will be flipped
once per second, assuming that seconds
from now into the future can be numbered
with the natural numbers (Easwaran 2014
[31, section 8.1]).

What is lurking behind this is a double assumption
which, unlike other “premises,” is not made explicit
by Easwaran. Namely, he assumes that

(1) a vast number of independent tests is best
modeled by a temporal arrangement thereof,
rather than by a simultaneous collection;
and

(2) the collection of seconds ticking away “from
now [and] into the future” gives a faithful
representation of the natural numbers.

These two premises are not self-evident and
some research mathematicians have very different
intuitions about the matter, as much of the
literature on applied nonstandard analysis (e.g.,
Albeverio et al. 1986 [1], Reder 2003 [85]) illustrates.

It seems that in Easwaran’s model, an agent can
choose not to flip the coin at some seconds, thus
giving rise to events like “a coin that is flipped
starting at second 2 comes up heads on every flip.”
However, in all applications we are aware of, this
additional structure used to rule out the use of
hyperreals as the range of probability functions
seems not to be relevant.

Williamson and Easwaran appear to be unwilling
to assume that, once one decides to use hyperreal
infinitesimals, one should also replace the original
algebra “of propositions in which the agent has
credence” with an internal algebra of the hyperreal
setting. In fact, such an additional step allows one
to avoid both the problems raised by Williamson’s
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argument in his formulation using conditional
probability, and those raised by Easwaran in
section 8.2 of his paper.

A possible model with hyperreal infinitesi-
mals for an infinite sequence of coin tosses is
given by representing every event by means of
a sequence {a1, . . . , aN}, where an represents the
outcome of the nth flip and N is a fixed hypernat-
ural number. In this model, consider the events
“an = Heads for n ≤ N”, which we will denoteH(1),
and “an = Heads for 2 ≤ n ≤ N”, that we will
denote H(2). In such a setting, events H(1) and
H(2) are not isomorphic, contrary to what was
argued in (Williamson [105, p. 3]). This is due to the
fact that hypernatural numbers are an elementary
extension of the natural numbers, for which the
formula k 6= k + 1 always holds. Moreover, the
probability of H(1) is the infinitesimal 2−N , while
the probability of H(2) is the strictly greater
infinitesimal 2−(N−1), thus obeying the well-known
rule for conditional probability.

Easwaran’s section 8.4 entitled “The complexity
argument” is based on four premises. However, his
premise 3, to the effect that “all physical quantities
can be entirely parameterized using the standard
real numbers,” is unlikely to lead to meaningful
philosophical conclusions based on “first princi-
ples.” This is because all physical quantities can
be entirely parameterized by the usual rational
numbers alone, due to the intrinsic limits of our
capability to measure physical quantities. A clear
explanation of this limitation was given by Dowek.
In particular, since

a measuring instrument yields only an ap-
proximation of the measured magnitude,
[…] it is therefore impossible, except accord-
ing to this idealization, to measure more
than the first digits of a physical magnitude.
[…] According to this principle, this ideal-
ization of the process of measurement is a
fiction. This suggests the idea, reminiscent
of Pythagoras’ views, that Physics could be
formulated with rational numbers only. We
can therefore wonder why real numbers
have been invented and, moreover, used in
Physics. A hypothesis is that the invention
of real numbers is one of the many situa-
tions, where the complexity of an object is
increased, so that it can be apprehended
more easily. (Dowek 2013 [29])

Related comments by Wheeler (1994 [103, p. 308]),
Brukner & Zeilinger (2005 [22, p. 59]), and oth-
ers were analyzed by Kanovei et al. (2013 [55,
Section 8.4]). See also Jaroszkiewicz (2014 [53]).

If all physical quantities can be entirely parame-
terized by using rational numbers, there should
be no compelling reason to choose the real num-
ber system as the value range of our probability

measures. However, Easwaran is apparently com-
fortable with the idealization of exploiting a larger
number system than the rationals for the value
range of probability measures. What we argue
is that the real numbers are merely one among
possible idealizations that can be used for this
purpose. For instance, in hyperreal models for
infinite sequence of coin tosses developed by Benci,
Bottazzi, & Di Nasso (2013 [11]), all events have
hyperrational probabilities. This generalizes both
the case of finite sequences of coin tosses, and
the Kolmogorovian model for infinite sequences
of coin tosses, where a real-valued probability is
generated by applying Carathéodory’s extension
theorem to the rational-valued probability measure
over the cylinder sets.

Given Easwaran’s firm belief that “the function
relating credences to the physical is not so complex
that its existence is independent of Zermelo-
Fraenkel set theory” (see his section 8.4, premise
2), it is surprising to find him suggesting that

the surreal numbers seem more promising
as a device for future philosophers of
probability to use (Easwaran 2014 [31,
Appendix A.3]).

However, while the construction of the surre-
als indeed “is a simultaneous generalization of
Dedekind’s construction of the real numbers and
von Neumann’s construction of the ordinals,” as
observed by Easwaran, it is usually carried out
in the Von Neumann–Bernays–Gödel set theory
(NBG) with Global Choice; see, for instance, the
“Preliminaries” section of (Alling 1987 [3]). The
assumption of the Global Axiom of Choice is a
strong foundational assumption.

The construction of the surreal numbers can
be performed within a version of NBG that is a
conservative extension of ZFC, but does not need
Limitation of Size (or Global Choice). However, NBG
clearly is not a conservative extension of ZF; and if
one wishes to prove certain interesting features of
the surreals one needs an even stronger version
of NBG that involves the Axiom of Global Choice.
Therefore the axiomatic foundation that one needs
for using the surreal numbers is at least as strong
as the one needed for the hyperreals.

Infinity and Infinitesimal: Let Both Pretty
Severely Alone

At the previous turn of the century, H. Heaton
wrote:

I think I know exactly what is meant by the
term zero. But I can have no conception
either of infinity or of the infinitesimal, and
I think it would be well if mathematicians
would let both pretty severely alone (Heaton
1898 [47, p. 225]).
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Heaton’s sentiment expresses an unease about a
mathematical concept of which one may have an
intuitive grasp14 but which is not easily formal-
izable. Heaton points out several mathematical
inconsistencies or ill-chosen terminology among
the conceptions of infinitesimals of his contempo-
raries. This highlights the brilliant mathematical
achievement of a consistent “calculus” for infinites-
imals attained through the work of Hewitt (1948
[50]), Łoś (1955 [78]), Robinson (1961 [87]), and
Nelson (1977 [81]), but also of their predecessors
like Fermat, Euler, Leibniz, and Cauchy, as we
analyze respectively in sections entitled “Fermat’s
Adequality,” “Leibniz’s Transcendental Law of Ho-
mogeneity,” “Euler’s Principle of Cancellation,” and
“What Did Cauchy Mean by Limit?”.

Fermat’s Adequality
Our interpretation of Fermat’s technique is compat-
ible with those by Strømholm (1968 [95]) and Giusti
(2009 [43]). It is at variance with the interpretation
by Breger (1994 [21]), considered by Knobloch
(2014 [70]) to have been refuted.

Adequality, or παρισóτης (parisotēs) in the
original Greek of Diophantus, is a crucial step
in Fermat’s method of finding maxima, minima,
tangents, and solving other problems that a modern
mathematician would solve using infinitesimal
calculus. The method is presented in a series of
short articles in Fermat’s collected works. The first
article, Methodus ad Disquirendam Maximam et
Minimam, opens with a summary of an algorithm
for finding the maximum or minimum value
of an algebraic expression in a variable A. For
convenience, we will write such an expression in
modern functional notation as f (a).

Summary of Fermat’s Algorithm

One version of the algorithm can be broken up
into six steps in the following way:

(1) Introduce an auxiliary symbol e, and
form f (a+ e);

(2) Set adequal the two expressions f (a+e) =AD

f (a) (the notation “=AD” for adequality is
ours, not Fermat’s);

(3) Cancel the common terms on the two sides
of the adequality. The remaining terms all
contain a factor of e;

(4) Divide by e (see also next step);
(5) In a parenthetical comment, Fermat adds:

“or by the highest common factor of e;”

14The intuitive appeal of infinitesimals make them an
effective teaching tool. The pedagogical value of teach-
ing calculus with infinitesimals was demonstrated in a
controlled study by Sullivan (1976 [96]).

(6) Among the remaining terms, suppress all
terms which still contain a factor of e.
Solving the resulting equation for a yields
the extremum of f .

In modern mathematical language, the algorithm
entails expanding the difference quotient

f (a+ e)− f (a)
e

in powers of e and taking the constant term.15

The method (leaving aside step (5)) is immediately
understandable to a modern reader as the elemen-
tary calculus exercise of finding the extremum
by solving the equation f ′(a) = 0. But the real
question is how Fermat understood this algorithm
in his own terms, in the mathematical language
of his time, prior to the invention of calculus by
Barrow, Leibniz, Newton, and others.

There are two crucial points in trying to under-
stand Fermat’s reasoning: first, the meaning of
“adequality” in step (2), and second, the justifica-
tion for suppressing the terms involving positive
powers of e in step (6). The two issues are closely
related because interpretation of adequality de-
pends on the conditions on e. One condition which
Fermat always assumes is that e is positive. He did
not use negative numbers in his calculations.16

Fermat introduces the term adequality in Metho-
dus with a reference to Diophantus of Alexandria.
In the third article of the series, Ad Eamdem
Methodum (Sur la Même Méthode), he quotes
Diophantus’s Greek term παρισóτης, which
he renders following Xylander and Bachet, as
adaequatio or adaequalitas (see A. Weil [102,
p. 28]).

Tangent Line and Convexity of Parabola

Consider Fermat’s calculation of the tangent line
to the parabola (see Fermat [38, pp. 122–123]). To
simplify Fermat’s notation, we will work with the
parabola y = x2, or

x2

y
= 1.

15Fermat also envisions a more general technique involving
division by a higher power of e as in step (5).
16This point is crucial for our argument below using the
transverse ray. Since Fermat is only working with positive
values of his e, he only considers a ray (rather than a full
line) starting at a point of the curve. The convexity of the
curve implies an inequality, which Fermat transforms into
an adequality without giving much explanation of his pro-
cedure, but assuming implicitly that the ray is tangent to
the curve. But a transverse ray would satisfy the inequality
no less than a tangent ray, indicating that Fermat is relying
on an additional piece of geometric information. His proce-
dure of applying the defining relation of the curve itself to a
point on the tangent ray is only meaningful when the incre-
ment e is small (see subsection “Tangent Line and Convexity
of Parabola”).
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To understand what Fermat is doing, it is helpful
to think of the parabola as a level curve of the

two-variable function x2

y .
Given a point (x, y) on the parabola, Fermat

wishes to find the tangent line through the
point. Fermat exploits the geometric fact that,
by convexity, a point

(p, q)

on the tangent line lies outside the parabola. He
therefore obtains an inequality equivalent in our

notation to p2

q > 1, or p2 > q. Here q = y − e, and e
is Fermat’s magic symbol we wish to understand.
Thus we obtain

(2)
p2

y − e > 1.

At this point Fermat proceeds as follows:

(i) he writes down the inequality p2

y−e > 1,

or p2 > y − e;
(ii) he invites the reader to adégaler (to “ade-

quate”);

(iii) he writes down the adequality x2

p2 =AD
y
y−e ;

(iv) he uses an identity involving similar triangles
to substitute

x
p
= y + r
y + r − e

where r is the distance from the vertex of
the parabola to the point of intersection of
the tangent to the parabola at y with the axis
of symmetry,

(v) he cross multiplies and cancels identical
terms on right and left, then divides out by e,
discards the remaining terms containing e,
and obtains y = r as the solution.17

What interests us here are steps (i) and (ii).
How does Fermat pass from an inequality to an
adequality? Giusti noted that

Comme d’habitude, Fermat est autant dé-
taillé dans les exemples qu’il est réticent
dans les explications. On ne trouvera donc
presque jamais des justifications de sa règle
des tangentes (Giusti 2009 [43]).

In fact, Fermat provides no explicit explanation
for this step. However, what he does is apply
the defining relation for a curve to points on
the tangent line to the curve. Note that here the
quantity e, as in q = y − e, is positive: Fermat did
not have the facility we do of assigning negative
values to variables. Strømholm notes that Fermat

17In Fermat’s notation y = d, y + r = a. Step (v) can be un-

derstood as requiring the expression y
y−e −

(y+r)2
(y+r−e)2 to have

a double root at e = 0, leading to the solution y = r or in
Fermat’s notation a = 2r .

never considered negative roots, and if A =
0 was a solution of an equation, he did not
mention it as it was nearly always geomet-
rically uninteresting (Strømholm 1968 [95,
p. 49]).

Fermat says nothing about considering
points y + e “on the other side,” i.e., further away
from the vertex of the parabola, as he does in the
context of applying a related but different method,
for instance in his two letters to Mersenne (see [95,
p. 51]), and in his letter to Brûlart [39].18 Now for
positive values of e, Fermat’s inequality (2) would
be satisfied by a transverse ray (i.e., secant ray)
starting at (x, y) and lying outside the parabola,
just as much as it is satisfied by a tangent ray
starting at (x, y). Fermat’s method therefore
presupposes an additional piece of information,
privileging the tangent ray over transverse rays.
The additional piece of information is geometric
in origin: he applies the defining relation (of the
curve itself) to a point on the tangent ray to the
curve, a procedure that is only meaningful when
the increment e is small.

In modern terms, we would speak of the tangent
line being a “best approximation” to the curve
for a small variation e; however, Fermat does not
explicitly discuss the size of e. The procedure of
“discarding the remaining terms” in step (v) admits
of a proxy in the hyperreal context. Namely, it is
the standard part principle (see the Introduction).
Fermat does not elaborate on the justification of
this step, but he is always careful to speak of the
suppressing or deleting the remaining term in e,
rather than setting it equal to zero. Perhaps his
rationale for suppressing terms in e consists in
ignoring terms that don’t correspond to an actual
measurement, prefiguring Leibniz’s inassignable
quantities. Fermat’s inferential moves in the context
of his adequality are akin to Leibniz’s in the context
of his calculus; see the section called “Leibniz’s
Transcendental Law of Homogeneity”.

Fermat, Galileo, and Wallis

While Fermat never spoke of his e as being infinitely
small, the technique was known both to Fermat’s
contemporaries like Galileo (see Bascelli 2014 [7],
[8]) and Wallis (see Katz & Katz [60, Section 24])
as well as Fermat himself, as his correspondence
with Wallis makes clear; see Katz, Schaps & Shnider
(2013 [63, Section 2.1]).

Fermat was very interested in Galileo’s treatise
De motu locali, as we know from his letters to Marin
Mersenne dated Apr/May 1637, 10 August, and 22
October 1638. Galileo’s treatment of infinitesimals
in De motu locali is discussed by Wisan (1974 [106,
p. 292]) and Settle (1966 [91]).

18This was noted by Giusti (2009 [43]).
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Alexander (2014 [2]) notes that the clerics in
Rome forbade the doctrine of the infinitely small
on 10 August 1632 (a month before Galileo was put
on trial over heliocentrism); this may help explain
why the Catholic Fermat might have been reluctant
to speak of the infinitely small explicitly.19

In a recent text, U. Felgner analyzes the Dio-
phantus problems which exploit the method of
παρισóτης, and concludes that

Aus diesen Beispielen wird deutlich, dass
die Verbenπάρισoυ̃ν und adaequare nicht
ganz dasselbe ausdrücken. Das griechische
Wort bedeutet, der Gleichheit nahe zu sein,
während das lateinische Wort das Erreichen-
der Gleichheit (sowohl als vollendeten als
auch als unvollendeten Prozeß) ausdrückt
(Felgner 2014 [37]).

Thus, in his view, even though the two expres-
sions have slightly different meanings, the Greek
meaning “being close to equality” and the Latin
meaning “equality which is reached (at the end
of either a finite or an infinite process),” they
both involve approximation. Felgner goes on to
consider some of the relevant texts from Fermat,
and concludes that Fermat’s method has nothing
to do with differential calculus and involves only
the property of an auxiliary expression having a
double zero:

Wir hoffen, deutlich gemacht zu haben,
dass die fermatsche “Methode der Adaequa-
tio” gar nichts mit dem Differential-Kalkül
zu hat, sondern vielmehr im Studium des
Wertverlaufs eines Polynoms in der Umge-
bung eines kritischen Punktes besteht, und
dabei das Ziel verfolgt zu zeigen, dass
das Polynom an dieser Stelle eine doppelte
Nullstelle besitzt. (ibid.)

However, Felgner’s conclusion is inconsistent with
his own textual analysis which indicates that the
idea of approximation is present in the methods of
both Diophantus and Fermat. As Knobloch (2014
[70]) notes, “Fermat’s method of adequality is not
a single method but rather a cluster of methods.”
Felgner failed to analyze the examples of tangents
to transcendental curves, such as the cycloid, in
which Fermat does not study the order of the
zero of an auxiliary polynomial. Felgner mistakenly
asserts that, in the case of the cycloid, Fermat
did not reveal how he thought of the solution:
“Wie FERMATsich die Lösung dachte, hat er nicht
verraten.” (ibid.) Quite to the contrary, as Fermat
explicitly stated, he applied the defining property
of the curve to points on the tangent line:

19See a related discussion at http://math.
stackexchange.com/questions/661999/are-
infinitesimals-dangerous.

Il faut donc adégaler (à cause de la propriété
spécifique de la courbe qui est à considérer
sur la tangente)

(see Katz et al. (2013 [63]) for more details).
Fermat’s approach involves applying the defining
relation of the curve, to a point on a tangent to the
curve. The approach is consistent with the idea of
approximation inherent in his method, involving a
negligible distance (whether infinitesimal or not)
between the tangent and the original curve when
one is near the point of tangency. This line of
reasoning is related to the ideas of the differential
calculus. Note that Fermat does not say anything
here concerning the multiplicities of zeros of
polynomials. As Felgner himself points out, in the
case of the cycloid the only polynomial in sight is
of first order and the increment “e” cancels out.
Fermat correctly solves the problem by obtaining
the defining equation of the tangent.

For a recent study of seventeenth century
methodology, see the article (Carroll et al. 2013
[23]).

Leibniz’s Transcendental Law of
Homogeneity
In this section, we examine a possible connection
between Fermat’s adequality and Leibniz’s Tran-
scendental Law of Homogeneity (TLH). Both of
them enable certain inferential moves that play
parallel roles in Fermat’s and Leibniz’s approaches
to the problem of maxima and minima. Note the
similarity in titles of their seminal texts: Methodus
ad Disquirendam Maximam et Minimam (Fermat,
see Tannery [98, pp. 133]) and Nova methodus
pro maximis et minimis … (Leibniz 1684 [72] in
Gerhardt [42]).

When Are Quantities Equal?

Leibniz developed the TLH in order to enable
inferences to be made between inassignable and
assignable quantities. The TLH governs equations
involving differentials. H. Bos interprets it as
follows:

A quantity which is infinitely small with
respect to another quantity can be neglected
if compared with that quantity. Thus all
terms in an equation except those of the
highest order of infinity, or the lowest order
of infinite smallness, can be discarded. For
instance,

(3) a+ dx = a
dx+ ddy = dx

etc. The resulting equations satisfy this
[…] requirement of homogeneity (Bos 1974
[18, p. 33] paraphrasing Leibniz 1710 [75,
pp. 381–382]).
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The title of Leibniz’s 1710 text is Symbolismus
memorabilis calculi algebraici et infinitesimalis in
comparatione potentiarum et differentiarum, et de
lege homogeneorum transcendentali. The inclusion
of the transcendental law of homogeneity (lex
homogeneorum transcendentalis) in the title of the
text attests to the importance Leibniz attached to
this law.

The “equality up to an infinitesimal” implied in
TLH was explicitly discussed by Leibniz in a 1695
response to Nieuwentijt, in the following terms:

Caeterum aequalia esse puto, non tantum
quorum differentia est omnino nulla, sed
et quorum differentia est incomparabiliter
parva; et licet ea Nihil omnino dici non de-
beat, non tamen est quantitas comparabilis
cum ipsis, quorum est differentia (Leibniz
1695 [73, p. 322]) [emphasis added–authors]

We provide a translation of Leibniz’s Latin:

Besides, I consider to be equal not only
those things whose difference is entirely
nothing, but also those whose difference is
incomparably small: and granted that it [i.e.,
the difference] should not be called entirely
Nothing, nevertheless it is not a quantity
comparable to those whose difference it is.

Product Rule

How did Leibniz use the TLH in developing the
calculus? The issue can be illustrated by Leibniz’s
justification of the last step in the following
calculation:

(4)

d(uv) = (u+ du)(v + dv)− uv
= udv + vdu+ dudv
= udv + vdu.

The last step in the calculation (4) depends on the
following inference:

d(uv) = udv+vdu+dudv =⇒ d(uv) = udv+vdu.
Such an inference is an application of Leibniz’s TLH.
In his 1701 text Cum Prodiisset [74, pp. 46–47],
Leibniz presents an alternative justification of the
product rule (see Bos [18, p. 58]). Here he divides
by dx, and argues with differential quotients rather
than differentials. The role played by the TLH
in these calculations is similar to that played
by adequality in Fermat’s work on maxima and
minima. For more details on Leibniz, see Guillaume
(2014 [45]); Katz & Sherry (2012 [64]), (2013 [65]);
Sherry & Katz [92]; Tho (2012 [101]).

Euler’s Principle of Cancellation
Some of the Leibnizian formulas reappear, not
surprisingly, in his student’s student Euler. Euler’s
formulas like

(5) a+ dx = a,

where a “is any finite quantity” (see Euler 1755
[35, § § 86,87]) are consonant with a Leibnizian
tradition as reported by Bos; see formula (3) above.
To explain formulas like (5), Euler elaborated
two distinct ways (arithmetic and geometric) of
comparing quantities, in the following terms:

Since we are going to show that an infinitely
small quantity is really zero, we must
meet the objection of why we do not
always use the same symbol 0 for infinitely
small quantities, rather than some special
ones…[S]ince we have two ways to compare
them, either arithmetic or geometric, let us
look at the quotients of quantities to be
compared in order to see the difference.

If we accept the notation used in the
analysis of the infinite, then dx indicates
a quantity that is infinitely small, so that
both dx = 0 and adx = 0, where a is any
finite quantity. Despite this, the geomet-
ric ratio adx : dx is finite, namely a : 1.
For this reason, these two infinitely small
quantities, dx and adx, both being equal
to 0, cannot be confused when we consider
their ratio. In a similar way, we will deal
with infinitely small quantities dx and dy
(ibid., § 86, pp. 51–52) [emphasis added–the
authors].

Having defined the arithmetic and geometric com-
parisons, Euler proceeds to clarify the difference
between them as follows:

Let a be a finite quantity and let dx be
infinitely small. The arithmetic ratio of
equals is clear: Since ndx = 0, we have

a± ndx− a = 0.

On the other hand, the geometric ratio is
clearly of equals, since

(6)
a± ndx
a

= 1.

From this we obtain the well-known rule that
the infinitely small vanishes in comparison
with the finite and hence can be neglected
[with respect to it] [35, §87] [emphasis in
the original–the authors].

Like Leibniz, Euler considers more than one way
of comparing quantities. Euler’s formula (6) indi-
cates that his geometric comparison is procedurally
identical with the Leibnizian TLH.

To summarize, Euler’s geometric comparison
of a pair of quantities amounts to their ratio
being infinitely close to a finite quantity, as in
formula (6); the same is true for TLH. Note
that one has a + dx = a in this sense for an
appreciable a 6= 0, but not for a = 0 (in which
case there is equality only in the arithmetic sense).
Euler’s “geometric” comparison was dubbed “the
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principle of cancellation” in (Ferraro [40, pp. 47,
48, 54]).

Euler proceeds to present the usual rules of
infinitesimal calculus, which go back to Leibniz,
l’Hôpital, and the Bernoullis, such as

(7) adxm + b dxn = adxm

provided m < n “since dxn vanishes compared
with dxm” ([35, § 89]), relying on his “geometric”
comparison. Euler introduces a distinction between
infinitesimals of different order, and directly
computes20 a ratio of the form

dx± dx2

dx
= 1± dx = 1

of two particular infinitesimals, assigning the
value 1 to it (ibid., § 88). Euler concludes:

Although all of them [infinitely small quan-
tities] are equal to 0, still they must be
carefully distinguished one from the other
if we are to pay attention to their mutual
relationships, which has been explained
through a geometric ratio (ibid., § 89).

The Eulerian hierarchy of orders of infinitesimals
harks back to Leibniz’s work (see the section
“Leibniz’s Transcendental Law of Homogeneity”).
Euler’s geometric comparison, or “principle of
cancellation,” is yet another incarnation of the idea
at the root of Fermat’s adequality and Leibniz’s
Transcendental Law of Homogeneity. For further
details on Euler see Bibiloni et al. (2006 [13]); Bair
et al. (2013 [6]); Reeder (2013 [86]).

What Did Cauchy Mean by “Limit”?
Laugwitz’s detailed study of Cauchy’s methodology
places it squarely in the B-track (see the section
called “Methodological Remarks”). In conclusion,
Laugwitz writes:

The influence of Euler should not be ne-
glected, with regard both to the organization
of Cauchy’s texts and, in particular, to the
fundamental role of infinitesimals (Laugwitz
1987 [71, p. 273]).

Thus, in his 1844 text Exercices d’analyse et de
physique mathématique, Cauchy wrote:

…si, les accroissements des variables étant
supposés infiniment petits, on néglige,
vis-à-vis de ces accroissements consid-
érés comme infiniment petits du premier
ordre, les infiniment petits des ordres
supérieurs au premier, les nouvelles équa-
tions deviendront linéaires par rapport aux

20Note that Euler does not “prove that the expression
is equal to 1;” such indirect proofs are a trademark of
the (ε, δ) approach. Rather, Euler directly computes (what
would today be formalized as the standard part of) the
expression.

accroissements petits des variables. Leibniz
et les premiers géomètres qui se sont oc-
cupés de l’analyse infinitésimale ont appelé
différentielles des variables leurs accroisse-
ments infiniment petits, … (Cauchy 1844
[25, p. 5]).

Two important points emerge from this passage.
First, Cauchy specifically speaks about neglecting
(“on néglige”) higher-order terms, rather than
setting them equal to zero. This indicates a
similarity of procedure with the Leibnizian TLH
(see the section “Leibniz’s Transcendental Law of
Homogeneity”). Like Leibniz and Fermat before
him, Cauchy does not set the higher-order terms
equal to zero, but rather “neglects” or discards
them. Furthermore, Cauchy’s comments on Leibniz
deserve special attention.

Cauchy on Leibniz

By speaking matter-of-factly about the infinitesi-
mals of Leibniz specifically, Cauchy reveals that
his (Cauchy’s) infinitesimals are consonant with
Leibniz’s. This is unlike the differentials where
Cauchy adopts a different approach.

On page 6 of the same text, Cauchy notes that
the notion of derivative

représente en réalité la limite du rapport
entre les accrossements infiniment petits et
simultanés de la fonction et de la variable
(ibid., p. 6) [emphasis added–the authors]

The same definition of the derivative is repeated on
page 7, this time emphasized by means of italics.
Note Cauchy’s emphasis on the point that the
derivative is not a ratio of infinitesimal increments,
but rather the limit of the ratio.

Cauchy’s use of the term “limit” as applied
to a ratio of infinitesimals in this context may
be unfamiliar to a modern reader, accustomed
to taking limits of sequences of real numbers.
Its meaning is clarified by Cauchy’s discussion
of “neglecting” higher order infinitesimals in the
previous paragraph on page 5 cited above. Cauchy’s
use of “limit” is procedurally identical with the
Leibnizian TLH, and therefore similarly finds its
modern proxy as extracting the standard part out
of the ratio of infinitesimals.

On page 11, Cauchy chooses infinitesimal
increments ∆s and ∆t , and writes down the
equation

(8)
ds
dt
= lim.

∆s∆t .
Modulo replacing Cauchy’s symbol “lim.” by the
modern one “st” or “sh,” Cauchy’s formula (8) is
identical to the formula appearing in any textbook
based on the hyperreal approach, expressing the
derivative in terms of the standard part function
(shadow).
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Cauchy on Continuity

On page 17 of his 1844 text, Cauchy gives a
definition of continuity in terms of infinitesimals
(an infinitesimal x-increment necessarily produces
an infinitesimal y-increment). His definition is
nearly identical with the italicized definition that
appeared on page 34 in his Cours d’Analyse (Cauchy
1821 [24]) 23 years earlier, when he first introduced
the modern notion of continuity. We will use the
translation by Bradley & Sandifer (2009 [20]). In his
Section 2.2 entitled Continuity of functions, Cauchy
writes:

If, beginning with a value of x contained
between these limits, we add to the variablex
an infinitely small incrementα, the function
itself is incremented by the difference f (x+
α)− f (x).

Cauchy goes on to state that

the function f (x) is a continuous function
of x between the assigned limits if, for
each value of x between these limits, the
numerical value of the difference f (x +
α) − f (x) decreases indefinitely with the
numerical value of α.

He then proceeds to provide an italicized definition
of continuity in the following terms:

the function f (x) is continuous with respect
to x between the given limits if, between
these limits, an infinitely small increment
in the variable always produces an infinitely
small increment in the function itself.

In modern notation, Cauchy’s definition can be
stated as follows. Denote by

©

x the halo of x, i.e.,
the collection of all points infinitely close to x.
Then f is continuous at x if

(9) f
(
©

x
)
⊂
©

f (x) .

Most scholars hold that Cauchy never worked with
a pointwise definition of continuity (as is customary
today) but rather required a condition of type (9)
to hold in a range (“between the given limits”). It
is worth recalling that Cauchy never gave an ε, δ
definition of either limit or continuity (though
(ε, δ)-type arguments occasionally do appear in
Cauchy). It is a widespread and deeply rooted
misconception among both mathematicians and
those interested in the history and philosophy of
mathematics that it was Cauchy who invented the
modern (ε, δ) definitions of limit and continuity;
see, e.g., Colyvan & Easwaran (2008 [27, p. 88])
who err in attributing the formal (ε, δ) definition
of continuity to Cauchy. That this is not the case
was argued by Błaszczyk et al. (2013 [15]), Borovik
et al. (2012 [17]), Katz & Katz (2011 [58]), Nakane
(2014 [80]), Tall et al. (2014 [97]).

Modern Formalizations: A Case Study
To illustrate the use of the standard part in the
context of the hyperreal field extension of R, we
will consider the following problem on divergent
integrals. The problem was recently posed at
SE, and is reportedly due to S. Konyagin.21 The
solution exploits the technique of a monotone
rearrangement g of a function f , shown by Ryff
to admit a measure-preserving map φ : [0,1] →
[0,1] such that f = g ◦ φ. In general there is
no “inverse” ψ such that g = f ◦ψ; however, a
hyperreal enlargement enables one to construct a
suitable (internal) proxy for such a ψ, so as to be
able to write g = st(f ◦ψ); see formula (14) below.

Theorem 1. Let f be a real-valued function contin-
uous on [0,1]. Then there exists a number a such
that the integral

(10)
∫ 1

0

1
|f (x)− a| dx

diverges.

A proof can be given in terms of a monotone
rearrangement of the function (see Hardy et
al. [46]). We take a decreasing rearrangement g(x)
of the function f (x). If f is continuous, then the
function g(x) will also be continuous. If f is not
constant on any set of positive measure, one can
construct g by setting
(11)
g =m−1 where m(y) =meas{x : f (x) > y}.
Ryff (1970 [90]) showed that there exists a

measure-preserving transformation22 φ : [0,1]→
[0,1] that relates f and g as follows:

(12) f (x) = g ◦φ(x).
Finding a map ψ such that g(x) = f ◦ ψ(x) is
in general impossible (see Bennett & Sharpley
[12, p. 85, example 7.7] for a counterexample). This
difficulty can be circumvented using a hyperfinite
rearrangement (see the section entitled “A Combi-
natorial Approach to Decreasing Rearrangements”).
By measure preservation, we have∫ 1

0
|f (x)− a|−1 dx =

∫ 1

0
|g(x)− a|−1 dx

(for every a).23

To complete the proof of Theorem 1, ap-
ply the result that every monotone function is

21http://math.stackexchange.com/questions/408311/
improper-integral-diverges
22However, see the section “A Combinatorial Approach to
Decreasing Rearrangements” for a hyperfinite approach
avoiding measure theory altogether.
23Here one needs to replace the function |f (x) − a|−1 by

the family of its truncations min
(
C, |f (x)− a|−1

)
, and then

let C increase without bound.
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a.e. differentiable.24 Take a point p ∈ [0,1] where
the function g is differentiable. Then the num-
ber a = g(p) yields an infinite integral (10), since
the difference |g(x)− a| can be bounded above in
terms of a linear expression.25

A Combinatorial Approach to Decreasing
Rearrangements
The existence of a decreasing rearrangement of a
function f continuous on [0,1] admits an elegant
proof in the context of its hyperreal extension ∗f ,
which we will continue to denote by f .

We present a combinatorial argument showing
that the decreasing rearrangement enjoys the same
modulus of uniformity as the original function.26

The argument actually yields an independent con-
struction of the decreasing rearrangement (see
Proposition 2) that avoids recourse to measure
theory. It also yields an “inverse up to an infini-
tesimal,” ψ (see formula (14)), to the function φ
such that f = g ◦φ. For a recent application of
combinatorial arguments in a hyperreal framework,
see Benci et al. (2013 [11]).

In passing from the finite to the continuous
case of rearrangements, Bennett and Sharpley [12]
note that

nonnegative sequences (a1, a2, . . . , an)
and (b1, b2, . . . , bn) are equimeasurable
if and only if there is a permutation
σ of {1,2, . . . , n} such that bi = aσ(i)
for i = 1,2, . . . , n. … The notion of permu-
tation is no longer available in this context
[of continuous measure spaces] and is
replaced by that of a “measure-preserving
transformation” (Bennett and Sharpley
1988 [12, p. 79]).

We show that the hyperreal framework allows one
to continue working with combinatorial ideas, such
as the “inverse” function ψ, in the continuous case
as well.

Let H ∈ ∗N \N, let pi = i
H for i = 1,2, . . . ,H. By

the Transfer Principle (see e.g., Davis [28], Herzberg
[49], Kanovei & Reeken [56]), the nonstandard
domain of internal sets satisfies the same basic

24In fact, one does not really need to use the result that
monotone functions are a.e. differentiable. Consider the
convex hull in the plane of the graph of the monotone func-
tion g(x), and take a point where the graph touches the
boundary of the convex hull (other than the endpoints 0
and 1). Setting a equal to the y-coordinate of the point does
the job.
25Namely, for x near such a point p, we have |g(x)− a| ≤
(|g′(p)| + 1)|x − p|, hence 1

|g(x)−a| ≥
1

(|g′(p)|+1)|x−a| ,

yielding a lower bound in terms of a divergent integral.
26A function f on [0,1] is said to satisfy a modulus of
uniformity µ(n) > 0, n ∈ N, if ∀n ∈ N ∀p, q ∈
[0,1]

(
|p − q| ≤ µ(n)→ |f (p)− f (q)| ≤ 1

n

)
.

laws as the usual, “standard” domain of real
numbers and related objects. Thus, as for finite
sets, there exists a permutationψ of the hyperfinite
grid

(13) GH = {p1, . . . , pH}
by decreasing value of f (pi) (here f (ψ(p1)) is
the maximal value). We assume that equal values
are ordered lexicographically so that if f (pi) =
f (pj) with i < j then ψ(pi) < ψ(pj). Hence we
obtain an internal function

(14) ĝ(pi) = f (ψ(pi)), i = 1, . . . ,H.

Here ĝ is (perhaps nonstrictly) decreasing on the
grid GH of (13). The internal sequences (f (pi))
and (ĝ(pi)), where i = 1, . . . ,H, are equinumerable
in the sense above.

Proposition 2. Let f be an arbitrary continuous
function. Then there is a standard continuous real
function g(x) such that g(st(pi)) = st(ĝ(pi)) for
all i, where st(y) denotes the standard part of a
hyperreal y .

Proof. Let gi = ĝ(pi). We claim that ĝ is S-
continuous (microcontinuous), i.e., for each
pair i, j = 1, . . . ,H, if pi − pj is infinitesimal then
so is ĝ(pi) − ĝ(pj). To prove the claim, we will
prove the following stronger fact:

for every i < j there arem < n such that n−
m ≤ j − i and |f (pm)− f (pn)| ≥ gi − gj .

The sets A = {k : f (pk) ≥ gi} and B = {k : f (pk) ≤
gj} are nonempty and there are at most j − i − 1
points which are not in A∪ B. Let m ∈ A and n ∈
B be such that |m − n| is minimal. All integers
betweenm and n are not inA∪B. Hence there are at
most j−i−1 such integers, and therefore |n−m| ≤
j−i. By the definition ofA and B, we obtain |f (pn)−
f (pm)| ≥ gi − gj , which proves the claim. Thus ĝ
is indeed S-continuous.

This allows us to define, for any standard x ∈
[0,1], the value g(x) to be the standard part of the
hyperreal gi for any hyperinteger i such that pi is
infinitely close to x, and then g is a continuous27

and (nonstrictly) monotone real function equal to
the decreasing rearrangement g =m−1 of (11). �

The hyperreal approach makes it possible to
solve Konyagin’s problem without resorting to
standard treatments of decreasing rearrangements
which use measure theory. Note that the rearrange-
ment defined by the internal permutation ψ
preserves the integral of f (as well as the integrals
of the truncations of |f (x)−a|−1), in the following
sense. The right-hand Riemann sums satisfy

(15)
H∑
i=1

f (pi)∆x = H∑
i=1

f (ψ(pi))∆x = H∑
i=1

ĝ(pi)∆x,
27The argument shows in fact that the modulus of unifor-
mity of g is bounded by that of f ; see footnote 26.
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where ∆x = 1
H . Thus ψ transforms a hyperfinite

Riemann sum of f into a hyperfinite Riemann

sum of ĝ. Since
∫ 1
0 f (x)dx = st

(∑H
i=1 f (pi)∆x)

and g(st(pi)) = st
(
ĝ(pi)

)
, we conclude that f

and g have the same integrals, and similarly for
the integrals of |f (x)− a|−1; see footnote 23.

The first equality in (15) holds automatically
by the transfer principle even though ψ is an
infinite permutation. (Compare with the standard
situation where changing the order of summation
in an infinite sum generally requires further
justification.) This illustrates one of the advantages
of the hyperreal approach.

Conclusion
We have critically reviewed several common mis-
representations of hyperreal number systems, not
least in relation to their alleged nonconstruc-
tiveness, from a historical, philosophical, and
set-theoretic perspective. In particular we have
countered some of Easwaran’s recent arguments
against the use of hyperreals in formal epistemol-
ogy. A hyperreal framework enables a richer syntax
better suited for expressing proxies for procedural
moves found in the work of Fermat, Leibniz, Euler,
and Cauchy. Such a framework sheds light on
the internal coherence of their procedures which
have been often misunderstood from a whiggish
post-Weierstrassian perspective.
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