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We introduce a new sequential game, where each player has a limited resource that he
needs to spend on increasing the probability of winning each stage, but also on main-
taining the assets that he has won in the previous stages. Thus, the players’ strategies
must take into account that winning at any given stage negatively affects the chances of
winning in later stages. Whenever the initial resources of the players are not too small,
we present explicit strategies for the players, and show that they are a Nash equilibrium,
which is unique in an appropriate sense.
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1. Introduction

We present a new n-stage game. Each player starts the game with some given
resource, and at the beginning of each stage, he must decide how much resource to
invest in that stage. A player wins the given stage with probability corresponding
to the relative investments of the players. The winner of the stage receives a payoff
which may differ from stage to stage. The new feature of our game is that the
winner of each stage is required to spend additional resources on the maintenance
of his winning. This is a real life situation, where the winnings are some assets, and
resources are required for their maintenance, as in wars, territorial contests among
organisms, or in the political arena. The winner of a given stage must put aside all
resources that will be required for future maintenance costs of the won asset. Thus,
a fixed amount will be deducted from the resources of the winner immediately after
winning, which should be thought of as the sum of all future maintenance costs for
the given acquired asset.
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Since the probability for winning is the relative investment of each player, a
rule must be given for what happens if all players invest 0. The rule that is usually
chosen in similar games is that if all players invest 0, then all players win with equal
probability. This rule is, however, inappropriate in our setting where the winnings
are costly. A player may feel that the maintenance costs of a given win are too
high and so he does not want to win the given stage. In such case, it would be
unreasonable to force the win upon him. So, our rule will be that if all players
invest 0, then no player wins that stage. Since it is thus possible that certain stages
will not be won by any player, this is not a fixed sum game.

The players’ resources from which the investments are taken and from which
the maintenance costs are paid can be thought of as money, whereas the payoffs
should be thought of as a quantity of different nature, such as political gain. The
two quantities cannot be interchanged, that is, the payoff cannot be converted into
resources for further investment.

At each stage, the player thus needs to decide how much to invest in the given
stage, where winning that stage on one hand leads to the payoff of the given stage,
but on the other hand, the maintenance cost for the given winning negatively affects
the probabilities for future winnings. In the present work, we analyze the case
where the initial resources of the players are not too small. In this case, we present
explicit strategies for the players, and show that they are a Nash equilibrium which
is unique in an appropriate sense. (Theorem 3.6 for two players and Theorem 4.1
for m players.)

There are similarities between our game and the well-known Colonel Blotto
game [Borel, 1921]. In Blotto games, two players simultaneously distribute forces
across several battlefields. At each battlefield, the player who allocates the largest
force wins. The Blotto game has been developed and generalized in many directions
(see e.g., Borel [1921]; Duffy and Matros [2015]; Friedman [1958]; Hart [2008]; Lake
[1979]; Roberson [2006]). Two main developments are the “asymmetric” and the
“stochastic” models. The asymmetric version allows the payoffs of the battlefields to
differ from each other, and in the stochastic model, the deterministic rule deciding
on the winner is replaced by a probabilistic one, by which the chances of winning a
battlefield depends on the size of investment. The present work adds a new feature
which changes the nature of the game, in making the winnings costly. The players
thus do not know before hand how much of their resources will be available for
investing in winning rather than on maintenance, and so the game cannot be for-
mulated with simultaneous investments, as in the usual Blotto games, but rather
must be formulated with sequential stages.

This work was inspired by previous work of the first author with Zamir and Segev
[Nowik, 2009; Nowik et al., 2012] on a developmental competition that occurs in
the nervous system, which we now describe. A muscle is composed of many muscle
fibers. At birth, each muscle fiber is innervated by several motor neurons (MNs) that
“compete” to singly innervate it. It has been found that MNs with higher activation
threshold win in more competitions than MNs with lower activation thresholds. In
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Nowik [2009], this competitive process is modeled as a multistage game between
two groups of players: those with lower and those with higher thresholds. At each
stage, a competition at the most active muscle fiber is resolved. The strategy of a
group is defined as the average activity level of its members and the payoff is defined
as the sum of their wins. If a MN wins (i.e., singly innervates) a muscle fiber, then
from that stage on, it must continually devote resources for maintaining this muscle
fiber. Hence, the MNs use their resources both for winning competitions and for
maintaining previously acquired muscle fibers. It is proved in Nowik [2009] that in
such circumstances, it is advantageous to win in later competitions rather than in
earlier ones, since winning at a late stage will encounter less maintenance and thus
will negatively affect only the few competitions that were not yet resolved. If µ is
the cost of maintaining a win at each subsequent stage, then in the terminology of
the present work, the fee payed by the MNs for winning the kth stage of an n stage
game is (n − k)µ.

We start by analyzing the two-person game in Secs. 2 and 3, and then generalize
to the m-person setting in Sec. 4.

2. The Two-Person Game

The initial data for the two-person version of our game is the following:

(1) The number n of stages of the game.
(2) Fixed payoffs wk > 0, 1 ≤ k ≤ n, to be received by the winner of the kth stage.
(3) The initial resources A, B ≥ 0 of players I, II, respectively.
(4) Fixed fees ck ≥ 0, 1 ≤ k ≤ n − 1, to be deducted from the resources of the

winner after the kth stage.

The rules of the game are as follows: At the kth stage of the game, the two
players, which we name P I, P II, each has some remaining resource Ak, Bk, where
A1 = A, B1 = B. P I, P II each needs to decide his investment xk, yk for that stage,
respectively, with 0 ≤ xk ≤ Ak − ck, 0 ≤ yk ≤ Bk − ck, and where if Ak < ck,
then P I may only invest 0, and similarly for P II. The probability for P I, P II of
winning this stage is, respectively, xk

xk+yk
and yk

xk+yk
, where if xk = yk = 0, then

no player wins. These rules ensure that the winner of the given stage will have
the resources for paying the given fee ck. The resource of the winner of the kth
stage is then reduced by an additional ck, that is, if P I wins the kth stage, then
Ak+1 = Ak − xk − ck and Bk+1 = Bk − yk, and if P II wins, then Ak+1 = Ak − xk

and Bk+1 = Bk − yk − ck. The role of ck is in determining Ak+1, Bk+1, thus there
is no cn. It will however be convenient in the sequel to formally define cn = 0. The
payoff received by the winner of the kth stage is wk. Since it is possible that no
player wins certain stages, this game is not a fixed sum game.

As already mentioned, the resource quantities Ak, Bk, xk, yk, ck used for the
investments and fees are of different nature than that of the payoffs wk. The two
quantities cannot be interchanged and should be thought of as having different
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“units”. Note that all expressions below are unit consistent, that is, if say, we
divide resources by payoff, then such expression has units of resources

payoff , and may only
be added or equated to expressions of the same units.

If A and B are too small in comparison to c1, . . . , cn−1 then the players’ strate-
gies are strongly influenced by the possibility of running out of resources before
the end of the game. In the present work, we analyze the game when A, B are
not too small. Namely, we introduce a quantity M depending on c1, . . . , cn−1 and
w1, . . . , wn, and for A, B > M , we introduce explicit strategies for P I and P II, and
show that they are a Nash equilibrium for the game, which is unique in a sense to
be explained.

For k = 1, . . . , n let Wk =
∑n

i=k wi and W = W1. We now show that if A > M ,
then if P I always chooses to invest xk ≤ wk

Wk
Ak (as holds for our strategy σn,A,B

presented in Definition 3.1 below), then whatever the random outcomes of the game
are, his resources will not run out before the end of the game. We in fact give a
specific lower bound on Ak for every k, which will be used repeatedly in the sequel.

Proposition 2.1. Let

M = W · max
1≤k≤n

(
ck

wk
+

k−1∑
i=1

ci

Wi+1

)
.

If A > M, and if PI plays xk ≤ wkAk

Wk
for all k, then Ak > Wkck

wk
for all 1 ≤ k ≤ n.

In particular, Ak > 0 for all 1 ≤ k ≤ n. (And similarly for PII.)

Proof. For every 1 ≤ k ≤ n, we have A
W > M

W ≥ ck

wk
+
∑k−1

i=1
ci

Wi+1
, so

A

W
−

k−1∑
i=1

ci

Wi+1
>

ck

wk
.

Thus, it is enough to show that Ak

Wk
≥ A

W −∑k−1
i=1

ci

Wi+1
for all 1 ≤ k ≤ n. We show

this by induction on k. For k = 1, the sum is empty and we get equality. Assuming

Ak

Wk
≥ A

W
−

k−1∑
i=1

ci

Wi+1
,

we get

Ak+1

Wk+1
≥ 1

Wk+1

(
Ak − wkAk

Wk
− ck

)
=

1
Wk+1

(
Wk+1Ak

Wk
− ck

)

=
Ak

Wk
− ck

Wk+1
≥ A

W
−

k−1∑
i=1

ci

Wi+1
− ck

Wk+1
=

A

W
−

k∑
i=1

ci

Wi+1
.

We consider two simple examples of c1, . . . , cn−1, w1, . . . , wn, for which M may
be readily identified.
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(1) Let ck = n− k, wk = 1 for all k. These fees and payoffs are as in the biological
game described in the introduction. For every 1 ≤ k ≤ n, we have n

(
ck +∑k−1

i=1
ci

n−i

)
= n

(
(n − k) + (k − 1)

)
= n(n − 1), so M = n(n − 1).

(2) Let ck = 1 for all 1 ≤ k ≤ n − 1, wk = 1 for all k. Using the inequality∑n
k=1

1
k < 1 + lnn, we get for every 1 ≤ k ≤ n that n

(
ck +

∑k−1
i=1

ci

n−i

)
<

n(2 + lnn), so M < n(2 + lnn).

We note that an obvious necessary condition for A to satisfy Proposition 2.1
is A ≥∑n−1

k=1 ck, since in case P I wins all stages, he will need to pay all fees ck. We
see that M in the two examples above is not much larger. Namely, in (1),

∑n−1
k=1

ck = n(n−1)
2 and M = n(n− 1), and in (2),

∑n−1
k=1 ck = n− 1 and M < n(2 + lnn).

3. Nash Equilibrium Strategies

We define the following two strategies σn,A,B and τn,A,B for P I, P II, respectively.
We prove that for A, B > M as given in Proposition 2.1, this pair of strategies is a
Nash equilibrium, which is unique in a sense to be explained, and these strategies
guarantee the given payoffs.

Definition 3.1. At the kth stage of the game, let

ak =
wkAk

Wk
− Akck

Ak + Bk
and bk =

wkBk

Wk
− Bkck

Ak + Bk
,

where as mentioned, we formally define cn = 0. The strategy σn,A,B for P I is the
following: At the kth stage, P I invests ak if it is allowed by the rules of the game.
Otherwise, he invests 0. The strategy τn,A,B for P II is similarly defined with bk.

Recall that ak �= 0 is allowed by the rules of the game if 0 ≤ ak ≤ Ak − ck,
whereas ak = 0 is always allowed, even when Ak−ck < 0. We interpret the quantities
ak, bk as follows. P I first divides his remaining resource Ak to the remaining stages
in proportion to the payoff for each remaining stage, which gives wk

Wk
Ak. From this,

he subtracts Ak

Ak+Bk
ck which is the expected fee he will pay for this stage, since

ak

ak+bk
= Ak

Ak+Bk
. Note that Wn = wn and formally cn = 0, so an = An, bn = Bn,

i.e., at the last stage, the two players invest all their remaining resources.
Depending on A and B and on the random outcomes of the game, it may be

that P I indeed reaches a stage where ak is not allowed. In this regard, we make the
following definition.

Definition 3.2. The triple (n, A, B) is P I-effective if when P I and P II use σn,A,B

and τn,A,B, then with probability 1, ak will always be allowed for P I. Similarly
P II-effectiveness is defined for P II with bk.

Proposition 3.3. Let M be as in Proposition 2.1. If A > M and B is arbitrary,
then (n, A, B) is PI-effective. Furthermore, ak > 0 for all k. (And similarly for PII
when B > M.)
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Proof. We need to show that necessarily 0 < ak ≤ Ak − ck for all 1 ≤ k ≤ n. We
have ak = wkAk

Wk
− Akck

Ak+Bk
≤ wkAk

Wk
, so by Proposition 2.1, wk

Wk
> ck

Ak
≥ ck

Ak+Bk
and

Ak > 0, so wkAk

Wk
> Akck

Ak+Bk
giving ak > 0.

For the inequality ak ≤ Ak − ck, we first consider k ≤ n − 1. We have from
the proof of Proposition 2.1 that Ak

Wk
− ck

Wk+1
≥ A

W −∑k
i=1

ci

Wi+1
> ck+1

wk+1
≥ 0, so

Ak

Wk
> ck

Wk+1
, and so(

1 − Ak

Ak + Bk

)
ck ≤ ck <

Wk+1Ak

Wk
=
(

1 − wk

Wk

)
Ak.

This gives ck − Akck

Ak+Bk
< Ak − wkAk

Wk
, so ak = wkAk

Wk
− Akck

Ak+Bk
< Ak − ck. For k = n,

we note that cn = 0 by definition, and Wn = wn, so an = An = An − cn.

In general, an inductive characterization of P I-effectiveness will also involve
induction regarding P II. But if we assume that B > M , and so by Proposition 3.3,
all bk are known to be allowed and positive, then the notion of P I-effectiveness
becomes simpler, and may be characterized inductively as follows. When saying
that a triple (n − 1, A′, B′) is P I-effective, we refer to the n − 1 stage game with
fees c2, . . . , cn−1 and payoffs w2, . . . , wn. Starting with n = 1, (1, A, B) is always
P I-effective. For n ≥ 2, if a1 is not allowed, then (n, A, B) is not P I-effective. If
a1 = 0, then it is allowed, and P I surely loses the first stage, and so (n, A, B) is P I-
effective if and only if (n− 1, A, B− b1− c1) is P I-effective. Finally, if a1 > 0 and it
is allowed, then (n, A, B) is P I-effective if and only if both (n−1, A−a1−c1, B−b1)
and (n − 1, A − a1, B − b1 − c1) are P I-effective.

The crucial step in proving Theorem 3.6 below, on σn,A,B, τn,A,B being a Nash
equilibrium, is the following Theorem 3.5. We point out that in Theorem 3.6, we will
assume that A > M , in which case (n, A, B) is P I-effective, by Proposition 3.3. But,
here in Theorem 3.5, we must consider arbitrary A ≥ 0 in order for an induction
argument to carry through.

Definition 3.4. Two strategies σ, σ′ of P I are said to be equivalent with respect
to a strategy τ of P II, if when P II uses τ , then with probability 1, σ and σ′ will
always dictate the exact same moves. Equivalence of strategies τ, τ ′ of P II with
respect to σ of P I, is similarly defined.

Theorem 3.5. Given c1, . . . , cn−1 and w1, . . . , wn, let M be as in Proposition 2.1,
and assume that B > M and PII plays the strategy τn,A,B.

For A ≥ 0, if (n, A, B) is PI-effective, and P I plays according to σn,A,B, then
his expected payoff is AW

A+B . On the other hand, if (n, A, B) is not PI-effective, or if
PI uses a strategy that is not equivalent to σn,A,B with respect to τn,A,B, then the
expected payoff of PI is strictly less than AW

A+B .

Proof. By induction on n. We note that throughout the present proof, we do
not use the condition B > M directly, but rather only through the statements of
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Propositions 3.3 and 2.1 saying that (n, A, B) is P II-effective, bk > 0 and ck < wkBk

Wk

for all 1 ≤ k ≤ n, which indeed continue to hold along the induction process.
If A = 0, then ak = 0 for all k, which is the only possible investment, and

its payoff is 0 = AW
A+B , so the statement holds. We thus assume from now on that

A > 0. For n = 1, we have b1 = B. The allowed investment for P I is 0 ≤ s ≤ A with
expected payoff s

s+B w1 = s
s+B W which indeed attains a strict maximum A

A+B W

at s = A = a1.
For n ≥ 2, let s be the investment of P I in the first stage. Assume first that

s = 0. In this case, P II surely wins the first stage and so following this stage,
we have A2 = A and B2 = B − b1 − c1. The moves for P II dictated by τn,A,B

for the remaining n − 1 stages of the game are τn−1,A,B−b1−c1 , and so by the
induction hypothesis, the expected total payoff of P I is at most AW2

A+B−b1−c1
. Since

Proposition 2.1 holds for P II, we have c1 < w1B
W ≤ w1(A+B)

W , that is, w1
W − c1

A+B > 0,
and since A > 0, we get a1 = A(w1

W − c1
A+B ) > 0. This means that s = 0 �= a1, so we

must verify the strict inequality AW2
A+B−b1−c1

< AW
A+B . This is readily verified, using

A > 0, c1 < w1B
W , W2 = W − w1, and b1 + c1 = w1B

W − Bc1
A+B + c1 = w1B

W + Ac1
A+B .

We now assume s > 0. This is allowed only if A > c1 and 0 < s ≤ A − c1. The
moves for P II dictated by τn,A,B for the remaining n − 1 stages of the game are
τn−1,A2,B2 . By the induction hypothesis, if P I wins the first stage, which happens
with probability s

s+b1
> 0, then his expected payoff in the remaining n − 1 stages

of the game is at most (A−s−c1)W2
A+B−s−b1−c1

. Similarly, if he loses the first stage, which
happens with probability b1

s+b1
> 0, then his expected payoff in the remaining n−1

stages is at most (A−s)W2
A+B−s−b1−c1

. Thus, the expected payoff of P I for the whole n

stage game is at most F (s), where

F (s) =
s

s + b1

(
w1 +

(A − s − c1)W2

A + B − s − b1 − c1

)
+

b1

s + b1
· (A − s)W2

A + B − s − b1 − c1

with b1 = w1B
W − Bc1

A+B .
By the induction hypothesis, we know furthermore, that in case P I wins the

first stage, he will attain the maximal expected payoff (A−s−c1)W2
A+B−s−b1−c1

in the remain-
ing stages of the game only if (n − 1, A − s − c1, B − b1) is P I-effective, and he
always plays according to the instructions of σn−1,A−s−c1,B−b1 . Similarly, if he
loses the first stage, he will attain the maximal expected payoff (A−s)W2

A+B−s−b1−c1
only if

(n−1, A−s, B−b1−c1) is P I-effective and he plays according to σn−1,A−s,B−b1−c1 .
If not, then since both alternatives occur with positive probability, his expected total
payoff for the whole n stage game will be strictly less than F (s).

To analyze F (s), we make a change of variable s = a1 + x, that is, we define
F̂ (x) = F (a1 + x) = F (w1A

W − Ac1
A+B + x). After some manipulations, we get

F̂ (x) =
AW

A + B
− BW 3x2

(A + B)(W2(A + B) − Wx)(Wx − Wc1 + w1(A + B))
.
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Under this substitution, s = a1 corresponds to x = 0, and the allowed domain
0 < s ≤ A − c1 corresponds to

Ac1

A + B
− w1A

W
< x ≤ W2A

W
− Bc1

A + B
.

Using c1 < w1B
W , one may verify that in the above expression for F̂ the two linear

factors appearing in the denominator of the second term are both strictly positive
in this domain. It follows that F̂ in the given domain is at most AW

A+B , and this
maximal value is attained only for x = 0 (if it is in the domain), which corresponds
to s = a1 for the original F . Finally, as mentioned, unless (n − 1, A2, B2) is P I-
effective and P I plays according to σn−1,A2,B2 , his expected payoff will be strictly
less than F (s), and so strictly less than AW

A+B .

We may now prove our main result.

Theorem 3.6. Given c1, . . . , cn−1 and w1, . . . , wn, let M be as in Proposition 2.1,
and assume A, B > M . Then

(1) The pair of strategies σn,A,B, τn,A,B is a Nash equilibrium for the game, with
expected total payoffs AW

A+B , BW
A+B , which are guaranteed by these strategies.

(2) Any other Nash equilibrium pair σ, τ satisfies that σ is equivalent to σn,A,B with
respect to τn,A,B, and τ is equivalent to τn,A,B with respect to σn,A,B.

Proof. Denote σ0 = σn,A,B and τ0 = τn,A,B, and for any pair of strategies σ, τ , let
S1(σ, τ), S2(σ, τ) be the expected payoffs of P I, P II, respectively. Theorem 3.5 and
Proposition 3.3 applied to both P I and P II imply that σ0, τ0 are a Nash equilibrium
with the given payoffs. Since B > M , if P II plays τ0, then by Proposition 3.3, we
have bk > 0 for all k, and so there is a winner to each stage of the game, and thus the
total combined payoff of P I and P II is necessarily W . Thus, again by Theorem 3.5,
for any strategy σ of P I we have S2(σ, τ0) = W − S1(σ, τ0) ≥ BW

A+B , i.e., the payoff
BW
A+B is guaranteed by τ0. Similarly, for any strategy τ of P II, S1(σ0, τ) ≥ AW

A+B .
Now, let σ, τ be any other Nash equilibrium and assume that σ is not equivalent

to σ0 with respect to τ0. By Theorem 3.5, we have S1(σ, τ0) < S1(σ0, τ0) and since
playing τ0 guarantees a combined total payoff of W , we have S2(σ, τ0) > S2(σ0, τ0).
Since the pair σ, τ is a Nash equilibrium, we also have S2(σ, τ) ≥ S2(σ, τ0), and so
together S2(σ, τ) > S2(σ0, τ0), and so S1(σ, τ) ≤ W − S2(σ, τ) < W − S2(σ0, τ0) =
S1(σ0, τ0). Again, since σ, τ is a Nash equilibrium, we have S1(σ0, τ) ≤ S1(σ, τ), so
together S1(σ0, τ) < S1(σ0, τ0) = AW

A+B , contradicting the conclusion of the previous
paragraph.

4. The m-Person Game

The generalization of our game and results to an m-person setting is straightfor-
ward. Player Pi, 1 ≤ i ≤ m, starts with resource Ai ≥ 0, and we are again given
fixed fees c1, . . . , cn−1 ≥ 0, and payoffs w1, . . . , wn > 0. At stage 1 ≤ k ≤ n, player
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Pi has remaining resource Ai
k with Ai

1 = Ai. At stage k, each player decides to

invest 0 ≤ xi
k ≤ Ai

k − ck, or 0 if Ai
k < ck. The probability for Pi to win is xi

kP
m
j=1 xj

k

,

and if xi
k = 0 for all i, then no player wins. The winner of the kth stage receives

payoff wk and pays the maintenance fee ck.
We define M as before, M = W · max1≤k≤n( ck

wk
+
∑k−1

i=1
ci

Wi+1
).

The strategy σi
n,A1,...,Am of Pi is the straightforward generalization of the strate-

gies σn,A,B, τn,A,B of the two-person game, namely, at the kth stage Pi invests

ai
k =

wkAi
k

Wk
− Ai

kck∑m
j=1 Aj

k

,

if it is allowed, and 0 otherwise.
The generalization of Theorem 3.6 is the following:

Theorem 4.1. If A1, . . . , Am > M, then the m strategies σ1
n,A1,...,Am , . . . ,

σm
n,A1,...,Am are a Nash equilibrium for the m-person game. Each of the strategies

is unique up to equivalence with respect to all others. The expected total payoffs are
A1WPm
i=1 Ai , . . . ,

AmWPm
i=1 Ai , which are guaranteed by the given strategies.

Proof. We prove for P1. Let Bk =
∑m

i=2 Ai
k and bk =

∑m
i=2 ai

k. Since a1
k = wkA1

k

Wk
−

A1
kck

A1
k+Bk

and bk = wkBk

Wk
− Bkck

A1
k+Bk

, our player P1 can imagine that he is playing a
two-person game against one joint player whose resource is Bk, and whose strategy
dictates investing bk. Thus, the claim follows from Theorem 3.6.
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